JP2003288906A - Carbon fiber cloth for electrode, gas diffusion body, membrane-electrode joint body, and fuel cell - Google Patents
Carbon fiber cloth for electrode, gas diffusion body, membrane-electrode joint body, and fuel cellInfo
- Publication number
- JP2003288906A JP2003288906A JP2002088349A JP2002088349A JP2003288906A JP 2003288906 A JP2003288906 A JP 2003288906A JP 2002088349 A JP2002088349 A JP 2002088349A JP 2002088349 A JP2002088349 A JP 2002088349A JP 2003288906 A JP2003288906 A JP 2003288906A
- Authority
- JP
- Japan
- Prior art keywords
- carbon fiber
- woven fabric
- fiber woven
- electrode
- fuel cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229920000049 Carbon (fiber) Polymers 0.000 title claims abstract description 85
- 239000004917 carbon fiber Substances 0.000 title claims abstract description 85
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 title claims abstract description 83
- 239000000446 fuel Substances 0.000 title claims abstract description 32
- 239000004744 fabric Substances 0.000 title abstract description 21
- 238000009792 diffusion process Methods 0.000 title description 6
- 239000007772 electrode material Substances 0.000 claims abstract description 3
- 239000002759 woven fabric Substances 0.000 claims description 92
- 239000005518 polymer electrolyte Substances 0.000 claims description 29
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 19
- 229910052799 carbon Inorganic materials 0.000 claims description 18
- 239000003054 catalyst Substances 0.000 claims description 18
- 239000007787 solid Substances 0.000 claims description 17
- 239000012528 membrane Substances 0.000 claims description 13
- 239000006229 carbon black Substances 0.000 claims description 6
- 239000012466 permeate Substances 0.000 claims 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 41
- 238000006243 chemical reaction Methods 0.000 abstract description 19
- 238000010248 power generation Methods 0.000 abstract description 16
- 239000007789 gas Substances 0.000 description 84
- 239000000463 material Substances 0.000 description 9
- 238000005259 measurement Methods 0.000 description 9
- 230000001590 oxidative effect Effects 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 8
- 238000001704 evaporation Methods 0.000 description 8
- 230000008020 evaporation Effects 0.000 description 8
- 239000000835 fiber Substances 0.000 description 8
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 8
- 230000007423 decrease Effects 0.000 description 7
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 6
- 238000010000 carbonizing Methods 0.000 description 6
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 6
- 239000004810 polytetrafluoroethylene Substances 0.000 description 6
- 239000011347 resin Substances 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 229910052697 platinum Inorganic materials 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- 238000007599 discharging Methods 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 230000035699 permeability Effects 0.000 description 3
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 2
- 229920000557 Nafion® Polymers 0.000 description 2
- 230000000712 assembly Effects 0.000 description 2
- 238000000429 assembly Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 239000008213 purified water Substances 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 239000004812 Fluorinated ethylene propylene Substances 0.000 description 1
- 229920001774 Perfluoroether Polymers 0.000 description 1
- 229920006361 Polyflon Polymers 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000003411 electrode reaction Methods 0.000 description 1
- QHSJIZLJUFMIFP-UHFFFAOYSA-N ethene;1,1,2,2-tetrafluoroethene Chemical group C=C.FC(F)=C(F)F QHSJIZLJUFMIFP-UHFFFAOYSA-N 0.000 description 1
- HQQADJVZYDDRJT-UHFFFAOYSA-N ethene;prop-1-ene Chemical group C=C.CC=C HQQADJVZYDDRJT-UHFFFAOYSA-N 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- UQSQSQZYBQSBJZ-UHFFFAOYSA-N fluorosulfonic acid Chemical compound OS(F)(=O)=O UQSQSQZYBQSBJZ-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229920009441 perflouroethylene propylene Polymers 0.000 description 1
- 229920006267 polyester film Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000005871 repellent Substances 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 1
- GPRLSGONYQIRFK-MNYXATJNSA-N triton Chemical compound [3H+] GPRLSGONYQIRFK-MNYXATJNSA-N 0.000 description 1
- 235000020681 well water Nutrition 0.000 description 1
- 239000002349 well water Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Inert Electrodes (AREA)
- Fuel Cell (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、電極用材料、特に
固体高分子型燃料電池のガス拡散体の材料として好適な
炭素繊維織物に関するものである。TECHNICAL FIELD The present invention relates to a carbon fiber woven fabric suitable as a material for electrodes, particularly as a material for a gas diffuser of a polymer electrolyte fuel cell.
【0002】[0002]
【従来の技術】燃料電池電極のガス拡散体には、集電機
能および電極反応に関与する物質の拡散・透過性、導電
性、ハンドリングに耐えるための強度等が必要とされ
る。2. Description of the Related Art A gas diffuser for a fuel cell electrode is required to have a current collecting function and diffusion / permeability of substances involved in an electrode reaction, conductivity, and strength to withstand handling.
【0003】このような燃料電池電極のガス拡散体の材
料としては、たとえば特開平6−20710号公報、特
開平7−326362号公報、特開平7−220735
号公報に記載されるような、炭素短繊維を炭素で結着し
てなる多孔質炭素板を用いたものが知られている。しか
しながら、このようなガス拡散体の材料は、連続したロ
ール状で得ることが難しいため、生産性・コスト面で問
題がある。また、電極製造時や電池に組んだときの加圧
により結着炭素が壊れやすいという問題がある。As a material for such a gas diffuser of a fuel cell electrode, for example, JP-A-6-20710, JP-A-7-326362, and JP-A-7-220735.
There is known one using a porous carbon plate formed by binding short carbon fibers with carbon as described in Japanese Patent Publication No. 2003-242242. However, since it is difficult to obtain such a material for the gas diffusion material in a continuous roll shape, there is a problem in productivity and cost. In addition, there is a problem that the binding carbon is easily broken by the pressure applied when manufacturing the electrode or when assembled in a battery.
【0004】連続したロール状で製造可能なガス拡散体
の材料として、炭素繊維織物が用いられる。具体的には
米国特許第4,293,396号明細書に記載のStackp
oleFibers Companyの商品”PANEX PWB-3”や、特開平1
0−261421号公報に記載のテキストロンスペシャ
リティマテリアルズ社の商品”AVCARB”などが挙
げられる。A carbon fiber woven fabric is used as a material for a gas diffuser which can be manufactured in a continuous roll form. Specifically, Stackp described in US Pat. No. 4,293,396.
Product "PANEX PWB-3" from oleFibers Company and Japanese Patent Laid-Open No. 1
The product “AVCARB” manufactured by Textron Specialty Materials Co., Ltd., which is described in JP-A-0-261421, may be mentioned.
【0005】ところで、固体高分子型燃料電池の発電反
応により、カソードにおいて水が生成する。生成した水
を効率よく系外に排出しなければ、ガス拡散体の水詰ま
りのため反応に必要な酸化ガスが触媒層へ供給されにく
くなり、電池の出力低下が生じる。By the way, water is produced at the cathode by the power generation reaction of the polymer electrolyte fuel cell. Unless the generated water is efficiently discharged to the outside of the system, the oxidizing gas required for the reaction becomes difficult to be supplied to the catalyst layer due to the water clogging of the gas diffuser, and the output of the battery decreases.
【0006】一方、アノード側からカソード側にプロト
ンを伝える固体高分子電解質膜は、湿潤状態でないとプ
ロトン伝導性が低下する。したがって、カソードのガス
拡散体における排水性が高すぎても固体高分子電解質膜
の乾燥によりプロトン伝導性が低下し、電池の出力低下
が生じる。On the other hand, the proton conductivity of the solid polymer electrolyte membrane that transfers protons from the anode side to the cathode side is reduced unless it is in a wet state. Therefore, even if the drainage property of the gas diffuser of the cathode is too high, the proton conductivity decreases due to the drying of the solid polymer electrolyte membrane, and the output of the battery decreases.
【0007】上記カソードのガス拡散体における排水ス
テップは、主に、ガス拡散体内での水の移動とガス拡散
体表面での水の蒸発の二つに分けて考えられる。The drainage step in the gas diffuser of the cathode is considered to be divided into two main movements: movement of water in the gas diffuser and evaporation of water on the surface of the gas diffuser.
【0008】ガス拡散体内の水の移動に関しては、ガス
拡散体の厚みが小さい程、反応で生成した水を系外に排
出するために必要な厚み方向への水の移送距離が小さく
なり、効率良く水がガス拡散体表面へと運ばれる。ま
た、ガス拡散体の厚みが小さくなれば、燃料電池スタッ
クのコンパクト化が可能となり、電池の出力密度が向上
する。また、ガス拡散体表面での水の蒸発に関しては、
主に、燃料電池の運転温度、酸化ガスの加湿条件、およ
び、酸化ガスのガス拡散体表面における流速が大きな影
響を与えると考えられる。Regarding the movement of water in the gas diffuser, the smaller the thickness of the gas diffuser, the smaller the distance of water transfer in the thickness direction required for discharging the water produced by the reaction to the outside of the system, and the efficiency is improved. Well water is carried to the surface of the gas diffuser. Further, if the thickness of the gas diffuser is reduced, the fuel cell stack can be made compact and the power density of the cell is improved. Also, regarding the evaporation of water on the surface of the gas diffuser,
It is considered that the operating temperature of the fuel cell, the humidifying conditions of the oxidizing gas, and the flow velocity of the oxidizing gas on the surface of the gas diffuser have a large influence.
【0009】固体高分子型燃料電池の運転温度は70〜
80℃が一般的であり、生成水の蒸発を制御するために
運転温度を変化させることは困難である。酸化ガスの加
湿条件により生成水の蒸発を制御することは一般的に行
われているが、それだけでは発電反応による生成水の制
御は不十分である。The operating temperature of the polymer electrolyte fuel cell is 70 to
80 ° C. is common, and it is difficult to change the operating temperature to control the evaporation of the produced water. Although it is generally performed to control the evaporation of the produced water depending on the humidifying condition of the oxidizing gas, the control of the produced water by the power generation reaction is not sufficient by itself.
【0010】また、発電反応に必要な酸化ガスの量は量
論関係から決まるため、酸化ガスの供給流量で生成水の
蒸発を制御することは考えにくい。しかしながら、ガス
拡散体の気体透過性を変化させることにより、ガス拡散
体表面での酸化ガス流速を制御し、発電反応による生成
水の蒸発を制御することが可能である。Further, since the amount of the oxidizing gas required for the power generation reaction is determined by the stoichiometric relationship, it is difficult to control the evaporation of the generated water by the supply flow rate of the oxidizing gas. However, by changing the gas permeability of the gas diffuser, it is possible to control the flow rate of the oxidizing gas on the surface of the gas diffuser and to control the evaporation of water generated by the power generation reaction.
【0011】[0011]
【発明が解決しようとする課題】しかし、このような観
点から見ると、米国特許第4,293,396号明細書
に記載のStackpole Fibers Companyの商品”PANEX PWB-
3”は、ガス拡散体の材料としての厚みが大きく、ま
た、気体透過性が低かった。したがって、発電反応で生
成した水を系外に排出するために必要な厚み方向への水
の移送距離が大きく、また、ガス拡散体表面での酸化ガ
ス流速が小さいため、ガス拡散体内での水詰まりが生
じ、燃料電池として十分な性能を発揮できないという問
題があった。However, from this point of view, the product "PANEX PWB-" of Stackpole Fibers Company described in US Pat. No. 4,293,396 is disclosed.
3 ”had a large thickness as a material for the gas diffuser and had low gas permeability. Therefore, the water transfer distance in the thickness direction required to discharge the water generated by the power generation reaction to the outside of the system. And the flow velocity of the oxidizing gas on the surface of the gas diffuser is small, so that there is a problem that water clogging occurs in the gas diffuser and the fuel cell cannot exhibit sufficient performance.
【0012】本発明は、従来技術の欠点を克服し、厚さ
が薄く、発電反応による生成水の制御性に優れた電極用
炭素繊維織物を提供することをその目的とする。It is an object of the present invention to provide a carbon fiber woven fabric for an electrode which overcomes the drawbacks of the prior art, has a small thickness, and is excellent in the controllability of water produced by a power generation reaction.
【0013】[0013]
【課題を解決するための手段】本発明の電極用炭素繊維
織物は、上記目的を達成するため14cm3/cm2/s
ecの空気を厚さ方向に透過させたときの差圧が0.2
mmAqを超え1.6mmAq未満で、かつ、その厚さ
が150μm未満であることを特徴とする。In order to achieve the above-mentioned object, the carbon fiber woven fabric for electrodes of the present invention is 14 cm 3 / cm 2 / s.
When the ec air is passed through in the thickness direction, the differential pressure is 0.2
It is characterized by exceeding mmAq and less than 1.6 mmAq, and having a thickness of less than 150 μm.
【0014】[0014]
【発明の実施の形態】本発明の好ましい実施の形態を図
面を参照しながら説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A preferred embodiment of the present invention will be described with reference to the drawings.
【0015】図1は、本発明で提案する膜−電極接合体
4の一例を示す部分断面図である。図1において、本発
明に係るガス拡散体1は、複数本の炭素繊維が集合して
なる炭素繊維織物2を基材として、少なくともその片側
表面に、カーボンブラックおよびフッ素樹脂を含むカー
ボン層3を有する。本発明に係る膜−電極接合体4は、
固体高分子電解質膜5の両表面に触媒層6を有し、さら
に該両触媒層6、6の表面に接してそれぞれガス拡散体
1を有する。FIG. 1 is a partial sectional view showing an example of a membrane-electrode assembly 4 proposed in the present invention. In FIG. 1, a gas diffuser 1 according to the present invention has a carbon fiber woven fabric 2 in which a plurality of carbon fibers are aggregated as a base material, and a carbon layer 3 containing carbon black and a fluororesin on at least one surface thereof. Have. The membrane-electrode assembly 4 according to the present invention is
A catalyst layer 6 is provided on both surfaces of the solid polymer electrolyte membrane 5, and a gas diffuser 1 is provided in contact with the surfaces of both catalyst layers 6, 6.
【0016】以上が全体構成であるが、本発明に係る炭
素繊維織物2は、その厚さ方向に14cm3/cm2/s
ecの空気を透過させたときの差圧で定義される気体透
過抵抗が、0.2mmAqを超え1.6mmAq未満で
あり、0.4mmAq以上1.4mmAq以下がより好
ましく、0.6mmAq以上1.1mmAq以下が更に
好ましい。炭素繊維織物2の気体透過抵抗が0.2mm
Aq以下であると、ガス拡散体1表面でのガス流速が大
きくなり、燃料電池の発電反応による生成水の蒸発速度
大きくなる。したがって、固体高分子電解質膜5の乾燥
によりプロトン伝導性が低下し、電池の出力低下が生じ
る。炭素繊維織物2の気体透過抵抗が1.6mmAq以
上であると、ガス拡散体1表面でのガス流速が小さくな
り、発電反応による生成水の蒸発速度が小さくなる。し
たがって、ガス拡散体1内部での水詰まりのため、酸化
ガスが触媒層6へ供給されにくくなり、電池の出力低下
が生じる。The above is the overall structure, but the carbon fiber woven fabric 2 according to the present invention has a thickness direction of 14 cm 3 / cm 2 / s.
The gas permeation resistance defined by the differential pressure when permeating air of ec is more than 0.2 mmAq and less than 1.6 mmAq, more preferably 0.4 mmAq or more and 1.4 mmAq or less, and 0.6 mmAq or more 1. It is more preferably 1 mmAq or less. Gas permeation resistance of carbon fiber fabric 2 is 0.2 mm
When it is Aq or less, the gas flow velocity on the surface of the gas diffuser 1 increases, and the evaporation rate of water generated by the power generation reaction of the fuel cell increases. Therefore, the proton conductivity is lowered by the drying of the solid polymer electrolyte membrane 5, and the output of the battery is lowered. When the gas permeation resistance of the carbon fiber woven fabric 2 is 1.6 mmAq or more, the gas flow velocity on the surface of the gas diffuser 1 becomes small, and the evaporation rate of water generated by the power generation reaction becomes small. Therefore, due to water clogging inside the gas diffuser 1, it becomes difficult for the oxidizing gas to be supplied to the catalyst layer 6, and the output of the battery decreases.
【0017】また、炭素繊維織物2の厚さは150μm
未満であり、145μm以下がより好ましく、140μ
m以下が更に好ましい。炭素繊維織物2の厚さが150
μm以上であると、発電反応で生成した水を系外に排出
するために必要な厚み方向への水の移送距離が大きくな
り、ガス拡散体1表面への水の移送効率が低下する。し
たがって、ガス拡散体1内部での水詰まりのため、電池
の出力低下が生じる。The carbon fiber fabric 2 has a thickness of 150 μm.
Less than 145 μm, more preferably 140 μm
m or less is more preferable. The thickness of the carbon fiber woven fabric 2 is 150
When it is at least μm, the transfer distance of water in the thickness direction required for discharging the water generated by the power generation reaction to the outside of the system becomes large, and the transfer efficiency of water to the surface of the gas diffuser 1 decreases. Therefore, the output of the battery is reduced due to water clogging inside the gas diffuser 1.
【0018】炭素繊維織物2の厚さは50μm以上が好
ましく、100μm以上がより好ましく、120μm以
上が更に好ましい。炭素繊維織物2の厚みが50μm未
満であると、織物を構成する単糸の本数が減少するため
引張強度が低下し、連続したロール状でのハンドリング
性が低下する。The thickness of the carbon fiber woven fabric 2 is preferably 50 μm or more, more preferably 100 μm or more, still more preferably 120 μm or more. When the thickness of the carbon fiber woven fabric 2 is less than 50 μm, the number of single yarns constituting the woven fabric is reduced, the tensile strength is reduced, and the handling property in a continuous roll state is reduced.
【0019】炭素繊維織物2の厚みは、面圧で1.0M
Pa加圧したときの厚みとする。The carbon fiber woven fabric 2 has a surface pressure of 1.0M.
Pa is the thickness when pressurized.
【0020】炭素繊維織物2の目付は、72g/m2を
超え99g/m2未満であることが好ましく、80g/
m2以上97g/m2以下がより好ましく、85g/m2
以上95g/m2以下が更に好ましい。炭素繊維織物2
の目付が72g/m2以下であると、織物の経糸および
緯糸で構成される隙間が大きくなり、気体透過抵抗が小
さくなりすぎる。目付が99g/m2以上であると、織
物の隙間が小さくなり、気体透過抵抗が大きくなりすぎ
る。The basis weight of the carbon fiber woven fabric 2 is preferably less than 72 g / m 2, greater 99 g / m 2, 80 g /
m is more preferably 2 or more 97 g / m 2 or less, 85 g / m 2
More preferably, it is 95 g / m 2 or less. Carbon fiber fabric 2
When the fabric weight is 72 g / m 2 or less, the gap formed by the warp and the weft of the woven fabric becomes large, and the gas permeation resistance becomes too small. When the basis weight is 99 g / m 2 or more, the gap between the fabrics becomes small and the gas permeation resistance becomes too large.
【0021】炭素繊維織物2の密度は0.50〜0.8
0g/cm3であることが好ましく、0.60〜0.7
5g/cm3がより好ましく、0.65〜0.70g/
cm3が更に好ましい。炭素繊維織物2の密度が0.5
0g/cm3未満であると気体透過抵抗が小さくなりす
ぎ、0.80g/cm3を超えると気体透過抵抗が大き
くなりすぎる。炭素繊維織物2の密度は、目付と、面圧
で1.0MPa加圧したときの厚みから算出する。ま
た、本発明に係る炭素繊維織物2は、紡績糸織物でもフ
ィラメント織物でもよいが、単糸が揃って高密度になり
やすいフィラメント織物よりも紡績糸織物の方が好まし
い。The density of the carbon fiber woven fabric 2 is 0.50 to 0.8.
It is preferably 0 g / cm 3 , and 0.60 to 0.7
5 g / cm 3 is more preferable, and 0.65 to 0.70 g /
cm 3 is more preferable. Carbon fiber fabric 2 has a density of 0.5
If it is less than 0 g / cm 3 , the gas permeation resistance becomes too small, and if it exceeds 0.80 g / cm 3 , the gas permeation resistance becomes too large. The density of the carbon fiber woven fabric 2 is calculated from the basis weight and the thickness when the surface pressure is 1.0 MPa. Further, the carbon fiber woven fabric 2 according to the present invention may be a spun yarn woven fabric or a filament woven fabric, but the spun yarn woven fabric is preferable to the filament woven fabric in which single yarns are easily gathered to easily increase the density.
【0022】炭素繊維織物2の経糸および緯糸で構成さ
れる、織物の厚さ方向から見た隙間の数は、400〜7
00個/cm2が好ましく、500〜680個/cm2が
より好ましく、550〜650個/cm2が更に好まし
い。炭素繊維織物2の隙間の数が、400個/cm2 未
満であると織物の気体透過抵抗が大きくなりすぎ、70
0個/cm2を超えると気体透過抵抗が小さくなりすぎ
る。炭素繊維織物2の中に存在する、織物の経糸および
緯糸で構成される隙間の1個あたりの面積は、0.01
〜0.50mm2であることが好ましく、0.02〜
0.10mm2がより好ましく、0.03〜0.09m
m2が更に好ましい。炭素繊維織物2の隙間の1個あた
りの面積が、0.01mm2未満であると織物の気体透
過抵抗が大きくなりすぎ、0.50mm2を超えると気
体透過抵抗が小さくなりすぎる。The number of gaps formed by the warp and weft of the carbon fiber woven fabric 2 as seen in the thickness direction of the woven fabric is 400 to 7
00 / cm 2 is preferable, 500 to 680 / cm 2 is more preferable, and 550 to 650 / cm 2 is further preferable. If the number of gaps in the carbon fiber woven fabric 2 is less than 400 / cm 2 , the gas permeation resistance of the woven fabric becomes too large,
If it exceeds 0 / cm 2 , the gas permeation resistance becomes too small. The area of each of the gaps formed by the warp threads and the weft threads in the carbon fiber woven fabric 2 is 0.01
~ 0.50 mm 2 , preferably 0.02
0.10 mm 2 is more preferable, 0.03 to 0.09 m
m 2 is more preferred. If the area of each gap of the carbon fiber woven fabric 2 is less than 0.01 mm 2 , the gas permeation resistance of the woven fabric becomes too large, and if it exceeds 0.50 mm 2 , the gas permeation resistance becomes too small.
【0023】本発明に係るガス拡散体1は、上記炭素繊
維織物2の少なくとも片側表面にフッ素樹脂およびカー
ボンブラックを含むカーボン層3を有することが好まし
い。カーボン層3に含まれるフッ素樹脂のカーボンブラ
ックに対する重量比は0.01以上0.70以下が好ま
しく、0.05以上0.60以下がより好ましく、0.
10以上0.40以下がさらに好ましい。カーボン層3
に含まれるフッ素樹脂のカーボンブラックに対する重量
比が0.01より小さくなると、カーボンブラックを繋
げているフッ素樹脂のバインダー効果が小さくなりカー
ボン層が脆くなるという問題があり、0.70より大き
くなると、導電性が非常に低いフッ素樹脂の割合が多く
なりガス拡散体の導電性低下が大きくなるという問題が
ある。The gas diffuser 1 according to the present invention preferably has a carbon layer 3 containing a fluororesin and carbon black on at least one surface of the carbon fiber woven fabric 2. The weight ratio of the fluororesin contained in the carbon layer 3 to carbon black is preferably 0.01 or more and 0.70 or less, more preferably 0.05 or more and 0.60 or less, and 0.1.
It is more preferably 10 or more and 0.40 or less. Carbon layer 3
If the weight ratio of the fluororesin contained in the above to carbon black is less than 0.01, there is a problem that the binder effect of the fluororesin connecting the carbon black becomes small and the carbon layer becomes brittle, and if it exceeds 0.70, There is a problem that the ratio of the fluororesin having a very low conductivity increases and the conductivity of the gas diffuser decreases greatly.
【0024】ここで、フッ素樹脂とは、テトラフルオロ
エチレン樹脂(PTFE)、パーフルオロアルコキシ樹
脂(PFA)、フッ化エチレンプロピレン樹脂(FE
P)、フッ化エチレンテトラフルオロエチレン樹脂(E
TFE)など、その構造中にフッ素樹脂を含む撥水性を
有する樹脂のことをいう。Here, the fluororesin means tetrafluoroethylene resin (PTFE), perfluoroalkoxy resin (PFA), fluorinated ethylene propylene resin (FE).
P), fluorinated ethylene tetrafluoroethylene resin (E
It refers to a water-repellent resin containing a fluororesin in its structure, such as TFE).
【0025】本発明に係るガス拡散体1は、上記炭素繊
維織物2を用いるため、発電反応による生成水の制御性
に優れる。Since the gas diffuser 1 according to the present invention uses the carbon fiber woven fabric 2 described above, it has excellent controllability of water produced by the power generation reaction.
【0026】炭素繊維織物2の少なくともその片側表面
にカーボン層3を設けることにより、ガス拡散体1の表
面は平滑となり、電気的接触を確保しやすくなるという
効果を有する。また、膜−電極接合体4を作成する際
に、ガス拡散体1が固体高分子電解質膜5に突き刺さり
短絡を生じるのを防ぐという効果も有する。By providing the carbon layer 3 on at least one surface of the carbon fiber woven fabric 2, the surface of the gas diffuser 1 becomes smooth, and electrical contact can be easily secured. It also has an effect of preventing the gas diffuser 1 from sticking into the solid polymer electrolyte membrane 5 to cause a short circuit when the membrane-electrode assembly 4 is formed.
【0027】本発明に係る膜−電極接合体4は、両ガス
拡散体6、6のうち少なくとも片側に上記ガス拡散体1
を用いる。また、上記ガス拡散体1を用いた側をカソー
ド側とすることが好ましい。触媒層6は、固体高分子電
解質と触媒担持カーボンを含む層からなる。触媒には白
金を用いることが好ましい。アノード側に一酸化炭素を
含む改質ガスが供給される場合、白金およびルテニウム
をアノード側の触媒として用いることが好ましい。固体
高分子電解質5は、プロトン伝導性、耐酸化性、耐熱性
が高い、パーフルオロスルホン酸系の高分子を材料とし
たものが好ましい。The membrane-electrode assembly 4 according to the present invention has the above-mentioned gas diffusion body 1 on at least one side of both gas diffusion bodies 6, 6.
To use. Further, it is preferable that the side on which the gas diffuser 1 is used is the cathode side. The catalyst layer 6 is composed of a layer containing a solid polymer electrolyte and catalyst-supporting carbon. It is preferable to use platinum as the catalyst. When the reformed gas containing carbon monoxide is supplied to the anode side, it is preferable to use platinum and ruthenium as the catalyst on the anode side. The solid polymer electrolyte 5 is preferably made of a perfluorosulfonic acid-based polymer having high proton conductivity, oxidation resistance and heat resistance.
【0028】本発明に係る膜−電極接合体4は、少なく
ともカソード側に、水の制御性に優れた上記ガス拡散体
1を電極材料として用いるため、発電反応で生成する水
による水詰まりが起こりにくく、また、固体高分子電解
質膜5の乾燥によるプロトン伝導性低下が起こりにくい
ため、非常に高い電池特性を示す。In the membrane-electrode assembly 4 according to the present invention, since at least the cathode side uses the above gas diffuser 1 having excellent water controllability as an electrode material, water clogging due to water generated in the power generation reaction occurs. Since the solid polymer electrolyte membrane 5 is less likely to be deteriorated and the proton conductivity is less likely to decrease due to the drying of the solid polymer electrolyte membrane 5, extremely high battery characteristics are exhibited.
【0029】本発明に係る固体高分子型燃料電池は、図
1に示す膜−電極接合体4の両側にガスケットを介して
セパレータで挟んだものを複数枚重ね合わせたものであ
る。非常に高い電池特性を示す上記膜−電極接合体4を
用いるため、本発明で提案する燃料電池は非常に高い性
能を示す。The polymer electrolyte fuel cell according to the present invention is a stack of a plurality of membrane-electrode assemblies 4 shown in FIG. 1 sandwiched by separators with gaskets on both sides. Since the above-mentioned membrane-electrode assembly 4 exhibiting extremely high cell characteristics is used, the fuel cell proposed by the present invention exhibits extremely high performance.
【0030】[0030]
【実施例】次に本発明の一実施例を上記図面を参照しな
がら説明する。An embodiment of the present invention will be described below with reference to the drawings.
【0031】(実施例1)アクリル耐炎化繊維の紡績糸
(旭化成株式会社製”ラスタン”、1/34Nm)を用
いて、目付が140g/m2の平織りの耐炎糸織物を製
織した。この耐炎糸織物を不活性雰囲気中で最高温度6
50℃、1950℃の2回に分けて炭化させて炭素繊維
織物を得た。(Example 1) A plain weave flame-resistant yarn woven fabric having a basis weight of 140 g / m 2 was woven using spun yarn of acrylic flame-resistant fiber ("Lastane" manufactured by Asahi Kasei Corporation, 1/34 Nm). The maximum temperature of this flame resistant yarn fabric is 6 in an inert atmosphere.
The carbon fiber woven fabric was obtained by carbonizing in two steps of 50 ° C and 1950 ° C.
【0032】得られた炭素繊維織物の気体透過抵抗、厚
さ、目付、密度、織りの隙間の数(隙間数)、織りの隙
間の1個あたりの面積(隙間面積)を測定した。また、
炭素繊維織物を用いて固体高分子型燃料電池を作成、
1.0A/cm2の電流を流したときの電圧を測定し、
その値を燃料電池としての性能を表す指標とした。測定
結果を後述の表1に示す。The gas permeation resistance, thickness, basis weight, density, number of crevices in the weave (number of crevices), and the area per crevice in the weave (gap area) were measured. Also,
Create a polymer electrolyte fuel cell using carbon fiber fabric,
Measure the voltage when applying a current of 1.0 A / cm 2 ,
The value was used as an index showing the performance of the fuel cell. The measurement results are shown in Table 1 below.
【0033】なお、気体透過抵抗については、炭素繊維
織物の厚さ方向に14cm3/cm2/secの空気を透
過させたときの差圧を測定し、その値を気体透過抵抗と
した。厚さについては、面圧で1.0MPa加圧したと
きの厚さを測定した。密度は、目付と、面圧で1.0M
Pa加圧したときの厚さから算出した。炭素繊維織物の
織りの隙間の数(隙間数)、織りの隙間の1個あたりの
面積(隙間面積)は、炭素繊維織物の裏面から透過光を
当て、表面を顕微鏡で20倍に拡大して撮った写真から
測定した。Regarding the gas permeation resistance, the differential pressure when air of 14 cm 3 / cm 2 / sec was permeated in the thickness direction of the carbon fiber woven fabric was measured, and the value was taken as the gas permeation resistance. Regarding the thickness, the thickness was measured when the surface pressure was 1.0 MPa. Density is 1.0M in basis weight and surface pressure
It was calculated from the thickness when Pa was applied. The number of crevices in the weave of the carbon fiber woven fabric (the number of crevices) and the area per crevice in the weave (the crevice area) were measured by applying transmitted light from the back surface of the carbon fiber woven fabric and magnifying the surface 20 times with a microscope. Measured from the photograph taken.
【0034】炭素繊維織物を用いて作成した固体高分子
型燃料電池の、1.0A/cm2の電流を流したときの
電圧の測定方法を以下に示す。The method for measuring the voltage of a polymer electrolyte fuel cell prepared using a carbon fiber woven fabric when a current of 1.0 A / cm 2 is passed is shown below.
【0035】(燃料電池の電圧測定方法)炭素繊維織物
2に、厚さ200μmのポリエステルフィルムを用いて
作成したスペーサーと、厚みが1mmのステンレス製の
プレートを用いてカーボン塗液を塗布した。塗布したカ
ーボン塗液は、固形分がアセチレンブラック(電気化学
工業社製 デンカブラック)、PTFE(ダイキン工業
社製 ポリフロンPTFEディスパージョンD−1を使
用)、界面活性剤(ナカライテスク社製 TRITON
X−114)からなり、その割合が4:1:8となる
ようにし、更に精製水を加え、固形分が全体の20.0
wt%となるように調整した。カーボン層3を設けた炭
素繊維織物を、380℃のオーブンで10分間脱界面活
性剤処理した後、温度が200℃、面圧が3MPaのバ
ッチプレスで5分間ホットプレスすることにより、それ
ぞれガス拡散体1を得た。(Method for Measuring Voltage of Fuel Cell) Carbon fiber woven fabric 2 was coated with a carbon coating liquid using a spacer made of a polyester film having a thickness of 200 μm and a stainless steel plate having a thickness of 1 mm. The applied carbon coating liquid has a solid content of acetylene black (Denka Black manufactured by Denki Kagaku Kogyo KK), PTFE (using Polyflon PTFE Dispersion D-1 manufactured by Daikin Kogyo KK), and a surfactant (TRITON manufactured by Nacalai Tesque KK).
X-114), the ratio of which is 4: 1: 8, purified water is further added, and the solid content is 20.0% of the whole.
It was adjusted to be wt%. The carbon fiber woven fabric provided with the carbon layer 3 is subjected to a desurfactant treatment in an oven at 380 ° C. for 10 minutes, and then hot-pressed for 5 minutes by a batch press at a temperature of 200 ° C. and a surface pressure of 3 MPa to perform gas diffusion. I got body 1.
【0036】白金担持炭素(田中貴金属製 白金担持量
50重量%)1.00g、精製水1.00g、Nafi
on溶液(Aldrich社製 Nafion 5.0
重量%)8.00g、イソプロピルアルコール(ナカラ
イテスク社製)18.00gを順に加えることにより、
触媒塗液を作成した。Platinum-supporting carbon (Tanaka Kikinzoku Co., Ltd., platinum content 50% by weight) 1.00 g, purified water 1.00 g, Nafi
on solution (Nafion 5.0 manufactured by Aldrich)
%) And isopropyl alcohol (manufactured by Nacalai Tesque, Inc.) 18.00 g in order,
A catalyst coating liquid was prepared.
【0037】PTFEシート(ニチアス社製 ナフロン
テープ TOMBO9001)上に、上記触媒塗液を5
cm2 の正方形にスプレーし、乾燥させることにより、
白金量が0.5mg/cm2 である触媒層付きPTFE
シートを得た。5cm×5cmに切り出した固体高分子
電解質膜5(DuPont社製 Nafion112)
を、上記触媒層付きPTFEシートで挟み、130℃、
5MPaで5分間バッチプレスすることにより固体高分
子電解質膜5に触媒層6を転写した。プレス後、PTF
Eシートを剥がし、触媒層付き固体高分子電解質膜を得
た。On a PTFE sheet (Naflon tape TOMBO9001 manufactured by Nichias), the above catalyst coating solution was applied in an amount of 5
By spraying on a square of cm 2 and drying,
PTFE with catalyst layer having platinum content of 0.5 mg / cm 2.
Got the sheet. Solid polymer electrolyte membrane 5 cut out into 5 cm × 5 cm (Dafont Nafion 112)
Sandwiched between the above PTFE sheets with a catalyst layer,
The catalyst layer 6 was transferred to the solid polymer electrolyte membrane 5 by batch pressing at 5 MPa for 5 minutes. After pressing, PTF
The E sheet was peeled off to obtain a solid polymer electrolyte membrane with a catalyst layer.
【0038】ガス拡散体1から、5cm2 の正方形のサ
イズのものをそれぞれ2枚ずつ切り出した。切り出した
ガス拡散体1で、上記触媒層付き固体高分子電解質膜を
挟み、130℃、2MPaで5分間バッチプレスするこ
とにより、それぞれ膜−電極接合体4を得た。なお、ガ
ス拡散体1は、カーボン層3を有する面を触媒層6側と
接するように配置した。Two pieces each having a square size of 5 cm 2 were cut out from the gas diffuser 1. The above-mentioned solid polymer electrolyte membrane with a catalyst layer was sandwiched between the cut gas diffusers 1 and batch-pressed at 130 ° C. and 2 MPa for 5 minutes to obtain membrane-electrode assemblies 4. The gas diffuser 1 was arranged so that the surface having the carbon layer 3 was in contact with the catalyst layer 6 side.
【0039】得られた膜−電極接合体4を燃料電池評価
用単セルに組み込み、常圧の水素および空気を供給し、
運転温度は70℃とした。水素および空気は、それぞれ
80℃および60℃に設定した加湿ポットにより加湿を
行った。また、水素および空気の利用率はそれぞれ70
%および40%とした。上記膜−電極接合体4を用いて
燃料電池の1.0A/cm2 における電圧値を測定し
た。The obtained membrane-electrode assembly 4 was incorporated into a fuel cell evaluation single cell, and hydrogen and air at normal pressure were supplied,
The operating temperature was 70 ° C. Hydrogen and air were humidified by a humidification pot set at 80 ° C and 60 ° C, respectively. The utilization rates of hydrogen and air are 70 each.
% And 40%. The membrane-electrode assembly 4 was used to measure the voltage value of the fuel cell at 1.0 A / cm 2 .
【0040】(実施例2)アクリル耐炎化繊維の紡績糸
(旭化成株式会社製”ラスタン”、1/34Nm)を用
いて、目付が144g/m2の平織りの耐炎糸織物を製
織した。この耐炎糸織物を不活性雰囲気中で最高温度6
50℃、1950℃の2回に分けて炭化させて炭素繊維
織物を得た。Example 2 A plain weave flame-resistant yarn woven fabric having a basis weight of 144 g / m 2 was woven using a spun yarn of acrylic flame-resistant fiber (“Lastane” manufactured by Asahi Kasei Corporation, 1/34 Nm). The maximum temperature of this flame resistant yarn fabric is 6 in an inert atmosphere.
The carbon fiber woven fabric was obtained by carbonizing in two steps of 50 ° C and 1950 ° C.
【0041】実施例1と同様にして、得られた炭素繊維
織物の気体透過抵抗、厚さ、目付、密度、織りの隙間の
数(隙間数)、織りの隙間の1個あたりの面積(隙間面
積)、炭素繊維織物を用いて固体高分子型燃料電池を作
成し1.0A/cm2の電流を流したときの電圧を測定
した。測定結果を後述の表1に示す。In the same manner as in Example 1, gas permeation resistance, thickness, basis weight, density of the obtained carbon fiber woven fabric, number of weave gaps (number of gaps), area per weave gap (gap) Area), a polymer electrolyte fuel cell was prepared using a carbon fiber woven fabric, and the voltage when a current of 1.0 A / cm 2 was passed was measured. The measurement results are shown in Table 1 below.
【0042】(実施例3)アクリル耐炎化繊維の紡績糸
(旭化成株式会社製”ラスタン”、1/34Nm)を用
いて、目付が150g/m2の平織りの耐炎糸織物を製
織した。この耐炎糸織物を不活性雰囲気中で最高温度6
50℃、1950℃の2回に分けて炭化させて炭素繊維
織物を得た。Example 3 A plain weave flame-resistant yarn woven fabric having a basis weight of 150 g / m 2 was woven using a spun yarn of acrylic flame-resistant fiber (“Lastane” manufactured by Asahi Kasei Corporation, 1/34 Nm). The maximum temperature of this flame resistant yarn fabric is 6 in an inert atmosphere.
The carbon fiber woven fabric was obtained by carbonizing in two steps of 50 ° C and 1950 ° C.
【0043】実施例1と同様にして、得られた炭素繊維
織物の気体透過抵抗、厚さ、目付、密度、織りの隙間の
数(隙間数)、織りの隙間の1個あたりの面積(隙間面
積)、炭素繊維織物を用いて固体高分子型燃料電池を作
成し1.0A/cm2の電流を流したときの電圧を測定
した。測定結果を表1に示す。In the same manner as in Example 1, the obtained carbon fiber woven fabric had gas permeation resistance, thickness, basis weight, density, number of weave gaps (number of gaps), and area per weave gap (gap). Area), a polymer electrolyte fuel cell was prepared using a carbon fiber woven fabric, and the voltage when a current of 1.0 A / cm 2 was passed was measured. The measurement results are shown in Table 1.
【0044】(実施例4)アクリル耐炎化繊維の紡績糸
(旭化成株式会社製”ラスタン”、1/34Nm)を用
いて、目付が153g/m2の平織りの耐炎糸織物を製
織した。この耐炎糸織物を不活性雰囲気中で最高温度6
50℃、1950℃の2回に分けて炭化させて炭素繊維
織物を得た。Example 4 A plain weave flame-resistant yarn woven fabric having a basis weight of 153 g / m 2 was woven using spun yarn of acrylic flame-resistant fiber (“Lastane” manufactured by Asahi Kasei Corporation, 1/34 Nm). The maximum temperature of this flame resistant yarn fabric is 6 in an inert atmosphere.
The carbon fiber woven fabric was obtained by carbonizing in two steps of 50 ° C and 1950 ° C.
【0045】実施例1と同様にして、得られた炭素繊維
織物の気体透過抵抗、厚さ、目付、密度、織りの隙間の
数(隙間数)、織りの隙間の1個あたりの面積(隙間面
積)、炭素繊維織物を用いて固体高分子型燃料電池を作
成し1.0A/cm2の電流を流したときの電圧を測定
した。測定結果を表1に示す。In the same manner as in Example 1, gas permeation resistance, thickness, basis weight, density of the obtained carbon fiber woven fabric, number of weave gaps (number of gaps), area per weave gap (gap) Area), a polymer electrolyte fuel cell was prepared using a carbon fiber woven fabric, and the voltage when a current of 1.0 A / cm 2 was passed was measured. The measurement results are shown in Table 1.
【0046】(比較例1)アクリル耐炎化繊維の紡績糸
(旭化成株式会社製”ラスタン”、1/34Nm)を用
いて、目付が104g/m2の平織りの耐炎糸織物を製
織した。この耐炎糸織物を不活性雰囲気中で最高温度6
50℃、1950℃の2回に分けて炭化させて炭素繊維
織物を得た。Comparative Example 1 A plain weave flame-resistant yarn woven fabric having a basis weight of 104 g / m 2 was woven using a spun yarn of acrylic flame-resistant fiber (“Lastane”, 1/34 Nm, manufactured by Asahi Kasei Corporation). The maximum temperature of this flame resistant yarn fabric is 6 in an inert atmosphere.
The carbon fiber woven fabric was obtained by carbonizing in two steps of 50 ° C and 1950 ° C.
【0047】実施例1と同様にして、得られた炭素繊維
織物の気体透過抵抗、厚さ、目付、密度、織りの隙間の
数(隙間数)、織りの隙間の1個あたりの面積(隙間面
積)、炭素繊維織物を用いて固体高分子型燃料電池を作
成し1.0A/cm2の電流を流したときの電圧を測定
した。測定結果を表1に示す。In the same manner as in Example 1, the obtained carbon fiber woven fabric had gas permeation resistance, thickness, basis weight, density, number of weave gaps (number of gaps), and area per weave gap (gap). Area), a polymer electrolyte fuel cell was prepared using a carbon fiber woven fabric, and the voltage when a current of 1.0 A / cm 2 was passed was measured. The measurement results are shown in Table 1.
【0048】(比較例2)アクリル耐炎化繊維の紡績糸
(旭化成株式会社製”ラスタン”、1/34Nm)を用
いて、目付が157g/m2の平織りの耐炎糸織物を製
織した。この耐炎糸織物を不活性雰囲気中で最高温度6
50℃、1950℃の2回に分けて炭化させて炭素繊維
織物を得た。Comparative Example 2 A plain weave flame resistant yarn woven fabric having a basis weight of 157 g / m 2 was woven using a spun yarn of acrylic flame resistant fiber (“Lastane” manufactured by Asahi Kasei Corporation, 1/34 Nm). The maximum temperature of this flame resistant yarn fabric is 6 in an inert atmosphere.
The carbon fiber woven fabric was obtained by carbonizing in two steps of 50 ° C and 1950 ° C.
【0049】実施例1と同様にして、得られた炭素繊維
織物の気体透過抵抗、厚さ、目付、密度、織りの隙間の
数(隙間数)、織りの隙間の1個あたりの面積(隙間面
積)、炭素繊維織物を用いて固体高分子型燃料電池を作
成し1.0A/cm2の電流を流したときの電圧を測定
した。測定結果を表1に示す。In the same manner as in Example 1, gas permeation resistance, thickness, basis weight, density of the obtained carbon fiber woven fabric, number of weave gaps (number of gaps), area per weave gap (gap) Area), a polymer electrolyte fuel cell was prepared using a carbon fiber woven fabric, and the voltage when a current of 1.0 A / cm 2 was passed was measured. The measurement results are shown in Table 1.
【0050】(比較例3)炭素繊維紡績糸織物 Car
bon“A”Cloth Plain Weave(E
−TEK製)を電極用炭素繊維織物として用いた。Comparative Example 3 Carbon Fiber Spun Yarn Fabric Car
Bon “A” Cloth Plain Weave (E
-TEK) was used as a carbon fiber woven fabric for electrodes.
【0051】実施例1と同様にして、得られた炭素繊維
織物の気体透過抵抗、厚さ、目付、密度、織りの隙間の
数(隙間数)、織りの隙間の1個あたりの面積(隙間面
積)、炭素繊維織物を用いて固体高分子型燃料電池を作
成し1.0A/cm2の電流を流したときの電圧を測定
した。測定結果を表1に示す。In the same manner as in Example 1, gas permeation resistance, thickness, basis weight, density of the obtained carbon fiber woven fabric, number of weave gaps (number of gaps), area per weave gap (gap) Area), a polymer electrolyte fuel cell was prepared using a carbon fiber woven fabric, and the voltage when a current of 1.0 A / cm 2 was passed was measured. The measurement results are shown in Table 1.
【0052】(比較例4)炭素繊維紡績糸織物 Avc
arb 1071HCB Fabric(TEXTRO
N SystemsCorporation製)を電極
用炭素繊維織物として用いた。(Comparative Example 4) Carbon fiber spun yarn woven fabric Avc
arb 1071HCB Fabric (TEXTRO
N Systems Corporation) was used as a carbon fiber woven fabric for electrodes.
【0053】実施例1と同様にして、得られた炭素繊維
織物の気体透過抵抗、厚さ、目付、密度、織りの隙間の
数(隙間数)、織りの隙間の1個あたりの面積(隙間面
積)、炭素繊維織物を用いて固体高分子型燃料電池を作
成し1.0A/cm2の電流を流したときの電圧を測定
した。測定結果を表1に示す。In the same manner as in Example 1, the obtained carbon fiber woven fabric had gas permeation resistance, thickness, basis weight, density, number of weave gaps (number of gaps), and area of each weave gap (gap). Area), a polymer electrolyte fuel cell was prepared using a carbon fiber woven fabric, and the voltage when a current of 1.0 A / cm 2 was passed was measured. The measurement results are shown in Table 1.
【0054】(比較例5)炭素繊維フィラメント織物
トレカクロス(東レ(株)製)”CO6349B”を不
活性雰囲気下で1400℃に加熱して、サイジング材を
除去し炭素繊維織物を得た。Comparative Example 5 Carbon fiber filament woven fabric
Torayca cloth (manufactured by Toray Industries, Inc.) “CO6349B” was heated to 1400 ° C. in an inert atmosphere to remove the sizing material and obtain a carbon fiber woven fabric.
【0055】実施例1と同様にして、得られた炭素繊維
織物の気体透過抵抗、厚さ、目付、密度、織りの隙間の
数(隙間数)、織りの隙間の1個あたりの面積(隙間面
積)、炭素繊維織物を用いて固体高分子型燃料電池を作
成し1.0A/cm2の電流を流したときの電圧を測定
した。測定結果を表1に示す。In the same manner as in Example 1, the obtained carbon fiber woven fabric had gas permeation resistance, thickness, basis weight, density, number of weave gaps (number of gaps), and area per weave gap (gap). Area), a polymer electrolyte fuel cell was prepared using a carbon fiber woven fabric, and the voltage when a current of 1.0 A / cm 2 was passed was measured. The measurement results are shown in Table 1.
【0056】[0056]
【表1】 [Table 1]
【0057】表1に示すとおり、実施例1〜4の炭素繊
維織物は発電反応による生成水の制御性に優れているた
め、これらの炭素繊維織物を用いた燃料電池は高い性能
を示した。これに対し、比較例1の炭素繊維織物は気体
透過抵抗が小さく、比較例2、3および5の織物は気体
透過抵抗が大きく、比較例4の織物はその厚さが大きい
ため、これらの炭素繊維織物を用いた燃料電池は十分な
性能を示さなかった。As shown in Table 1, since the carbon fiber woven fabrics of Examples 1 to 4 are excellent in the controllability of the water produced by the power generation reaction, the fuel cells using these carbon fiber woven fabrics showed high performance. On the other hand, the carbon fiber woven fabric of Comparative Example 1 has a small gas permeation resistance, the woven fabrics of Comparative Examples 2, 3 and 5 have a large gas permeation resistance, and the woven fabric of Comparative Example 4 has a large thickness. The fuel cell using the fiber fabric did not show sufficient performance.
【0058】したがって、厚さが薄く、発電反応による
生成水の制御性に優れた電極用炭素繊維織物を提供する
という本発明の目的は、炭素繊維からなる織物であっ
て、14cm3/cm2/secの空気を厚さ方向に透過
させたときの差圧が0.2mmAqより大きく1.6m
mAq未満、かつ、その厚さが150μm未満であるこ
とを特徴とする電極用炭素繊維織物により達成される。Therefore, an object of the present invention to provide a carbon fiber woven fabric for an electrode, which is thin and has excellent controllability of water produced by a power generation reaction, is a woven fabric made of carbon fiber, which has a density of 14 cm 3 / cm 2. / Sec air permeation in the thickness direction, the differential pressure is greater than 0.2 mmAq and 1.6 m
It is achieved by a carbon fiber woven fabric for electrodes, which is less than mAq and has a thickness of less than 150 μm.
【0059】[0059]
【発明の効果】本発明で提供する炭素繊維織物は、厚み
が薄いため、反応で生成した水を系外に排出するために
必要な厚み方向への水の移送距離が小さくなり、効率良
く水がガス拡散体表面へと運ばれる。また、本発明で提
案する炭素繊維織物は適切な気体透過抵性を有するた
め、発電反応による生成水のうち、ガス拡散体内部での
水詰まりを引き起こす余分な水を蒸発させることができ
る。Since the carbon fiber woven fabric provided by the present invention has a small thickness, the transport distance of water in the thickness direction required for discharging the water generated by the reaction to the outside of the system becomes small, and the water is efficiently transferred. Are transported to the surface of the gas diffuser. Further, since the carbon fiber woven fabric proposed in the present invention has an appropriate gas permeation resistance, it is possible to evaporate excess water, which causes water clogging inside the gas diffuser, of the water generated by the power generation reaction.
【0060】したがって、本発明によれば、厚さが薄
く、発電反応による生成水の制御性に優れた電極用炭素
繊維織物、ガス拡散体、膜−電極接合体および燃料電池
が得られる。Therefore, according to the present invention, a carbon fiber woven fabric for electrodes, a gas diffuser, a membrane-electrode assembly, and a fuel cell which are thin and have excellent controllability of water generated by a power generation reaction can be obtained.
【図1】本発明で提案する膜−電極接合体の部分断面図
である。FIG. 1 is a partial cross-sectional view of a membrane-electrode assembly proposed by the present invention.
1:ガス拡散体 2:炭素繊維織物 3:カーボン層 4:膜−電極接合体 5:固体高分子電解質膜 6:触媒層 1: Gas diffuser 2: Carbon fiber fabric 3: Carbon layer 4: Membrane-electrode assembly 5: Solid polymer electrolyte membrane 6: Catalyst layer
───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H018 AA06 DD06 EE05 EE18 HH03 HH04 5H026 AA06 CX03 CX05 HH03 HH04 ─────────────────────────────────────────────────── ─── Continued front page F term (reference) 5H018 AA06 DD06 EE05 EE18 HH03 HH04 5H026 AA06 CX03 CX05 HH03 HH04
Claims (8)
織物であって、14cm3/cm2/secの空気を厚さ
方向に透過させたときの差圧が0.2mmAqを超え
1.6mmAq未満で、かつ、その厚さが150μm未
満であることを特徴とする電極用炭素繊維織物。1. A carbon fiber woven fabric used as an electrode material for a fuel cell, which has a differential pressure of more than 0.2 mmAq and 1.6 mmAq when 14 cm 3 / cm 2 / sec of air permeates in the thickness direction. And a thickness of less than 150 μm, a carbon fiber woven fabric for electrodes.
であることを特徴とする請求項1に記載の電極用炭素繊
維織物。2. A basis weight of the electrode for carbon fiber woven fabric according to claim 1, characterized in that less than 99 g / m 2 exceed 72 g / m 2.
ることを特徴とする請求項1または2に記載の電極用炭
素繊維織物。3. The carbon fiber woven fabric for an electrode according to claim 1, which has a density of 0.50 to 0.80 g / cm 3 .
よび緯糸で構成される隙間の数が400〜700個/c
m2以下であることを特徴とする請求項1〜3のいずれ
かに記載の電極用炭素繊維織物。4. The number of gaps formed by the warp and weft of the woven fabric existing in the carbon fiber woven fabric is 400 to 700 / c.
electrodes for carbon fiber woven fabric according to any one of claims 1 to 3, characterized in that m 2 or less.
よび緯糸で構成される隙間の1個あたりの面積が0.0
1〜0.50mm2であることを特徴とする請求項1〜
4のいずれかに記載の電極用炭素繊維織物。5. The area of each of the gaps formed by the warp and the weft of the woven fabric existing in the carbon fiber woven fabric is 0.0.
It is 1-0.50 mm < 2 >, It is characterized by the above-mentioned.
4. The carbon fiber woven fabric for an electrode according to any one of 4 above.
素繊維織物の少なくとも片側の表面に、カーボンブラッ
クおよびフッ素樹脂を含むカーボン層を有することを特
徴とするガス拡散体。6. A gas diffuser having a carbon layer containing carbon black and a fluororesin on at least one surface of the carbon fiber woven fabric for an electrode according to claim 1.
素を含む触媒層を有し、さらに該両触媒層表面に接して
ガス拡散体を有する膜−電極接合体であって、該ガス拡
散体の少なくとも片方に、請求項6に記載のガス拡散体
が用いられていることを特徴とする膜−電極接合体。7. A membrane-electrode assembly having a catalyst layer containing catalyst-carrying carbon on both surfaces of a solid polymer electrolyte membrane, and further comprising a gas diffuser in contact with the surfaces of both catalyst layers. A membrane-electrode assembly, wherein the gas diffuser according to claim 6 is used in at least one of the diffusers.
れていることを特徴とする燃料電池。8. A fuel cell comprising the membrane-electrode assembly according to claim 7.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002088349A JP2003288906A (en) | 2002-03-27 | 2002-03-27 | Carbon fiber cloth for electrode, gas diffusion body, membrane-electrode joint body, and fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002088349A JP2003288906A (en) | 2002-03-27 | 2002-03-27 | Carbon fiber cloth for electrode, gas diffusion body, membrane-electrode joint body, and fuel cell |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003288906A true JP2003288906A (en) | 2003-10-10 |
Family
ID=29234236
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002088349A Pending JP2003288906A (en) | 2002-03-27 | 2002-03-27 | Carbon fiber cloth for electrode, gas diffusion body, membrane-electrode joint body, and fuel cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003288906A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007118281A1 (en) * | 2006-04-18 | 2007-10-25 | Commonwealth Scientific And Industrial Research Organisation | Flexible energy storage devices |
US8171711B2 (en) | 2005-02-22 | 2012-05-08 | Kureha Corporation | Hybrid carbon fiber spun yarn and hybrid carbon fiber spun yarn fabric using the same |
WO2014126002A1 (en) | 2013-02-13 | 2014-08-21 | 東レ株式会社 | Fuel-cell gas dispersion layer, and method for producing same |
-
2002
- 2002-03-27 JP JP2002088349A patent/JP2003288906A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8171711B2 (en) | 2005-02-22 | 2012-05-08 | Kureha Corporation | Hybrid carbon fiber spun yarn and hybrid carbon fiber spun yarn fabric using the same |
WO2007118281A1 (en) * | 2006-04-18 | 2007-10-25 | Commonwealth Scientific And Industrial Research Organisation | Flexible energy storage devices |
US8192863B2 (en) | 2006-04-18 | 2012-06-05 | Commonwealth Scientific And Industrial Research Organisation | Flexible energy storage devices |
WO2014126002A1 (en) | 2013-02-13 | 2014-08-21 | 東レ株式会社 | Fuel-cell gas dispersion layer, and method for producing same |
KR20150118087A (en) | 2013-02-13 | 2015-10-21 | 도레이 카부시키가이샤 | Fuel-cell gas dispersion layer, and method for producing same |
US10249886B2 (en) | 2013-02-13 | 2019-04-02 | Toray Industries, Inc. | Fuel-cell gas diffusion layer, and method of producing same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5182338B2 (en) | Membrane-electrode assembly for fuel cell and fuel cell using the same | |
KR102543281B1 (en) | water electrolyzer | |
JP5066998B2 (en) | Membrane electrode assembly for polymer electrolyte fuel cells | |
US20060204833A1 (en) | Humidity adjusting film | |
US20120141914A1 (en) | Gas Diffusion Layer Member For Solid Polymer Fuel Cells, and Solid Polymer Fuel Cell | |
US20200048782A1 (en) | Water electrolyzers | |
KR20190129964A (en) | Water electrolysis device | |
JP2008176990A (en) | Membrane electrode assembly for fuel cell, and fuel cell using it | |
JP6809897B2 (en) | Membrane electrode assembly and polymer electrolyte fuel cell | |
JP4901748B2 (en) | Gas diffusion media with microporous bilayer | |
JP2024149802A (en) | Membrane electrode assembly and fuel cell | |
JP2007141588A (en) | Membrane-electrode assembly for fuel cell, and polymer electrolyte fuel cell using it | |
JP2004296176A (en) | Polymer electrolyte fuel cell | |
WO2006043394A1 (en) | Membrane electrode assembly, method for producing same and polymer electrolyte fuel cell | |
JP4177697B2 (en) | Polymer membrane electrode assembly and polymer electrolyte fuel cell | |
US12142768B2 (en) | Method for producing gas diffusion electrode substrate | |
WO2002091503A1 (en) | Electrode for fuel cell and method of manufacturing the electrode | |
EP1298744A1 (en) | Fuel cell | |
JP2003288906A (en) | Carbon fiber cloth for electrode, gas diffusion body, membrane-electrode joint body, and fuel cell | |
JP3712959B2 (en) | Fuel cell electrode and method of manufacturing the same | |
JP2006085984A (en) | Mea for fuel cell and fuel cell using this | |
JP5676615B2 (en) | Improved catalyst coated membrane with composite, thin film, and thin cathode for direct methanol fuel cells | |
JP5233183B2 (en) | Fuel cell and fuel cell system. | |
JP2006216385A (en) | Electrode catalyst layer for fuel cell and fuel cell using it | |
JP2007026783A (en) | Solid polymer fuel cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050210 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080331 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081007 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20090224 |