[go: up one dir, main page]

JP2004124267A - Carbon fiber fabric, gas diffuser, membrane-electrode assembly and fuel cell - Google Patents

Carbon fiber fabric, gas diffuser, membrane-electrode assembly and fuel cell Download PDF

Info

Publication number
JP2004124267A
JP2004124267A JP2002285628A JP2002285628A JP2004124267A JP 2004124267 A JP2004124267 A JP 2004124267A JP 2002285628 A JP2002285628 A JP 2002285628A JP 2002285628 A JP2002285628 A JP 2002285628A JP 2004124267 A JP2004124267 A JP 2004124267A
Authority
JP
Japan
Prior art keywords
carbon fiber
volume
carbon
fiber fabric
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002285628A
Other languages
Japanese (ja)
Inventor
Takashi Senda
千田 崇史
Mikio Inoue
井上 幹夫
Sachiyo Yoshida
吉田 幸代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2002285628A priority Critical patent/JP2004124267A/en
Publication of JP2004124267A publication Critical patent/JP2004124267A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Woven Fabrics (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

【課題】排水性とガス拡散性のバランスに優れる炭素繊維織物2を提供する。
【解決手段】複数本の炭素繊維が集合してなる緯糸および経糸で構成される織物2であって、該炭素繊維織物2に形成される空隙のうち、細孔径が40μm未満の空隙Pの容積A(cc/m)に対する、細孔径が40μm以上の空隙Qの容積B(cc/m)との比A/Bが0.50〜1.80であることを特徴とする炭素繊維織物2である。
【選択図】図1
An object of the present invention is to provide a carbon fiber fabric 2 having an excellent balance between drainage and gas diffusibility.
Kind Code: A1 A volume of a void P having a pore diameter of less than 40 μm among voids formed in a carbon fiber fabric 2 comprising a weft and a warp made of a plurality of carbon fibers. A carbon fiber woven fabric, wherein the ratio A / B of A (cc / m 2 ) to the volume B (cc / m 2 ) of the void Q having a pore diameter of 40 μm or more is 0.50 to 1.80. 2.
[Selection diagram] Fig. 1

Description

【0001】
【発明の属する技術分野】
本発明は、電極用材料、特に固体高分子型燃料電池のガス拡散体の材料として好適な炭素繊維織物の改良に関するものである。
【0002】
【従来の技術】
燃料電池電極のガス拡散体には、集電機能および電極反応に関与する物質の拡散性、導電性、ハンドリングに耐えるための強度等が必要とされる。
【0003】
このような燃料電池電極のガス拡散体の材料としては、炭素短繊維を炭素で結着してなる多孔質炭素板を用いたものが知られている(例えば特許文献1〜3)。しかしながら、このようなガス拡散体の材料は、連続したロール状で得ることが難しいため、生産性・コスト面で問題がある。また、電極製造時や電池に組んだときの加圧により結着炭素が壊れやすいという問題がある。
【0004】
連続したロール状で製造可能なガス拡散体の材料として、例えばテキストロンスペシャリティマテリアルズ社の商品”AVCARB”などの炭素繊維織物が用いられる(例えば特許文献4)。
【0005】
ところで、固体高分子型燃料電池では発電反応により、カソード触媒において水が生成する。生成した水を効率よく系外に排出しなければ、ガス拡散体の水詰まりのため反応に必要な酸化ガスが触媒層へ供給されにくくなり、電池の出力低下が生じる。よって、ガス拡散体には高い排水性が要求される。
【0006】
また、カソード触媒へは反応に必要な酸素を十分に供給しなければ発電反応が起こりにくくなり、電池の出力低下が生じる。よって、ガス拡散体には高いガス拡散性も要求される。
【0007】
炭素繊維織物の排水性向上のためには、織物の緯糸および経糸内部の空隙が毛細管として作用するため糸内部の空隙の容積が大きい方が良い。
【0008】
一方、炭素繊維織物のガス拡散性向上のためには、織物の経糸および緯糸で構成される織り糸間の空隙の容積が大きい方が良い。
【0009】
このように、炭素繊維織物内の空隙のうち、排水に寄与する糸内部の空隙の容積と、ガス拡散に寄与する織り糸間の空隙の容積との比率によって電池特性が大きく変化し、そのバランスが非常に重要であると考えられる。
【0010】
しかし、このような観点から見ると、上記特許文献4に記載のテキストロンスペシャリティマテリアルズ社の商品”AVCARB”は、織物を構成する経糸および緯糸で構成される織り糸間の空隙の容積が大きくガス拡散性は高いが、糸内部の空隙の容積が小さく排水性が低いため、燃料電池として十分な性能を発揮できないという問題があった。
【0011】
【特許文献1】
特開平6−20710号公報(第8頁、段落番号0036)
【0012】
【特許文献2】
特開平7−326362号公報(第3頁、段落番号0028)
【0013】
【特許文献3】
特開平7−220735号公報(第2頁、段落番号0015)
【0014】
【特許文献4】
特開平10−261421号公報(第3頁、段落番号0013)
【0015】
【発明が解決しようとする課題】
本発明は、従来技術の欠点を克服し、排水性とガス拡散性のバランスに優れた炭素繊維織物を提供することをその目的とする。
【0016】
【課題を解決するための手段】
本発明の炭素繊維織物は、上記目的を達成するため、複数本の炭素繊維が集合してなる緯糸と経糸とで構成される織物であって、該炭素繊維織物に形成される空隙のうち、細孔径が40μm未満の空隙の容積A(cc/m)に対する、細孔径が40μm以上の空隙の容積B(cc/m)との比A/Bが0.50〜1.80であることを特徴とする。
【0017】
【発明の実施の形態】
本発明の好ましい実施の形態を図面を参照しながら説明する。
【0018】
図1は、本発明で提案する膜−電極接合体4の一例を示す部分断面図である。図1において、本発明に係るガス拡散体1は、複数本の炭素繊維が集合してなる緯糸および経糸で構成される炭素繊維織物2を基材として、少なくともその片側表面に、カーボンブラックおよびフッ素樹脂を含むカーボン層3を有する。また、本発明に係る膜−電極接合体4は、固体高分子電解質膜5の両表面に触媒層6を有し、さらに該両触媒層6、6の表面に接してそれぞれガス拡散体1を有する。
【0019】
以上が全体構成であるが、本発明に係る炭素繊維織物2は、主に該織物を構成する緯糸および経糸内部に形成される空隙(図3は本発明で提案する炭素繊維織物の平面図であり、概略、本図のP部に存在する空隙)であると推定される細孔径が40μm未満の空隙の容積A(cc/m)に対する、主に緯糸および経糸で構成される織り糸間の空隙(概略、図3のQ部に存在する空隙)であると推定される細孔径が40μm以上の空隙の容積B(cc/m)との比A/Bが0.50〜1.80であり、0.55〜1.60がより好ましく、0.59〜1.39が更に好ましい。
【0020】
炭素繊維織物内の空隙の分布は、後述する水銀圧入法により測定することができる。図2は、後述する実施例1の炭素繊維織物の縦軸に累積細孔容積および横軸に細孔径分布を示した図である。図に示すように、炭素繊維織物2の空隙の分布は二つのピークを有し、それぞれが、緯糸および経糸内部の空隙Aと、緯糸および経糸で構成される織り糸間の空隙Bであると考えられる。本発明では、炭素繊維織物の空隙孔のうち、細孔径が40μm未満の空隙を緯糸および経糸内部の空隙Aと推定し、細孔径が40μm以上の空隙を緯糸および経糸で構成される織り糸間の空隙Bであると推定する。
【0021】
炭素繊維織物内の空隙のうち、緯糸および経糸内部の空隙の容積A(cc/m)と、織物の経糸および緯糸で構成される織り糸間の空隙B(cc/m)との比A/Bの値が0.50以上であると糸内部の空隙が大きくなり、排水に寄与する毛細管の容積が大きくなるため、織物の排水性が向上するという効果を有する。A/Bの値が1.80以下であると織り糸間の空隙が大きくなり、織物のガス拡散性が向上するという効果を有する。炭素繊維織物の空隙の分布で二つのピークを有さない場合でも、A/Bの値が0.50〜1.80であれば同様の効果を有する。この値が0.55〜1.60であると、排水性とガス拡散性のバランスがさらに向上する効果を有する。
【0022】
本発明に係る炭素繊維織物2の、単位面積当たりの空隙の容積は80〜200cc/mであることが好ましい。炭素繊維織物の単位面積当たりの空隙の容積は、上記糸内部の空隙の容積A(cc/m)と織物の経糸および緯糸で構成される織り糸間の空隙の容積B(cc/m)の和A+B(cc/m)で算出できる。炭素繊維織物の、単位面積当たりの空隙の容積A+B(cc/m)が80以上であると、糸内部の空隙の容積A(cc/m)、または、織り糸間の空隙の容積B(cc/m)が大きくなるため、炭素繊維織物の排水性、または、ガス拡散性が向上するという効果を有する。炭素繊維織物の、単位面積当たりの空隙の容積A+B(cc/m)が200以下であると、炭素繊維織物の嵩密度が低くなり、燃料電池スタックを小型化できるという効果を有する。
【0023】
炭素繊維織物2の目付は、75〜100g/mであり、77〜98g/mがより好ましく、80〜95g/mが更に好ましい。炭素繊維織物の目付が75g/m以上であると、織物を構成する緯糸および経糸の密度が高くなり、織物の単位面積当たりの糸内部の空隙の容積A(cc/m)が大きくなるため、織物の排水性が向上するという効果を有する。炭素繊維織物の目付が100g/m以下であると、織物を構成する緯糸および経糸の密度が低くなり、織物の単位面積当たりの織り糸間の空隙の容積B(cc/m)が大きくなるため、織物のガス拡散性が向上するという効果を有する。
【0024】
本発明に係る炭素繊維織物2は、固体高分子型燃料電池のガス拡散体1の材料として好ましく用いられる。
【0025】
本発明に係るガス拡散体1は、上記炭素繊維織物2の少なくとも片側表面にフッ素樹脂およびカーボンブラックを含むカーボン層3を有することが好ましい。カーボン層3に含まれるフッ素樹脂のカーボンブラックに対する重量比は0.01〜0.70が好ましく、0.05〜0.60がより好ましく、0.10〜0.40がさらに好ましい。カーボン層3に含まれるフッ素樹脂のカーボンブラックに対する重量比が0.01以上であると、カーボンブラックを繋げているフッ素樹脂のバインダー効果が大きくなるためカーボン層の強度が上がり、0.70以下であると、高い導電性を有するカーボンブラックの割合が多くなるためガス拡散体の導電性が向上するという効果を有する。
【0026】
ここで、フッ素樹脂とは、テトラフルオロエチレン樹脂(PTFE)、パーフルオロアルコキシ樹脂(PFA)、フッ化エチレンプロピレン樹脂(FEP)、フッ化エチレンテトラフルオロエチレン樹脂(ETFE)など、その構造中にフッ素原子を含む撥水性を有する樹脂のことをいう。
【0027】
本発明に係るガス拡散体1は、上記炭素繊維織物2を用いるため、排水性とガス拡散性のバランスに優れる。
【0028】
炭素繊維織物2の少なくともその片側表面にカーボン層3を設けることにより、ガス拡散体1の表面は平滑となり、電気的接触を確保しやすくなるという効果を有する。また、膜−電極接合体4を作成する際に、ガス拡散体1が固体高分子電解質膜5に突き刺さり短絡を生じるのを防ぐという効果も有する。
【0029】
本発明に係る膜−電極接合体4は、両ガス拡散体6、6のうち少なくとも片側に上記ガス拡散体1を用いる。また、上記ガス拡散体1を用いた側をカソード側とすることが好ましい。触媒層6は、固体高分子電解質と触媒担持カーボンを含む層からなる。触媒には白金を用いることが好ましい。アノード側に一酸化炭素を含む改質ガスが供給される場合、白金およびルテニウムをアノード側の触媒として用いることが好ましい。固体高分子電解質5は、プロトン伝導性、耐酸化性、耐熱性が高い、パーフルオロスルホン酸系の高分子を材料としたものが好ましい。
【0030】
本発明に係る膜−電極接合体4は、少なくともカソード側に、排水性とガス拡散性のバランスに優れた上記ガス拡散体1を電極材料として用いるため、カソードの発電反応により生成した水を効率よく系外に排出し、かつ、カソード触媒へは反応に必要な酸素を十分に供給するため、非常に高い電池特性を示す。
【0031】
本発明に係る固体高分子型燃料電池は、図1に示す膜−電極接合体4の両側にガスケットを介してセパレータで挟んだものを複数枚重ね合わせたものである。
【0032】
上述したように、非常に高い電池特性を示す上記膜−電極接合体4を用いるため、本発明で提案する燃料電池は非常に高い性能を示す。
【0033】
【実施例】
次に本発明の一実施例を上記図面を参照しながら説明する。
【0034】
(実施例1)
図1に示す炭素繊維織物2として、繊維径11μm、比重1.45のアクリル耐炎化繊維を用いて1/34Nmの紡績糸を作成した。作成した紡績糸を用いて、目付が142g/m、平織りの耐炎糸織物を製織した。この耐炎糸織物を不活性雰囲気中で最高温度650℃、1950℃の2回に分けて炭化させて目付が86g/mの炭素繊維織物2を得た。
【0035】
得られた炭素繊維織物2の細孔径分布を以下に示す方法で測定した。
【0036】
(水銀圧入法による細孔径分布測定方法)
炭素繊維織物2から約12mm×20mm角の試料片を3枚切り出し、精秤の後、重ならないように測定用セルに入れ、減圧下に水銀を注入した。これを表1に示す装置、条件で細孔径分布測定を行った。
【0037】
【表1】

Figure 2004124267
【0038】
測定した細孔容積(cc/g)と炭素繊維織物2の目付(g/m)から、炭素繊維織物単位面積当たりの空隙の容積V(cc/m)を算出した。
【0039】
測定結果をグラフに表したものを図2に示す。
【0040】
測定結果から、炭素繊維織物の空隙のうち、主に緯糸および経糸内部の空隙であると推定される細孔径が40μm未満の空隙の容積A、主に緯糸および経糸で構成される織り糸間の空隙であると推定される細孔径が40μm以上の空隙の容積Bを算出したところ、それぞれ82.3cc/m、112.4cc/mであった。
【0041】
得られた炭素繊維織物2を用いて固体高分子型燃料電池を作成、1.0A/cmの電流を流したときの電圧を測定したところ、0.49Vであった。その値を燃料電池としての性能を表す指標とした。測定結果を後述の表2に示す。
【0042】
なお、炭素繊維織物を用いた固体高分子型燃料電池の作成方法、および、作成した燃料電池を用いて1.0A/cmの電流を流したときの電圧の測定方法を以下に示す。
【0043】
(燃料電池の電圧測定方法)
炭素繊維織物2に、厚さ200μmのポリエステルフィルムを用いて作成したスペーサーと、厚みが1mmのステンレス製のプレートを用いてカーボン塗液を塗布した。塗布したカーボン塗液は、固形分がアセチレンブラック(電気化学工業社製 デンカブラック)、PTFE(ダイキン工業社製 ポリフロンPTFEディスパージョンD−1を使用)、界面活性剤(ナカライテスク社製 TRITON X−114)からなり、その割合が4:1:8となるようにし、更に精製水を加え、固形分が全体の20.0wt%となるように調整した。カーボン層3を設けた炭素繊維織物を、380℃のオーブンで10分間熱処理した後、温度が200℃、面圧が3MPaのバッチプレスで5分間ホットプレスすることにより、それぞれガス拡散体1を得た。
【0044】
白金担持炭素(田中貴金属製 白金担持量50重量%)1.00g、精製水 1.00g、Nafion溶液(Aldrich社製 Nafion 5.0重量%)8.00g、イソプロピルアルコール(ナカライテスク社製)18.00gを順に加えることにより、触媒液を作成した。
【0045】
PTFEシート(ニチアス社製 ナフロンテープ TOMBO9001)上に、上記触媒液を5cm2 の正方形にスプレーし、乾燥させることにより、白金量が0.5mg/cm2 である触媒層付きPTFEシートを得た。5cm×5cmに切り出した固体高分子電解質膜5(DuPont社製 Nafion112)を、上記触媒層付きPTFEシートで挟み、130℃、5MPaで5分間バッチプレスすることにより固体高分子電解質膜5に触媒層6を転写した。プレス後、PTFEシートを剥がし、触媒層付き固体高分子電解質膜を得た。
【0046】
ガス拡散体1から、5cm2 の正方形のサイズのものを2枚切り出した。切り出したガス拡散体1で、上記触媒層付き固体高分子電解質膜を挟み、130℃、2MPaで5分間バッチプレスすることにより、膜−電極接合体4を得た。なお、ガス拡散体1は、カーボン層3を有する面を触媒層6側と接するように配置した。
【0047】
得られた膜−電極接合体4を燃料電池評価用単セルに組み込み、常圧の水素および空気を供給し、運転温度は70℃とした。水素および空気は、それぞれ80℃および60℃に設定した加湿ポットにより加湿を行った。また、水素および空気の利用率はそれぞれ70%および40%とした。上記膜−電極接合体4を用いて燃料電池の1.0A/cm2 における電圧値を測定した。
【0048】
(実施例2)
繊維径11μm、比重1.45のアクリル耐炎化繊維を用いて1/34Nmの紡績糸を作成した。作成した紡績糸を用いて、目付が148g/m、平織りの耐炎糸織物を製織した。得られたアクリル耐炎化繊維織物を、鉄ロール2本からなるロールプレス(鉄ロール温度200℃)に通し50kgf/cmで加圧した。この耐炎糸織物を不活性雰囲気中で最高温度650℃、1950℃の2回に分けて炭化させて目付が91g/mの炭素繊維織物2を得た。
【0049】
実施例1と同様にして、得られた炭素繊維織物2の空隙のうち、細孔径が40μm未満の空隙の容積A、細孔径が40μm以上の空隙の容積Bを算出したところ、それぞれ48.5cc/m、82.8cc/mであった。
【0050】
また、得られた炭素繊維織物2を用いて固体高分子型燃料電池を作成し1.0A/cmの電流を流したときの電圧を測定したところ、0.50Vであった。測定結果を表2に示す。
【0051】
(実施例3)
繊維径10μm、比重1.42のアクリル耐炎化繊維を用いて1/34Nmの紡績糸を作成した。作成した紡績糸を用いて、目付が150g/m、平織りの耐炎糸織物を製織した。得られたアクリル耐炎化繊維織物を、鉄ロール2本からなるロールプレス(鉄ロール温度200℃)に通し50kgf/cmで加圧した。この耐炎糸織物を不活性雰囲気中で最高温度650℃、1950℃の2回に分けて炭化させて目付が80g/mの炭素繊維織物2を得た。
【0052】
実施例1と同様にして、得られた炭素繊維織物2の空隙のうち、細孔径が40μm未満の空隙の容積A、細孔径が40μm以上の空隙の容積Bを算出したところ、それぞれ63.2cc/m、45.5cc/mであった。
【0053】
また、得られた炭素繊維織物2を用いて固体高分子型燃料電池を作成し1.0A/cmの電流を流したときの電圧を測定したところ、0.49Vであった。測定結果を表2に示す。
【0054】
(比較例1)
繊維径11μm、比重1.45のアクリル耐炎化繊維を用いて1/34Nmの紡績糸を作成した。作成した紡績糸を用いて、目付が104g/m、平織りの耐炎糸織物を製織した。この耐炎糸織物を不活性雰囲気中で最高温度650℃、1950℃の2回に分けて炭化させて目付が72g/mの炭素繊維織物を得た。
【0055】
実施例1と同様にして、得られた炭素繊維織物の空隙のうち、細孔径が40μm未満の空隙の容積A、細孔径が40μm以上の空隙の容積Bを算出したところ、それぞれ63.9cc/m、145.2cc/mであった。
【0056】
また、得られた炭素繊維織物を用いて固体高分子型燃料電池を作成し1.0A/cmの電流を流したときの電圧を測定したところ、0.33Vであった。測定結果を表2に示す。
【0057】
(比較例2)
繊維径11μm、比重1.45のアクリル耐炎化繊維を用いて1/34Nmの紡績糸を作成した。作成した紡績糸を用いて、目付が148g/m、平織りの耐炎糸織物を製織した。この耐炎糸織物を不活性雰囲気中で最高温度650℃、1950℃の2回に分けて炭化させて目付が101g/mの炭素繊維織物を得た。
【0058】
実施例1と同様にして、得られた炭素繊維織物の空隙のうち、細孔径が40μm未満の空隙の容積A、細孔径が40μm以上の空隙の容積Bを算出したところ、それぞれ116.6cc/m、56.0cc/mであった。
【0059】
また、得られた炭素繊維織物を用いて固体高分子型燃料電池を作成し1.0A/cmの電流を流したときの電圧を測定したところ、0.43Vであった。測定結果を表2に示す。
【0060】
(比較例3)
TEXTRON Systems Corporation社製のAvcarb 1071HCB Fabricを炭素繊維織物として用いた。
【0061】
実施例1と同様にして、得られた炭素繊維織物の空隙のうち、細孔径が40μm未満の空隙の容積A、細孔径が40μm以上の空隙の容積Bを算出したところ、それぞれ58.9cc/m、123.1cc/mであった。
【0062】
また、この炭素繊維織物を用いて固体高分子型燃料電池を作成し1.0A/cmの電流を流したときの電圧を測定したところ、0.47Vであった。測定結果を表2に示す。
【0063】
(比較例4)
E−TEK社製 Carbon“A”Cloth Plain Weaveを炭素繊維織物として用いた。
【0064】
実施例1と同様にして、得られた炭素繊維織物の空隙のうち、細孔径が40μm未満の空隙の容積A、細孔径が40μm以上の空隙の容積Bを算出したところ、それぞれ137.8cc/m、75.1cc/mであった。
【0065】
また、この炭素繊維織物を用いて固体高分子型燃料電池を作成し1.0A/cmの電流を流したときの電圧を測定したところ、0.45Vであった。測定結果を表2に示す。
【0066】
【表2】
Figure 2004124267
【0067】
表2に示すとおり、実施例1〜3の炭素繊維織物は排水性とガス拡散性のバランスに優れているため、これらの炭素繊維織物を用いた燃料電池は高い性能を示した。これに対し、比較例1および3の炭素繊維織物はガス拡散性は高いが排水性が低いため、比較例2および4の炭素繊維織物は排水性は高いがガス拡散性が低いため、これらの炭素繊維織物を用いた燃料電池は十分な性能を示さなかった。
【0068】
したがって、排水性とガス拡散性のバランスに優れた炭素繊維織物を提供するという本発明の目的は、複数本の炭素繊維が集合してなる緯糸および経糸で構成される織物であって、該炭素繊維織物の空隙のうち、40μm未満の空隙の容積A(cc/m)に対する、40μm以上の空隙の容積B(cc/m)との比A/Bが0.50〜1.80であることを特徴とする炭素繊維織物により達成される。
【0069】
【発明の効果】
本発明で提供する炭素繊維織物は、該織物の空隙のうち、糸内部の空隙の容積と、織り糸間の空隙との比が適切であり、排水性とガス拡散性のバランスに優れる。
【0070】
したがって、本発明によれば、排水性とガス拡散性のバランスに優れた炭素繊維織物、ガス拡散体、および、高性能な膜−電極接合体、燃料電池が得られる。
【図面の簡単な説明】
【図1】本発明で提案する膜−電極接合体の部分断面図である。
【図2】実施例1の炭素繊維織物の累積細孔容積および細孔径分布を示す図である。
【図3】本発明で提案する炭素繊維織物の拡大図面である。
【符号の説明】
1:ガス拡散体
2:炭素繊維織物
3:カーボン層
4:膜−電極接合体
5:固体高分子電解質膜
6:触媒層
P、Q:空隙[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an improvement in a carbon fiber fabric suitable as a material for an electrode, in particular, a gas diffuser for a polymer electrolyte fuel cell.
[0002]
[Prior art]
The gas diffuser of the fuel cell electrode needs to have a current-collecting function, a diffusivity of a substance involved in the electrode reaction, a conductivity, a strength to withstand handling, and the like.
[0003]
As a material of such a gas diffuser for a fuel cell electrode, a material using a porous carbon plate formed by binding short carbon fibers with carbon is known (for example, Patent Documents 1 to 3). However, since it is difficult to obtain such a material of the gas diffuser in a continuous roll form, there is a problem in terms of productivity and cost. In addition, there is a problem that the binder carbon is easily broken by the pressure during the production of the electrode or when assembled in a battery.
[0004]
As a material of the gas diffuser that can be manufactured in a continuous roll shape, for example, a carbon fiber fabric such as a product “AVCARB” manufactured by Textron Specialty Materials is used (for example, Patent Document 4).
[0005]
By the way, in a polymer electrolyte fuel cell, water is generated in a cathode catalyst by a power generation reaction. If the generated water is not efficiently discharged out of the system, the oxidizing gas required for the reaction is difficult to be supplied to the catalyst layer due to water clogging of the gas diffuser, and the output of the battery is reduced. Therefore, the gas diffuser is required to have high drainage.
[0006]
Also, unless sufficient oxygen is supplied to the cathode catalyst for the reaction, the power generation reaction becomes difficult to occur, and the output of the battery decreases. Therefore, the gas diffuser is also required to have high gas diffusivity.
[0007]
In order to improve the drainage property of the carbon fiber fabric, it is preferable that the space inside the yarn is large because the space inside the weft and warp of the fabric acts as a capillary tube.
[0008]
On the other hand, in order to improve the gas diffusivity of the carbon fiber fabric, it is preferable that the volume of the void between the woven yarns composed of the warp and the weft of the woven fabric is large.
[0009]
As described above, among the voids in the carbon fiber woven fabric, the battery characteristics greatly change depending on the ratio of the volume of the voids inside the yarn that contributes to drainage and the volume of the void between the yarns that contribute to gas diffusion, and the balance is changed. Deemed very important.
[0010]
However, from such a viewpoint, the product “AVCARB” manufactured by Textron Specialty Materials Co., Ltd. described in Patent Document 4 described above has a large volume of voids between the woven yarns composed of the warp and the weft constituting the woven fabric. Although the diffusivity is high, there is a problem that sufficient performance as a fuel cell cannot be exhibited because the volume of voids inside the yarn is small and drainage is low.
[0011]
[Patent Document 1]
JP-A-6-20710 (page 8, paragraph 0036)
[0012]
[Patent Document 2]
JP-A-7-326362 (page 3, paragraph number 0028)
[0013]
[Patent Document 3]
JP-A-7-220735 (page 2, paragraph 0015)
[0014]
[Patent Document 4]
JP-A-10-261421 (page 3, paragraph number 0013)
[0015]
[Problems to be solved by the invention]
An object of the present invention is to provide a carbon fiber woven fabric that overcomes the drawbacks of the prior art and has an excellent balance between drainage and gas diffusion.
[0016]
[Means for Solving the Problems]
The carbon fiber woven fabric of the present invention is a woven fabric composed of a weft and a warp obtained by assembling a plurality of carbon fibers, and among the voids formed in the carbon fiber woven fabric, for pore diameters of less than 40μm void volume a (cc / m 2), pore size ratio a / B between 40μm or more void volume B (cc / m 2) is 0.50 to 1.80 It is characterized by the following.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Preferred embodiments of the present invention will be described with reference to the drawings.
[0018]
FIG. 1 is a partial sectional view showing an example of the membrane-electrode assembly 4 proposed in the present invention. In FIG. 1, a gas diffuser 1 according to the present invention uses a carbon fiber woven fabric 2 composed of a weft and a warp composed of a plurality of carbon fibers as a base material, and has carbon black and fluorine on at least one surface thereof. It has a carbon layer 3 containing a resin. Further, the membrane-electrode assembly 4 according to the present invention has the catalyst layers 6 on both surfaces of the solid polymer electrolyte membrane 5, and further contacts the surfaces of the catalyst layers 6, 6 to form the gas diffusers 1 respectively. Have.
[0019]
Although the above is the overall configuration, the carbon fiber fabric 2 according to the present invention is mainly composed of voids formed inside the weft and warp constituting the fabric (FIG. 3 is a plan view of the carbon fiber fabric proposed in the present invention. The gap between the woven yarns mainly composed of the weft yarn and the warp yarns corresponds to the volume A (cc / m 2 ) of the voids having a pore diameter of less than 40 μm, which is presumed to be approximately the voids existing in the P portion of the drawing. The ratio A / B to the volume B (cc / m 2 ) of pores having a pore diameter of 40 μm or more, which is presumed to be voids (generally, voids existing in part Q in FIG. 3), is 0.50 to 1.80. 0.55 to 1.60 are more preferable, and 0.59 to 1.39 are still more preferable.
[0020]
The distribution of voids in the carbon fiber fabric can be measured by a mercury intrusion method described later. FIG. 2 is a diagram showing the cumulative pore volume on the vertical axis and the pore diameter distribution on the horizontal axis of the carbon fiber fabric of Example 1 described later. As shown in the figure, the distribution of the voids in the carbon fiber fabric 2 has two peaks, each of which is considered to be a void A inside the weft and the warp and a void B between the woven yarns composed of the weft and the warp. Can be In the present invention, among the pores of the carbon fiber woven fabric, a pore having a pore diameter of less than 40 μm is estimated to be a gap A inside the weft and the warp, and a pore having a pore diameter of 40 μm or more between the weft and the warp composed of the warp. It is estimated that the gap is B.
[0021]
The ratio A between the volume A (cc / m 2 ) of the void inside the weft and the warp and the void B (cc / m 2 ) between the woven yarns composed of the warp and the weft of the woven fabric among the voids in the carbon fiber fabric. When the value of / B is 0.50 or more, the voids inside the yarn become large, and the volume of the capillary tube that contributes to drainage increases, which has the effect of improving the drainage of the fabric. When the value of A / B is 1.80 or less, the voids between the yarns become large, which has the effect of improving the gas diffusivity of the woven fabric. Even when the distribution of voids in the carbon fiber fabric does not have two peaks, the same effect is obtained if the value of A / B is 0.50 to 1.80. When this value is 0.55 to 1.60, there is an effect that the balance between drainage and gas diffusibility is further improved.
[0022]
The volume of voids per unit area of the carbon fiber fabric 2 according to the present invention is preferably 80 to 200 cc / m 2 . The volume of the void per unit area of the carbon fiber fabric is the volume A (cc / m 2 ) of the void inside the yarn and the volume B (cc / m 2 ) of the void between the woven yarns composed of the warp and the weft of the woven fabric. A + B (cc / m 2 ). When the volume A + B (cc / m 2 ) of the voids per unit area of the carbon fiber fabric is 80 or more, the volume A (cc / m 2 ) of the voids inside the yarn or the volume B (voids) of the voids between the yarns cc / m 2 ) is increased, which has an effect of improving the drainage property or gas diffusion property of the carbon fiber fabric. When the volume A + B (cc / m 2 ) of the voids per unit area of the carbon fiber fabric is 200 or less, the bulk density of the carbon fiber fabric is reduced, and the fuel cell stack can be downsized.
[0023]
Basis weight of the carbon fiber woven fabric 2 is 75~100g / m 2, more preferably 77~98g / m 2, more preferably 80~95g / m 2. When the basis weight of the carbon fiber woven fabric is 75 g / m 2 or more, the density of the weft and warp constituting the woven fabric increases, and the volume A (cc / m 2 ) of voids in the yarn per unit area of the woven fabric increases. Therefore, there is an effect that the drainage property of the fabric is improved. When the basis weight of the carbon fiber woven fabric is 100 g / m 2 or less, the density of the weft and the warp constituting the woven fabric decreases, and the volume B (cc / m 2 ) of voids between the woven yarns per unit area of the woven fabric increases. Therefore, there is an effect that the gas diffusibility of the fabric is improved.
[0024]
The carbon fiber fabric 2 according to the present invention is preferably used as a material for the gas diffuser 1 of a polymer electrolyte fuel cell.
[0025]
The gas diffuser 1 according to the present invention preferably has a carbon layer 3 containing a fluororesin and carbon black on at least one surface of the carbon fiber fabric 2. The weight ratio of the fluororesin contained in the carbon layer 3 to the carbon black is preferably 0.01 to 0.70, more preferably 0.05 to 0.60, and even more preferably 0.10 to 0.40. When the weight ratio of the fluororesin to carbon black contained in the carbon layer 3 is 0.01 or more, the strength of the carbon layer increases because the binder effect of the fluororesin that links the carbon black increases, and the strength of the carbon layer becomes 0.70 or less. If there is, the proportion of carbon black having high conductivity increases, so that there is an effect that the conductivity of the gas diffuser is improved.
[0026]
Here, the term “fluororesin” means, for example, a tetrafluoroethylene resin (PTFE), a perfluoroalkoxy resin (PFA), a fluoroethylenepropylene resin (FEP), or a fluoroethylenetetrafluoroethylene resin (ETFE). A resin having water repellency containing atoms.
[0027]
Since the gas diffuser 1 according to the present invention uses the carbon fiber fabric 2, it has an excellent balance between drainage and gas diffusivity.
[0028]
By providing the carbon layer 3 on at least one surface of the carbon fiber fabric 2, the surface of the gas diffuser 1 becomes smooth, and has an effect that electrical contact can be easily secured. Further, when the membrane-electrode assembly 4 is formed, there is also an effect of preventing the gas diffuser 1 from piercing the solid polymer electrolyte membrane 5 and causing a short circuit.
[0029]
The membrane-electrode assembly 4 according to the present invention uses the gas diffuser 1 on at least one of the two gas diffusers 6. Further, it is preferable that the side using the gas diffuser 1 be the cathode side. The catalyst layer 6 is a layer containing a solid polymer electrolyte and catalyst-supporting carbon. It is preferable to use platinum for the catalyst. When a reformed gas containing carbon monoxide is supplied to the anode side, it is preferable to use platinum and ruthenium as the catalyst on the anode side. The solid polymer electrolyte 5 is preferably made of a perfluorosulfonic acid-based polymer having high proton conductivity, oxidation resistance, and heat resistance.
[0030]
The membrane-electrode assembly 4 according to the present invention uses the gas diffuser 1 excellent in balance between drainage and gas diffusivity as an electrode material at least on the cathode side, so that water generated by the power generation reaction of the cathode can be efficiently used. Very high battery characteristics are exhibited because the gas is discharged well out of the system and the oxygen required for the reaction is sufficiently supplied to the cathode catalyst.
[0031]
The polymer electrolyte fuel cell according to the present invention has a structure in which a plurality of membrane-electrode assemblies 4 shown in FIG.
[0032]
As described above, since the above-mentioned membrane-electrode assembly 4 having extremely high cell characteristics is used, the fuel cell proposed in the present invention exhibits very high performance.
[0033]
【Example】
Next, an embodiment of the present invention will be described with reference to the drawings.
[0034]
(Example 1)
As the carbon fiber fabric 2 shown in FIG. 1, a spun yarn having a diameter of 11 μm and a specific gravity of 1.45 was used to form a spun yarn having a diameter of 1/34 Nm. A plain weave flame-resistant yarn woven fabric having a basis weight of 142 g / m 2 was woven using the created spun yarn. The flame resistant yarn woven fabric was carbonized in an inert atmosphere at two times of a maximum temperature of 650 ° C. and 1950 ° C. to obtain a carbon fiber fabric 2 having a basis weight of 86 g / m 2 .
[0035]
The pore size distribution of the obtained carbon fiber fabric 2 was measured by the following method.
[0036]
(Method of measuring pore size distribution by mercury intrusion method)
Three sample pieces of about 12 mm × 20 mm square were cut out from the carbon fiber fabric 2, precisely weighed, placed in a measuring cell so as not to overlap, and mercury was injected under reduced pressure. The pore size distribution was measured using the apparatus and conditions shown in Table 1.
[0037]
[Table 1]
Figure 2004124267
[0038]
From the measured pore volume (cc / g) and the basis weight (g / m 2 ) of the carbon fiber fabric 2 , the volume V p of voids per unit area of the carbon fiber fabric (cc / m 2 ) was calculated.
[0039]
FIG. 2 shows a graph of the measurement results.
[0040]
From the measurement results, among the voids of the carbon fiber fabric, the pore volume A of the pores having a pore diameter of less than 40 μm, which is presumed to be mainly the voids inside the weft and the warp, the voids between the woven yarns mainly composed of the weft and the warp When the pore size is estimated to be that calculated the volume B of the above air gap 40 [mu] m, respectively 82.3cc / m 2, it was 112.4cc / m 2.
[0041]
A polymer electrolyte fuel cell was prepared using the obtained carbon fiber fabric 2, and the voltage when a current of 1.0 A / cm 2 was passed was measured. As a result, the voltage was 0.49V. The value was used as an index indicating the performance as a fuel cell. The measurement results are shown in Table 2 below.
[0042]
A method for preparing a polymer electrolyte fuel cell using a carbon fiber fabric and a method for measuring a voltage when a current of 1.0 A / cm 2 is passed using the prepared fuel cell are described below.
[0043]
(Fuel cell voltage measurement method)
A carbon coating liquid was applied to the carbon fiber fabric 2 using a spacer formed using a 200 μm-thick polyester film and a 1 mm-thick stainless steel plate. The applied carbon coating liquid has a solid content of acetylene black (Denka Black manufactured by Denki Kagaku Kogyo Co., Ltd.), PTFE (using Polyflon PTFE dispersion D-1 manufactured by Daikin Industries, Ltd.), and a surfactant (TRITON X- manufactured by Nacalai Tesque, Inc.) 114), and the ratio was adjusted to 4: 1: 8, and further purified water was added to adjust the solid content to 20.0% by weight. The carbon fiber woven fabric provided with the carbon layer 3 is heat-treated in an oven at 380 ° C. for 10 minutes, and then hot-pressed in a batch press at a temperature of 200 ° C. and a surface pressure of 3 MPa for 5 minutes to obtain gas diffusers 1 respectively. Was.
[0044]
1.00 g of platinum-supported carbon (50% by weight of platinum supported by Tanaka Kikinzoku), 1.00 g of purified water, 8.00 g of Nafion solution (5.0% by weight of Nafion manufactured by Aldrich), and isopropyl alcohol (manufactured by Nacalai Tesque) 18 By adding 0.000 g in order, a catalyst liquid was prepared.
[0045]
The catalyst solution was sprayed in a square of 5 cm 2 on a PTFE sheet (Naflon tape TOMBO9001 manufactured by Nichias) and dried to obtain a PTFE sheet with a catalyst layer having a platinum amount of 0.5 mg / cm 2 . The solid polymer electrolyte membrane 5 (Nafion 112 manufactured by DuPont) cut into 5 cm × 5 cm is sandwiched between the above-mentioned catalyst-layer-attached PTFE sheets, and batch-pressed at 130 ° C. and 5 MPa for 5 minutes to form a solid polymer electrolyte membrane 5 on the solid polymer electrolyte membrane 5. 6 was transferred. After pressing, the PTFE sheet was peeled off to obtain a solid polymer electrolyte membrane with a catalyst layer.
[0046]
Two 5 cm 2 square pieces were cut out of the gas diffuser 1. A membrane-electrode assembly 4 was obtained by sandwiching the solid polymer electrolyte membrane with the catalyst layer between the cut-out gas diffusers 1 and batch-pressing at 130 ° C. and 2 MPa for 5 minutes. The gas diffuser 1 was arranged such that the surface having the carbon layer 3 was in contact with the catalyst layer 6 side.
[0047]
The obtained membrane-electrode assembly 4 was assembled into a single cell for fuel cell evaluation, hydrogen and air were supplied at normal pressure, and the operating temperature was 70 ° C. Hydrogen and air were humidified by humidification pots set at 80 ° C. and 60 ° C., respectively. The utilization rates of hydrogen and air were 70% and 40%, respectively. Using the membrane-electrode assembly 4, a voltage value of the fuel cell at 1.0 A / cm 2 was measured.
[0048]
(Example 2)
A spun yarn having a diameter of 1/34 Nm was prepared using acrylic flame-resistant fiber having a fiber diameter of 11 μm and a specific gravity of 1.45. A plain weave flame-resistant yarn woven fabric having a basis weight of 148 g / m 2 was woven using the prepared spun yarn. The obtained acrylic oxidized fiber woven fabric was passed through a roll press (iron roll temperature: 200 ° C.) composed of two iron rolls and pressed at 50 kgf / cm. This flame resistant yarn woven fabric was carbonized in an inert atmosphere at two times of a maximum temperature of 650 ° C. and 1950 ° C. to obtain a carbon fiber fabric 2 having a basis weight of 91 g / m 2 .
[0049]
In the same manner as in Example 1, the volume A of the void having a pore diameter of less than 40 μm and the volume B of the void having a pore diameter of 40 μm or more among the voids of the obtained carbon fiber fabric 2 were calculated to be 48.5 cc. / M 2 , 82.8 cc / m 2 .
[0050]
In addition, a polymer electrolyte fuel cell was prepared using the obtained carbon fiber fabric 2, and the voltage was measured when a current of 1.0 A / cm 2 was passed. Table 2 shows the measurement results.
[0051]
(Example 3)
A 1/34 Nm spun yarn was prepared using acrylic flame-resistant fiber having a fiber diameter of 10 μm and a specific gravity of 1.42. A plain weave flame-resistant yarn woven fabric having a basis weight of 150 g / m 2 was woven using the created spun yarn. The obtained acrylic oxidized fiber woven fabric was passed through a roll press (iron roll temperature: 200 ° C.) composed of two iron rolls and pressed at 50 kgf / cm. The flame resistant yarn woven fabric was carbonized in an inert atmosphere at two times at a maximum temperature of 650 ° C. and 1950 ° C. to obtain a carbon fiber woven fabric 2 having a basis weight of 80 g / m 2 .
[0052]
In the same manner as in Example 1, the volume A of the void having a pore diameter of less than 40 μm and the volume B of the void having a pore diameter of 40 μm or more among the voids of the obtained carbon fiber fabric 2 were calculated to be 63.2 cc. / M 2 , 45.5 cc / m 2 .
[0053]
In addition, a polymer electrolyte fuel cell was prepared using the obtained carbon fiber fabric 2, and the voltage was measured when a current of 1.0 A / cm 2 was passed. Table 2 shows the measurement results.
[0054]
(Comparative Example 1)
A spun yarn having a diameter of 1/34 Nm was prepared using acrylic flame-resistant fiber having a fiber diameter of 11 μm and a specific gravity of 1.45. A plain weave flame-resistant yarn woven fabric having a basis weight of 104 g / m 2 was woven using the prepared spun yarn. The flame-resistant yarn woven fabric was carbonized in an inert atmosphere at a maximum temperature of 650 ° C. and 1950 ° C. twice to obtain a carbon fiber woven fabric having a basis weight of 72 g / m 2 .
[0055]
In the same manner as in Example 1, among the voids of the obtained carbon fiber fabric, the volume A of the void having a pore diameter of less than 40 μm and the volume B of the void having a pore diameter of 40 μm or more were calculated to be 63.9 cc / cm. m 2 , 145.2 cc / m 2 .
[0056]
Further, a polymer electrolyte fuel cell was prepared using the obtained carbon fiber fabric, and the voltage when a current of 1.0 A / cm 2 was passed was measured. As a result, it was 0.33 V. Table 2 shows the measurement results.
[0057]
(Comparative Example 2)
A spun yarn having a diameter of 1/34 Nm was prepared using acrylic flame-resistant fiber having a fiber diameter of 11 μm and a specific gravity of 1.45. A plain weave flame-resistant yarn woven fabric having a basis weight of 148 g / m 2 was woven using the prepared spun yarn. The flame-resistant yarn woven fabric was carbonized in an inert atmosphere at a maximum temperature of 650 ° C. and 1950 ° C. twice to obtain a carbon fiber woven fabric having a basis weight of 101 g / m 2 .
[0058]
In the same manner as in Example 1, the volume A of the void having a pore diameter of less than 40 μm and the volume B of the void having a pore diameter of 40 μm or more among the voids of the obtained carbon fiber fabric were calculated to be 116.6 cc /. m 2 , 56.0 cc / m 2 .
[0059]
In addition, a polymer electrolyte fuel cell was prepared using the obtained carbon fiber fabric, and the voltage when a current of 1.0 A / cm 2 was passed was measured. As a result, it was 0.43 V. Table 2 shows the measurement results.
[0060]
(Comparative Example 3)
Avcarb 1071 HCB Fabric manufactured by TEXTRON Systems Corporation was used as the carbon fiber fabric.
[0061]
In the same manner as in Example 1, the volume A of the void having a pore diameter of less than 40 μm and the volume B of the void having a pore diameter of 40 μm or more among the voids of the obtained carbon fiber fabric were calculated to be 58.9 cc /. m 2 , 123.1 cc / m 2 .
[0062]
Further, a polymer electrolyte fuel cell was prepared using this carbon fiber fabric, and the voltage when a current of 1.0 A / cm 2 was passed was measured. As a result, the voltage was 0.47 V. Table 2 shows the measurement results.
[0063]
(Comparative Example 4)
Carbon "A" Cloth Plain Weave manufactured by E-TEK was used as the carbon fiber fabric.
[0064]
In the same manner as in Example 1, the volume A of the void having a pore diameter of less than 40 μm and the volume B of the void having a pore diameter of 40 μm or more among the voids of the obtained carbon fiber fabric were calculated to be 137.8 cc / m 2 , 75.1 cc / m 2 .
[0065]
A polymer electrolyte fuel cell was prepared using the carbon fiber fabric, and the voltage when a current of 1.0 A / cm 2 was applied was measured. As a result, the voltage was 0.45 V. Table 2 shows the measurement results.
[0066]
[Table 2]
Figure 2004124267
[0067]
As shown in Table 2, the carbon fiber fabrics of Examples 1 to 3 were excellent in the balance between drainage and gas diffusivity, and thus fuel cells using these carbon fiber fabrics exhibited high performance. On the other hand, the carbon fiber fabrics of Comparative Examples 1 and 3 have high gas diffusivity but low drainage properties, and the carbon fiber fabrics of Comparative Examples 2 and 4 have high drainage properties but low gas diffusivity. Fuel cells using carbon fiber fabrics did not show sufficient performance.
[0068]
Therefore, an object of the present invention to provide a carbon fiber woven fabric having an excellent balance between drainage and gas diffusibility is a woven fabric composed of a weft and a warp obtained by assembling a plurality of carbon fibers, The ratio A / B of the void volume B (cc / m 2 ) of 40 μm or more to the void volume A (cc / m 2 ) of less than 40 μm in the voids of the fiber fabric is 0.50 to 1.80. This is achieved by a carbon fiber woven fabric characterized in that:
[0069]
【The invention's effect】
The carbon fiber woven fabric provided by the present invention has an appropriate ratio between the volume of the void inside the yarn and the void between the woven yarns among the voids of the woven fabric, and is excellent in the balance between drainage and gas diffusion.
[0070]
Therefore, according to the present invention, a carbon fiber fabric, a gas diffuser, a high-performance membrane-electrode assembly, and a fuel cell having an excellent balance between drainage properties and gas diffusivity can be obtained.
[Brief description of the drawings]
FIG. 1 is a partial cross-sectional view of a membrane-electrode assembly proposed in the present invention.
FIG. 2 is a view showing a cumulative pore volume and a pore diameter distribution of the carbon fiber fabric of Example 1.
FIG. 3 is an enlarged view of a carbon fiber woven fabric proposed in the present invention.
[Explanation of symbols]
1: gas diffuser 2: carbon fiber fabric 3: carbon layer 4: membrane-electrode assembly 5: solid polymer electrolyte membrane 6: catalyst layers P and Q: voids

Claims (7)

複数本の炭素繊維が集合してなる緯糸と経糸とで構成される織物であって、該炭素繊維織物に形成される空隙のうち、細孔径が40μm未満の空隙の容積A(cc/m)に対する、細孔径が40μm以上の空隙の容積B(cc/m)との比A/Bが0.50〜1.80であることを特徴とする炭素繊維織物。A woven fabric composed of a weft and a warp obtained by assembling a plurality of carbon fibers, and among the voids formed in the carbon fiber woven fabric, a volume A (cc / m 2) of a void having a pore diameter of less than 40 μm. ), Wherein the ratio A / B of the volume B (cc / m 2 ) of the pores having a pore diameter of 40 μm or more to 0.50 to 1.80 is 0.50 to 1.80. 単位面積当たりの空隙の容積A+Bが80〜200cc/mであることを特徴とする請求項1に記載の炭素繊維織物。Carbon fiber woven fabric according to claim 1, void volume A + B per unit area, characterized in that a 80~200cc / m 2. 目付が75〜100g/mであることを特徴とする請求項1または2に記載の炭素繊維織物。3. The carbon fiber fabric according to claim 1, wherein the basis weight is 75 to 100 g / m 2. 4 . 固体高分子型燃料電池のガス拡散体の材料として用いられる請求項1〜3のいずれかに記載の炭素繊維織物。The carbon fiber fabric according to any one of claims 1 to 3, which is used as a material for a gas diffuser of a polymer electrolyte fuel cell. 請求項1〜4のいずれかに記載の炭素繊維織物の少なくとも片側の表面に、カーボンブラックおよびフッ素樹脂を含むカーボン層を有することを特徴とするガス拡散体。A gas diffuser comprising a carbon layer containing carbon black and a fluororesin on at least one surface of the carbon fiber fabric according to any one of claims 1 to 4. 固体高分子電解質膜の両表面に触媒担持炭素を含む触媒層を有し、さらに該両触媒層表面に接してガス拡散体を有する膜−電極接合体であって、該ガス拡散体の少なくとも片方に、請求項5に記載のガス拡散体が用いられていることを特徴とする膜−電極接合体。A membrane-electrode assembly having a catalyst layer containing catalyst-carrying carbon on both surfaces of a solid polymer electrolyte membrane, and further having a gas diffuser in contact with both catalyst layer surfaces, wherein at least one of the gas diffusers A membrane-electrode assembly, wherein the gas diffuser according to claim 5 is used. 請求項6に記載の膜−電極接合体が用いられていることを特徴とする燃料電池。A fuel cell, comprising the membrane-electrode assembly according to claim 6.
JP2002285628A 2002-09-30 2002-09-30 Carbon fiber fabric, gas diffuser, membrane-electrode assembly and fuel cell Pending JP2004124267A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002285628A JP2004124267A (en) 2002-09-30 2002-09-30 Carbon fiber fabric, gas diffuser, membrane-electrode assembly and fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002285628A JP2004124267A (en) 2002-09-30 2002-09-30 Carbon fiber fabric, gas diffuser, membrane-electrode assembly and fuel cell

Publications (1)

Publication Number Publication Date
JP2004124267A true JP2004124267A (en) 2004-04-22

Family

ID=32278879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002285628A Pending JP2004124267A (en) 2002-09-30 2002-09-30 Carbon fiber fabric, gas diffuser, membrane-electrode assembly and fuel cell

Country Status (1)

Country Link
JP (1) JP2004124267A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100808757B1 (en) 2005-08-04 2008-02-29 수미도모 메탈 인더스트리즈, 리미티드 Carbon powder suitable to negative electrode material for non-aqueous secondary cell
JP2013140803A (en) * 2004-06-21 2013-07-18 Mitsubishi Rayon Co Ltd Porous electrode base material, and method of manufacturing the same
WO2015125749A1 (en) * 2014-02-24 2015-08-27 東レ株式会社 Gas diffusion electrode substrate, and membrane electrode assembly and fuel cell equipped with same
JP2018538461A (en) * 2015-10-16 2018-12-27 ヘクセル ランフォルセマン Lightweight needle-fabricated fabric and method for its production and its use in diffusion layers for fuel cells

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013140803A (en) * 2004-06-21 2013-07-18 Mitsubishi Rayon Co Ltd Porous electrode base material, and method of manufacturing the same
KR100808757B1 (en) 2005-08-04 2008-02-29 수미도모 메탈 인더스트리즈, 리미티드 Carbon powder suitable to negative electrode material for non-aqueous secondary cell
WO2015125749A1 (en) * 2014-02-24 2015-08-27 東レ株式会社 Gas diffusion electrode substrate, and membrane electrode assembly and fuel cell equipped with same
US10804544B2 (en) 2014-02-24 2020-10-13 Toray Industries, Inc. Gas diffusion electrode substrate, and membrane electrode assembly and fuel cell equipped with same
JP2018538461A (en) * 2015-10-16 2018-12-27 ヘクセル ランフォルセマン Lightweight needle-fabricated fabric and method for its production and its use in diffusion layers for fuel cells

Similar Documents

Publication Publication Date Title
KR102472737B1 (en) Cathode Electrode Design for Electrochemical Fuel Cells
JP3778506B2 (en) Electrode for polymer electrolyte fuel cell
US7960072B2 (en) MEA with catalyst for oxidation of carbon monoxide
JP2008176990A (en) Membrane electrode assembly for fuel cell, and fuel cell using it
JP2004296176A (en) Polymer electrolyte fuel cell
KR20140093587A (en) Catalyst for fuel cell, and electrode for fuel cell, membrane-electrode assembly for fuel cell and fuel cell system using same
US20100255405A1 (en) Direct methanol fuel cell
US20070202388A1 (en) Membrane Electrode Unit
JP5034172B2 (en) Gas diffusion layer for fuel cell and fuel cell using the same
JP2006085984A (en) Mea for fuel cell and fuel cell using this
JP3712959B2 (en) Fuel cell electrode and method of manufacturing the same
JP4338491B2 (en) Method for producing gas diffusion layer for polymer electrolyte fuel cell
JP2004124267A (en) Carbon fiber fabric, gas diffuser, membrane-electrode assembly and fuel cell
JP2008198516A (en) Fuel cell
JP2009190951A (en) Method for producing porous carbon electrode substrate
JP2006318707A (en) Electrode structure of polymer electrolyte fuel cell
JP2007026783A (en) Solid polymer fuel cell
JP2004152584A (en) Gas diffuser, membrane-electrode assembly and fuel cell
JP2005174836A (en) Polymer electrolyte fuel cell
JP2008041352A (en) Gas diffusion layer and fuel cell
JP2005276449A (en) MEA for fuel cell and fuel cell using the same
JP2003288906A (en) Carbon fiber cloth for electrode, gas diffusion body, membrane-electrode joint body, and fuel cell
JP7551202B1 (en) Gas diffusion composite material for fuel cells and polymer electrolyte fuel cells
JP2005251491A (en) Fuel cell system
JP2006339125A (en) Solid polymer fuel cell