JP2004128629A - Signaling circuit - Google Patents
Signaling circuit Download PDFInfo
- Publication number
- JP2004128629A JP2004128629A JP2002286616A JP2002286616A JP2004128629A JP 2004128629 A JP2004128629 A JP 2004128629A JP 2002286616 A JP2002286616 A JP 2002286616A JP 2002286616 A JP2002286616 A JP 2002286616A JP 2004128629 A JP2004128629 A JP 2004128629A
- Authority
- JP
- Japan
- Prior art keywords
- signal
- circuit
- cable
- balanced
- transmission circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Dc Digital Transmission (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は信号伝送回路に関し、特に平衡伝送路による信号を送受信する送信回路と受信回路とで構成される信号伝送回路に関する。
【0002】
【従来の技術】
この種の従来の技術について特許文献を基に説明する。
【0003】
第1の従来の信号伝送回路は、ECL信号をバランス方式で出力するドライバICと、この出力信号を入力するレシーバICとの間で、ドライバIC側が電源断となった時レシーバICをハイレベルに固定することにより、レシーバICの出力信号が不安定になることを防止する構成になっている(特許文献1参照)。
【0004】
第2の従来例の信号伝送回路は、受信回路の平衡信号の終端方法として、差動入力端子間に一定のオフセット電位を印加することにより、インタフェースの障害時に対して、受信回路の不平衡信号の出力電位を一定電位に確定させるようにしたオフセット電位印加手段を具備したフェール・セーフ回路の構成になっている(特許文献2参照)。
【0005】
【特許文献1】
特開平5−335932号公報(第2頁〜第3頁、図1)
【特許文献2】
特開昭56−152357号公報(第2頁〜第3頁。第2図、第3図)
【0006】
【発明が解決しようとする課題】
近年、信号伝送路に対する信号伝送回路においては、伝送速度の高速化、低消費電力化、不要波雑音放射レベルの低減面から、従来から使用されてきた+5V駆動、+3.3V駆動のRS−422規格に適合したデバイスで構成した送信回路、受信回路は採用できない状態になってきた。
【0007】
このため、近年の高速信号伝送のために開発されたTIA/EIA−644で規格化されたデータ伝送方式のLVDS(Low Voltage Differential Signaling)デバイスで送信回路、受信回路を構成する必要が出てきた。このデバイスを採用することで、高速信号伝送と消費電力、不要波雑音放射レベルの低減が実現できる。
【0008】
LVDSデバイスの例としては、例えばDS90LV032ATM(//www・national.com/ads−cgi/viewer.pl/JPN/ds/DS/DS90LV032.pdf)があり、これは、200mV〜800mVの低振幅で250MHz程度の高速信号を伝送できるデバイスである。現在では更に高速動作(1GHzを超える)するデバイスも開発されている。
【0009】
LVDSは理想的は環境下では、低振幅の電圧変化の差動信号で高速なデータを伝送でき、差動モードを維持すれば外部からのノイズに強いが、実際は周辺の+5Vや+3.3Vの信号と隣接する影響によるコモンモードノイズを十分除去できない場合があり、この場合に信号伝送誤りが発生する。このため、送信回路、受信回路のみならず、伝送ラインの信号パターン配線や、ケーブル接続上の信号グルーピングや、デバイス供給電源の分離などの配慮が必須であった。
【0010】
そこで、上記第1及び第2の従来例に信号を伝送できる低振幅の差動信号を使用するLVDSデバイスを送受信回路に適用した場合に、上記伝送ラインの信号パターン配線や、ケーブル接続上の信号グルーピング、デバイス供給電源の分離等の十分に配慮できた理想的な環境ならば、前記第2の従来例のフェール・セーフ機能により送信回路側の電源断になったときや、受信側でケーブルが未接続になった場合には、受信回路の不平衡信号を一定電位に確定して、出力信号が不安定になることを防止することができるが、現実には電源やグラウンド(GND)からの雑音が前記差動信号へ異なった位相、レベルで影響することにより受信回路の出力が不安定な状態になる場合がある。
【0011】
さらに、送信回路側でケーブルが未接続になった場合には、ケーブルがアンテナの役割となり、他からの干渉信号の影響を受けて、低振幅の差動電位差で動作する受信回路の出力が固定できない不具合が生じる。
【0012】
また、前記送受信信号以外の別の信号が同一ケーブルで共に伝送されている場合には、送信回路が未接続になった場合でも、別の信号がケーブル上を伝送されており、この信号からの影響で前記受信回路の出力が固定できない不安定な状態が生じる。
【0013】
[発明の目的]
本発明の目的は、LVDS等の低振幅で高速信号伝送を可能とする平衡伝送路の信号伝送回路を提供すると共に更に、低減振幅差動信号を装置間伝送に採用された場合に、送信回路がケーブルから外れた場合や、ケーブルが開放した場合を監視して、受信回路の不平衡信号出力が不安定になることを防止し、更にまた、低消費電力化、不要波雑音放射レベルが低減された信号伝送回路を提供することにある。
【0014】
【課題を解決するための手段】
本発明の信号伝送回路は、不平衡信号を受信して平衡信号に変換し、1対の信号線を介して前記平衡信号を送出する送信号回路と、前記1対の信号線からの前記平衡信号を伝送するケーブルと、前記ケーブルからの前記平衡信号を終端し、前記不平衡信号に変換して出力する受信回路とを備える信号伝送回路において、前記送信回路側の前記1対の信号線が前記ケーブルに接続されたかを監視する監視信号を前記受信回路側から前記ケーブルの監視信号線を介して前記送信回路側と前記受信回路側とを接続して監視信号を送出して検出し、その検出結果に基づく制御信号によって前記受信回路から前記不平衡信号の送出を可能にし、前記接続監視手段は、前記受信回路側に前記接続の監視のための前記監視信号の電流を前記ケーブルの1対の前記監視信号線へ送出して前記送信回路からの折り返しの前記監視信号の電流を検出すると前記制御信号を送出する監視電流ループ検出回路と、前記送信回路側に、前記平衡信号を送出する前記1対の信号線が前記平衡信号を伝送する前記ケーブルに接続されたときに、前記ケーブル内の前記1対の監視信号線に接続して前記送信回路内で短絡させる短絡線とを有し、又は、前記接続監視手段は、前記送信回路側と前記受信回路側との間に、前記平衡信号を送出する前記1対の信号線が前記平衡信号を伝送する前記ケーブルに接続されたときに、前記ケーブル内の前記の監視信号線に接続して前記送信回路内で接地させる接地線と、前記受信回路内に前記ケーブルの前記接地された前記監視信号線に接続して地気の前記制御信号を前記受信回路へ送出する第1の信号線とを有し、又は、前記接続監視手段は、前記送信回路側と前記受信回路側との間に、前記平衡信号を送出する前記1対の信号線が前期平衡信号を伝送する前記ケーブルに接続された時に、前記ケーブル内の前記監視信号線に接続して前記送信回路内で接地させる第1の接地線と、前記受信回路内に前記ケーブルの第1の前記接地させた第1の前記監視信号線に接続して、第1の前記信号線を前記受信回路へ送出する第1の制御信号により受信デバイスの平衡信号の出力を制御する。また、前記受信回路内で接地させる第2の接地線と、前記受信回路内に前記ケーブルの第2の前記接地させた第2の前記監視信号線に接続して第2の前記信号線を前記送信回路へ送出する第2の制御信号により送信デバイスの平衡信号の出力を制御する。さらに、前記受信回路は前記制御信号の入力を可能にする制御信号入力端子付きの平衡−不平衡変換Low Voltage Differential Signaling デバイスで構成され、前記送信号回路は前記第2の制御信号の入力を可能にする制御信号入力端子付不平衡−平衡変換Low Voltage Differential Signaling デバイスで構成されている。
【0015】
本発明の信号伝送回路は、不平衡信号を受信して平衡信号に変換し1対の信号線を介して前記平衡信号を送出す送信回路と、前記1対の信号線からの前記平衡信号を伝送するケーブルと、前記ケーブルからの前記平衡信号を終端し、前記不平衡信号に変換して出力する受信回路とを備える信号伝送回路において、
前記受信回路側に、前記送信回路側の前記1対の信号線が前記ケーブルに接続したか未接続かまたは前記1対の信号線を使用するか未使用かの情報を基に人為的に制御信号の送出を設定する設定手段を有し、前記制御信号の入力の有無によって前記受信回路の送出信号の有効か無効かを決定させ、前記設定手段は前記送信回路側の前記1対の信号線が前記ケーブルに接続して前記制御信号を送出する時間帯を予め設定できるタイマを有し、前記受信回路は前記制御信号の入力を可能にする制御信号入力端子付きの平衡−不平衡変換Low Voltage Differential Signaling デバイスで構成され、前記送信回路は前記第2の制御信号の入力を可能にする制御信号入力端子付不平衡−平衡変換Low Voltage Differential Signalingデバイスで構成されている。
【0016】
【発明の実施の形態】
次に、本発明について図面を参照して説明する。
【0017】
図1は本発明の第1の実施の形態の信号伝送回路の構成を示すブロック図である。
【0018】
図1において、本第1の実施の形態の信号伝送回路は、平衡信号101を伝送する二本の信号線および抜け監視信号107を伝送する二本の信号線を含んだケーブル50と、送信回路側のケーブル50を接続する端子盤11−1と、不平衡信号100を受信して端子盤11−1に平衡信号101を出力するドライバ10と、端子盤11−1内の二つの端子を短絡させて抜け監視信号107を返送させる短絡線12−1と、受信回路側のケーブル50を接続する端子盤21−1と、端子盤21−1から平衡信号101を伝送する信号線22−2の前記正極信号(+)と負極信号(−)を終端する終端抵抗103と、平衡信号101を受信して不平衡信号102を出力するレシーバ20と、不平衡信号102の信号線をプルアップさせる抵抗104と、信号線22−1を抜け監視信号107の信号線に端子盤12−1を介して接続して送信回路側がケーブル50に接続されているか又は抜けているか、信号線22−1を介して監視し、監視結果を制御信号106としてレシーバ20のゲート端子に入力する電流ループ検出回路105とを有している。
【0019】
この第1の実施の形態におけるレシーバ20は、ドライバ10からのケーブル50を介して平衡信号101を不平衡信号102に変換し、そのレシーバ20の出力の不平衡信号102を電流ループ検出回路105からの制御信号106によって、ハイインピーダンスに制御できる制御信号入力端子付きのLVDSデバイスが用いられている。
【0020】
次に、本第1の実施の形態の動作について図1を参照して説明する。
【0021】
予め、平衡信号101および抜け監視信号107を伝送するそれぞれが一対になっている回線を有するケーブル50が、送信回路側及び受信回路側のそれぞれの端子盤11−1,12−1に、例えばコネクタを介して接続されているものとする。
【0022】
また、受信回路側においてもレシーバ20の入力側から平衡信号101を受信するための信号線22−2と、電流ループ検出回路105からの信号線22−1とが一緒になっているケーブルのコネクタを介して、端子盤21−1でケーブル50のコネクタに接続されている。
【0023】
送信回路側においては、ドライバ10の出力側から正極信号(+)及び負極信号(−)を有した平衡信号101の1対の信号線12−2と、抜け監視信号107を折り返すための短絡線12−1とが一緒になっているケーブルのコネクタを介して端子盤11−1でケーブル50のコネクタに接続できる構成になっている。
【0024】
即ち、本第1の実施の形態の信号伝送回路においては。送信回路側では端子盤11−1でケーブル50のコネクタとドライバ10の出力の信号線12−2及び短絡線12−1を有しているケーブルのコネクタとが接続されるので、ドライバ10の出力信号線12−2と短絡線12−1とが必ず同時に接続される構成になっている。
【0025】
従って、送信回路側で、ドライバ10の出力の信号線12−2が端子盤11−1でコネクタを介してケーブル50に接続されると、同時に短絡線12−1もケーブル50が接続され、電流ループ検出回路105からのドライバ10の出力がケーブル50との接続外れがないかを監視する抜け監視信号107の電流が短絡線12−1の折り返しによって流れ、例えば、ホトカプラ等のデバイスで構成された電流ループ監視回路105は、その折り返しの電流を検出することによって、ケーブル50が端子盤11−1、21−1間で正常に接続されてレシーバ20で受信する平衡信号は有効と判定することができる。
【0026】
有効と判定した時、電流ループ検出回路105出力である制御信号106の電位はロー L になり、レシーバ20は入力した平衡信号101を不平衡信号102に変換して出力する。
【0027】
もし、無効と判定した時には、電流ループ検出回路105の出力である制御信号106の電位はハイ(H)として、レシーバ20の出力をハイインピーダンスに制御し、平衡信号101の入力を無効にする。レシーバ20がハイインピーダンスに制御されたときには、出力端子に接続されている抵抗104がレシーバ20の電源電圧であるVccにプルアップされている構成であるため、不平衡信号102の出力電位をハイ(H)の電位に確定する。例えば、平衡信号101の入力が同一ケーブル内の他信号からの雑音の影響を受けていても、雑音による影響を遮断し、レシーバ20の出力電圧をハイ(H)固定にしたことにより無効とされる。
【0028】
もし、レシーバ20がハイインピーダンスに制御されたときに、不平衡信号102をロー(L)電位に固定したい場合には、抵抗104を接地(GNDに接続)することで実現できる
次に、本発明の第2の実施の形態の信号伝送回路について説明する。
【0029】
図2は本発明の第2の実施の形態の信号伝送回路の構成を示すブロック図である。
【0030】
本第2の実施の形態の信号伝送回路においては図1に示した第1の実施の形態の信号伝送回路と相違する場合のみについて説明する。
【0031】
図2において、本第2の実施の形態の信号伝送回路は、ドライバ10の入力信号の不平衡信号100が平衡信号101に変換されてケーブル50を経由してレシーバ20で受信され、不平衡信号102に再び変換される系統のシステム構成は第1の実施の形態と同じであり、ドライバ10及びレシーバ20のそれぞれのデバイスも第1の実施の形態の場合と同じである。
【0032】
異なる部分は、平衡信号101が伝送される信号線22−2が接続されているコネクタ21−2で、レシーバ20の制御信号入力端子に接続する抵抗109がレシーバ20の電源電圧であるVccにプルアップされた信号線23がケーブル50内の抜け監視信号108伝送用の信号線に接続している点である。
【0033】
本発明の第1の実施形態と第2の実施形態の相違点は、図1では受信回路への入力電流による有効、無効判定であったのに対して、図2は受信回路への入力電圧による有効,無効判定である。
【0034】
また、送信回路側においては、信号線12−2が接続されているコネクタに、ケーブル50内の抜け監視信号108を共に接続し、そこに送信回路側内で接地GND された接続線13が接続されている。
【0035】
次に、本第2の実施の形態の信号伝送回路の受信回路側における受信信号の有効,無効の判定動作について図2を参照して説明する。
【0036】
図2において、第1の実施の形態の場合と同様に、送信回路側で、ドライバ10の出力の信号線12−2が端子盤11−2でコネクタを介してケーブル50に接続されると、同時に接地線13がケーブル50内の抜け監視信号108の伝送線に接続される。
【0037】
その結果、送信回路で接地された接続線13はケーブル50内の抜け監視信号108伝送用信号線を介して受信回路側の信号線23に接続され、接地信号は制御信号106としてロー L の信号をレシーバ20の制御信号入力端子に入力され、レシーバ20で受信する平衡信号は有効だと判定することができる。
【0038】
もし、送信回路側で信号線12−2及び接地線13を含んだケーブルが端子盤11−2に接続されない場合には、信号線23に対して抵抗109がレシーバ20の電源電圧であるVccへプルアップした構成であるため、制御線106はハイ(H)電位に固定されることで、第1の実施の形態の場合と同様に無効だと判定する。
【0039】
次に、本発明の第3の実施の形態の信号伝送回路について説明する。
【0040】
図3は、本発明の第3の実施の形態の信号伝送回路の構成を示すブロック図である。
【0041】
本第3の実施の形態の信号伝送回路においては、図1,図2に示した第1,第2の実施の形態の信号伝送回路と相違する部分のみについて説明する。
【0042】
図3において、本第3の実施の形態の信号伝送回路は、ケーブル50を介してドライバ10と制御信号入力端子付きのレシーバ20とが平衡信号101を介して接続されたシステム系統は第1,第2の実施の形態と同じである。
【0043】
異なる部分は、レシーバ20の出力信号の使用,未使用の制御機能を人為的に設定することができる機能を有した使用,未使用判定回路130を有し、その出力が制御信号106としてレシーバ20の制御信号入力端子に入力する構成になっている。
【0044】
この第3の実施の形態の信号伝送回路においては、例えば、送信回路側を保守する場合に、ドライバ10の出力の信号線12−2を有するコネクタを端子盤11−3から外す前に、受信回路側に連絡して人為的に予め使用・未使用判定回路130を未使用の制御信号106を出力するように設定することにより、未使用を制御するハイ(H)電位の制御信号106によって、レシーバ20の出力をハイインピーダンスに制御することができる。これにより、レシーバ20の出力端子に抵抗104がレシーバ20の電源電圧であるVccへプルアップした構成から不平衡信号102はハイ(H)電位に固定でき、ドライバ10の接続外れによるレシーバ20の受信信号の再生誤りによる後続回路の誤動作を防止することができる。
【0045】
また、保守以外の場合においても、この送信、受信回路を将来使用する可能性があるものの現時点では使用しない場合で、不平衡信号100に不定のデータが伝送されてきた状態においても、使用・未使用判定回路130を未使用に人為的に設定することで、レシーバ20の出力を固定することができるため後続の回路の誤動作を防止することができる。
【0046】
この他に、使用・未使用判定回路103内にタイマを備え、この信号伝送回路全体の使用時間帯又は未使用時間帯を人為的に設定することによっても、レシーバ20の有効無効を設定することができる。さらに、この信号伝送回路が複数である場合には、各信号伝送回路の使用・未使用判定回路130を同期制御することで使用時間帯を制御することで伝送ルートの時分割切替制御が可能になる。
【0047】
次に、本発明の第4の実施の形態の信号伝送回路について説明する。
【0048】
図4は本発明の第4の実施の形態の信号伝送回路の構成を示すブロック図である。
【0049】
本第4の実施の形態の信号伝送回路においては、図2に示した第2の実施の形態の信号伝送回路と相違する部分のみについて説明する。
【0050】
図4において、本第4の実施の形態の信号伝送回路は、図2に示す第2の実施の形態の信号伝送回路と比較した場合に、送信回路側において信号線12−2及び接地線13有するケーブルのコネクタが端子盤11−4に接続すると共に、ドライバ30の出力制御端子に接続した制御線116を抵抗119でドライバ30の電源電圧であるVccにプルアップした信号線14を端子盤11−4へ接続する。端子盤11−4を介して信号線14は抜け監視信号118と接続される。また抜け監視信号118は平衡信号101や抜け監視信号108とともにケーブル50に含まれている。抜け監視信号118はケーブル50により受信回路側の接地(GND)情報に接続され、また、受信回路側においては、接地信号線24が接地(GND)されてコネクタに接続されていると共に、信号線22−2及び信号線23を有するケーブルのコネクタが端子盤21−4に接続する。このように、受信回路側の接地情報により、送信回路側内のドライバ30の使用・未使用が制御できる構成である。受信回路側が未実装の場合には、信号線12−2を送信する必要がないことができる機能を有した使用,未使用判定回路130を有し、その出力が制御信号106としてレシーバ20の制御信号入力端子に入力する構成になっている。
【0051】
即ち、第2、第4の実施の形態の相違点は、送信回路側及び受信回路側のそれぞれのコネクタが端子盤11−4、21−4を介してケーブル50に接続されると、レシーバ20の制御信号入力端子に、第2の実施の形態の場合と同様に送信回路側の接地信号 GND が抜け監視信号108となり、それが制御信号106として入力されると同時に、本第4の実施の形態の場合においては、受信回路側の接地信号 GND が抜け監視信号118となり、それが制御信号116としてドライバ30の制御入力端子に入力される。
【0052】
この結果、第2の実施の形態の信号伝送回路におけるレシーバ20と同様に、レシーバ20の出力の不平衡振動102は有効信号として出力される。
【0053】
このように、本第4の実施の形態では、入力された不平衡信号100を平衡信号101へ変換するドライバ30に平衡出力信号をハイインピーダンスに制御できる制御機能付きの不平衡−平衡変換デバイスを用い、抜け監視信号118によりレシーバ20がケーブル50に接続されて、かつ送信回路側に接続している時に信号出力を有効と判定して制御信号116によって平衡信号101を出力する。
【0054】
また、レシーバ20がケーブル50に接続されていない時や、ケーブル50が送信回路側の端子盤11−4に接続されていない時には、受信信号は無効となると共に、送信信号も無効となるため、本信号伝送は無効と判定することになる。したがって、必要な平衡信号101をドライバ30から出力しないように、抵抗119をドライバ30の電源電圧であるVccにプルアップすることでドライバ30の制御機能でハイインピーダンスに制御し、不要な信号をケーブル50から送出しないことでEMI放射レベルを低減できる機能を有することができる。
【0055】
尚、上記第1〜第4の実施の形態のそれぞれにおいて、送信回路側のドライバ10,30を含む回路と受信回路側のレシーバ20と電流検出回路105を含む回路とはそれぞれ1枚のプリント配線基板内で構成され、端子盤11−1,21−1はそれぞれこれらのプリント配線基板が挿抜できるコネクタと考え、このコネクタに予めケーブル50が接続されているものと考えてもよい。この場合、送信回路側又は受信回路側のプリント配線基板がコネクタとの挿抜によってケーブルとの接,不接を考えることができる。この場合、プリンが配線基板がコネクタから抜ければ、抜け監視信号107,108,118により、本信号伝送は無効と判定されることになる。
【0056】
【発明の効果】
以上説明したように本発明は不平衡信号を受信して平衡信号に変換し、1対の信号線を介して前記平衡信号を送信する送信回路と、1対の信号線からの平衡信号を伝送するケーブルとケーブルからの平衡信号を終端し、不平衡信号に変換して出力する受信回路とを備える信号伝送回路において、送信回路側の1対の信号線がケーブルに接続されたかを監視する監視信号を受信回路側からケーブル監視信号線を介して、送信回路側へ送信し、ケーブルとの接続を検出するとその検出結果に基づく制御信号によって、受信回路から不平衡信号の送出を可能なせる接続監視手段を有することにより以下に示す効果がある。
【0057】
第1に、送信回路側がケーブルに接続されるのを監視しているので、受信回路の出力として有効無効を判定して信号を送出できる効果がある。
【0058】
第2に、送信回路がケーブルに接続されていない場合や、ケーブルの開放時に受信回路の出力が不安定になることを防止できる効果がある。
【0059】
第3に、受信回路との接続を監視することで、不要な信号をケーブルから送出しないことでEMI放射レベルを低減できる効果がある。
【0060】
第4は、高速信号伝送を実現するLVDSデバイスで、より高速に信号を伝送するための低振幅差動平衡信号を伝送するとき、第1から第3の効果を伴う高速信号伝送が可能となり、受信回路の出力の不安定を防止する効果がある。
【0061】
第5は、送信回路及び受信回路に低振幅差動信号(LVDS)を伝送するデバイスを採用することにより、低消費電力化や不要な波雑音放射レベルを低減させることが効果がある。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態の信号伝送回路の構成を示すブロック図である。
【図2】本発明の第2の実施の形態の信号伝送回路の構成を示すブロック図である。
【図3】本発明の第3の実施の形態の信号伝送回路の構成を示すブロック図である。
【図4】本発明の第4の実施の形態の信号伝送回路の構成を示すブロック図である。
【符号の説明】
10,30 ドライバ
20 レシーバ
11−1、11−2、11−3、11−4、21−1、21−2、21−3、21−4 端子盤
50 ケーブル
103 終端抵抗
104、109、119 抵抗
100、102 不平衡信号
101 平衡信号
105 電流ループ検出回路
106、116 制御信号
107、108、118 抜け監視信号
130 使用・未使用判定回路[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a signal transmission circuit, and more particularly to a signal transmission circuit including a transmission circuit and a reception circuit for transmitting and receiving a signal through a balanced transmission path.
[0002]
[Prior art]
This type of conventional technology will be described based on patent documents.
[0003]
A first conventional signal transmission circuit sets a receiver IC between a driver IC that outputs an ECL signal in a balanced manner and a receiver IC that inputs the output signal when the driver IC is turned off. By fixing, the output signal of the receiver IC is prevented from becoming unstable (see Patent Document 1).
[0004]
The signal transmission circuit according to the second prior art applies a constant offset potential between the differential input terminals as a method of terminating the balanced signal of the receiving circuit. A fail-safe circuit is provided with an offset potential applying means for fixing the output potential of the circuit to a constant potential (see Patent Document 2).
[0005]
[Patent Document 1]
JP-A-5-335932 (pages 2 to 3, FIG. 1)
[Patent Document 2]
JP-A-56-152357 (pages 2 to 3; FIGS. 2 and 3)
[0006]
[Problems to be solved by the invention]
In recent years, in a signal transmission circuit for a signal transmission line, RS-422 of +5 V drive and +3.3 V drive conventionally used from the viewpoint of increasing transmission speed, reducing power consumption, and reducing unnecessary wave noise emission level. Transmitter circuits and receiver circuits composed of devices conforming to the standard have become unable to be adopted.
[0007]
For this reason, it has become necessary to configure a transmission circuit and a reception circuit with an LVDS (Low Voltage Differential Signaling) device of a data transmission method standardized by TIA / EIA-644 developed for recent high-speed signal transmission. . By adopting this device, high-speed signal transmission, power consumption, and reduction of unnecessary wave noise emission level can be realized.
[0008]
An example of an LVDS device is, for example, DS90LV032 ATM (//www.national.com/ads-cgi/viewer.pl/JPN/ds/DS/DS90LV032.pdf), which has a low amplitude of 200 mV to 800 mV and 250 MHz. It is a device that can transmit high-speed signals of the order. At present, devices that operate at higher speeds (over 1 GHz) are also being developed.
[0009]
In an ideal environment, the LVDS can transmit high-speed data with a differential signal having a low-amplitude voltage change and is resistant to external noise if the differential mode is maintained. However, in reality, the surrounding + 5V or + 3.3V In some cases, common mode noise due to the influence adjacent to the signal cannot be sufficiently removed. In this case, a signal transmission error occurs. For this reason, not only the transmission circuit and the reception circuit but also the signal pattern wiring of the transmission line, the signal grouping on the cable connection, the separation of the device power supply, and the like have been indispensable.
[0010]
Therefore, when an LVDS device using a low-amplitude differential signal capable of transmitting a signal is applied to the transmitting and receiving circuit in the first and second conventional examples, the signal pattern wiring of the transmission line and the signal on the cable connection are used. In an ideal environment where sufficient considerations such as grouping and separation of device supply power can be made, when the power is cut off on the transmission circuit side by the fail safe function of the second conventional example, or when the cable is When the connection is not established, the unbalanced signal of the receiving circuit is fixed at a constant potential to prevent the output signal from becoming unstable. However, in reality, the output signal from the power supply or the ground (GND) can be prevented. When the noise affects the differential signal in different phases and levels, the output of the receiving circuit may become unstable.
[0011]
Furthermore, if the cable is disconnected on the transmitting circuit side, the cable acts as an antenna, and the output of the receiving circuit that operates with a low-amplitude differential potential difference is fixed under the influence of interference signals from other sources. Unavailable trouble occurs.
[0012]
Further, when another signal other than the transmission / reception signal is transmitted together on the same cable, another signal is transmitted on the cable even when the transmission circuit is disconnected. Due to the influence, an unstable state occurs in which the output of the receiving circuit cannot be fixed.
[0013]
[Object of the invention]
An object of the present invention is to provide a signal transmission circuit of a balanced transmission line that enables high-speed signal transmission with low amplitude such as LVDS, and furthermore, a transmission circuit when a reduced-amplitude differential signal is adopted for inter-device transmission. Monitors when the cable is disconnected from the cable or when the cable is opened to prevent the output of the unbalanced signal from the receiving circuit from becoming unstable, further reducing power consumption and reducing unnecessary noise radiation levels. To provide a signal transmission circuit.
[0014]
[Means for Solving the Problems]
The signal transmission circuit according to the present invention includes a signal transmission circuit that receives an unbalanced signal, converts the unbalanced signal into a balanced signal, and sends the balanced signal through a pair of signal lines, and the balanced signal from the pair of signal lines. In a signal transmission circuit including a cable for transmitting a signal, and a reception circuit for terminating the balanced signal from the cable, converting the signal into the unbalanced signal, and outputting the signal, the pair of signal lines on the transmission circuit side includes: A monitoring signal for monitoring whether or not the cable is connected is connected to the transmitting circuit side and the receiving circuit side from the receiving circuit side via a monitoring signal line of the cable, and a monitoring signal is transmitted and detected. The receiving circuit enables the unbalanced signal to be transmitted by a control signal based on the detection result, and the connection monitoring means supplies the receiving circuit with a current of the monitoring signal for monitoring the connection by a pair of cables. of A monitoring current loop detection circuit for transmitting the control signal when detecting the current of the monitoring signal returned from the transmission circuit by transmitting the monitoring signal line to the monitoring signal line; and transmitting the balanced signal to the transmission circuit side. A short-circuit line connected to the pair of monitoring signal lines in the cable to short-circuit in the transmission circuit when the pair of signal lines is connected to the cable transmitting the balanced signal; or The connection monitoring means, between the transmission circuit side and the reception circuit side, when the pair of signal lines for transmitting the balanced signal is connected to the cable for transmitting the balanced signal, A ground line connected to the monitoring signal line in the cable and grounded in the transmission circuit, and a ground signal connected to the grounded monitoring signal line of the cable in the reception circuit to control the ground control signal. The receiving times Or a first signal line for transmitting the balanced signal between the transmitting circuit side and the receiving circuit side. A first ground line connected to the monitoring signal line in the cable and grounded in the transmission circuit when connected to the cable for transmitting a signal, and a first ground line of the cable in the reception circuit. The output of the balanced signal of the receiving device is controlled by a first control signal that is connected to the grounded first monitoring signal line and sends the first signal line to the receiving circuit. A second ground line grounded in the receiving circuit; and a second signal line connected to the second grounded second monitoring signal line of the cable in the receiving circuit. The output of the balanced signal of the transmitting device is controlled by the second control signal transmitted to the transmitting circuit. Further, the receiving circuit is constituted by a balanced-unbalanced conversion Low Voltage Differential Signaling device having a control signal input terminal capable of inputting the control signal, and the transmitting signal circuit is capable of inputting the second control signal. And an unbalanced-balanced conversion Low Voltage Differential Signaling device with a control signal input terminal.
[0015]
A signal transmission circuit according to the present invention includes a transmission circuit that receives an unbalanced signal, converts the unbalanced signal into a balanced signal, and sends the balanced signal through a pair of signal lines, and the balanced signal from the pair of signal lines. A signal transmission circuit including a cable to be transmitted and a receiving circuit that terminates the balanced signal from the cable and converts the signal into the unbalanced signal and outputs the signal.
On the receiving circuit side, the pair of signal lines on the transmitting circuit side is artificially controlled based on information on whether the pair of signal lines is connected or not connected to the cable or whether the pair of signal lines is used or not used. Setting means for setting signal transmission, and determining whether the transmission signal of the receiving circuit is valid or invalid based on the presence or absence of the input of the control signal, wherein the setting means sets the pair of signal lines on the transmission circuit side Has a timer that can set a time zone for transmitting the control signal by connecting to the cable, and the receiving circuit has a balanced-unbalanced conversion Low Voltage with a control signal input terminal that enables input of the control signal. A differential signaling device, wherein the transmission circuit has an unbalanced-balanced conversion Low Voltage with a control signal input terminal that enables input of the second control signal. It is composed of a ifferential Signaling device.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, the present invention will be described with reference to the drawings.
[0017]
FIG. 1 is a block diagram showing the configuration of the signal transmission circuit according to the first embodiment of the present invention.
[0018]
In FIG. 1, a signal transmission circuit according to the first embodiment includes a cable 50 including two signal lines transmitting a
[0019]
The receiver 20 according to the first embodiment converts the
[0020]
Next, the operation of the first embodiment will be described with reference to FIG.
[0021]
In advance, a cable 50 having a pair of lines for transmitting the
[0022]
Also, on the receiving circuit side, a signal line 22-2 for receiving the
[0023]
On the transmission circuit side, a pair of signal lines 12-2 of a
[0024]
That is, in the signal transmission circuit according to the first embodiment. On the transmission circuit side, the terminal board 11-1 connects the connector of the cable 50 to the connector of the cable having the signal line 12-2 and the short-circuit line 12-1 of the
[0025]
Therefore, on the transmission circuit side, when the signal line 12-2 of the output of the
[0026]
When it is determined that the signal is valid, the potential of the control signal 106, which is the output of the current loop detection circuit 105, becomes low L, and the receiver 20 converts the input
[0027]
If it is determined to be invalid, the potential of the control signal 106, which is the output of the current loop detection circuit 105, is set to high (H), the output of the receiver 20 is controlled to high impedance, and the input of the
[0028]
If it is desired to fix the unbalanced signal 102 to a low (L) potential when the receiver 20 is controlled to high impedance, this can be realized by connecting the resistor 104 to ground (connected to GND). A signal transmission circuit according to the second embodiment will be described.
[0029]
FIG. 2 is a block diagram showing the configuration of the signal transmission circuit according to the second embodiment of the present invention.
[0030]
In the signal transmission circuit according to the second embodiment, only the case where the signal transmission circuit differs from the signal transmission circuit according to the first embodiment shown in FIG. 1 will be described.
[0031]
In FIG. 2, the signal transmission circuit according to the second embodiment is configured such that an unbalanced signal 100 of an input signal of a
[0032]
The different part is a connector 21-2 to which a signal line 22-2 for transmitting the
[0033]
The difference between the first embodiment and the second embodiment of the present invention is that in FIG. 1 the validity / invalidity is determined by the input current to the receiving circuit, whereas FIG. 2 shows the input voltage to the receiving circuit. Is valid / invalid.
[0034]
On the transmitting circuit side, the disconnection monitoring signal 108 in the cable 50 is connected to the connector to which the signal line 12-2 is connected, and the connection line 13 that is grounded in the transmitting circuit side is connected thereto. Have been.
[0035]
Next, an operation of determining whether a received signal is valid or invalid on the receiving circuit side of the signal transmission circuit according to the second embodiment will be described with reference to FIG.
[0036]
In FIG. 2, when the signal line 12-2 of the output of the
[0037]
As a result, the connection line 13 grounded in the transmission circuit is connected to the signal line 23 on the reception circuit side via the disconnection monitoring signal 108 transmission signal line in the cable 50, and the ground signal is used as the control signal 106 as a low L signal. Is input to the control signal input terminal of the receiver 20, and the balanced signal received by the receiver 20 can be determined to be valid.
[0038]
If the cable including the signal line 12-2 and the ground line 13 is not connected to the terminal board 11-2 on the transmission circuit side, the resistor 109 is connected to the signal line 23 to the power supply voltage Vcc of the receiver 20. Since the control line 106 is pulled up, the control line 106 is fixed to a high (H) potential, and thus it is determined that the control line 106 is invalid as in the case of the first embodiment.
[0039]
Next, a signal transmission circuit according to a third embodiment of the present invention will be described.
[0040]
FIG. 3 is a block diagram showing a configuration of the signal transmission circuit according to the third embodiment of the present invention.
[0041]
In the signal transmission circuit according to the third embodiment, only portions different from the signal transmission circuits according to the first and second embodiments shown in FIGS. 1 and 2 will be described.
[0042]
In FIG. 3, the signal transmission circuit according to the third embodiment has a system system in which a
[0043]
The different part has a use / non-use determination circuit 130 having a function of artificially setting a control function of using and not using an output signal of the receiver 20, and an output of which is used as a control signal 106 as a control signal 106. Are input to the control signal input terminal.
[0044]
In the signal transmission circuit according to the third embodiment, for example, when the transmission circuit side is maintained, before removing the connector having the signal line 12-2 of the output of the
[0045]
Further, even in cases other than maintenance, the transmission and reception circuits may be used in the future, but are not used at the present time. By artificially setting the use determining circuit 130 to be unused, the output of the receiver 20 can be fixed, so that malfunction of the subsequent circuit can be prevented.
[0046]
In addition, the validity / invalidity of the receiver 20 can be set by providing a timer in the use / unused determination circuit 103 and artificially setting the use time zone or the unused time zone of the entire signal transmission circuit. Can be. Furthermore, when there are a plurality of signal transmission circuits, time-division switching control of the transmission route is possible by controlling the use time zone by synchronously controlling the use / non-use determination circuit 130 of each signal transmission circuit. Become.
[0047]
Next, a signal transmission circuit according to a fourth embodiment of the present invention will be described.
[0048]
FIG. 4 is a block diagram illustrating a configuration of a signal transmission circuit according to a fourth embodiment of the present invention.
[0049]
In the signal transmission circuit according to the fourth embodiment, only portions different from the signal transmission circuit according to the second embodiment shown in FIG. 2 will be described.
[0050]
In FIG. 4, the signal transmission circuit of the fourth embodiment has a signal line 12-2 and a ground line 13 on the transmission circuit side when compared with the signal transmission circuit of the second embodiment shown in FIG. The connector of the cable is connected to the terminal board 11-4, and the control line 116 connected to the output control terminal of the driver 30 is pulled up to Vcc which is the power supply voltage of the driver 30 by the resistor 119. -4. The
[0051]
That is, the difference between the second and fourth embodiments is that when the respective connectors on the transmission circuit side and the reception circuit side are connected to the cable 50 via the terminal boards 11-4 and 21-4, the receiver 20 is not used. In the same manner as in the second embodiment, the ground signal GND on the transmission circuit side becomes the missing monitoring signal 108, and is input as the control signal 106 to the control signal input terminal of the fourth embodiment. In the case of the mode, the ground signal GND on the receiving circuit side becomes a missing monitoring signal 118, which is input to the control input terminal of the driver 30 as a control signal 116.
[0052]
As a result, similarly to the receiver 20 in the signal transmission circuit according to the second embodiment, the unbalanced vibration 102 of the output of the receiver 20 is output as a valid signal.
[0053]
As described above, in the fourth embodiment, the driver 30 for converting the input unbalanced signal 100 into the
[0054]
Also, when the receiver 20 is not connected to the cable 50 or when the cable 50 is not connected to the terminal board 11-4 on the transmission circuit side, the reception signal becomes invalid and the transmission signal becomes invalid, This signal transmission is determined to be invalid. Accordingly, the resistor 119 is pulled up to Vcc which is the power supply voltage of the driver 30 so that the necessary
[0055]
In each of the first to fourth embodiments, the circuit including the
[0056]
【The invention's effect】
As described above, the present invention receives an unbalanced signal, converts the unbalanced signal into a balanced signal, and transmits the balanced signal through a pair of signal lines, and transmits a balanced signal from the pair of signal lines. And a receiving circuit that terminates a balanced signal from the cable, converts the converted signal into an unbalanced signal, and outputs the unbalanced signal, and monitors whether a pair of signal lines on the transmitting circuit side are connected to the cable. A signal is transmitted from the receiving circuit side to the transmitting circuit side via the cable monitoring signal line, and when a connection with the cable is detected, a control signal based on the detection result allows the receiving circuit to transmit an unbalanced signal. Providing the monitoring means has the following effects.
[0057]
First, since the transmission circuit monitors the connection to the cable, it is possible to determine whether the output of the reception circuit is valid or invalid and to transmit a signal.
[0058]
Second, there is an effect that the output of the receiving circuit can be prevented from becoming unstable when the transmitting circuit is not connected to the cable or when the cable is opened.
[0059]
Third, by monitoring the connection with the receiving circuit, there is an effect that unnecessary signals are not transmitted from the cable, thereby reducing the EMI radiation level.
[0060]
Fourth, an LVDS device that realizes high-speed signal transmission. When transmitting a low-amplitude differential balanced signal for transmitting a signal at a higher speed, high-speed signal transmission with the first to third effects becomes possible. This has the effect of preventing the output of the receiving circuit from becoming unstable.
[0061]
Fifth, the adoption of a device that transmits a low-amplitude differential signal (LVDS) to the transmission circuit and the reception circuit has the effect of reducing power consumption and reducing unnecessary wave noise radiation levels.
[Brief description of the drawings]
FIG. 1 is a block diagram illustrating a configuration of a signal transmission circuit according to a first embodiment of the present invention.
FIG. 2 is a block diagram illustrating a configuration of a signal transmission circuit according to a second embodiment of the present invention.
FIG. 3 is a block diagram illustrating a configuration of a signal transmission circuit according to a third embodiment of the present invention.
FIG. 4 is a block diagram illustrating a configuration of a signal transmission circuit according to a fourth embodiment of the present invention.
[Explanation of symbols]
10, 30 Driver 20 Receiver 11-1, 11-2, 11-3, 11-4, 21-1, 21-2, 21-3, 21-4 Terminal board 50 Cable 103 Termination resistance 104, 109, 119 Resistance 100, 102
Claims (8)
前記送信回路側の前記1対の信号線が前記ケーブルに接続されたかを監視する監視信号を前記ケーブルの監視信号線を介して前記送信回路側と前記受信回路側とを接続して監視信号を送出して検出し、その検出結果に基づく制御信号によって前記受信回路から前記不平衡信号の送出を可能になせる接続監視手段を有することを特徴とする信号伝送回路。A transmission circuit that receives the unbalanced signal, converts the unbalanced signal into a balanced signal, and sends the balanced signal through a pair of signal lines; a cable that transmits the balanced signal from the pair of signal lines; A receiving circuit that terminates the balanced signal from the cable and converts the signal into the unbalanced signal and outputs the signal.
A monitoring signal for monitoring whether the pair of signal lines on the transmitting circuit side is connected to the cable is connected to the transmitting circuit side and the receiving circuit side via a monitoring signal line of the cable to generate a monitoring signal. A signal transmission circuit comprising connection monitoring means for transmitting and detecting the signal, and enabling the receiving circuit to transmit the unbalanced signal by a control signal based on the detection result.
前記受信回路側に、前記送信回路側の前記1対の信号線が前記ケーブルに接続したか未接続か、または前記1対の信号線を使用するか未使用かの情報を基に人為的に制御信号の送出を設定する設定手段を有し、前記制御信号の入力の有無によって前記受信回路の送出信号の有効か無効かを決定させることを特徴とする信号伝送回路。A transmission circuit that receives the unbalanced signal, converts the unbalanced signal into a balanced signal, and sends the balanced signal through a pair of signal lines; a cable that transmits the balanced signal from the pair of signal lines; A receiving circuit that terminates the balanced signal of the above and converts the signal into the unbalanced signal and outputs the signal.
On the receiving circuit side, the pair of signal lines on the transmitting circuit side is connected or not connected to the cable, or artificially based on information on whether the pair of signal lines is used or unused. A signal transmission circuit, comprising setting means for setting transmission of a control signal, and determining whether the transmission signal of the receiving circuit is valid or invalid according to the presence or absence of the input of the control signal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002286616A JP2004128629A (en) | 2002-09-30 | 2002-09-30 | Signaling circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002286616A JP2004128629A (en) | 2002-09-30 | 2002-09-30 | Signaling circuit |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004128629A true JP2004128629A (en) | 2004-04-22 |
Family
ID=32279636
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002286616A Pending JP2004128629A (en) | 2002-09-30 | 2002-09-30 | Signaling circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004128629A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007151122A (en) * | 2005-11-25 | 2007-06-14 | Samsung Electronics Co Ltd | Method for controlling power consumption of a system having a serial interface method |
CN101383790A (en) * | 2007-09-07 | 2009-03-11 | 精工爱普生株式会社 | High-speed serial interface circuit and electronic equipment |
JPWO2010061511A1 (en) * | 2008-11-28 | 2012-04-19 | 三菱電機株式会社 | Signal transmission device |
JP2020167536A (en) * | 2019-03-29 | 2020-10-08 | 株式会社オートネットワーク技術研究所 | Communication device |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60253352A (en) * | 1984-05-30 | 1985-12-14 | Fujitsu Ltd | Interface circuit |
JPH02246561A (en) * | 1989-03-20 | 1990-10-02 | Fujitsu Ltd | Failure detection method between communication devices |
JPH05290926A (en) * | 1991-11-05 | 1993-11-05 | Fujitsu Ltd | Circuit for monitoring loose-out of connector |
JPH11205118A (en) * | 1998-01-09 | 1999-07-30 | Advantest Corp | Differential signal transmission circuit |
JP2000151736A (en) * | 1998-11-11 | 2000-05-30 | Nec Corp | Circuit and method for interface |
JP2000270027A (en) * | 1999-01-08 | 2000-09-29 | Altera Corp | Low voltage differential signal interface incorporated with phase locked loop circuit used in a programmable logic device |
JP2002169770A (en) * | 2000-12-04 | 2002-06-14 | Ricoh Co Ltd | Picture data transfer system |
-
2002
- 2002-09-30 JP JP2002286616A patent/JP2004128629A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60253352A (en) * | 1984-05-30 | 1985-12-14 | Fujitsu Ltd | Interface circuit |
JPH02246561A (en) * | 1989-03-20 | 1990-10-02 | Fujitsu Ltd | Failure detection method between communication devices |
JPH05290926A (en) * | 1991-11-05 | 1993-11-05 | Fujitsu Ltd | Circuit for monitoring loose-out of connector |
JPH11205118A (en) * | 1998-01-09 | 1999-07-30 | Advantest Corp | Differential signal transmission circuit |
JP2000151736A (en) * | 1998-11-11 | 2000-05-30 | Nec Corp | Circuit and method for interface |
JP2000270027A (en) * | 1999-01-08 | 2000-09-29 | Altera Corp | Low voltage differential signal interface incorporated with phase locked loop circuit used in a programmable logic device |
JP2002169770A (en) * | 2000-12-04 | 2002-06-14 | Ricoh Co Ltd | Picture data transfer system |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007151122A (en) * | 2005-11-25 | 2007-06-14 | Samsung Electronics Co Ltd | Method for controlling power consumption of a system having a serial interface method |
CN101383790A (en) * | 2007-09-07 | 2009-03-11 | 精工爱普生株式会社 | High-speed serial interface circuit and electronic equipment |
US7663515B2 (en) | 2007-09-07 | 2010-02-16 | Seiko Epson Corporation | High-speed serial interface circuit and electronic instrument |
US7948407B2 (en) | 2007-09-07 | 2011-05-24 | Seiko Epson Corporation | High-speed serial interface circuit and electronic instrument |
CN101383790B (en) * | 2007-09-07 | 2013-07-17 | 精工爱普生株式会社 | High-speed serial interface circuit and electronic instrument |
JPWO2010061511A1 (en) * | 2008-11-28 | 2012-04-19 | 三菱電機株式会社 | Signal transmission device |
JP2020167536A (en) * | 2019-03-29 | 2020-10-08 | 株式会社オートネットワーク技術研究所 | Communication device |
JP7226021B2 (en) | 2019-03-29 | 2023-02-21 | 株式会社オートネットワーク技術研究所 | Communication device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6453374B1 (en) | Data bus | |
JP5436985B2 (en) | High-speed digital galvanic isolator with built-in low-voltage differential signal interface | |
US5579486A (en) | Communication node with a first bus configuration for arbitration and a second bus configuration for data transfer | |
US6212586B1 (en) | Hot-swappable high speed point-to-point interface | |
JPH1197124A (en) | High-speed transmission system and connector | |
WO1999055083A1 (en) | Cmos imaging apparatus | |
US6526468B1 (en) | Peripheral bus extender | |
JPH07235952A (en) | Signal transmission circuit and signal transmission equipment using the same | |
US6725304B2 (en) | Apparatus for connecting circuit modules | |
US20140372645A1 (en) | Collision detection in eia-485 bus systems | |
US8063663B2 (en) | Differential signal transmitting apparatus and differential signal receiving apparatus | |
US6072334A (en) | Signal converter with a dynamically adjustable reference voltage and chipset including the same | |
US6463496B1 (en) | Interface for an I2C bus | |
US6744810B1 (en) | Signal repeater for voltage intolerant components used in a serial data line | |
US9231755B2 (en) | Circuit arrangement and method for transmitting signals | |
JP2004128629A (en) | Signaling circuit | |
JPH06224976A (en) | Interface conversion circuit for half duplex serial transmission | |
JP4957302B2 (en) | Differential transmission circuit | |
US6449669B1 (en) | Method and apparatus for providing bimodal voltage references for differential signaling | |
WO2003032531A2 (en) | Fiber optic conversion system and method | |
JP2002232490A (en) | Clock signal transmission system | |
EP1622037B1 (en) | Integrated branching network system and joint connector | |
JP2006350763A (en) | Electronics | |
KR20020025226A (en) | Communication bus system and apparatus and device for use in such a system | |
KR100202993B1 (en) | Matching device between the communication port and the connector on the back board |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050119 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050125 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20050307 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050325 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20050809 |