JP2004117625A - Phase difference film, polarizing plate, optical compensating film, and liquid crystal display device - Google Patents
Phase difference film, polarizing plate, optical compensating film, and liquid crystal display device Download PDFInfo
- Publication number
- JP2004117625A JP2004117625A JP2002278605A JP2002278605A JP2004117625A JP 2004117625 A JP2004117625 A JP 2004117625A JP 2002278605 A JP2002278605 A JP 2002278605A JP 2002278605 A JP2002278605 A JP 2002278605A JP 2004117625 A JP2004117625 A JP 2004117625A
- Authority
- JP
- Japan
- Prior art keywords
- liquid crystal
- film
- retardation film
- polarizing plate
- retardation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004973 liquid crystal related substance Substances 0.000 title claims abstract description 143
- 230000003287 optical effect Effects 0.000 title claims abstract description 36
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 claims abstract description 22
- 238000002835 absorbance Methods 0.000 claims abstract description 19
- 238000010521 absorption reaction Methods 0.000 claims abstract description 7
- 238000001228 spectrum Methods 0.000 claims abstract description 7
- 229920002678 cellulose Polymers 0.000 claims description 50
- 238000006467 substitution reaction Methods 0.000 claims description 39
- 230000008859 change Effects 0.000 claims description 36
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 claims description 20
- 125000001501 propionyl group Chemical group O=C([*])C([H])([H])C([H])([H])[H] 0.000 claims description 19
- 125000002252 acyl group Chemical class 0.000 claims description 8
- 125000004063 butyryl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 claims description 8
- 239000000654 additive Substances 0.000 claims description 7
- 230000000996 additive effect Effects 0.000 claims description 4
- 125000003118 aryl group Chemical group 0.000 claims description 4
- 238000000034 method Methods 0.000 abstract description 24
- 230000008569 process Effects 0.000 abstract description 2
- 150000001875 compounds Chemical class 0.000 description 44
- 210000002858 crystal cell Anatomy 0.000 description 33
- 239000000243 solution Substances 0.000 description 31
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 28
- 238000004519 manufacturing process Methods 0.000 description 22
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 21
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 21
- 239000013557 residual solvent Substances 0.000 description 19
- 239000003960 organic solvent Substances 0.000 description 18
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 17
- 230000001681 protective effect Effects 0.000 description 17
- 229920008347 Cellulose acetate propionate Polymers 0.000 description 16
- 239000002253 acid Substances 0.000 description 16
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 15
- 239000000203 mixture Substances 0.000 description 15
- 229910001220 stainless steel Inorganic materials 0.000 description 15
- 239000010935 stainless steel Substances 0.000 description 15
- 239000000126 substance Substances 0.000 description 14
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 13
- 239000002245 particle Substances 0.000 description 13
- 238000001035 drying Methods 0.000 description 12
- -1 phthalic acid ester Chemical class 0.000 description 12
- PZBLUWVMZMXIKZ-UHFFFAOYSA-N 2-o-(2-ethoxy-2-oxoethyl) 1-o-ethyl benzene-1,2-dicarboxylate Chemical compound CCOC(=O)COC(=O)C1=CC=CC=C1C(=O)OCC PZBLUWVMZMXIKZ-UHFFFAOYSA-N 0.000 description 10
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 10
- 150000001342 alkaline earth metals Chemical class 0.000 description 10
- 239000004014 plasticizer Substances 0.000 description 10
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 9
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 9
- 238000005259 measurement Methods 0.000 description 9
- 239000002904 solvent Substances 0.000 description 8
- 239000006097 ultraviolet radiation absorber Substances 0.000 description 8
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 7
- 229910002012 Aerosil® Inorganic materials 0.000 description 7
- 229920002284 Cellulose triacetate Polymers 0.000 description 7
- 239000005264 High molar mass liquid crystal Substances 0.000 description 7
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 7
- 239000010419 fine particle Substances 0.000 description 7
- 229920006254 polymer film Polymers 0.000 description 7
- 238000002360 preparation method Methods 0.000 description 7
- 238000003756 stirring Methods 0.000 description 7
- XZZNDPSIHUTMOC-UHFFFAOYSA-N triphenyl phosphate Chemical compound C=1C=CC=CC=1OP(OC=1C=CC=CC=1)(=O)OC1=CC=CC=C1 XZZNDPSIHUTMOC-UHFFFAOYSA-N 0.000 description 7
- 239000004372 Polyvinyl alcohol Substances 0.000 description 6
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 6
- 239000002250 absorbent Substances 0.000 description 6
- 230000002745 absorbent Effects 0.000 description 6
- 239000000853 adhesive Substances 0.000 description 6
- 230000001070 adhesive effect Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 229920002451 polyvinyl alcohol Polymers 0.000 description 6
- NLKNQRATVPKPDG-UHFFFAOYSA-M potassium iodide Chemical compound [K+].[I-] NLKNQRATVPKPDG-UHFFFAOYSA-M 0.000 description 6
- 239000011593 sulfur Substances 0.000 description 6
- 229910052717 sulfur Inorganic materials 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 5
- 230000009477 glass transition Effects 0.000 description 5
- 238000010030 laminating Methods 0.000 description 5
- 239000006224 matting agent Substances 0.000 description 5
- 239000005268 rod-like liquid crystal Substances 0.000 description 5
- 239000000377 silicon dioxide Substances 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 4
- 229910019142 PO4 Inorganic materials 0.000 description 4
- 229940081735 acetylcellulose Drugs 0.000 description 4
- 239000003963 antioxidant agent Substances 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 4
- 229920002301 cellulose acetate Polymers 0.000 description 4
- 239000000460 chlorine Substances 0.000 description 4
- 229910052801 chlorine Inorganic materials 0.000 description 4
- UCVPKAZCQPRWAY-UHFFFAOYSA-N dibenzyl benzene-1,2-dicarboxylate Chemical compound C=1C=CC=C(C(=O)OCC=2C=CC=CC=2)C=1C(=O)OCC1=CC=CC=C1 UCVPKAZCQPRWAY-UHFFFAOYSA-N 0.000 description 4
- 125000000524 functional group Chemical group 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 150000007524 organic acids Chemical group 0.000 description 4
- 239000010452 phosphate Substances 0.000 description 4
- 235000012239 silicon dioxide Nutrition 0.000 description 4
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 3
- 229920000742 Cotton Polymers 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- SMEGJBVQLJJKKX-HOTMZDKISA-N [(2R,3S,4S,5R,6R)-5-acetyloxy-3,4,6-trihydroxyoxan-2-yl]methyl acetate Chemical compound CC(=O)OC[C@@H]1[C@H]([C@@H]([C@H]([C@@H](O1)O)OC(=O)C)O)O SMEGJBVQLJJKKX-HOTMZDKISA-N 0.000 description 3
- 230000003078 antioxidant effect Effects 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 239000012965 benzophenone Substances 0.000 description 3
- 238000009835 boiling Methods 0.000 description 3
- OCWYEMOEOGEQAN-UHFFFAOYSA-N bumetrizole Chemical compound CC(C)(C)C1=CC(C)=CC(N2N=C3C=C(Cl)C=CC3=N2)=C1O OCWYEMOEOGEQAN-UHFFFAOYSA-N 0.000 description 3
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 3
- 238000005266 casting Methods 0.000 description 3
- 239000001913 cellulose Substances 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- PUSKHXMZPOMNTQ-UHFFFAOYSA-N ethyl 2,1,3-benzoselenadiazole-5-carboxylate Chemical compound CCOC(=O)C1=CC=C2N=[Se]=NC2=C1 PUSKHXMZPOMNTQ-UHFFFAOYSA-N 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 229910052740 iodine Inorganic materials 0.000 description 3
- 239000011630 iodine Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000012299 nitrogen atmosphere Substances 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 230000003068 static effect Effects 0.000 description 3
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 2
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 2
- UHFFVFAKEGKNAQ-UHFFFAOYSA-N 2-benzyl-2-(dimethylamino)-1-(4-morpholin-4-ylphenyl)butan-1-one Chemical compound C=1C=C(N2CCOCC2)C=CC=1C(=O)C(CC)(N(C)C)CC1=CC=CC=C1 UHFFVFAKEGKNAQ-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- NIQCNGHVCWTJSM-UHFFFAOYSA-N Dimethyl phthalate Chemical compound COC(=O)C1=CC=CC=C1C(=O)OC NIQCNGHVCWTJSM-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- 108010010803 Gelatin Proteins 0.000 description 2
- AEMRFAOFKBGASW-UHFFFAOYSA-M Glycolate Chemical compound OCC([O-])=O AEMRFAOFKBGASW-UHFFFAOYSA-M 0.000 description 2
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- UYXTWWCETRIEDR-UHFFFAOYSA-N Tributyrin Chemical compound CCCC(=O)OCC(OC(=O)CCC)COC(=O)CCC UYXTWWCETRIEDR-UHFFFAOYSA-N 0.000 description 2
- 239000006096 absorbing agent Substances 0.000 description 2
- 238000000862 absorption spectrum Methods 0.000 description 2
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 2
- BJQHLKABXJIVAM-UHFFFAOYSA-N bis(2-ethylhexyl) phthalate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC BJQHLKABXJIVAM-UHFFFAOYSA-N 0.000 description 2
- 239000000378 calcium silicate Substances 0.000 description 2
- 229910052918 calcium silicate Inorganic materials 0.000 description 2
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 2
- 210000004027 cell Anatomy 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000001447 compensatory effect Effects 0.000 description 2
- 229940126214 compound 3 Drugs 0.000 description 2
- 229940125898 compound 5 Drugs 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- DOIRQSBPFJWKBE-UHFFFAOYSA-N dibutyl phthalate Chemical compound CCCCOC(=O)C1=CC=CC=C1C(=O)OCCCC DOIRQSBPFJWKBE-UHFFFAOYSA-N 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- FLKPEMZONWLCSK-UHFFFAOYSA-N diethyl phthalate Chemical compound CCOC(=O)C1=CC=CC=C1C(=O)OCC FLKPEMZONWLCSK-UHFFFAOYSA-N 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 238000012494 forced degradation Methods 0.000 description 2
- 229920000159 gelatin Polymers 0.000 description 2
- 239000008273 gelatin Substances 0.000 description 2
- 235000019322 gelatine Nutrition 0.000 description 2
- 235000011852 gelatine desserts Nutrition 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- KJFMBFZCATUALV-UHFFFAOYSA-N phenolphthalein Chemical compound C1=CC(O)=CC=C1C1(C=2C=CC(O)=CC=2)C2=CC=CC=C2C(=O)O1 KJFMBFZCATUALV-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 238000007127 saponification reaction Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000004448 titration Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- URAYPUMNDPQOKB-UHFFFAOYSA-N triacetin Chemical compound CC(=O)OCC(OC(C)=O)COC(C)=O URAYPUMNDPQOKB-UHFFFAOYSA-N 0.000 description 2
- 229920003169 water-soluble polymer Polymers 0.000 description 2
- WRXCBRHBHGNNQA-UHFFFAOYSA-N (2,4-dichlorobenzoyl) 2,4-dichlorobenzenecarboperoxoate Chemical compound ClC1=CC(Cl)=CC=C1C(=O)OOC(=O)C1=CC=C(Cl)C=C1Cl WRXCBRHBHGNNQA-UHFFFAOYSA-N 0.000 description 1
- BTQUGGRCBVUYCM-UHFFFAOYSA-N (2-butylphenyl) dihydrogen phosphite Chemical compound CCCCC1=CC=CC=C1OP(O)O BTQUGGRCBVUYCM-UHFFFAOYSA-N 0.000 description 1
- SXJSETSRWNDWPP-UHFFFAOYSA-N (2-hydroxy-4-phenylmethoxyphenyl)-phenylmethanone Chemical compound C=1C=C(C(=O)C=2C=CC=CC=2)C(O)=CC=1OCC1=CC=CC=C1 SXJSETSRWNDWPP-UHFFFAOYSA-N 0.000 description 1
- BYEAHWXPCBROCE-UHFFFAOYSA-N 1,1,1,3,3,3-hexafluoropropan-2-ol Chemical compound FC(F)(F)C(O)C(F)(F)F BYEAHWXPCBROCE-UHFFFAOYSA-N 0.000 description 1
- JYEUMXHLPRZUAT-UHFFFAOYSA-N 1,2,3-triazine Chemical compound C1=CN=NN=C1 JYEUMXHLPRZUAT-UHFFFAOYSA-N 0.000 description 1
- VNQNXQYZMPJLQX-UHFFFAOYSA-N 1,3,5-tris[(3,5-ditert-butyl-4-hydroxyphenyl)methyl]-1,3,5-triazinane-2,4,6-trione Chemical compound CC(C)(C)C1=C(O)C(C(C)(C)C)=CC(CN2C(N(CC=3C=C(C(O)=C(C=3)C(C)(C)C)C(C)(C)C)C(=O)N(CC=3C=C(C(O)=C(C=3)C(C)(C)C)C(C)(C)C)C2=O)=O)=C1 VNQNXQYZMPJLQX-UHFFFAOYSA-N 0.000 description 1
- PVDLUGWWIOGCNH-UHFFFAOYSA-N 1,3-difluoro-2-propanol Chemical compound FCC(O)CF PVDLUGWWIOGCNH-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- YUBBHLUEJPLYOZ-UHFFFAOYSA-N 1-phenyl-4-(4-phenylphenyl)benzene phosphoric acid Chemical compound P(=O)(O)(O)O.C1(=CC=CC=C1)C1=CC=C(C=C1)C1=CC=C(C=C1)C1=CC=CC=C1 YUBBHLUEJPLYOZ-UHFFFAOYSA-N 0.000 description 1
- PSQZJKGXDGNDFP-UHFFFAOYSA-N 2,2,3,3,3-pentafluoropropan-1-ol Chemical compound OCC(F)(F)C(F)(F)F PSQZJKGXDGNDFP-UHFFFAOYSA-N 0.000 description 1
- XMNIXWIUMCBBBL-UHFFFAOYSA-N 2-(2-phenylpropan-2-ylperoxy)propan-2-ylbenzene Chemical compound C=1C=CC=CC=1C(C)(C)OOC(C)(C)C1=CC=CC=C1 XMNIXWIUMCBBBL-UHFFFAOYSA-N 0.000 description 1
- YEVQZPWSVWZAOB-UHFFFAOYSA-N 2-(bromomethyl)-1-iodo-4-(trifluoromethyl)benzene Chemical compound FC(F)(F)C1=CC=C(I)C(CBr)=C1 YEVQZPWSVWZAOB-UHFFFAOYSA-N 0.000 description 1
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 1
- QMYCJCOPYOPWTI-UHFFFAOYSA-N 2-[(1-amino-1-imino-2-methylpropan-2-yl)diazenyl]-2-methylpropanimidamide;hydron;chloride Chemical compound Cl.NC(=N)C(C)(C)N=NC(C)(C)C(N)=N QMYCJCOPYOPWTI-UHFFFAOYSA-N 0.000 description 1
- QSRJVOOOWGXUDY-UHFFFAOYSA-N 2-[2-[2-[3-(3-tert-butyl-4-hydroxy-5-methylphenyl)propanoyloxy]ethoxy]ethoxy]ethyl 3-(3-tert-butyl-4-hydroxy-5-methylphenyl)propanoate Chemical compound CC(C)(C)C1=C(O)C(C)=CC(CCC(=O)OCCOCCOCCOC(=O)CCC=2C=C(C(O)=C(C)C=2)C(C)(C)C)=C1 QSRJVOOOWGXUDY-UHFFFAOYSA-N 0.000 description 1
- LIAWCKFOFPPVGF-UHFFFAOYSA-N 2-ethyladamantane Chemical compound C1C(C2)CC3CC1C(CC)C2C3 LIAWCKFOFPPVGF-UHFFFAOYSA-N 0.000 description 1
- WFUGQJXVXHBTEM-UHFFFAOYSA-N 2-hydroperoxy-2-(2-hydroperoxybutan-2-ylperoxy)butane Chemical compound CCC(C)(OO)OOC(C)(CC)OO WFUGQJXVXHBTEM-UHFFFAOYSA-N 0.000 description 1
- YJERZJLSXBRUDQ-UHFFFAOYSA-N 2-o-(3,4-dihydroxybutyl) 1-o-methyl benzene-1,2-dicarboxylate Chemical compound COC(=O)C1=CC=CC=C1C(=O)OCCC(O)CO YJERZJLSXBRUDQ-UHFFFAOYSA-N 0.000 description 1
- FRIBMENBGGCKPD-UHFFFAOYSA-N 3-(2,3-dimethoxyphenyl)prop-2-enal Chemical compound COC1=CC=CC(C=CC=O)=C1OC FRIBMENBGGCKPD-UHFFFAOYSA-N 0.000 description 1
- HCILJBJJZALOAL-UHFFFAOYSA-N 3-(3,5-ditert-butyl-4-hydroxyphenyl)-n'-[3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoyl]propanehydrazide Chemical compound CC(C)(C)C1=C(O)C(C(C)(C)C)=CC(CCC(=O)NNC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)=C1 HCILJBJJZALOAL-UHFFFAOYSA-N 0.000 description 1
- WPMYUUITDBHVQZ-UHFFFAOYSA-M 3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoate Chemical compound CC(C)(C)C1=CC(CCC([O-])=O)=CC(C(C)(C)C)=C1O WPMYUUITDBHVQZ-UHFFFAOYSA-M 0.000 description 1
- QRLSTWVLSWCGBT-UHFFFAOYSA-N 4-((4,6-bis(octylthio)-1,3,5-triazin-2-yl)amino)-2,6-di-tert-butylphenol Chemical compound CCCCCCCCSC1=NC(SCCCCCCCC)=NC(NC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)=N1 QRLSTWVLSWCGBT-UHFFFAOYSA-N 0.000 description 1
- VSAWBBYYMBQKIK-UHFFFAOYSA-N 4-[[3,5-bis[(3,5-ditert-butyl-4-hydroxyphenyl)methyl]-2,4,6-trimethylphenyl]methyl]-2,6-ditert-butylphenol Chemical compound CC1=C(CC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)C(C)=C(CC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)C(C)=C1CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 VSAWBBYYMBQKIK-UHFFFAOYSA-N 0.000 description 1
- ZVVFVKJZNVSANF-UHFFFAOYSA-N 6-[3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoyloxy]hexyl 3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoate Chemical compound CC(C)(C)C1=C(O)C(C(C)(C)C)=CC(CCC(=O)OCCCCCCOC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)=C1 ZVVFVKJZNVSANF-UHFFFAOYSA-N 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 229910002016 Aerosil® 200 Inorganic materials 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- 239000004342 Benzoyl peroxide Substances 0.000 description 1
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 1
- GOJCZVPJCKEBQV-UHFFFAOYSA-N Butyl phthalyl butylglycolate Chemical compound CCCCOC(=O)COC(=O)C1=CC=CC=C1C(=O)OCCCC GOJCZVPJCKEBQV-UHFFFAOYSA-N 0.000 description 1
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 1
- 241000694440 Colpidium aqueous Species 0.000 description 1
- 229920001651 Cyanoacrylate Polymers 0.000 description 1
- 239000004803 Di-2ethylhexylphthalate Substances 0.000 description 1
- MQIUGAXCHLFZKX-UHFFFAOYSA-N Di-n-octyl phthalate Natural products CCCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCCC MQIUGAXCHLFZKX-UHFFFAOYSA-N 0.000 description 1
- VOWAEIGWURALJQ-UHFFFAOYSA-N Dicyclohexyl phthalate Chemical compound C=1C=CC=C(C(=O)OC2CCCCC2)C=1C(=O)OC1CCCCC1 VOWAEIGWURALJQ-UHFFFAOYSA-N 0.000 description 1
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 1
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Natural products OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 1
- 240000000797 Hibiscus cannabinus Species 0.000 description 1
- OKOBUGCCXMIKDM-UHFFFAOYSA-N Irganox 1098 Chemical compound CC(C)(C)C1=C(O)C(C(C)(C)C)=CC(CCC(=O)NCCCCCCNC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)=C1 OKOBUGCCXMIKDM-UHFFFAOYSA-N 0.000 description 1
- MWCLLHOVUTZFKS-UHFFFAOYSA-N Methyl cyanoacrylate Chemical compound COC(=O)C(=C)C#N MWCLLHOVUTZFKS-UHFFFAOYSA-N 0.000 description 1
- WRQNANDWMGAFTP-UHFFFAOYSA-N Methylacetoacetic acid Chemical compound COC(=O)CC(C)=O WRQNANDWMGAFTP-UHFFFAOYSA-N 0.000 description 1
- 239000004988 Nematic liquid crystal Substances 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 229930182556 Polyacetal Natural products 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004962 Polyamide-imide Substances 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004697 Polyetherimide Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229920001131 Pulp (paper) Polymers 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 244000028419 Styrax benzoin Species 0.000 description 1
- 235000000126 Styrax benzoin Nutrition 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 235000008411 Sumatra benzointree Nutrition 0.000 description 1
- YSMRWXYRXBRSND-UHFFFAOYSA-N TOTP Chemical compound CC1=CC=CC=C1OP(=O)(OC=1C(=CC=CC=1)C)OC1=CC=CC=C1C YSMRWXYRXBRSND-UHFFFAOYSA-N 0.000 description 1
- RHQDFWAXVIIEBN-UHFFFAOYSA-N Trifluoroethanol Chemical compound OCC(F)(F)F RHQDFWAXVIIEBN-UHFFFAOYSA-N 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- YKTSYUJCYHOUJP-UHFFFAOYSA-N [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] Chemical compound [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] YKTSYUJCYHOUJP-UHFFFAOYSA-N 0.000 description 1
- 230000032900 absorption of visible light Effects 0.000 description 1
- 150000008062 acetophenones Chemical class 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- ROOXNKNUYICQNP-UHFFFAOYSA-N ammonium peroxydisulfate Substances [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 description 1
- VAZSKTXWXKYQJF-UHFFFAOYSA-N ammonium persulfate Chemical compound [NH4+].[NH4+].[O-]S(=O)OOS([O-])=O VAZSKTXWXKYQJF-UHFFFAOYSA-N 0.000 description 1
- 229910001870 ammonium persulfate Inorganic materials 0.000 description 1
- 229940072049 amyl acetate Drugs 0.000 description 1
- PGMYKACGEOXYJE-UHFFFAOYSA-N anhydrous amyl acetate Natural products CCCCCOC(C)=O PGMYKACGEOXYJE-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 150000008366 benzophenones Chemical class 0.000 description 1
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical compound C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 description 1
- 239000012964 benzotriazole Substances 0.000 description 1
- 150000001565 benzotriazoles Chemical class 0.000 description 1
- 235000019400 benzoyl peroxide Nutrition 0.000 description 1
- HSUIVCLOAAJSRE-UHFFFAOYSA-N bis(2-methoxyethyl) benzene-1,2-dicarboxylate Chemical compound COCCOC(=O)C1=CC=CC=C1C(=O)OCCOC HSUIVCLOAAJSRE-UHFFFAOYSA-N 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- FRCHCYFLGZRELU-UHFFFAOYSA-N butan-2-one;cyclohexanone Chemical compound CCC(C)=O.O=C1CCCCC1 FRCHCYFLGZRELU-UHFFFAOYSA-N 0.000 description 1
- YHASWHZGWUONAO-UHFFFAOYSA-N butanoyl butanoate Chemical compound CCCC(=O)OC(=O)CCC YHASWHZGWUONAO-UHFFFAOYSA-N 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 229940125904 compound 1 Drugs 0.000 description 1
- 229940125782 compound 2 Drugs 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229920006037 cross link polymer Polymers 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- FBSAITBEAPNWJG-UHFFFAOYSA-N dimethyl phthalate Natural products CC(=O)OC1=CC=CC=C1OC(C)=O FBSAITBEAPNWJG-UHFFFAOYSA-N 0.000 description 1
- 229960001826 dimethylphthalate Drugs 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000011978 dissolution method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 125000005313 fatty acid group Chemical class 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- WBJINCZRORDGAQ-UHFFFAOYSA-N formic acid ethyl ester Natural products CCOC=O WBJINCZRORDGAQ-UHFFFAOYSA-N 0.000 description 1
- 239000001087 glyceryl triacetate Substances 0.000 description 1
- 235000013773 glyceryl triacetate Nutrition 0.000 description 1
- 235000019382 gum benzoic Nutrition 0.000 description 1
- MNWFXJYAOYHMED-UHFFFAOYSA-M heptanoate Chemical compound CCCCCCC([O-])=O MNWFXJYAOYHMED-UHFFFAOYSA-M 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 150000002432 hydroperoxides Chemical class 0.000 description 1
- 229920001477 hydrophilic polymer Polymers 0.000 description 1
- 238000002329 infrared spectrum Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 231100000053 low toxicity Toxicity 0.000 description 1
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 description 1
- 239000000391 magnesium silicate Substances 0.000 description 1
- 229910052919 magnesium silicate Inorganic materials 0.000 description 1
- 235000019792 magnesium silicate Nutrition 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000006078 metal deactivator Substances 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- MCSAJNNLRCFZED-UHFFFAOYSA-N nitroethane Chemical compound CC[N+]([O-])=O MCSAJNNLRCFZED-UHFFFAOYSA-N 0.000 description 1
- XNGIFLGASWRNHJ-UHFFFAOYSA-N o-dicarboxybenzene Natural products OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 1
- SSDSCDGVMJFTEQ-UHFFFAOYSA-N octadecyl 3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoate Chemical compound CCCCCCCCCCCCCCCCCCOC(=O)CCC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 SSDSCDGVMJFTEQ-UHFFFAOYSA-N 0.000 description 1
- YAFOVCNAQTZDQB-UHFFFAOYSA-N octyl diphenyl phosphate Chemical compound C=1C=CC=CC=1OP(=O)(OCCCCCCCC)OC1=CC=CC=C1 YAFOVCNAQTZDQB-UHFFFAOYSA-N 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 150000003014 phosphoric acid esters Chemical class 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- XNGIFLGASWRNHJ-UHFFFAOYSA-L phthalate(2-) Chemical compound [O-]C(=O)C1=CC=CC=C1C([O-])=O XNGIFLGASWRNHJ-UHFFFAOYSA-L 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 229920001643 poly(ether ketone) Polymers 0.000 description 1
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 229920001230 polyarylate Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 150000004291 polyenes Chemical class 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 229920001601 polyetherimide Polymers 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920001470 polyketone Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920006380 polyphenylene oxide Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- USHAGKDGDHPEEY-UHFFFAOYSA-L potassium persulfate Chemical compound [K+].[K+].[O-]S(=O)(=O)OOS([O-])(=O)=O USHAGKDGDHPEEY-UHFFFAOYSA-L 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- BWJUFXUULUEGMA-UHFFFAOYSA-N propan-2-yl propan-2-yloxycarbonyloxy carbonate Chemical compound CC(C)OC(=O)OOC(=O)OC(C)C BWJUFXUULUEGMA-UHFFFAOYSA-N 0.000 description 1
- WYVAMUWZEOHJOQ-UHFFFAOYSA-N propionic anhydride Chemical compound CCC(=O)OC(=O)CC WYVAMUWZEOHJOQ-UHFFFAOYSA-N 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 239000007870 radical polymerization initiator Substances 0.000 description 1
- 238000007348 radical reaction Methods 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- YGSDEFSMJLZEOE-UHFFFAOYSA-M salicylate Chemical compound OC1=CC=CC=C1C([O-])=O YGSDEFSMJLZEOE-UHFFFAOYSA-M 0.000 description 1
- 229960001860 salicylate Drugs 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 239000011163 secondary particle Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- BWSZXUOMATYHHI-UHFFFAOYSA-N tert-butyl octaneperoxoate Chemical compound CCCCCCCC(=O)OOC(C)(C)C BWSZXUOMATYHHI-UHFFFAOYSA-N 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 229960002622 triacetin Drugs 0.000 description 1
- STCOOQWBFONSKY-UHFFFAOYSA-N tributyl phosphate Chemical compound CCCCOP(=O)(OCCCC)OCCCC STCOOQWBFONSKY-UHFFFAOYSA-N 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Landscapes
- Polarising Elements (AREA)
- Liquid Crystal (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、位相差フィルム、これを用いた偏光板、光学補償フィルム及び液晶表示装置に関する。
【0002】
【従来の技術】
液晶型表示装置は、低電圧、低消費電力で、IC回路への直結が可能であり、特に薄型化が可能であることから、ワードプロセッサやパーソナルコンピュータ等の表示装置として広く採用されている。この液晶表示装置は、基本的な構成としては、例えば液晶セルの両側に偏光板を設けたものである。
【0003】
このような液晶表示装置においては、コントラスト等の観点から、ツイスト角が90度のツイステッドネマティック(TN)を用いた液晶表示装置からツイスト角が160度以上のスーパーツイステッドネマティック(STN)を用いた液晶表示装置に移行してきている。
【0004】
しかし、STNを用いた液晶表示装置は、液晶の複屈折を利用したものであることから、TNを用いた液晶表示装置におけるノーマリーホワイトでは白だった背景が青色あるいは黄色に着色する問題があり、このため、白黒表示ではコントラスト、視野角が狭く、また、カラー化が困難という問題がある。
【0005】
この問題を解決するため、即ち複屈折分を補償するため、偏光板の下に位相差板を用いる技術が提案された。この技術によれば、前記着色の問題は解決されるものの、視野角についてはほとんど改善されていない。
【0006】
この問題を解決するため、厚さ方向の屈折率が複屈折の光軸に垂直な方向の屈折率よりも大きな複屈折フィルムを作製し、これを位相差板として用いる技術が提案された。さらには、固有複屈折値が正と負のフィルムを各々一枚ずつ、あるいは積層したものを位相差板として用いる技術が提案された。
【0007】
また、特開平7−218724号に示されるように、偏光子の少なくとも一面にある偏光板用保護フィルムのリターデーション値が波長590nmの光で測定した面内のリターデーション値として30〜70nmのトリアセチルセルロースを用いた偏光板が提案された。
【0008】
これら提案の技術によって、視野角によるコントラストの変化が小さくなり、視野角特性が向上した。しかしながら、低電圧、低消費電力、薄型化の上で他の表示装置にはない大きな特徴を有する液晶表示装置における最大の問題としての視野角が狭いという問題の改善にまでは至らず、さらに視野角を広くしたいという要求はますます強まる一方であり、更なる開発が進められている。
【0009】
このような開発の一つとして、TNやSTNタイプとは異なるタイプの液晶が提案されるに至った。即ち、TNやSTNタイプの液晶セルは電圧オフ時に、液晶分子が配向板に平行で、電圧オン時に、液晶分子が配向板に垂直に配向するタイプの液晶であるのに対し、電圧のオフ時に液晶分子が配向板に垂直で、電圧オン時に配向板に平行となるタイプ、例えば、負の誘電異方性のネガ型液晶を用いた、いわゆる、バーティカルアライメント型のものが開発されるに至った(例えば、特許文献1参照。)。このバーティカルアライメント(Vertical Alignment、略してVA、以降VAと表示することがある)型液晶表示装置は、液晶分子が電圧オフ時に配向板に垂直で、電圧オン時に配向板に平行に配向させる、いわゆる垂直配向モードの液晶セルであることから、黒がしっかり黒として表示され、コントラストが高く、TNやSTN型のものに比べて、視野角が比較的広いという特徴を持っている。
【0010】
しかしながら、液晶画面が大きくなるに従って、さらに視野角を広げたいという要望が高まっている。
【0011】
ところで、偏光子を保護する目的で、偏光子の少なくとも1面に保護フィルムを貼り合わせて偏光板を形成することが行われている。この保護フィルムを偏光板用保護フィルムというが、この偏光板用保護フィルムには、従来から、その優れた光学的等方性や透明性からセルローストリアセテートフィルムが使用されている。ところがセルローストリアセテートフィルムでは、厚み方向のリターデーション値を大きくするには上限があり、視野角を大きくすることが難しく、さらに大きな厚み方向のリターデーション値を得るためには、フィルムの厚みを厚くする必要があった。
【0012】
また、目的の面内方向のリターデーション値を得るために延伸を行っていた。このようにして形成された位相差フィルムは偏光板用保護フィルムとして用いることができると提案されている。しかしながら、通常のセルローストリアセテートフィルムよりもアシル基の総置換度が低いセルロースエステルを用いた場合、長期間の使用または環境変動による影響で位相差が大きく変動してしまうことがあり、その改善が求められている。
【0013】
昨今では、液晶表示装置も携帯性が要求されており、小型化、特に薄くすることが求められており、バーティカルアライメント型液晶表示装置の視野角をさらに向上させることが可能で、フィルムの厚さが薄くとも厚さ方向のリターデーション値が大きい偏光板用保護フィルムが求められている。
【0014】
【特許文献1】
特開平2−176625号公報
【0015】
【発明が解決しようとする課題】
本発明の目的は、位相差特性の変化が少ない位相差フィルム及びそれを用いた偏光板、光学補償フィルム、及びこの偏光板を用いた視野角が広く長期間の使用でも優れた視野角を維持できる液晶表示装置を提供することにある。
【0016】
【課題を解決するための手段】
本発明の上記目的は下記構成により達成される。
【0017】
1.張力印加による延伸処理を施した場合の延伸前と延伸後の赤外吸収の差分スペクトルについて、延伸15秒から1時間のカルボニル基の吸光度変化率Aと延伸10分から1時間のカルボニル基の吸光度変化率Bが、
1.2≦A≦2.0
B≧1.1
であることを特徴とする位相差フィルム。
【0018】
2.セルロースエステルを主体とする位相差フィルムであり、アシル基の総置換度が2.55〜2.85であることを特徴とする上記1記載の位相差フィルム。
【0019】
3.アシル基がアセチル基とプロピオニル基またはブチリル基であり、アセチル基の置換度をX、プロピオニル基またはブチリル基の置換度の合計をYとしたとき、
1.75≦X≦2.15
0.60≦Y≦0.80
であることを特徴とする上記1記載の位相差フィルム。
【0020】
4.分子内に芳香族環を3個以上有する添加剤を0.5〜30質量%含有することを特徴とする上記1または2記載の位相差フィルム。
【0021】
5.上記1〜4のいずれか1項に記載の位相差フィルムを用いることを特徴とする偏光板。
【0022】
6.上記1〜4のいずれか1項に記載の位相差フィルムを用いることを特徴とする光学補償フィルム。
【0023】
7.上記5記載の偏光板を用いることを特徴とする液晶表示装置。
以下本発明を詳細に説明する。
【0024】
本発明はリターデーションが安定した位相差フィルム及びその位相差フィルムを用いた偏光板、液晶表示装置及び光学補償フィルムを提供することを目的としている。表示装置の高精細化、高機能化に伴って、表示品質の向上が求められている。例えば、特開2002−14230では各種表示装置に位相差フィルムを適用し、視野角が改善されることを示している。しかしながら、セルロースエステルフィルムを用いた位相差フィルムは長期間安定した位相差特性を維持することが困難であることが分かってきた。
【0025】
さらに、経時で特性が変化するものがある一方で、作製直後の位相差特性は同様であっても、その値が経時でほとんど変化せず、長期間安定した位相差特性を示すものがあることを見出した。
【0026】
作製直後では位相差特性に差のないものが、長期間安定な特性を示すものか、または経時で変化するものかの判断が可能であれば、品質管理や信頼性の向上に大変有効である。
【0027】
本発明者は、鋭意検討を重ねた結果、経時で位相差特性が安定なものと、経時で変化してしまうものが、延伸処理直後のフィルム中でのカルボニル基の配向性の挙動で判断できることを見出した。フィルムの位相差特性は、分子または官能基の配向状態に由来していることが知られている。経時で位相差特性の変化は延伸、磁場、電場、電磁波等により配向させたフィルム中の分子、または官能基が経時によって、より安定な状態へと配向していく、または配向を緩和していくことが原因と推察されるが、この配向状態の経時変化は短時間では極僅かな変位であるため観測は難しい。しかし検討を重ねた結果、配向処理を施した直後の詳細な配向性評価から経時変化を推察することが可能であることが判明した。
【0028】
本発明者はカルボニル基の配向性の挙動に着目した。延伸処理を施した直後のセルロースフィルム分子中のカルボニル基は、延伸処理直後の数分から数十分の間で徐々に配向し、1時間程度で変化が収束することを見い出した。位相差特性に影響を及ぼす他の分子、官能基の配向状態の変化も同様の挙動を示すが、より長期にわたる変化であることが推察できる。よって、延伸処理を施した直後カルボニル基の配向変化が収束するまで多くの時間を要するフィルム程、位相差特性に影響を及ぼす他の分子、官能基の変化が鈍いフィルムであり製造後の長期間位相差特性が安定なフィルムであると考える。
【0029】
このカルボニル基の配向性の挙動観察は、延伸前後の赤外吸収スペクトルの差分スペクトルで行うことができる。本発明者は実験を重ねた結果、張力印加による延伸処理を施した場合の延伸前と後の赤外吸収の差分スペクトルについて、延伸15秒から1時間のカルボニル基の吸光度変化率Aと延伸10分から1時間のカルボニル基の吸光度変化率Bが、
1.2≦A≦2.0
B≧1.1
であるフィルムは位相差特性が安定していることを見い出した。更に、既に延伸、磁場、電場、電磁波等により配向処理をさせたフィルムについても、張力印加による延伸処理を施した場合の延伸前と後の赤外吸収の差分スペクトルについて、延伸15秒から1時間のカルボニル基の吸光度変化率Aと延伸10分から1時間のカルボニル基の吸光度変化率Bが、
1.2≦A≦2.0
B≧1.1
であるフィルムは位相差特性が安定していることを見い出した。このような延伸によって安定な位相差を付与するため、セルロースエステルフィルムのアシル基置換度は2.55〜2.85であることが必要である。2.55未満では経時や環境条件によって位相差が変動しやすくなる。これはセルロースエステルの未置換の水酸基とアルカリ土類金属、残留硫酸量、遊離酸量等との相互作用が関与しているものと思われる。また、アシル基置換度は2.85以下であることが必要であり、これを越えると延伸によって所望の位相差を得ることが困難となる。
【0030】
さらに本発明では、アシル基がアセチル基とプロピオニル基及び/またはブチリル基であり、アセチル基の置換度をX、プロピオニル基及び/またはブチリル基の置換度の合計をYとしたとき、
1.75≦X≦2.15
0.60≦Y≦0.80
であることが好ましく、より位相差が安定した位相差フィルムを得ることができる。
【0031】
さらに好ましくは分子内に芳香族環を3個以上有する添加剤を0.5〜30質量%含有することによって、温湿度変動に対してもさらに変動しにくい位相差フィルムとすることができる。本発明において添加剤とは、可塑剤、紫外線吸収剤、酸化防止剤、マット剤等をいう。
【0032】
また、本発明の位相差フィルムは溶液流延法によって形成されたセルロースエステルフィルムを延伸して作製するが、セルロースエステルを溶解する溶媒を実質的に非塩素系有機溶媒のみを用いたものがより安定な位相差を示した。実質的に非塩素系有機溶媒のみとは、全有機溶媒量に対して塩素系有機溶媒が10質量%以下をいい、好ましくは5質量%以下、特に全く含まないことが最も好ましい。非塩素系有機溶媒としては酢酸メチルが好ましく用いられる。特に、酢酸メチルの残留溶媒量が2〜15質量%のときに、少なくとも一方向に1.01〜2.0倍に延伸することが安定した位相差が得られる点で好ましい。
【0033】
本発明の位相差フィルムは偏光子と貼合することによって安定した位相差特性を有する偏光板を得ることができ、これを用いた表示装置は長期間優れた視野角特性を発揮することができる。
【0034】
一般に、液晶表示装置に用いられる偏光板は、偏光膜及びその両側に配置された2枚の透明保護膜からなる。偏光膜には、ヨウ素系偏光膜、2色性染料を用いる染料系偏光膜やポリエン系偏光膜がある。ヨウ素系偏光膜及び染料系偏光膜は、一般にポリビニルアルコール系フイルムを用いて製造する。そして、偏光板の一方の保護膜を、上記のポリマーフイルムからなる光学補償シート、もしくは、ポリマーフィルムと液晶性化合物を含む光学異方性層とを積層してなる光学補償シートとすることで、本発明の偏光板を作製することができる。偏光膜と光学補償シートの接着は、溶媒が水を主成分とする接着剤を用いることにより製造することが好ましい。また、偏光膜の他方の保護膜として、通常のセルロースアセテートフイルムを積層してもよい。本発明の偏光板において、ポリマーフイルムの遅相軸と偏光膜の透過軸の関係は、適用される液晶表示装置の種類により以下のように配置することが好ましい。本発明の偏光板を、TN、MVA、及びOCBモードの液晶表示装置に用いる場合は、ポリマーフイルムの遅相軸と偏光膜の透過軸を実質的に平行になるように配置し、反射型液晶表示装置に用いる場合は、ポリマーフイルムの遅相軸と偏光膜の透過軸を実質的に45°となるように配置することが好ましい。
【0035】
本発明の光学補償シートまたはそれを用いる偏光板は、透過型液晶表示装置あるいは反射型液晶表示装置に有利に用いられる。透過型液晶表示装置の例としては、TN、MVA、及びOCBモードの液晶表示装置液晶が挙げられる。これらの液晶表示装置は、セル及びその両側に配置された2枚の偏光板からなる。液晶セルは、2枚の電極基板の間に液晶を坦持している。OCBモードの液晶表示装置の場合、本発明の光学補償シートは、ポリマーフィルム上に円盤状化合物、もしくは棒状液晶化合物を含む光学異方性層を有することが好ましい。また、反射型液晶表示装置は、液晶セルを偏光板と反射板により狭持してなる。
【0036】
本発明の光学補償シートを液晶表示装置に用いる場合は、光学補償シートを、液晶セルと一方の偏光板との間に、1枚配置するか、あるいは液晶セルと双方の偏光板との間に2枚配置する。このように、通常の偏光板と液晶セルとの間に、本発明の光学補償シートを挿入して、従来と同様に液晶セルを光学的に補償することができる。本発明の偏光板を液晶表示装置に用いる場合は、液晶表示装置の2枚の偏光板のうちの少なくとも一方の偏光板を、本発明の偏光板とすればよい。本発明の偏光板を用いることで、偏光膜に液晶表示装置の使用環境において存在する水分が偏光膜へと浸透することを防止でき、視野角特性に優れる表示性能を長期にわたり持続することができる。
【0037】
VAモードの液晶セルでは、電圧無印加時に棒状液晶性分子が実質的に垂直に配向している。VAモードの液晶セルには、(1)棒状液晶性分子を電圧無印加時に実質的に垂直に配向させ、電圧印加時に実質的に水平に配向させる狭義のVAモードの液晶セル(特開平2−176625号公報記載)に加えて、(2)視野角拡大のため、VAモードをマルチドメイン化した(MVAモードの)液晶セル(SID97、Digest of tech. Papers(予稿集)28(1997)845記載)、(3)棒状液晶性分子を電圧無印加時に実質的に垂直配向させ、電圧印加時にねじれマルチドメイン配向させるモード(n−ASMモード)の液晶セル(日本液晶討論会の予稿集58〜59(1998)記載)及び(4)SURVAIVALモードの液晶セル(LCDインターナショナル98で発表)が含まれる。
【0038】
OCBモードの液晶セルは、棒状液晶性分子を液晶セルの上部と下部とで実質的に逆の方向に(対称的に)配向させるベンド配向モードの液晶セルを用いた液晶表示装置であり、米国特許4583825号、同5410422号の各明細書に開示されている。棒状液晶性分子が液晶セルの上部と下部とで対称的に配向しているため、ベンド配向モードの液晶セルは、自己光学補償機能を有する。そのため、この液晶モードは、OCB(Optically Compensatory Bend)液晶モードとも呼ばれる。ベンド配向モードの液晶表示装置は、応答速度が速いとの利点がある。TNモードの液晶セルでは、電圧無印加時に棒状液晶性分子が実質的に水平配向し、さらに60〜120°にねじれ配向している。TNモードの液晶セルは、カラーTFT液晶表示装置として最も多く利用されており、多数の文献に記載がある。
【0039】
次に、測定用試料片の作製方法を述べる。
(試料片の作製方法)
フィルム状樹脂の長手方向(x)、幅方向(y)各1cm以上のフィルム片を厚み(z)方向に赤外光が透過し且つ、均一な厚さにスライスする必要がある。その膜厚は0.2〜5μm、好ましくは2〜3μmである。スライスする角度は長手方向(x)、幅方向(y)に平行で誤差は0.1°以内でなければならない。具体的には長手方向(x)、幅方向(y)各1cm以上のフィルム片をシリコンウェハー上に接着し、ダイヤモンドナイフを装着したウルトラミクロトームにより長手方向(x)、幅方向(y)平行に切削し、厚さ2μmの切片を採取する方法を用いた。
【0040】
赤外吸収の差分スペクトルの測定を述べる。
前述のように作製した試料片を、マイクロレオメータ(ポリマーモジュレータ(R)、Manning Applied Technology)に設置し、一定張力を印加しつつ赤外吸収スペクトルを測定する。測定は張力の印加方向に光の振動面が平行な偏向光を偏光子を介して入射し、64回積算を行いIR測定(Magna860型FTIR、Nicolet)し、好ましくは時間測定分解モードでの測定を行う。まず、張力を印加する前の状態のIRスペクトルを測定しこれをバックグラウンド(基準)とし張力印加15秒後、10分後、1時間後の差成分を測定する。カルボニル基(C=O基)の吸光度変化率は次のように求める。張力印加15秒後の差分スペクトルから1580−1530cm−1の平均値と1910−1860cm−1の平均値とを結んだ線をベースラインとして、1710−1780cm−1の間に現れる極大ピーク(数値はマイナスを示す)の吸光度を、張力印加15秒後の吸光度差(t15s)とする。続いて同様の手順で張力印加10分後(t10m)、1時間後の吸光度差(t60m)をそれぞれ測定する。
【0041】
本発明におけるカルボニル基の吸光度変化率の定義を述べる。
延伸15秒から1時間のカルボニル基の吸光度変化率(A)と、延伸10分から1時間のカルボニル基の吸光度変化率(B)は次式で与えられる。
【0042】
A=t60m/t15s
B=t60m/t10m
本発明者らは、従来検討されてきたような面内のリターデーション値Roだけではなく、厚み方向のリターデーション値Rtにも注目し、厚み方向のリターデーションを大きくする方法について検討した結果、本発明に到達した。ここで、面内のリターデーション値Ro(nm)は、Ro=(nx−ny)×d、厚み方向のリターデーション値Rt(nm)は、Rt=〔(nx+ny)/2−nz〕×dで表され、式中、nxはフィルム面内の遅相軸方向の屈折率、nyはフィルム面内の進相軸方向の屈折率、nzはフィルムの厚み方向の屈折率、dはフィルムの厚さ(nm)を表す。
【0043】
本発明の位相差フィルムに用いられるセルロースエステルは、アセチル基の置換度が1.75〜2.15で、プロピオニル基及び/またはブチリル基の置換度の合計が0.60〜0.80であるセルロースエステルであることが好ましく、さらに、アセチル基の置換度が1.75〜1.95、プロピオニル基及び/またはブチリル基の置換度の合計が0.61〜0.76であることが好ましい。
【0044】
このようなセルロースエステルはセルロースの水酸基を無水酢酸、無水プロピオン酸及び/または無水酪酸を用いて常法によりアセチル基、プロピオニル基及び/またはブチル基を上記の範囲内に置換することで得られる。このようなセルロースエステルの合成方法は、特に限定はないが、例えば、特開平10−45804号に記載の方法で合成することができる。
【0045】
アセチル基、プロピオニル基及び/またはブチル基の置換度は、ASTM−D817−96により測定することができる。
【0046】
合成したセルロースエステルの洗浄を十分に行うことによってセルロースエステル中のアルカリ土類金属量、残留硫酸量及び遊離酸量を上記の範囲とすることで、寸法変化、機械強度、透明性、耐透湿性、Rt値、Ro値が良好なフィルムを得ることができる。
【0047】
セルロースエステルの極限粘度は、偏光板用保護フィルムとして好ましい機械的強度を得るためには、1.50〜1.75cm3/g好ましく、さらに1.53〜1.63cm3/gの範囲が好ましい。
【0048】
セルロースエステルの水分量は、得られるフィルムの高い透明性を得る点から0.01〜2.0質量%であることが好ましく、さらに0.01〜1.5質量%であることが好ましい。これらの特性値はASTM−D817−96により測定することができる。
【0049】
次に、溶液流延製膜方法によるセルロースエステルフィルムの製造方法について述べる。
【0050】
本発明のセルロースエステルフィルムに使用するセルロースエステルの原料となるセルロースは特に限定はなく綿花リンター、木材パルプ、ケナフ等を用いることができる。これらを混合して使用してもよい。ベルトやドラムからの剥離性がよい綿花リンターから合成されたセルロースエステルを多く使用した方が生産性効率が高く好ましい。綿花リンターから合成されたセルロースエステルの比率は60質量%以上で剥離性の効果が顕著になるため、60質量%以上が好ましく、より好ましくは85質量%以上、さらには、単独で使用することが最も好ましい。本発明に使用するセルロースエステルについては、アセチル基、プロピオニル基及び/またはブチル基の置換度等は前述の通りである。
【0051】
置換度の異なるセルロースエステルを2種以上混合して用いることもできる。
先ず、セルロースエステルを溶解し得る有機溶媒に溶解してドープを形成する。セルロースエステルのフレークと有機溶媒を混合し、攪拌しながら溶解し、ドープを形成する。溶解には、常圧で行う方法、主溶媒の沸点以下で行う方法、主溶媒の沸点以上で加圧して行う方法、特開平9−95544号、同9−95557号または同9−95538号に記載のように冷却溶解法で行う方法、特開平11−21379号に記載のように高圧で行う方法等種々の溶解方法がある。溶解後ドープを濾材で濾過し、脱泡してポンプで次工程に送る。ドープ中のセルロースエステルの濃度は10〜35質量%程度が好ましい。
【0052】
セルロースエステルを溶解する有機溶媒としては、酢酸メチル、酢酸エチル、酢酸アミル、ギ酸エチル、アセトン、シクロヘキサノン、アセト酢酸メチル、テトラヒドロフラン、1,3−ジオキソラン、1,4−ジオキサン、2,2,2−トリフルオロエタノール、2,2,3,3−ヘキサフルオロ−1−プロパノール、1,3−ジフルオロ−2−プロパノール、1,1,1,3,3,3−ヘキサフルオロ−2−メチル−2−プロパノール、1,1,1,3,3,3−ヘキサフルオロ−2−プロパノール、2,2,3,3,3−ペンタフルオロ−1−プロパノール、ニトロエタン、塩化メチレン等を挙げることができる。塩化メチレンのような塩素系有機溶媒は、昨今の厳しい環境問題の中では、使用を見合わせた方がよい場合もあり、非塩素系の有機溶媒の方が好ましい。中でも酢酸メチル、アセトンが好ましく使用できる。また、これらの有機溶媒に、メタノール、エタノール、ブタノール等の低級アルコールを併用すると、セルロースエステルの有機溶媒への溶解性が向上したりドープ粘度を低減できるので好ましい。特に沸点が低く、毒性の少ないエタノールが好ましい。
【0053】
ドープ中には、フタル酸エステル、リン酸エステル等の可塑剤、紫外線吸収剤、酸化防止剤、マット剤等の添加剤を加えてもよい。これらの添加剤は、分子内に芳香族環を3個以上有することが好ましく、添加量は0.5〜30質量%が好ましい。
【0054】
本発明において、セルロースエステルフィルム中に可塑剤を含有させることが好ましい。用いることのできる可塑剤としては特に限定しないが、リン酸エステル系では、トリフェニルホスフェート、トリクレジルホスフェート、クレジルジフェニルホスフェート、オクチルジフェニルホスフェート、ジフェニルビフェニルホスフェート、トリオクチルホスフェート、トリブチルホスフェート等、フタル酸エステル系では、ジエチルフタレート、ジメトキシエチルフタレート、ジメチルフタレート、ジオクチルフタレート、ジブチルフタレート、ジ−2−エチルヘキシルフタレート、ジシクロヘキシルフタレート、ジベンジルフタレート等、グリコール酸エステル系では、トリアセチン、トリブチリン、ブチルフタリルブチルグリコレート、エチルフタリルエチルグリコレート、メチルフタリルエチルグリコレート、ブチルフタリルブチルグリコレート等を単独あるいは併用するのが好ましい。可塑剤は必要に応じて、2種類以上を併用して用いてもよい。セルロースエステルに用いる場合、リン酸エステル系の可塑剤の使用比率は全可塑剤に対し50質量%以下が、セルロースエステルフィルムの加水分解を引き起こしにくく、耐久性に優れるため好ましい。リン酸エステル系の可塑剤比率は少ない方がさらに好ましく、リン酸エステル系の可塑剤、フタル酸エステル系やグリコール酸エステル系の可塑剤、クエン酸エステル、多価アルコールエステルを使用することが特に好ましい。
【0055】
また、本発明において、セルロースエステルフィルム中に紫外線吸収剤を含有させることが好ましく、紫外線吸収剤としては、液晶の劣化防止の点より波長370nm以下の紫外線の吸収能に優れ、かつ良好な液晶表示性の点より波長400nm以上の可視光の吸収が可及的に少ないものが好ましく用いられる。特に、波長370nmでの透過率が、10%以下である必要があり、好ましくは5%以下、より好ましくは2%以下である。用いられる紫外線吸収剤としては、例えば、オキシベンゾフェノン系化合物、ベンゾトリアゾール系化合物、サリチル酸エステル系化合物、ベンゾフェノン系化合物、トリアジン系化合物、シアノアクリレート系化合物、ニッケル錯塩系化合物等が挙げられるが、これらに限定されない。登録3265393号に記載のベンゾトリアゾール化合物も好ましく用いることができる。紫外線吸収剤は2種以上用いてもよい。紫外線吸収剤のドープへの添加方法は、アルコールやメチレンクロライド、ジオキソラン等の有機溶媒に溶解してから添加するか、または直接ドープ組成中に添加してもよい。無機粉体のように有機溶剤に溶解しないものは、有機溶剤とセルロースエステル中にデゾルバやサンドミルを使用し、分散してからドープに添加する。本発明において、紫外線吸収剤の使用量はセルロースエステルに対し、0.1〜5.0質量%、好ましくは、0.5〜2.0質量%、より好ましくは0.8〜2.0質量%である。
【0056】
さらに、本発明のセルロースエステルフィルム中には、酸化防止剤を含有させることが好ましく、酸化防止剤としては、ヒンダードフェノール系の化合物が好ましく用いられ、2,6−ジ−t−ブチル−p−クレゾール、ペンタエリスリチル−テトラキス〔3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート〕、トリエチレングリコール−ビス〔3−(3−t−ブチル−5−メチル−4−ヒドロキシフェニル)プロピオネート〕、1,6−ヘキサンジオール−ビス〔3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート〕、2,4−ビス−(n−オクチルチオ)−6−(4−ヒドロキシ−3,5−ジ−t−ブチルアニリノ)−1,3,5−トリアジン、2,2−チオ−ジエチレンビス〔3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート〕、オクタデシル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、N,N′−ヘキサメチレンビス(3,5−ジ−t−ブチル−4−ヒドロキシ−ヒドロシンナマミド)、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)ベンゼン、トリス−(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)−イソシアヌレイト等が挙げられる。特に2,6−ジ−t−ブチル−p−クレゾール、ペンタエリスリチル−テトラキス〔3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート〕、トリエチレングリコール−ビス〔3−(3−t−ブチル−5−メチル−4−ヒドロキシフェニル)プロピオネート〕が好ましい。また例えば、N,N′−ビス〔3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオニル〕ヒドラジン等のヒドラジン系の金属不活性剤やトリス(2,4−ジ−t−ブチルフェニル)フォスファイト等のリン系加工安定剤を併用してもよい。これらの化合物の添加量は、セルロースエステルに対して質量割合で1ppm〜1.0%が好ましく、10〜1000ppmがさらに好ましい。
【0057】
また本発明において、セルロースエステルフィルム中に、取扱性を向上させるため、例えば二酸化ケイ素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、カオリン、タルク、焼成ケイ酸カルシウム、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム、リン酸カルシウム等の無機微粒子や架橋高分子等のマット剤を含有させることが好ましい。中でも二酸化ケイ素がフィルムのヘイズを小さくできるので好ましい。微粒子の2次粒子の平均粒径は0.01〜1.0μmの範囲で、その含有量はセルロースエステルに対して0.005〜0.3質量%が好ましい。二酸化ケイ素のような微粒子には有機物により表面処理されている場合が多いが、このようなものはフィルムのヘイズを低下できるため好ましい。表面処理で好ましい有機物としては、ハロシラン類、アルコキシシラン類、シラザン、シロキサン等が挙げられ、表面にメチル基が存在するような処理が好ましい。微粒子の平均粒径が大きい方がマット効果は大きく、平均粒径の小さい方は透明性に優れるため、好ましい微粒子の一次粒子の平均粒径は5〜50nmで、より好ましくは7〜16nmである。これらの微粒子はフィルム中では、通常、凝集体として存在しフィルム表面に0.01〜1.0μmの凹凸を生成させることが好ましい。二酸化ケイ素の微粒子としてはアエロジル社製のAEROSIL 200、200V、300、R972、R972V、R974、R202、R812、OX50、TT600等を挙げることができ、好ましくはAEROSIL R972、R972V、R974、R202、R812である。これらのマット剤は2種以上併用してもよい。2種以上併用する場合、任意の割合で混合して使用することができる。この場合、平均粒径や材質の異なるマット剤、例えばAEROSIL 200VとR972Vを質量比で0.1:99.9〜99.9:0.1の範囲で使用できる。
【0058】
溶液流延製膜方法は、上記のドープを濾過して、定量ポンプでダイに送り、表面研磨されているステンレスベルトあるいは金属ドラム上にダイからドープを流延し、その金属支持体上で、有機溶媒を蒸発あるいは冷却して固化させて、金属支持体が一周する前にウェブを剥離し、乾燥工程で乾燥してフィルムを形成させるものである。
【0059】
ウェブを金属支持体から剥離するまでの工程において、Rtを増加させる手段としては、剥離時の残留溶媒量を少なくすることがよく、残留溶媒量はウェブに対し5〜100質量%が好ましく、より好ましくは5〜80質量%、さらに好ましくは10〜45質量%である。
【0060】
なお、残留溶媒量は下記の式で表せる。
残留溶媒量(質量%)={(M−N)/N}×100
ここで、Mはウェブの任意時点での質量、NはMを110℃で3時間乾燥させた時の質量である。
【0061】
剥離する際、剥離張力は50〜390N/m程度にすることが好ましく、より好ましくは、100〜300N/m、さらに好ましくは、100〜250N/mである。
【0062】
乾燥工程では、剥離したウェブをロール搬送乾燥機及び/またはテンター乾燥機に通し乾燥し、最終的にフィルムの残留溶媒量を0.5質量%以下にするが、好ましくは0.01質量%以下である。テンターで乾燥する際には、乾燥によってウェブが収縮するのをクリップで幅を保持する程度にクリップ間の張力を掛ければよいが、延伸倍率を大きくすると、Rt、Roを増加させることができ、残留溶媒量が2〜20質量%のときに延伸倍率1.01〜2.0倍に延伸することが好ましい。本発明では、Roを30〜200nmとするように延伸条件をコントロールすることが好ましい。また、Rtとして70〜400nmが好ましい。
【0063】
また、ロール搬送による乾燥工程においても、搬送張力をコントロールすることによりRo、Rtを増加させることができる。搬送張力としては50〜200N/mの範囲とするのが好ましく、より好ましくは、75〜150N/m、さらに好ましくは、75〜120N/mである。
【0064】
また、本発明の位相差フィルムは、その厚さが20〜200μmであることが好ましく、さらに40〜160μmが好ましく、より好ましくは60〜140μmである。
【0065】
上記のように製造された本発明のセルロースエステルを有する位相差フィルムは偏光板用保護フィルムとして偏光板に好ましく用いられる。偏光板は前述のように、偏光子(偏光膜)の少なくとも一面に偏光板用保護フィルムを貼り合わせ積層することによって形成される。偏光子は従来から公知のものを用いることができ、例えば、ポリビニルアルコールフィルムのような親水性ポリマーフィルムを、沃素のような二色性染料で処理して延伸したものである。セルロースエステルフィルムと偏光子との貼り合わせは、特に限定はないが、水溶性ポリマーの水溶液からなる接着剤により行うことができる。本発明においては、この水溶性ポリマー接着剤は完全鹸化型のポリビニルアルコール水溶液が好ましく用いられる。
【0066】
このようにして得られた偏光板は、種々の液晶表示装置に使用できるが、本発明の偏光板用保護フィルムとして用いられる位相差フィルムは高いリターデーション値が得られることからVA型液晶表示装置に特に有用である。
【0067】
本発明のセルロースエステルフィルムを用いた偏光板を、TN型、VA型、OCB型液晶セルの一面側または両面側に設けることにより、安定して広い視野角を有する液晶表示装置を得ることができる。偏光板の位相差フィルムが液晶セル側となるように貼り付けることが好ましい。
【0068】
偏光板用保護フィルムのセルロースエステルフィルムのRo、Rtを上記の範囲とすることにより、本発明の液晶表示装置は視野角の広い特性を有することができる。
【0069】
また、本発明の位相差フィルムは光学異方層を設けて、光学補償フィルムとすることもできる。光学異方層は位相差フィルム上に直接または下引き層を設けた上にさらに配向層を形成し、その上に液晶性化合物を塗設し、配向させ、その配向状態を固定化させて形成することができる。
【0070】
本発明に係る配向層は、透明支持体上に配置され、後述する光学異方層に隣接して、光学異方層中の液晶化合物を配向するために用いられる。
【0071】
ここで、配向層を構成する材料について説明する。
配向層を構成する具体的な材料としては、以下の樹脂や基板が挙げられるがこれらに限定されない。例えば、ポリイミド、ポリアミドイミド、ポリアミド、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリエーテルケトン、ポリケトンサルファイド、ポリエーテルスルフォン、ポリスルフォン、ポリフェニレンサルファイド、ポリフェニレンオキサイド、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリアセタール、ポリカーボネート、ポリアリレート、アクリル樹脂、ポリビニルアルコール、ポリプロピレン、ポリビニルピロリドン、セルロース系プラスチックス、エポキシ樹脂、フェノール樹脂等が挙げられる。
【0072】
配向処理は、公知の方法を用いることができるが、ラビング処理等のLCDの液晶配向処理工程として広く採用されている処理方法を利用することができ、また、公知の光配向層を用いることもできる。
【0073】
次いで、本発明に係る光学異方層について説明する。
本発明の光学補償フィルムに係る光学異方層は、液晶ディスプレイの視角特性を改良するため、光学異方層の厚さはそれを構成する液晶化合物の複屈折の大きさ、及び液晶化合物の配向状態によって異なるが、概ね、その膜厚は0.2〜5μm、好ましくは0.4〜3μmである。
【0074】
本発明に係る光学異方層は、位相差フィルムに対して少なくとも1層設けることができるが、1つの位相差フィルムに対して光学異方層を複数層設置することもでき、光学異方層の含まれる液晶化合物が配向した状態もしくは液晶化合物の配向が固定化された状態で構成されるとき、配向方向は適宜ディスプレイに適合した光学特性を設計できる。
【0075】
本発明は、位相差フィルムが所定の光学特性を有するため、その上に塗設する液晶層は1層であることが低コスト化、生産性の観点から好ましい。
【0076】
本発明の光学補償フィルムを設置する場合、駆動用液晶セルの両側に位置する一対の基板の上下に上側偏光子と下側偏光子が配置されるのが通常であるが、基板と上側及び下側偏光子の少なくとも一方の間に本発明の光学補償フィルムを少なくとも1枚設置することが好ましく、特に、低コスト化の観点及び本発明の目的効果をいかんなく発現させるためには、基板と上側偏光子、下側偏光子の各々の間に本発明の光学補償フィルムを1枚ずつ設置することが好ましい。
【0077】
液晶表示装置が、特に、ツイステッドネマティック型(TN型)液晶表示装置である場合、TN型液晶セルに最も近い基板側に本発明の光学補償フィルムの位相差フィルム面側がくるように光学補償フィルムを貼合し、かつ光学補償フィルムの位相差フィルム面内の最大屈折率方向が液晶セルに最も近い基板のネマティック液晶の配向方向と実質的に直交した方向に貼合することにより、優れた効果を発現することができる。実質的に直交とは、90±5°であるが、90°とすることが特に好ましい。
【0078】
本発明に係る液晶分子を配向及び固定化して形成された光学異方層において、液晶分子の平均傾斜角度は、光学異方層の断面方向から観察した場合、斜めであることが好ましく、厚さ方向に対して配向角度が変化してもよい。また、傾斜角度は、位相差フィルム側で高く、偏光子に近づくにつれて低くなり、この変化は連続的であることが好ましい。平均傾斜角度はディスプレイの視野角を補償するため、ディスプレイの設計により異なるが、10〜70°であることが好ましく25〜50°であることが、特にTN型液晶表示装置において好ましい。
【0079】
また、本発明においては、光学異方層の最大屈折率方向を位相差フィルム面に投影した方向(方向A)が、位相差フィルムのNy方向(方向B)と実質的に等しいことが好ましい。ここで、Ny方向と実質的に等しいとは、方向Aと方向Bのなす角度が±2°以内で、好ましくは±1°以内であることを意味する。
【0080】
次に、本発明に係る液晶化合物について説明する。
本発明に係る液晶化合物は、液晶化合物が配向できるものであれば特に限定されるものではなく、この結果、配向によって可視光領域で光散乱することなく光学的に異方性が付与される。
【0081】
本発明に係る液晶化合物が高分子液晶以外の液晶化合物としては、ディスコチック化合物または一般に棒状の液晶化合物が挙げられ、光学的に正の複屈折性を示す液晶化合物が好ましく、更に好ましくは不飽和エチレン性基を有する正の複屈折性の液晶化合物が配向の固定化の観点から好ましく、例えば、特開平9−281480号、同9−281481号記載の構造を有する化合物を挙げることができるが、特にこれらに限定されるものではない。
【0082】
本発明に係る液晶化合物の構造は、特に限定されないが、本発明に係る光学異方層は、目的の光学異方性を発現させるため、液晶分子を配向させた状態で化学反応または温度差を利用した処理により、液晶化合物の配向を固定化できるものである。また、液晶化合物と有機溶媒を含む溶液を調製し、その溶液を塗布、乾燥して光学異方層を作製する場合、液晶転移温度以上に加熱しなくても該温度以下で液晶化合物の配向処理をすることも可能である。
【0083】
液晶化合物を含む溶液を塗布した場合、塗布後、溶媒を乾燥して除去し、膜厚が均一な液晶層を得ることができる。液晶層は、熱または光エネルギーの作用、または熱と光エネルギーの併用で化学反応によって、液晶の配向を固定化することができる。
【0084】
前述の不飽和エチレン性基の重合反応のためのラジカル重合開始剤としては、例えば、アゾビス化合物、パーオキサイド、ハイドロパーオキサイド、レドックス触媒等、例えば過硫酸カリウム、過硫酸アンモニウム、tert−ブチルパーオクトエート、ベンゾイルパーオキサイド、イソプロピルパーカーボネート、2,4−ジクロルベンゾイルパーオキサイド、メチルエチルケトンパーオキサイド、クメンハイドロパーキサイド、ジクミルパーオキサイド、アゾビスイソブチロニトリル、2,2′−アゾビス(2−アミジノプロパン)ハイドロクロライドあるいはベンゾフェノン類、アセトフェノン類、ベンゾイン類、チオキサントン類等を挙げることができる。これらの詳細については「紫外線硬化システム」総合技術センター、63〜147頁、1989年等に記載されている。
【0085】
また、ラジカル反応を用いて硬化反応を行う場合、空気中の酸素の存在による重合反応の遅れを避けるために窒素雰囲気下で上記活性線を照射することが、反応時間の短縮化と少ない光量で硬化できる点で好ましい。
【0086】
一方、液晶化合物が高分子液晶である場合、上記化学反応による硬化反応を実施して液晶の配向を固定しなくてもよい。例えば高分子液晶をガラス転移温度以上で熱処理し、ガラス転移温度以下に放冷することで配向を固定化することができる。
【0087】
また、高分子液晶のガラス転移温度が支持体の耐熱性温度よりも高い場合は、耐熱性支持体上に前記配向膜を設置し高分子液晶を塗設後、高分子液晶のガラス転移温度以上に加熱し配向させることができる。これを室温に放冷し高分子液晶の配向を固定化したのち支持体に接着剤を用いて転写して光学異方体を作製することもできる。
【0088】
本発明では、位相差フィルム上に光学異方層を形成し、本発明の光学補償フィルムとすることができる。
【0089】
【実施例】
以下、実施例により本発明を説明するが、本発明の実施態様はこれらに限定されるものではない。
【0090】
実施例1
〔位相差フィルムの作製〕
(位相差フィルム1)
アセチル基の置換度が1.75、プロピオニル基の置換度が0.80、アルカリ土類金属の含有量が6ppm、残留硫酸量(硫黄元素として)が16ppm、遊離酸量が20ppm、極限粘度が1.54cm3/g、水分率が0.1質量%であるセルロースアセテートプロピオネート(平均粒径1500μm)100kg、エチルフタリルエチルグリコレート2kg、トリフェニルフォスフェイト10kg、塩化メチレン300kg、エタノール60kgを密閉容器に入れ、混合物をゆっくり攪拌しながら徐々に昇温し、60分かけて45℃まで上げ溶解した。容器内は120kPaとなった。このドープを安積濾紙社製の安積濾紙No.244を使用して3回濾過した後、静置しドープ中の泡を除いた。また、これとは別に、上記セルロースアセテートプロピオネート5kg、チヌビン326(チバスペシャルティケミカルズ社製)3kg、チヌビン171(チバスペシャルティケミカルズ社製)5kg、チヌビン109(チバスペシャルティケミカルズ社製)5kg、及びAEROSIL R972V(日本アエロジル社製)1kgを塩化メチレン94kgとエタノール8kgを混合し撹拌溶解し、紫外線吸収剤溶液を調製した。上記ドープ100kgに対して紫外線吸収剤溶液を2kgの割合で加え、スタチックミキサーにより十分混合した後、ダイからステンレスベルト上にドープ温度35℃で流延した。ステンレスベルトの裏面から35℃の温水を接触させて温度制御されたステンレスベルト上で乾燥した後、さらにステンレスベルトの裏面に、12℃の冷水を接触させて15秒間保持した後、ステンレスベルトから剥離した。剥離時のウェブ中の残留溶媒量は90質量%であった。次いで剥離したウェブの両端をテンターで把持し、115℃で残留溶媒量15質量%で幅手方向に1.3倍に延伸し、次いで、120℃で乾燥させ、膜厚80μmの位相差フィルム1を得た。残留溶媒量は0.01質量%であった。
【0091】
なお、脂肪酸セルロースエステルの置換度及び残留溶媒量は以下のようにして測定した。
【0092】
(脂肪酸セルロースエステルの置換度)
置換度はケン化法によって測定する。乾燥したセルロースエステルを精秤し、アセトンとジメチルスルホキシドの混合溶媒(容量比4:1)に溶解した後、所定の1mol/L水酸化ナトリウム水溶液を添加し、25℃で2時間ケン化する。フェノールフタレインを指示薬として0.5mol/L硫酸で過剰の水酸化ナトリウムを滴定する。また上記と同様な方法によりブランクテストを行う。さらに、滴定が終了した溶液の上澄み液を希釈し、イオンクロマトグラフを用いて常法により有機酸の組成を測定する。そして下記に従って置換度(%)を算出する。
【0093】
TA=(Q−P)×F/(1000×W)
DSac=(162.14×TA)/(1−42.14×TA+(1−56.06×TA)×(AL/AC))
DSpr=DSsc×(AL/AC)
式中、Pは試料の滴定に要する0.5mol/L硫酸量(ml)、Qはブランクテストに要する0.5mol/L硫酸量(ml)、Fは0.5mol/L硫酸の力価、Wは試料質量(g)、TAは全有機酸量(mol/g)、AL/ACはイオンクロマトグラフで測定した酢酸(AC)と他の有機酸(AL)とのモル比、DSscはアセチル基の置換度、DSprはプロピオニル基の置換度を示す。
【0094】
(残留溶媒量)
残留溶媒量(%)=(M−N)/N×100
Mは加熱前のフィルム(ウェブ)の質量、NはMを110℃で3時間乾燥させた後の質量である。
【0095】
(位相差フィルム2)
アセチル基の置換度が1.92、プロピオニル基の置換度が0.76、アルカリ土類金属の含有量が15ppm、残留硫酸量(硫黄元素として)が20ppm、遊離酸量が8ppm、極限粘度が1.61、水分率が0.2質量%であるセルロースアセテートプロピオネート(平均粒径350μm)100kg、エチルフタリルエチルグリコレート2kg、トリフェニルフォスフェイト10kg、酢酸メチル300kg、エタノール60kgを密閉容器に入れ、混合物をゆっくり攪拌しながら徐々に昇温し、60分かけて50℃まで上げ溶解した。このドープを安積濾紙社製の安積濾紙No.244を使用して3回濾過した後、静置しドープ中の泡を除いた。また、これとは別に、上記セルロースアセテートプロピオネート5kg、チヌビン326(チバスペシャルティケミカルズ社製)3kg、チヌビン171(チバスペシャルティケミカルズ社製)5kg、チヌビン109(チバスペシャルティケミカルズ社製)5kg、及びAEROSIL R972V(日本アエロジル社製)1kgを酢酸メチル75kgとエタノール25kgを混合し撹拌溶解し、紫外線吸収剤溶液を調製した。上記ドープ100kgに対して紫外線吸収剤溶液を2kgの割合で加え、スタチックミキサーにより十分混合した後、ダイからステンレスベルト上にドープ温度50℃で流延した。ステンレスベルトの裏面から50℃の温水を接触させて温度制御されたステンレスベルト上で乾燥した後、さらにステンレスベルトの裏面に、12℃の冷水を接触させて15秒間保持した後、ステンレスベルトから剥離した。剥離時のウェブ中の残留溶媒量は85質量%であった。次いで剥離したウェブの両端をテンターで把持し、115℃で残留溶媒量が10質量%のとき、幅手方向に1.3倍に延伸し、次いで、120℃で乾燥させ、膜厚80μmの位相差フィルム2を得た。残留溶媒量は0.01質量%であった。
【0096】
(位相差フィルム3)
位相差フィルム2の作製で用いたセルロースアセテートプロピオネートを、アセチル基の置換度が1.94、プロピオニル基の置換度が0.63、アルカリ土類金属の含有量が8ppm、残留硫酸量(硫黄元素として)が25ppm、遊離酸量が70ppm、極限粘度が1.54、水分率が0.9質量%であるセルロースアセテートプロピオネート(平均粒径150μm)に変更した以外は位相差フィルム2と同様にして膜厚80μmの位相差フィルム3を得た。
【0097】
(位相差フィルム4)
位相差フィルム2の作製で用いたセルロースアセテートプロピオネートを、アセチル基の置換度が1.92、プロピオニル基の置換度が0.70、アルカリ土類金属の含有量が6ppm、残留硫酸量(硫黄元素として)が12ppm、遊離酸量が20ppm、極限粘度が1.59、水分率が0.1質量%であるセルロースアセテートプロピオネート(平均粒径500μm)に変更した以外は位相差フィルム2同様にして膜厚80μmの位相差フィルム4を得た。
【0098】
(位相差フィルム5)
位相差フィルム2の作製で用いたエチルフタリルエチルグリコレート2kg、トリフェニルフォスフェイト10kgをエチルフタリルエチルグリコレート4kg、ジベンジルフタレート8kgに変更した以外は位相差フィルム2と同様にして位相差フィルム5を得た。
【0099】
(位相差フィルム6)
位相差フィルム3の作製で用いたエチルフタリルエチルグリコレート2kg、トリフェニルフォスフェイト10kgをエチルフタリルエチルグリコレート4kg、ジベンジルフタレート8kgに変更した以外は位相差フィルム3と同様にして位相差フィルム6を得た。
【0100】
(位相差フィルム7)
位相差フィルム2の作製で使用したチヌビン326(チバスペシャルティケミカルズ社製)3kg、チヌビン171(チバスペシャルティケミカルズ社製)5kg、チヌビン109(チバスペシャルティケミカルズ社製)5kgを2−ヒドロキシ−4−ベンジルオキシベンゾフェノン8kgに変更した以外は位相差フィルム2と同様にして位相差フィルム7を得た。
【0101】
(位相差フィルム8)
位相差フィルム7の作製で使用したエチルフタリルエチルグリコレート2kg、トリフェニルフォスフェイト10kgをエチルフタリルエチルグリコレート4kg、ジベンジルフタレート8kgに変更した以外は位相差フィルム7と同様にして位相差フィルム8を得た。
【0102】
(位相差フィルム9)
位相差フィルム8の作製で使用したセルロースアセテートプロピオネートを酢酸メチルで膨潤させた後、これを−20℃に冷却しこれを50℃まで温度を上げてセルロースエステルを溶解した以外は位相差フィルム8と同様にして位相差フィルム9を得た。
【0103】
(位相差フィルム10)
位相差フィルム9の作製で使用したセルロースアセテートプロピオネートを、アセチル置換度が2.75、アルカリ土類金属の含有量が25ppm、残留硫酸量(硫黄元素として)が25ppm、遊離酸量が10ppmのアセチルセルロースに変更した以外は位相差フィルム9と同様にして位相差フィルム10を得た。
【0104】
(位相差フィルム11)
位相差フィルム10の作製で使用した2−ヒドロキシ−4−ベンジルオキシベンゾフェノン8kgを化合物T−1 8kgに変更した以外は位相差フィルム10と同様にして位相差フィルム11を得た。
【0105】
(位相差フィルム12)
位相差フィルム1の作製で使用したセルロースアセテートプロピオネートを、アセチル基の置換度が1.60、プロピオニル基の置換度が0.82、アルカリ土類金属の含有量が100ppm、残留硫酸量(硫黄元素として)が70ppm、遊離酸量が100ppm、極限粘度が1.5cm3/g、水分率が0.7質量%を含有するセルロースアセテートプロピオネート(平均粒径350μm)に変更した以外は位相差フィルム1と同様にして位相差フィルム12を得た。
【0106】
(位相差フィルム13)
位相差フィルム1の作製で使用したセルロースアセテートプロピオネートを、アセチル基の置換度が1.75、プロピオニル基の置換度が0.80、アルカリ土類金属の含有量が55ppm、残留硫酸量(硫黄元素として)が60ppm、遊離酸量が110ppm、極限粘度が1.57cm3/g、水分率が0.1質量%であるセルロースアセテートプロピオネート(平均粒径1000μm)に変更した以外は位相差フィルム1と同様にして位相差フィルム13を得た。
【0107】
〔カルボニル基の吸光度変化率の測定〕
作製した位相差フィルム1〜13について、フィルム作製24時間後に前記測定方法で、延伸15秒から1時間のカルボニル基の吸光度変化率Aと、延伸10分から1時間のカルボニル基の吸光度変化率Bを測定した。
【0108】
〔リターデーション変動の評価〕
作製した位相差フィルム1〜13について、60℃、80%RHに2週間、1カ月間保管して強制劣化させ、自動複屈折計KOBRA−21ADH(王子計測機器社製)を用いて、23℃、55%RHの環境下で、波長が590nmにおいて、3次元屈折率測定を行い、屈折率nx、ny、nzを求め、前記式に従って、Ro及びRtを算出した。強制劣化前の試料のRo及びRtと合わせて強制劣化による変化を表1に示す。
【0109】
【表1】
【0110】
本発明の位相差フィルムは保管中のリターデーションの変動が少なく、安定した特性を有していることが確認された。
【0111】
〔偏光板の作製〕
(偏光板1)
本発明の位相差フィルム1と市販のセルローストリアセテートフィルム(コニカタックKC8UX2MW、コニカ社製)を偏光板用保護フィルムとして用い、下記の手順で偏光子の両側にそれぞれ貼合して偏光板1を作製した。
【0112】
(a)偏光子の作製
厚さ120μmのポリビニルアルコールフィルムを、一軸延伸(110℃、延伸倍率5倍)した。これをヨウ素0.075g、ヨウ化カリウム5g、水100gの比率からなる水溶液に60秒間浸漬し、次いでヨウ化カリウム6g、ホウ酸7.5g、水100gの比率からなる68℃の水溶液に浸漬した。これを水洗、乾燥し長尺の偏光子を得た。
【0113】
(b)偏光板の作製
次いで、下記工程1〜5に従って、偏光子と各偏光板用保護フィルムとを貼り合わせて偏光板を作製した。
【0114】
工程1:位相差フィルム1とセルローストリアセテートフィルムをそれぞれ2mol/Lの水酸化ナトリウム溶液に55℃で90秒間浸漬し、次いで水洗、乾燥させた。
【0115】
工程2:前述の偏光子を固形分2質量%のポリビニルアルコール接着剤槽中に1〜2秒間浸漬した。
【0116】
工程3:工程2で偏光子に付着した過剰の接着剤を軽く取り除き、それを工程1でアルカリ処理したセルローストリアセテートフィルムと位相差フィルム1とで挟み込んで、積層配置した。位相差フィルム1の遅相軸方向と偏光子の吸収軸とが直交するように配置した。
【0117】
工程4:2つの回転するローラにて20〜30N/cm2の圧力で約2m/minの速度で貼り合わせた。このとき気泡が入らないように注意して実施した。
【0118】
工程5:80℃の乾燥機中にて工程4で作製した試料を3分間乾燥処理して、偏光板1を作製した。
【0119】
(偏光板2〜5)
位相差フィルム1を位相差フィルム2、12、13に変更した以外は同様にしてそれぞれ偏光板2、3、4を作製した。さらに両面にセルローストリアセテートフィルムを使用して偏光板5を作製した。
【0120】
〔液晶表示装置の作製〕
市販の液晶表示装置(NEC社製、カラー液晶ディスプレイ MultiSync LCD1525J:型名 LA−1529HM、TN型液晶)の両面の偏光板を注意深く剥離し、ここに元の偏光板と偏光方向を合わせ、位相差フィルムが貼合されている面が液晶セル側となるように上記偏光板1〜5を貼り合わせて、それぞれ液晶表示パネル1−1〜1−5を作製した。
【0121】
また、市販の液晶表示装置(富士通社製、15インチディスプレイVL−1530S、VA型液晶)の両面の偏光板を注意深く剥離し、ここに元の偏光板と偏光方向を合わせて、位相差フィルムが貼合されている面が液晶セル側となるように上記偏光板1〜5を貼り合わせて、液晶表示装置2−1〜2−5を作製した。
【0122】
〔視野角特性の評価〕
作製した液晶表示装置に、エーエムティ社製VG365Nビデオパターンジェネレーターにて、白色表示、黒色表示及びグレー8階調表示を行い、白色/黒色表示時のコントラスト比を大塚電子社製LCD−7000にて測定した。コントラスト比≧10を示す角度を視野角とした。
【0123】
測定の結果、TN型液晶セル及びVA型液晶セルを用いた液晶表示装置について、比較の偏光板5(左右方向視野角125°)を用いた液晶表示装置と比較して、本発明の偏光板1、2を用いた液晶表示装置は視野角が著しく向上し上下左右とも160°であり、長期間視野角の変動は認められなかった。それに対して、比較の偏光板3、4を用いた液晶表示装置は視野角改善効果に乏しく130〜145°程度であり、また、経時で視野角が変動することが確認され、好ましくないことが分かった。
【0124】
実施例2
〔位相差フィルム14の作製〕
アセチル基の置換度が1.94、プロピオニル基の置換度が0.76、アルカリ土類金属の含有量が5ppm、残留硫酸量(硫黄元素として)が10ppm、遊離酸量が7ppm、極限粘度が1.62cm3/g、水分率が0.1質量%であるセルロースアセテートプロピオネート(平均粒径1000μm)100kg、エチルフタリルエチルグリコレート3kg、トリフェニルフォスフェイト8kg、酢酸メチル300kg、エタノール100kgを密閉容器に入れ、混合物をゆっくり攪拌しながら徐々に昇温し、60分かけて55℃まで上げ溶解した。このドープを安積濾紙社製の安積濾紙No.244を使用して、3回濾過した後、静置しドープ中の泡を除いた。また、これとは別に、上記セルロースアセテートプロピオネート5kg、チヌビン171(チバスペシャルティケミカルズ社製)5kg、チヌビン109(チバスペシャルティケミカルズ社製)5kg、及びAEROSIL R972V(日本アエロジル社製)1kgを酢酸メチル75kgとエタノール25kgを混合し撹拌溶解し、紫外線吸収剤溶液を調製した。上記ドープ100kgに対して紫外線吸収剤溶液を2kgの割合で加え、スタチックミキサーにより十分混合した後、ダイからステンレスベルト上にドープ温度45℃で流延した。ステンレスベルトの裏面から45℃の温水を接触させて温度制御されたステンレスベルト上で、上からは65℃の温風を当てて乾燥させ、ベルトの半分を経過した後、温風を45℃として乾燥させ、さらにステンレスベルトの裏面に、11℃の冷水を接触させて10秒間保持した後、ステンレスベルトから剥離した。剥離時のウェブ中の残留溶媒量は90質量%であった。次いで剥離したウェブの両端をスリッティングして所定の幅となるように切り落とした後、2軸延伸テンターで把持し、120℃で残留溶媒量が12質量%のとき、幅手方向に1.4倍延伸し、長手方向0.97倍に緩和した。次いで、幅保持を開放し、さらにテンタークリップで把持していた部分を切り落として所定の幅とした後、120℃で乾燥させ、幅手両端部には高さ10μm、幅1cmのナーリングを設け、膜厚80μm、幅1.3m、長さ2500mの位相差フィルム14を得た。残留溶媒量は0.01質量%未満であった。なお、テンターの前後で切り落としたフィルムのくずはセルロースエステル原料の一部として再利用した。
【0125】
(溶液1の調製)
化合物1を水:メタノール=3:2の溶剤に溶解し、溶液1を調製した。
【0126】
(溶液2の調製)
化合物2を水:メタノール=3:1の溶剤に溶解し、溶液2を調製した。
【0127】
(溶液LC−1の調製)
下記組成の溶液LC−1を調製した。
【0128】
化合物3 3質量部
化合物4 5質量部
化合物5 4質量部
化合物6 8質量部
イルガキュアー369(チバスペシャルティケミカルズ社製) 1質量部
2−ブタノン 80質量部
シクロヘキサノン 5質量部
(溶液LC−2の調製)
下記組成の溶液LC−2を調製した。
【0129】
化合物3 4質量部
化合物4 3質量部
化合物5 6質量部
化合物6 8質量部
イルガキュアー369(チバスペシャルティケミカルズ社製) 1質量部
2−ブタノン 84質量部
【0130】
【化1】
【0131】
【化2】
【0132】
(光学補償フィルム1、2の作製)
位相差フィルム14上に、0.1μmの膜厚でゼラチン下引きを行い、乾燥した後、上記溶液1及び溶液2をワイヤーバー#3を用いて乾燥膜厚0.2μmとなるように塗布し、70℃の温風で乾燥させた後、ラビング処理を行った。ラビング処理は位相差フィルム14の遅相軸方向に対して直交するように行った。この上に上記溶液LC−1をワイヤーバー#5用いて塗布した後、搬送しながら無風状態で90℃で1分間乾燥させ、窒素雰囲気(酸素濃度0.1%未満)下で500mJ/cm2の紫外線を照射し液晶性化合物の配向を固定化して光学補償フィルム1を作製した。得られた光学異方層のRoは80nmであった。
【0133】
次に、位相差フィルム14上に0.1μmの膜厚でゼラチン下引きを行い、乾燥した後、溶液1及び溶液2をワイヤーバー#3を用いて乾燥膜厚0.2μmとなるように塗布し、70℃の温風で乾燥させた後、ラビング処理を行った。ラビング処理は位相差フィルム14の遅相軸方向に対して直交するように行った。この上に上記溶液LC−2をワイヤーバー#5用いて塗布した後、搬送しながら無風状態で90℃で1分間乾燥させ、窒素雰囲気(酸素濃度0.1%未満)下で500mJ/cm2の紫外線を照射し液晶性化合物の配向を固定化して光学補償フィルム2を作製した。得られた光学異方層のRoは100nmであった。
【0134】
次に、実施例1の偏光板1の作製において、位相差フィルム1を光学補償フィルム1に変更し、光学異方層を持たない面を偏光子側にして貼合せ、同様にして偏光板6を作製した。同様に位相差フィルム1を光学補償フィルム2に変更した以外は同様にして偏光板7を作製した。
【0135】
実施例1と同様にして市販のTN型液晶セルの両面に本発明の偏光板6、7を光学異方層を有する面が液晶セル側となるように配置し、液晶表示装置を作製した。その結果、いずれも上下方向に150°以上、左右方向に150°以上の広い視野角が得られることが確認された。また、数ヶ月間使用しても視野角に大きな変化は認められず安定であることが確認された。
【0136】
【発明の効果】
本発明により、位相差特性の変化が少ない位相差フィルム及びそれを用いた偏光板、光学補償フィルム、及びこの偏光板を用いた視野角が広く長期間の使用でも優れた視野角を維持できる液晶表示装置を提供することが可能になった。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a retardation film, a polarizing plate using the same, an optical compensation film, and a liquid crystal display device.
[0002]
[Prior art]
2. Description of the Related Art Liquid crystal display devices are widely used as display devices for word processors, personal computers, and the like because they can be directly connected to an IC circuit at low voltage and low power consumption and can be made particularly thin. This liquid crystal display device basically has, for example, a structure in which polarizing plates are provided on both sides of a liquid crystal cell.
[0003]
In such a liquid crystal display device, from the viewpoint of contrast and the like, a liquid crystal display device using a twisted nematic (TN) having a twist angle of 90 degrees is replaced by a liquid crystal using a super twisted nematic (STN) having a twist angle of 160 degrees or more. The display has been shifted to display devices.
[0004]
However, since the liquid crystal display device using STN utilizes birefringence of liquid crystal, there is a problem that the white background in normally white in the liquid crystal display device using TN is colored blue or yellow. For this reason, there is a problem that the contrast and the viewing angle are narrow in a monochrome display, and it is difficult to colorize the display.
[0005]
In order to solve this problem, that is, to compensate for birefringence, a technique using a retardation plate below a polarizing plate has been proposed. According to this technique, the problem of coloring is solved, but the viewing angle is hardly improved.
[0006]
In order to solve this problem, a technique has been proposed in which a birefringent film having a refractive index in a thickness direction larger than a refractive index in a direction perpendicular to the optical axis of the birefringence is manufactured and used as a retardation plate. Further, a technique has been proposed in which films each having a positive and negative intrinsic birefringence value, one by one, or a laminate thereof are used as a retardation plate.
[0007]
Further, as disclosed in JP-A-7-218724, the retardation value of a protective film for a polarizing plate on at least one surface of a polarizer is 30 to 70 nm as an in-plane retardation value measured with light having a wavelength of 590 nm. A polarizing plate using acetylcellulose has been proposed.
[0008]
With these proposed techniques, the change in contrast due to the viewing angle was reduced, and the viewing angle characteristics were improved. However, the low voltage, low power consumption, and thinness of the liquid crystal display device, which has a great feature not found in other display devices, have not been solved as the biggest problem in that the viewing angle is narrow. The demand for wider corners is ever increasing and further development is underway.
[0009]
As one of such developments, a liquid crystal of a type different from the TN or STN type has been proposed. That is, the liquid crystal cell of the TN or STN type is a type of liquid crystal in which the liquid crystal molecules are parallel to the alignment plate when the voltage is turned off and the liquid crystal molecules are aligned perpendicular to the alignment plate when the voltage is turned on. A type in which liquid crystal molecules are perpendicular to the alignment plate and parallel to the alignment plate when the voltage is turned on, for example, a so-called vertical alignment type using a negative liquid crystal having negative dielectric anisotropy has been developed. (For example, refer to Patent Document 1). This vertical alignment (Vertical Alignment, abbreviated as VA, hereinafter sometimes referred to as VA) type liquid crystal display device has a so-called vertical alignment of liquid crystal molecules when the voltage is turned off and parallel to the alignment plate when the voltage is turned on. Since it is a liquid crystal cell of the vertical alignment mode, black is displayed firmly as black, the contrast is high, and the viewing angle is relatively wide as compared with the TN or STN type.
[0010]
However, as the size of the liquid crystal screen increases, there is an increasing demand for further increasing the viewing angle.
[0011]
By the way, for the purpose of protecting the polarizer, a polarizing plate is formed by attaching a protective film to at least one surface of the polarizer. This protective film is referred to as a protective film for a polarizing plate, and a cellulose triacetate film is conventionally used as the protective film for a polarizing plate because of its excellent optical isotropy and transparency. However, in the cellulose triacetate film, there is an upper limit for increasing the retardation value in the thickness direction, it is difficult to increase the viewing angle, and in order to obtain a larger retardation value in the thickness direction, the thickness of the film is increased. Needed.
[0012]
In addition, stretching was performed to obtain a desired retardation value in the in-plane direction. It has been proposed that the retardation film thus formed can be used as a protective film for a polarizing plate. However, when a cellulose ester having a total degree of substitution of acyl groups lower than that of a normal cellulose triacetate film is used, the phase difference may greatly fluctuate due to long-term use or environmental fluctuations. Have been.
[0013]
In recent years, portability of liquid crystal display devices has also been demanded, and miniaturization, particularly thinness, has been demanded. The viewing angle of a vertical alignment type liquid crystal display device can be further improved, and the film thickness can be increased. There is a demand for a polarizing plate protective film having a small thickness but a large retardation value in the thickness direction.
[0014]
[Patent Document 1]
JP-A-2-176625
[0015]
[Problems to be solved by the invention]
An object of the present invention is to provide a retardation film having little change in retardation characteristics, a polarizing plate using the same, an optical compensation film, and a wide viewing angle using the polarizing plate, which maintains an excellent viewing angle even when used for a long time. It is to provide a liquid crystal display device which can be used.
[0016]
[Means for Solving the Problems]
The above object of the present invention is achieved by the following constitutions.
[0017]
1. Regarding the difference spectrum of the infrared absorption before and after the stretching when the stretching treatment was performed by applying a tension, the change rate A of the absorbance of the carbonyl group from 15 seconds to 1 hour and the change in the absorbance of the carbonyl group from 10 minutes to 1 hour. Rate B is
1.2 ≦ A ≦ 2.0
B ≧ 1.1
A retardation film, characterized in that:
[0018]
2. 2. The retardation film as described in 1 above, which is a retardation film mainly composed of a cellulose ester, wherein the total degree of substitution of acyl groups is 2.55 to 2.85.
[0019]
3. When the acyl group is an acetyl group and a propionyl group or a butyryl group, and the substitution degree of the acetyl group is X, and the total substitution degree of the propionyl group or the butyryl group is Y,
1.75 ≦ X ≦ 2.15
0.60 ≦ Y ≦ 0.80
2. The retardation film according to the above item 1, wherein
[0020]
4. 3. The retardation film according to the above 1 or 2, wherein the additive contains 0.5 to 30% by mass of an additive having three or more aromatic rings in the molecule.
[0021]
5. A polarizing plate comprising the retardation film according to any one of the above items 1 to 4.
[0022]
6. An optical compensation film using the retardation film according to any one of the above items 1 to 4.
[0023]
7. A liquid crystal display device comprising the polarizing plate according to the above item 5.
Hereinafter, the present invention will be described in detail.
[0024]
An object of the present invention is to provide a retardation film having stable retardation, and a polarizing plate, a liquid crystal display device, and an optical compensation film using the retardation film. 2. Description of the Related Art As display devices have been improved in definition and function, display quality has been required to be improved. For example, Japanese Patent Application Laid-Open No. 2002-14230 shows that a viewing angle is improved by applying a retardation film to various display devices. However, it has been found that it is difficult for a retardation film using a cellulose ester film to maintain stable retardation characteristics for a long period of time.
[0025]
Furthermore, while some characteristics change over time, even if the retardation characteristics immediately after fabrication are the same, the values hardly change over time, and some exhibit stable phase difference characteristics over a long period of time. Was found.
[0026]
Immediately after fabrication, it is very effective for quality control and improvement of reliability if it is possible to determine whether there is no difference in phase difference characteristics between those showing stable characteristics for a long time or those that change over time. .
[0027]
The present inventor has made intensive studies and as a result, those having stable phase difference characteristics with time and those that change with time can be judged by the orientation behavior of carbonyl groups in the film immediately after the stretching treatment. Was found. It is known that the retardation characteristic of a film is derived from the orientation of molecules or functional groups. Changes in retardation characteristics over time indicate that molecules or functional groups in a film oriented by stretching, a magnetic field, an electric field, an electromagnetic wave, or the like, are oriented to a more stable state over time, or the orientation is relaxed. This is presumed to be the cause, but it is difficult to observe this temporal change in the orientation state because it is a very small displacement in a short time. However, as a result of repeated studies, it has been found that it is possible to infer a change with time from the detailed orientation evaluation immediately after the orientation treatment.
[0028]
The present inventors have paid attention to the behavior of the orientation of the carbonyl group. The carbonyl group in the cellulose film molecule immediately after the stretching treatment was gradually oriented from several minutes to several tens minutes immediately after the stretching treatment, and the change was found to converge in about one hour. A change in the orientation state of another molecule or functional group that affects the phase difference characteristic shows the same behavior, but it can be inferred that the change is a longer-term change. Therefore, a film that takes a longer time until the change in the orientation of the carbonyl group immediately converges after the stretching treatment is performed is a film in which the change in other molecules and the functional groups that affect the retardation characteristics is slow, and the film has a long period of time after production. It is considered that the film has stable retardation characteristics.
[0029]
Observation of the behavior of the orientation of the carbonyl group can be performed by a difference spectrum of the infrared absorption spectrum before and after the stretching. As a result of repeated experiments, the inventor of the present invention found that the difference between the absorbance change A of the carbonyl group from 15 seconds to 1 hour after stretching and the 10 The rate of change in absorbance B of the carbonyl group from minute to one hour is:
1.2 ≦ A ≦ 2.0
B ≧ 1.1
Was found to have stable retardation characteristics. Further, also for a film that has been subjected to orientation treatment by stretching, a magnetic field, an electric field, an electromagnetic wave, etc., the difference spectrum of the infrared absorption before and after the stretching when the stretching treatment is performed by applying the tension, from 15 seconds to 1 hour The carbonyl group absorbance change rate A and the carbonyl group absorbance change rate B for 10 minutes to 1 hour after stretching are as follows:
1.2 ≦ A ≦ 2.0
B ≧ 1.1
Was found to have stable retardation characteristics. In order to provide a stable retardation by such stretching, the degree of acyl group substitution of the cellulose ester film needs to be 2.55 to 2.85. If it is less than 2.55, the phase difference tends to fluctuate depending on time and environmental conditions. This is thought to be due to the interaction between the unsubstituted hydroxyl group of the cellulose ester and the alkaline earth metal, residual sulfuric acid amount, free acid amount, and the like. Further, the degree of acyl group substitution needs to be 2.85 or less, and if it exceeds this, it becomes difficult to obtain a desired retardation by stretching.
[0030]
Further, in the present invention, when the acyl group is an acetyl group and a propionyl group and / or a butyryl group, and the substitution degree of the acetyl group is X, and the total substitution degree of the propionyl group and / or the butyryl group is Y,
1.75 ≦ X ≦ 2.15
0.60 ≦ Y ≦ 0.80
Is preferable, and a retardation film with more stable retardation can be obtained.
[0031]
More preferably, by containing 0.5 to 30% by mass of an additive having three or more aromatic rings in the molecule, a retardation film that is less likely to fluctuate even with fluctuations in temperature and humidity can be obtained. In the present invention, additives refer to plasticizers, ultraviolet absorbers, antioxidants, matting agents and the like.
[0032]
Further, the retardation film of the present invention is produced by stretching a cellulose ester film formed by a solution casting method, and a solvent that dissolves the cellulose ester is substantially a solvent using substantially only a non-chlorinated organic solvent. A stable phase difference was shown. Substantially non-chlorine-based organic solvent means that the chlorine-based organic solvent is 10% by mass or less, preferably 5% by mass or less, and most preferably contains no chlorine-based organic solvent, based on the total amount of the organic solvent. Methyl acetate is preferably used as the non-chlorine organic solvent. In particular, when the residual solvent amount of methyl acetate is 2 to 15% by mass, stretching in at least one direction by 1.01 to 2.0 times is preferable in that a stable retardation can be obtained.
[0033]
The retardation film of the present invention can obtain a polarizing plate having stable retardation characteristics by being bonded to a polarizer, and a display device using the same can exhibit excellent viewing angle characteristics for a long time. .
[0034]
Generally, a polarizing plate used in a liquid crystal display device includes a polarizing film and two transparent protective films disposed on both sides thereof. The polarizing film includes an iodine-based polarizing film, a dye-based polarizing film using a dichroic dye, and a polyene-based polarizing film. The iodine-based polarizing film and the dye-based polarizing film are generally manufactured using a polyvinyl alcohol-based film. Then, by forming one protective film of the polarizing plate as an optical compensation sheet made of the polymer film, or an optical compensation sheet formed by laminating an optically anisotropic layer containing a polymer film and a liquid crystal compound, The polarizing plate of the present invention can be manufactured. The bonding between the polarizing film and the optical compensation sheet is preferably performed by using an adhesive whose main component is water as a solvent. In addition, a normal cellulose acetate film may be laminated as the other protective film of the polarizing film. In the polarizing plate of the present invention, the relationship between the slow axis of the polymer film and the transmission axis of the polarizing film is preferably arranged as follows depending on the type of the applied liquid crystal display device. When the polarizing plate of the present invention is used in a TN, MVA, or OCB mode liquid crystal display device, the slow axis of the polymer film and the transmission axis of the polarizing film are arranged so as to be substantially parallel to each other. When used for a display device, it is preferable to arrange the polymer film so that the slow axis of the polymer film and the transmission axis of the polarizing film are substantially at 45 °.
[0035]
The optical compensatory sheet of the present invention or the polarizing plate using the same is advantageously used for a transmission type liquid crystal display device or a reflection type liquid crystal display device. Examples of the transmissive liquid crystal display device include a liquid crystal display device liquid crystal in TN, MVA, and OCB modes. These liquid crystal display devices include a cell and two polarizing plates disposed on both sides of the cell. The liquid crystal cell carries liquid crystal between two electrode substrates. In the case of an OCB mode liquid crystal display device, the optical compensation sheet of the present invention preferably has an optically anisotropic layer containing a discotic compound or a rod-like liquid crystal compound on a polymer film. Further, the reflection type liquid crystal display device has a liquid crystal cell sandwiched between a polarizing plate and a reflecting plate.
[0036]
When the optical compensation sheet of the present invention is used for a liquid crystal display device, one optical compensation sheet is disposed between the liquid crystal cell and one of the polarizing plates, or between the liquid crystal cell and both of the polarizing plates. Arrange two sheets. As described above, by inserting the optical compensation sheet of the present invention between the ordinary polarizing plate and the liquid crystal cell, the liquid crystal cell can be optically compensated as in the related art. When the polarizing plate of the present invention is used for a liquid crystal display device, at least one of the two polarizing plates of the liquid crystal display device may be the polarizing plate of the present invention. By using the polarizing plate of the present invention, it is possible to prevent moisture present in the polarizing film in the use environment of the liquid crystal display device from penetrating into the polarizing film, and to maintain display performance with excellent viewing angle characteristics for a long time. .
[0037]
In a VA mode liquid crystal cell, rod-shaped liquid crystalline molecules are substantially vertically aligned when no voltage is applied. VA mode liquid crystal cells include (1) a VA mode liquid crystal cell in a narrow sense in which rod-like liquid crystal molecules are aligned substantially vertically when no voltage is applied and substantially horizontally when voltage is applied (Japanese Unexamined Patent Publication No. 176625) and (2) a liquid crystal cell (SID97, Digest of tech. Papers) 28 (1997) 845 in which the VA mode is multi-domain (for MVA mode) in order to enlarge the viewing angle. ), (3) a liquid crystal cell (n-ASM mode) in which rod-like liquid crystal molecules are substantially vertically aligned when no voltage is applied and twisted multi-domain alignment is applied when voltage is applied (Preprints 58 to 59 of the Japanese Liquid Crystal Symposium). (1998)) and (4) SURVAIVAL mode liquid crystal cell (presented at LCD International 98).
[0038]
The OCB mode liquid crystal cell is a liquid crystal display device using a bend alignment mode liquid crystal cell in which rod-like liquid crystal molecules are substantially (symmetrically) aligned in upper and lower directions of the liquid crystal cell. These are disclosed in the specifications of Japanese Patent Nos. 45838325 and 5410422. Since the rod-like liquid crystal molecules are symmetrically aligned at the upper and lower portions of the liquid crystal cell, the bend alignment mode liquid crystal cell has a self-optical compensation function. Therefore, this liquid crystal mode is also called an OCB (Optically Compensatory Bend) liquid crystal mode. The bend alignment mode liquid crystal display device has an advantage that the response speed is high. In a TN mode liquid crystal cell, rod-shaped liquid crystalline molecules are substantially horizontally aligned when no voltage is applied, and further twisted at 60 to 120 °. A TN mode liquid crystal cell is most often used as a color TFT liquid crystal display device, and is described in many documents.
[0039]
Next, a method for producing the measurement sample piece will be described.
(Method of preparing sample pieces)
It is necessary to slice a film piece having a length of 1 cm or more in the longitudinal direction (x) and the width direction (y) of the film-shaped resin into a thickness (z) direction in which infrared light is transmitted and a uniform thickness. Its film thickness is 0.2-5 μm, preferably 2-3 μm. The slicing angle must be parallel to the longitudinal direction (x) and the width direction (y), and the error must be within 0.1 °. Specifically, a film piece of 1 cm or more in each of the longitudinal direction (x) and the width direction (y) is adhered on a silicon wafer, and is parallel to the longitudinal direction (x) and the width direction (y) by an ultramicrotome equipped with a diamond knife. A method of cutting and collecting a section having a thickness of 2 μm was used.
[0040]
The measurement of a difference spectrum of infrared absorption will be described.
The sample piece prepared as described above is placed on a microrheometer (polymer modulator (R), Manning Applied Technology), and an infrared absorption spectrum is measured while applying a constant tension. The measurement is performed by irradiating polarized light whose light oscillation plane is parallel to the direction of tension application via a polarizer, performing integration 64 times and performing IR measurement (Magna 860 type FTIR, Nicolet), preferably measurement in a time measurement decomposition mode. I do. First, an IR spectrum in a state before applying a tension is measured, and a difference component is measured 15 seconds, 10 minutes, and 1 hour after the application of the tension as a background (reference). The rate of change in absorbance of the carbonyl group (C = O group) is determined as follows. 1580-1530 cm from the differential spectrum 15 seconds after tension application -1 Average and 1910-1860cm -1 1710-1780 cm, with the line connecting the average value of -1 Is the absorbance difference (t15s) after 15 seconds from the application of the tension. Subsequently, the absorbance difference (t60m) 10 minutes after the application of the tension (t10m) and 1 hour later is measured in the same manner.
[0041]
The definition of the absorbance change rate of the carbonyl group in the present invention will be described.
The rate of change in absorbance of carbonyl groups (A) from 15 seconds to 1 hour of stretching and the rate of change in absorbance of carbonyl groups (B) from 10 minutes to 1 hour of stretching are given by the following equations.
[0042]
A = t60m / t15s
B = t60m / t10m
The present inventors paid attention to not only the in-plane retardation value Ro as conventionally studied, but also the retardation value Rt in the thickness direction, and studied a method of increasing the retardation in the thickness direction. The present invention has been reached. Here, the in-plane retardation value Ro (nm) is Ro = (nx−ny) × d, and the retardation value Rt (nm) in the thickness direction is Rt = [(nx + ny) / 2−nz] × d. Where nx is the refractive index in the slow axis direction in the film plane, ny is the refractive index in the fast axis direction in the film plane, nz is the refractive index in the film thickness direction, and d is the film thickness. Represents the thickness (nm).
[0043]
The cellulose ester used for the retardation film of the present invention has a substitution degree of acetyl group of 1.75 to 2.15 and a total substitution degree of propionyl group and / or butyryl group of 0.60 to 0.80. It is preferably a cellulose ester, and more preferably, the degree of substitution of the acetyl group is 1.75 to 1.95, and the total degree of substitution of the propionyl group and / or the butyryl group is 0.61 to 0.76.
[0044]
Such a cellulose ester can be obtained by substituting an acetyl group, a propionyl group and / or a butyl group within the above-mentioned range by a conventional method using acetic anhydride, propionic anhydride and / or butyric anhydride for the hydroxyl group of cellulose. The method for synthesizing such a cellulose ester is not particularly limited. For example, it can be synthesized by the method described in JP-A-10-45804.
[0045]
The degree of substitution of the acetyl group, propionyl group and / or butyl group can be measured by ASTM-D817-96.
[0046]
By performing sufficient washing of the synthesized cellulose ester so that the amount of alkaline earth metal, the amount of residual sulfuric acid and the amount of free acid in the cellulose ester fall within the above ranges, dimensional change, mechanical strength, transparency, moisture permeability resistance , Rt value and Ro value can be obtained.
[0047]
The intrinsic viscosity of the cellulose ester is preferably 1.50 to 1.75 cm in order to obtain preferable mechanical strength as a protective film for a polarizing plate. 3 / G, preferably 1.53 to 1.63 cm 3 / G is preferred.
[0048]
The water content of the cellulose ester is preferably from 0.01 to 2.0% by mass, more preferably from 0.01 to 1.5% by mass, from the viewpoint of obtaining high transparency of the obtained film. These characteristic values can be measured by ASTM-D817-96.
[0049]
Next, a method for producing a cellulose ester film by a solution casting method will be described.
[0050]
The cellulose used as the raw material of the cellulose ester used in the cellulose ester film of the present invention is not particularly limited, and cotton linter, wood pulp, kenaf and the like can be used. These may be used in combination. It is preferable to use a large amount of cellulose ester synthesized from cotton linter, which has good releasability from a belt or a drum, because of high productivity efficiency. The proportion of the cellulose ester synthesized from the cotton linter is more than 60% by mass, so that the effect of the releasability becomes remarkable. Therefore, the ratio is preferably 60% by mass or more, more preferably 85% by mass or more, and further, it can be used alone. Most preferred. Regarding the cellulose ester used in the present invention, the substitution degree of the acetyl group, propionyl group and / or butyl group and the like are as described above.
[0051]
It is also possible to use a mixture of two or more cellulose esters having different degrees of substitution.
First, a cellulose ester is dissolved in an organic solvent capable of dissolving to form a dope. The flakes of cellulose ester and an organic solvent are mixed and dissolved with stirring to form a dope. The dissolution may be carried out at normal pressure, at a temperature below the boiling point of the main solvent, or at a pressure above the boiling point of the main solvent, as disclosed in JP-A-9-95544, JP-A-9-95557 or JP-A-9-95538. There are various dissolving methods such as a method using a cooling dissolution method as described and a method using a high pressure as described in JP-A-11-21379. After dissolution, the dope is filtered with a filter medium, defoamed, and sent to the next step by a pump. The concentration of the cellulose ester in the dope is preferably about 10 to 35% by mass.
[0052]
Examples of the organic solvent for dissolving the cellulose ester include methyl acetate, ethyl acetate, amyl acetate, ethyl formate, acetone, cyclohexanone, methyl acetoacetate, tetrahydrofuran, 1,3-dioxolan, 1,4-dioxane, 2,2,2- Trifluoroethanol, 2,2,3,3-hexafluoro-1-propanol, 1,3-difluoro-2-propanol, 1,1,1,3,3,3-hexafluoro-2-methyl-2- Examples thereof include propanol, 1,1,1,3,3,3-hexafluoro-2-propanol, 2,2,3,3,3-pentafluoro-1-propanol, nitroethane, and methylene chloride. Chlorinated organic solvents such as methylene chloride may not be used in recent severe environmental problems, and non-chlorinated organic solvents are preferred. Among them, methyl acetate and acetone can be preferably used. In addition, it is preferable to use a lower alcohol such as methanol, ethanol, or butanol in combination with these organic solvents because the solubility of the cellulose ester in the organic solvent can be improved and the viscosity of the dope can be reduced. Particularly, ethanol having a low boiling point and low toxicity is preferable.
[0053]
In the dope, additives such as a plasticizer such as a phthalic acid ester and a phosphoric acid ester, an ultraviolet absorber, an antioxidant, and a matting agent may be added. These additives preferably have three or more aromatic rings in the molecule, and the amount of addition is preferably 0.5 to 30% by mass.
[0054]
In the present invention, it is preferable to include a plasticizer in the cellulose ester film. The plasticizer that can be used is not particularly limited, but in the case of a phosphate ester system, triphenyl phosphate, tricresyl phosphate, cresyl diphenyl phosphate, octyl diphenyl phosphate, diphenyl biphenyl phosphate, trioctyl phosphate, tributyl phosphate, etc. For acid ester type, diethyl phthalate, dimethoxyethyl phthalate, dimethyl phthalate, dioctyl phthalate, dibutyl phthalate, di-2-ethylhexyl phthalate, dicyclohexyl phthalate, dibenzyl phthalate, etc., and for glycolic acid ester type, triacetin, tributyrin, butyl phthalyl butyl Glycolate, ethylphthalylethyl glycolate, methylphthalylethyl glycolate, butylphthalyl Preferably alone or in combination with chill glycolate or the like. If necessary, two or more plasticizers may be used in combination. When used for a cellulose ester, the proportion of the phosphate ester-based plasticizer to be used is preferably 50% by mass or less based on the total plasticizer, because hydrolysis of the cellulose ester film hardly occurs and durability is excellent. It is more preferable that the ratio of the phosphate plasticizer is smaller, and it is particularly preferable to use a phosphate plasticizer, a phthalate or glycolate plasticizer, a citrate ester, or a polyhydric alcohol ester. preferable.
[0055]
In the present invention, it is preferable to include an ultraviolet absorber in the cellulose ester film. As the ultraviolet absorber, from the viewpoint of preventing deterioration of the liquid crystal, the ultraviolet absorber having a wavelength of 370 nm or less is excellent, and a good liquid crystal display is provided. From the viewpoint of properties, those having absorption of visible light having a wavelength of 400 nm or more as small as possible are preferably used. In particular, the transmittance at a wavelength of 370 nm needs to be 10% or less, preferably 5% or less, and more preferably 2% or less. Examples of the ultraviolet absorber used include, for example, oxybenzophenone-based compounds, benzotriazole-based compounds, salicylate-based compounds, benzophenone-based compounds, triazine-based compounds, cyanoacrylate-based compounds, nickel complex salt-based compounds, and the like. Not limited. Benzotriazole compounds described in Registration No. 3265393 can also be preferably used. Two or more ultraviolet absorbers may be used. As a method of adding the ultraviolet absorber to the dope, the ultraviolet absorber may be added after being dissolved in an organic solvent such as alcohol, methylene chloride, or dioxolane, or may be directly added to the dope composition. Those which do not dissolve in an organic solvent, such as inorganic powders, are dispersed in an organic solvent and a cellulose ester using a dissolver or a sand mill and then added to the dope. In the present invention, the amount of the ultraviolet absorber used is 0.1 to 5.0% by mass, preferably 0.5 to 2.0% by mass, more preferably 0.8 to 2.0% by mass based on the cellulose ester. %.
[0056]
Further, the cellulose ester film of the present invention preferably contains an antioxidant. As the antioxidant, a hindered phenol compound is preferably used, and 2,6-di-t-butyl-p is preferably used. -Cresol, pentaerythrityl-tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], triethylene glycol-bis [3- (3-tert-butyl-5-methyl-4) -Hydroxyphenyl) propionate], 1,6-hexanediol-bis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], 2,4-bis- (n-octylthio) -6 -(4-hydroxy-3,5-di-t-butylanilino) -1,3,5-triazine, 2,2-thio-diethylenebis [3- (3 5-di-t-butyl-4-hydroxyphenyl) propionate], octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, N, N'-hexamethylenebis (3,5 -Di-tert-butyl-4-hydroxy-hydrocinnamamide), 1,3,5-trimethyl-2,4,6-tris (3,5-di-tert-butyl-4-hydroxybenzyl) benzene, Tris- (3,5-di-t-butyl-4-hydroxybenzyl) -isocyanurate and the like can be mentioned. Particularly, 2,6-di-t-butyl-p-cresol, pentaerythrityl-tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], triethylene glycol-bis [3- (3-t-butyl-5-methyl-4-hydroxyphenyl) propionate] is preferred. Further, for example, a hydrazine-based metal deactivator such as N, N'-bis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionyl] hydrazine or tris (2,4-di-t- A phosphorus-based processing stabilizer such as (-butylphenyl) phosphite may be used in combination. The addition amount of these compounds is preferably 1 ppm to 1.0%, more preferably 10 to 1000 ppm by mass relative to the cellulose ester.
[0057]
In the present invention, in the cellulose ester film, in order to improve the handleability, for example, silicon dioxide, titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, kaolin, talc, calcined calcium silicate, hydrated calcium silicate, silica It is preferable to include inorganic fine particles such as aluminum silicate, magnesium silicate, and calcium phosphate, and a matting agent such as a crosslinked polymer. Among them, silicon dioxide is preferable because the haze of the film can be reduced. The average particle size of the secondary particles of the fine particles is in the range of 0.01 to 1.0 μm, and the content thereof is preferably 0.005 to 0.3% by mass based on the cellulose ester. Fine particles such as silicon dioxide are often surface-treated with an organic substance, but such particles are preferable because the haze of the film can be reduced. Preferred organic materials for the surface treatment include halosilanes, alkoxysilanes, silazanes, siloxanes, and the like, and a treatment in which a methyl group is present on the surface is preferable. The larger the average particle size of the fine particles, the greater the matting effect, and the smaller the average particle size, the more excellent the transparency. Therefore, the average particle size of the primary particles of the fine particles is preferably 5 to 50 nm, more preferably 7 to 16 nm. . These fine particles are usually present in the film as agglomerates, and it is preferable to form irregularities of 0.01 to 1.0 μm on the film surface. Examples of the fine particles of silicon dioxide include AEROSIL 200, 200V, 300, R972, R972V, R974, R202, R812, OX50, and TT600 manufactured by Aerosil Co., Ltd., and preferably AEROSIL R972, R972V, R974, R202, R812. is there. Two or more of these matting agents may be used in combination. When two or more kinds are used in combination, they can be used by mixing at an arbitrary ratio. In this case, a matting agent having a different average particle size or a different material, for example, AEROSIL 200V and R972V can be used in a mass ratio of 0.1: 99.9 to 99.9: 0.1.
[0058]
The solution casting film forming method is to filter the above dope, send it to the die with a metering pump, cast the dope from the die onto a stainless belt or a metal drum whose surface is polished, and on the metal support, The organic solvent is evaporated or cooled to solidify, the web is peeled off before the metal support goes around, and dried in a drying step to form a film.
[0059]
In the process until the web is peeled off from the metal support, as a means for increasing Rt, the amount of residual solvent at the time of peeling is preferably reduced, and the amount of residual solvent is preferably 5 to 100% by mass relative to the web. Preferably it is 5-80 mass%, more preferably 10-45 mass%.
[0060]
The residual solvent amount can be expressed by the following equation.
Residual solvent amount (% by mass) = {(M−N) / N} × 100
Here, M is the mass of the web at an arbitrary point, and N is the mass of M when dried at 110 ° C. for 3 hours.
[0061]
When peeling, the peeling tension is preferably about 50 to 390 N / m, more preferably 100 to 300 N / m, and further preferably 100 to 250 N / m.
[0062]
In the drying step, the exfoliated web is passed through a roll transport dryer and / or a tenter dryer to be dried, and finally the residual solvent amount of the film is adjusted to 0.5% by mass or less, preferably 0.01% by mass or less. It is. When drying with a tenter, tension between the clips may be applied to such an extent that the web shrinks due to the drying while the width is held by the clips, but when the stretching ratio is increased, Rt and Ro can be increased, When the amount of the residual solvent is 2 to 20% by mass, the film is preferably stretched to a stretching ratio of 1.01 to 2.0 times. In the present invention, it is preferable to control the stretching conditions so that Ro is 30 to 200 nm. Further, Rt is preferably from 70 to 400 nm.
[0063]
Also, in the drying step by roll conveyance, Ro and Rt can be increased by controlling the conveyance tension. The transport tension is preferably in the range of 50 to 200 N / m, more preferably 75 to 150 N / m, and even more preferably 75 to 120 N / m.
[0064]
Further, the retardation film of the present invention preferably has a thickness of 20 to 200 μm, more preferably 40 to 160 μm, and more preferably 60 to 140 μm.
[0065]
The retardation film having the cellulose ester of the present invention produced as described above is preferably used for a polarizing plate as a protective film for the polarizing plate. As described above, the polarizing plate is formed by bonding and laminating a protective film for a polarizing plate on at least one surface of a polarizer (polarizing film). Conventionally known polarizers can be used. For example, a polarizer is obtained by treating a hydrophilic polymer film such as a polyvinyl alcohol film with a dichroic dye such as iodine and stretching. Lamination of the cellulose ester film and the polarizer is not particularly limited, but can be performed with an adhesive composed of an aqueous solution of a water-soluble polymer. In the present invention, a completely saponified polyvinyl alcohol aqueous solution is preferably used as the water-soluble polymer adhesive.
[0066]
The polarizing plate thus obtained can be used for various liquid crystal display devices. However, since the retardation film used as the protective film for a polarizing plate of the present invention can obtain a high retardation value, a VA liquid crystal display device can be used. Especially useful for:
[0067]
By providing a polarizing plate using the cellulose ester film of the present invention on one side or both sides of a TN type, VA type or OCB type liquid crystal cell, a liquid crystal display device having a wide viewing angle can be obtained stably. . It is preferable to attach the polarizing plate such that the retardation film of the polarizing plate faces the liquid crystal cell.
[0068]
By setting Ro and Rt of the cellulose ester film as the protective film for the polarizing plate in the above range, the liquid crystal display device of the present invention can have a wide viewing angle characteristic.
[0069]
Further, the retardation film of the present invention may be provided with an optically anisotropic layer to form an optical compensation film. The optically anisotropic layer is formed by directly forming an alignment layer on the retardation film or on a subbing layer, coating a liquid crystal compound on the alignment layer, aligning the alignment layer, and fixing the alignment state. can do.
[0070]
The alignment layer according to the present invention is disposed on a transparent support, and is used to align a liquid crystal compound in the optically anisotropic layer adjacent to an optically anisotropic layer described later.
[0071]
Here, the material constituting the alignment layer will be described.
Specific materials for forming the alignment layer include the following resins and substrates, but are not limited thereto. For example, polyimide, polyamide imide, polyamide, polyether imide, polyether ether ketone, polyether ketone, polyketone sulfide, polyether sulfone, polysulfone, polyphenylene sulfide, polyphenylene oxide, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polyacetal , Polycarbonate, polyarylate, acrylic resin, polyvinyl alcohol, polypropylene, polyvinyl pyrrolidone, cellulosic plastics, epoxy resin, phenol resin and the like.
[0072]
For the alignment treatment, a known method can be used, but a treatment method widely used as a liquid crystal alignment treatment step of LCD such as a rubbing treatment can be used, and a known optical alignment layer can also be used. it can.
[0073]
Next, the optically anisotropic layer according to the present invention will be described.
The optically anisotropic layer according to the optical compensation film of the present invention improves the viewing angle characteristics of the liquid crystal display, and the thickness of the optically anisotropic layer is determined by the birefringence of the liquid crystal compound constituting the layer and the orientation of the liquid crystal compound. Although it depends on the state, the thickness is generally 0.2 to 5 μm, preferably 0.4 to 3 μm.
[0074]
At least one optically anisotropic layer according to the present invention can be provided for a retardation film, but a plurality of optically anisotropic layers can be provided for one retardation film. When the liquid crystal compound is comprised in a state in which the liquid crystal compound is oriented or in a state in which the orientation of the liquid crystal compound is fixed, an optical property suitable for a display can be appropriately designed for the orientation direction.
[0075]
In the present invention, since the retardation film has predetermined optical characteristics, it is preferable from the viewpoint of cost reduction and productivity that only one liquid crystal layer is applied thereon.
[0076]
When installing the optical compensation film of the present invention, it is normal that an upper polarizer and a lower polarizer are arranged above and below a pair of substrates located on both sides of a driving liquid crystal cell. It is preferable that at least one optical compensation film of the present invention is provided between at least one of the side polarizers. In particular, in order to reduce the cost and achieve the objective effects of the present invention, It is preferable to provide one optical compensation film of the present invention between each of the polarizer and the lower polarizer.
[0077]
In the case where the liquid crystal display device is a twisted nematic (TN type) liquid crystal display device, the optical compensation film is provided such that the retardation film surface side of the optical compensation film of the present invention comes to the substrate side closest to the TN type liquid crystal cell. By laminating, and by laminating in the direction in which the maximum refractive index direction in the retardation film plane of the optical compensation film is substantially perpendicular to the orientation direction of the nematic liquid crystal of the substrate closest to the liquid crystal cell, excellent effects can be obtained. Can be expressed. The term “substantially orthogonal” refers to 90 ± 5 °, but is particularly preferably 90 °.
[0078]
In the optically anisotropic layer formed by aligning and fixing the liquid crystal molecules according to the present invention, the average tilt angle of the liquid crystal molecules is preferably oblique when observed from the cross-sectional direction of the optically anisotropic layer, and the thickness is preferably The orientation angle may change with respect to the direction. Further, the inclination angle is high on the retardation film side and decreases as approaching the polarizer, and this change is preferably continuous. Although the average tilt angle varies depending on the design of the display in order to compensate for the viewing angle of the display, it is preferably 10 to 70 °, more preferably 25 to 50 °, particularly preferably for a TN liquid crystal display device.
[0079]
In the present invention, it is preferable that the direction (direction A) in which the maximum refractive index direction of the optically anisotropic layer is projected on the retardation film surface is substantially equal to the Ny direction (direction B) of the retardation film. Here, being substantially equal to the Ny direction means that the angle between the direction A and the direction B is within ± 2 °, preferably within ± 1 °.
[0080]
Next, the liquid crystal compound according to the present invention will be described.
The liquid crystal compound according to the present invention is not particularly limited as long as the liquid crystal compound can be aligned. As a result, the liquid crystal compound is optically anisotropic by the alignment without scattering light in a visible light region.
[0081]
Examples of the liquid crystal compound other than the polymer liquid crystal in the liquid crystal compound according to the present invention include a discotic compound or a generally rod-shaped liquid crystal compound, and a liquid crystal compound having an optically positive birefringence is preferable, and more preferably an unsaturated liquid crystal compound having an optically positive birefringence Positive birefringent liquid crystal compounds having an ethylenic group are preferred from the viewpoint of fixing the alignment, and examples thereof include compounds having a structure described in JP-A Nos. 9-281480 and 9-281481. It is not particularly limited to these.
[0082]
The structure of the liquid crystal compound according to the present invention is not particularly limited, but the optically anisotropic layer according to the present invention has a chemical reaction or a temperature difference in a state in which liquid crystal molecules are aligned in order to develop a desired optical anisotropy. By using the treatment, the orientation of the liquid crystal compound can be fixed. In addition, when a solution containing a liquid crystal compound and an organic solvent is prepared, and the solution is applied and dried to produce an optically anisotropic layer, the alignment treatment of the liquid crystal compound at a temperature lower than or equal to the liquid crystal transition temperature without heating the liquid crystal transition temperature or higher. It is also possible to do.
[0083]
When a solution containing a liquid crystal compound is applied, the solvent is dried and removed after application, so that a liquid crystal layer having a uniform film thickness can be obtained. The liquid crystal layer can fix the orientation of the liquid crystal by the action of heat or light energy or a chemical reaction using a combination of heat and light energy.
[0084]
Examples of the radical polymerization initiator for the polymerization reaction of the unsaturated ethylenic group include, for example, azobis compounds, peroxides, hydroperoxides, redox catalysts, such as potassium persulfate, ammonium persulfate, and tert-butyl peroctoate. Benzoyl peroxide, isopropyl percarbonate, 2,4-dichlorobenzoyl peroxide, methyl ethyl ketone peroxide, cumene hydroperoxide, dicumyl peroxide, azobisisobutyronitrile, 2,2'-azobis (2-amidino Propane) hydrochloride or benzophenones, acetophenones, benzoins, thioxanthones and the like. Details of these are described in "Ultraviolet Curing System", General Technology Center, pp. 63-147, 1989.
[0085]
When a curing reaction is performed by using a radical reaction, irradiation with the above-mentioned actinic ray under a nitrogen atmosphere to avoid a delay in the polymerization reaction due to the presence of oxygen in the air can reduce the reaction time and reduce the amount of light. It is preferable in that it can be cured.
[0086]
On the other hand, when the liquid crystal compound is a polymer liquid crystal, it is not necessary to fix the alignment of the liquid crystal by performing a curing reaction by the above chemical reaction. For example, the orientation can be fixed by heat-treating a polymer liquid crystal at a temperature equal to or higher than the glass transition temperature and allowing it to cool to a temperature equal to or lower than the glass transition temperature.
[0087]
When the glass transition temperature of the polymer liquid crystal is higher than the heat resistance temperature of the support, the alignment film is provided on the heat resistant support, the polymer liquid crystal is applied, and the glass transition temperature of the polymer liquid crystal is higher than the glass transition temperature. And can be oriented by heating. This is allowed to cool to room temperature to fix the orientation of the polymer liquid crystal, and then transferred to a support using an adhesive to produce an optically anisotropic body.
[0088]
In the present invention, an optically anisotropic layer can be formed on a retardation film to obtain the optical compensation film of the present invention.
[0089]
【Example】
Hereinafter, the present invention will be described with reference to examples, but embodiments of the present invention are not limited thereto.
[0090]
Example 1
(Preparation of retardation film)
(Retardation film 1)
The degree of substitution of acetyl group is 1.75, the degree of substitution of propionyl group is 0.80, the content of alkaline earth metal is 6 ppm, the amount of residual sulfuric acid (as sulfur element) is 16 ppm, the amount of free acid is 20 ppm, and the limiting viscosity is 1.54cm 3 / G, 100 kg of cellulose acetate propionate having a water content of 0.1% by mass (average particle size: 1500 μm), 2 kg of ethylphthalylethyl glycolate, 10 kg of triphenyl phosphate, 300 kg of methylene chloride, and 60 kg of ethanol in a closed container. The mixture was gradually heated while slowly stirring, and raised to 45 ° C. over 60 minutes to dissolve. The inside of the container became 120 kPa. Azumi filter paper No. No. manufactured by Azumi Filter Paper Co., Ltd. After filtration three times using 244, the mixture was allowed to stand to remove bubbles in the dope. Separately, 5 kg of the above-mentioned cellulose acetate propionate, 3 kg of Tinuvin 326 (manufactured by Ciba Specialty Chemicals), 5 kg of Tinuvin 171 (manufactured by Ciba Specialty Chemicals), 5 kg of Tinuvin 109 (manufactured by Ciba Specialty Chemicals), and AEROSIL R972V (manufactured by Nippon Aerosil Co., Ltd.) (1 kg) was mixed with 94 kg of methylene chloride and 8 kg of ethanol with stirring and dissolved to prepare an ultraviolet absorbent solution. 2 kg of the ultraviolet absorbent solution was added to 100 kg of the above-mentioned dope, and the mixture was sufficiently mixed with a static mixer, and then cast from a die onto a stainless steel belt at a dope temperature of 35 ° C. After drying on a stainless steel belt whose temperature is controlled by bringing hot water of 35 ° C. into contact with the back surface of the stainless steel belt, further contacting cold water of 12 ° C. with the back surface of the stainless steel belt for 15 seconds, and then peeling off the stainless steel belt did. The residual solvent amount in the web at the time of peeling was 90% by mass. Next, both ends of the peeled web are gripped with a tenter, stretched 1.3 times in the width direction at 115 ° C. with a residual solvent amount of 15% by mass, and then dried at 120 ° C. to obtain a retardation film 1 having a thickness of 80 μm. Got. The residual solvent amount was 0.01% by mass.
[0091]
In addition, the substitution degree of the fatty acid cellulose ester and the residual solvent amount were measured as follows.
[0092]
(Degree of substitution of fatty acid cellulose ester)
The degree of substitution is measured by a saponification method. The dried cellulose ester is precisely weighed and dissolved in a mixed solvent of acetone and dimethyl sulfoxide (volume ratio: 4: 1), and a predetermined 1 mol / L aqueous sodium hydroxide solution is added thereto, followed by saponification at 25 ° C. for 2 hours. Excess sodium hydroxide is titrated with 0.5 mol / L sulfuric acid using phenolphthalein as an indicator. A blank test is performed in the same manner as described above. Further, the supernatant of the solution after completion of the titration is diluted, and the composition of the organic acid is measured by an ordinary method using an ion chromatograph. Then, the substitution degree (%) is calculated according to the following.
[0093]
TA = (Q-P) × F / (1000 × W)
DSac = (162.14 × TA) / (1−42.14 × TA + (1-56.06 × TA) × (AL / AC))
DSpr = DSsc × (AL / AC)
In the formula, P is the amount of 0.5 mol / L sulfuric acid required for titration of the sample (ml), Q is the amount of 0.5 mol / L sulfuric acid required for the blank test (ml), F is the titer of 0.5 mol / L sulfuric acid, W is the sample mass (g), TA is the total amount of organic acid (mol / g), AL / AC is the molar ratio of acetic acid (AC) to another organic acid (AL) measured by ion chromatography, and DSsc is acetyl. The degree of substitution of the group, DSpr, indicates the degree of substitution of the propionyl group.
[0094]
(Amount of residual solvent)
Residual solvent amount (%) = (M−N) / N × 100
M is the mass of the film (web) before heating, and N is the mass after drying M at 110 ° C. for 3 hours.
[0095]
(Retardation film 2)
The degree of substitution of acetyl group is 1.92, the degree of substitution of propionyl group is 0.76, the content of alkaline earth metal is 15 ppm, the amount of residual sulfuric acid (as sulfur element) is 20 ppm, the amount of free acid is 8 ppm, and the limiting viscosity is 1.61, 100 kg of cellulose acetate propionate (average particle size: 350 μm) having a water content of 0.2% by mass, ethylphthalylethyl glycolate 2 kg, triphenylphosphate 10 kg, methyl acetate 300 kg, and ethanol 60 kg in a closed container The mixture was gradually heated while slowly stirring, and heated to 50 ° C. over 60 minutes to dissolve. Azumi filter paper No. No. manufactured by Azumi Filter Paper Co., Ltd. After filtration three times using 244, the mixture was allowed to stand to remove bubbles in the dope. Separately, 5 kg of the above-mentioned cellulose acetate propionate, 3 kg of Tinuvin 326 (manufactured by Ciba Specialty Chemicals), 5 kg of Tinuvin 171 (manufactured by Ciba Specialty Chemicals), 5 kg of Tinuvin 109 (manufactured by Ciba Specialty Chemicals), and AEROSIL 1 kg of R972V (manufactured by Nippon Aerosil Co., Ltd.) was mixed with 75 kg of methyl acetate and 25 kg of ethanol with stirring and dissolved to prepare an ultraviolet absorbent solution. 2 kg of the ultraviolet absorbent solution was added to 100 kg of the above-mentioned dope, and the mixture was sufficiently mixed with a static mixer, and then cast from a die onto a stainless steel belt at a dope temperature of 50 ° C. After drying on a temperature controlled stainless steel belt by contacting hot water of 50 ° C. from the back surface of the stainless steel belt, further contacting cold water of 12 ° C. with the back surface of the stainless steel belt for 15 seconds, and then peeling off the stainless steel belt did. The amount of residual solvent in the web at the time of peeling was 85% by mass. Next, both ends of the peeled web are gripped by a tenter, and when the residual solvent amount is 10% by mass at 115 ° C., the web is stretched 1.3 times in the width direction, and then dried at 120 ° C. to a film thickness of 80 μm. A phase difference film 2 was obtained. The residual solvent amount was 0.01% by mass.
[0096]
(Retardation film 3)
The cellulose acetate propionate used in the production of the retardation film 2 was obtained by replacing the acetyl group with a degree of substitution of 1.94, the propionyl group with a degree of substitution of 0.63, the alkaline earth metal content of 8 ppm, and the residual sulfuric acid amount ( Retardation film 2 except that cellulose acetate propionate (average particle size: 150 μm) having a sulfur content of 25 ppm, a free acid content of 70 ppm, an intrinsic viscosity of 1.54, and a water content of 0.9 mass% was used. In the same manner as in the above, a retardation film 3 having a thickness of 80 μm was obtained.
[0097]
(Retardation film 4)
The cellulose acetate propionate used in the production of the retardation film 2 was prepared by changing the degree of substitution of the acetyl group to 1.92, the degree of substitution of the propionyl group to 0.70, the alkaline earth metal content to 6 ppm, and the residual sulfuric acid amount ( Retardation film 2 except that cellulose acetate propionate (average particle diameter: 500 μm) having 12 ppm of free acid, 20 ppm of free acid, intrinsic viscosity of 1.59, and water content of 0.1 mass% was 0.1 mass%. Similarly, a retardation film 4 having a thickness of 80 μm was obtained.
[0098]
(Retardation film 5)
The retardation was the same as that of the retardation film 2 except that 2 kg of ethyl phthalyl ethyl glycolate and 10 kg of triphenyl phosphate used in the production of the retardation film 2 were changed to 4 kg of ethyl phthalyl ethyl glycolate and 8 kg of dibenzyl phthalate. Film 5 was obtained.
[0099]
(Retardation film 6)
The retardation was performed in the same manner as in the retardation film 3 except that 2 kg of ethyl phthalyl ethyl glycolate and 10 kg of triphenyl phosphate used in the production of the retardation film 3 were changed to 4 kg of ethyl phthalyl ethyl glycolate and 8 kg of dibenzyl phthalate. Film 6 was obtained.
[0100]
(Retardation film 7)
3 kg of Tinuvin 326 (manufactured by Ciba Specialty Chemicals), 5 kg of Tinuvin 171 (manufactured by Ciba Specialty Chemicals), and 5 kg of Tinuvin 109 (manufactured by Ciba Specialty Chemicals) used in the production of the retardation film 2 were 2-hydroxy-4-benzyloxy. A retardation film 7 was obtained in the same manner as the retardation film 2 except that the benzophenone was changed to 8 kg.
[0101]
(Phase difference film 8)
The retardation was performed in the same manner as in the retardation film 7 except that 2 kg of ethyl phthalyl ethyl glycolate and 10 kg of triphenyl phosphate used in the production of the retardation film 7 were changed to 4 kg of ethyl phthalyl ethyl glycolate and 8 kg of dibenzyl phthalate. Film 8 was obtained.
[0102]
(Retardation film 9)
After swelling the cellulose acetate propionate used in the production of the retardation film 8 with methyl acetate, it was cooled to −20 ° C. and raised to 50 ° C. to dissolve the cellulose ester. In the same manner as in 8, a retardation film 9 was obtained.
[0103]
(Retardation film 10)
The cellulose acetate propionate used in the production of the retardation film 9 was prepared by changing the degree of acetyl substitution to 2.75, the alkaline earth metal content to 25 ppm, the residual sulfuric acid content (as sulfur element) to 25 ppm, and the free acid content to 10 ppm. A retardation film 10 was obtained in the same manner as the retardation film 9 except that the acetyl cellulose was changed to acetylcellulose.
[0104]
(Retardation film 11)
A retardation film 11 was obtained in the same manner as the retardation film 10, except that 8 kg of 2-hydroxy-4-benzyloxybenzophenone used in the production of the retardation film 10 was changed to 8 kg of the compound T-1.
[0105]
(Retardation film 12)
The cellulose acetate propionate used in the production of the retardation film 1 was prepared by changing the degree of substitution of the acetyl group to 1.60, the degree of substitution of the propionyl group to 0.82, the alkaline earth metal content to 100 ppm, and the residual sulfuric acid amount ( 70 ppm, free acid content 100 ppm, intrinsic viscosity 1.5 cm 3 / G and a retardation film 12 were obtained in the same manner as the retardation film 1 except that the cellulose acetate propionate (average particle diameter: 350 μm) containing 0.7% by mass of water was used.
[0106]
(Retardation film 13)
The cellulose acetate propionate used in the production of the retardation film 1 was prepared by changing the degree of substitution of the acetyl group to 1.75, the degree of substitution of the propionyl group to 0.80, the content of the alkaline earth metal to 55 ppm, and the residual sulfuric acid amount ( (As sulfur element) 60 ppm, free acid amount 110 ppm, intrinsic viscosity 1.57 cm 3 / G, and a retardation film 13 was obtained in the same manner as the retardation film 1 except that the cellulose acetate propionate (average particle diameter: 1000 μm) having a water content of 0.1% by mass was used.
[0107]
(Measurement of absorbance change rate of carbonyl group)
For the produced retardation films 1 to 13, the absorbance change rate A of the carbonyl group from 15 seconds to 1 hour after stretching and the absorbance change B of the carbonyl group from 10 minutes to 1 hour after stretching were measured by the above-described measurement method 24 hours after the film production. It was measured.
[0108]
[Evaluation of retardation fluctuation]
The produced retardation films 1 to 13 were stored at 60 ° C. and 80% RH for 2 weeks and for 1 month to forcibly degrade, and were subjected to 23 ° C. using an automatic birefringence meter KOBRA-21ADH (manufactured by Oji Scientific Instruments). , 55% RH, and a wavelength of 590 nm, a three-dimensional refractive index measurement was performed to determine the refractive indexes nx, ny, and nz, and Ro and Rt were calculated according to the above equations. Table 1 shows the change due to the forced degradation together with the Ro and Rt of the sample before the forced degradation.
[0109]
[Table 1]
[0110]
It was confirmed that the retardation film of the present invention had little change in retardation during storage and had stable characteristics.
[0111]
(Preparation of polarizing plate)
(Polarizing plate 1)
Using the retardation film 1 of the present invention and a commercially available cellulose triacetate film (Konica Cat KC8UX2MW, manufactured by Konica) as a protective film for a polarizing plate, the polarizing plate 1 is prepared by laminating both sides of a polarizer according to the following procedure. did.
[0112]
(A) Production of polarizer
A polyvinyl alcohol film having a thickness of 120 μm was uniaxially stretched (110 ° C., stretch ratio 5 times). This was immersed in an aqueous solution consisting of 0.075 g of iodine, 5 g of potassium iodide and 100 g of water for 60 seconds, and then immersed in a 68 ° C. aqueous solution consisting of 6 g of potassium iodide, 7.5 g of boric acid and 100 g of water. . This was washed with water and dried to obtain a long polarizer.
[0113]
(B) Production of polarizing plate
Then, according to the following steps 1 to 5, the polarizer and the protective film for each polarizing plate were attached to each other to prepare a polarizing plate.
[0114]
Step 1: Each of the retardation film 1 and the cellulose triacetate film was immersed in a 2 mol / L sodium hydroxide solution at 55 ° C. for 90 seconds, then washed with water and dried.
[0115]
Step 2: The above-described polarizer was immersed in a polyvinyl alcohol adhesive tank having a solid content of 2% by mass for 1 to 2 seconds.
[0116]
Step 3: The excess adhesive adhering to the polarizer in step 2 was lightly removed, and was sandwiched between the cellulose triacetate film alkali-treated in step 1 and the retardation film 1, and laminated. The retardation film 1 was disposed such that the slow axis direction of the retardation film 1 was perpendicular to the absorption axis of the polarizer.
[0117]
Step 4: 20-30 N / cm with two rotating rollers 2 Under a pressure of about 2 m / min. At this time, care was taken to prevent air bubbles from entering.
[0118]
Step 5: The sample prepared in step 4 was dried in a dryer at 80 ° C. for 3 minutes to prepare a polarizing plate 1.
[0119]
(Polarizing plates 2 to 5)
Polarizing plates 2, 3, and 4 were produced in the same manner except that the retardation film 1 was changed to the retardation films 2, 12, and 13, respectively. Further, a polarizing plate 5 was prepared using a cellulose triacetate film on both sides.
[0120]
[Production of liquid crystal display device]
Carefully peel off the polarizing plates on both sides of a commercially available liquid crystal display device (manufactured by NEC, MultiSync LCD1525J: model name LA-1529HM, TN type liquid crystal), align the polarizing direction with the original polarizing plate, and adjust the phase difference. The polarizing plates 1 to 5 were bonded so that the surface on which the film was bonded was on the liquid crystal cell side, to produce liquid crystal display panels 1-1 to 1-5, respectively.
[0121]
In addition, the polarizers on both sides of a commercially available liquid crystal display device (manufactured by Fujitsu Ltd., 15-inch display VL-1530S, VA type liquid crystal) are carefully peeled off, and the polarization direction of the original polarizer and the retardation film are adjusted. The above-mentioned polarizing plates 1 to 5 were bonded together such that the surface to be bonded was on the liquid crystal cell side, thereby producing liquid crystal display devices 2-1 to 2-5.
[0122]
[Evaluation of viewing angle characteristics]
On the manufactured liquid crystal display device, white display, black display and 8-grayscale display are performed by VG365N video pattern generator manufactured by AMT, and the contrast ratio at the time of white / black display is measured by LCD-7000 manufactured by Otsuka Electronics Co., Ltd. It was measured. An angle showing a contrast ratio ≧ 10 was defined as a viewing angle.
[0123]
As a result of the measurement, the liquid crystal display device using the TN type liquid crystal cell and the VA type liquid crystal cell was compared with the liquid crystal display device using the comparative polarizing plate 5 (viewing angle in the horizontal direction of 125 °). The liquid crystal display devices using the liquid crystal display devices 1 and 2 had a remarkably improved viewing angle, which was 160 ° in both the upper, lower, left and right directions. On the other hand, the liquid crystal display device using the comparative polarizing plates 3 and 4 has a poor viewing angle improvement effect of about 130 to 145 °, and it has been confirmed that the viewing angle fluctuates over time. Do you get it.
[0124]
Example 2
[Production of retardation film 14]
The degree of substitution of acetyl group is 1.94, the degree of substitution of propionyl group is 0.76, the content of alkaline earth metal is 5 ppm, the amount of residual sulfuric acid (as sulfur element) is 10 ppm, the amount of free acid is 7 ppm, and the limiting viscosity is 1.62cm 3 / G, 100 kg of cellulose acetate propionate (average particle diameter 1000 μm) having a water content of 0.1% by mass, ethyl phthalyl ethyl glycolate 3 kg, triphenyl phosphate 8 kg, methyl acetate 300 kg, and ethanol 100 kg in a closed container. Then, the mixture was gradually heated while slowly stirring, and heated to 55 ° C. over 60 minutes to dissolve. Azumi filter paper No. No. manufactured by Azumi Filter Paper Co., Ltd. After filtering three times using 244, the mixture was allowed to stand and bubbles in the dope were removed. Separately, 5 kg of the cellulose acetate propionate, 5 kg of Tinuvin 171 (manufactured by Ciba Specialty Chemicals), 5 kg of Tinuvin 109 (manufactured by Ciba Specialty Chemicals), and 1 kg of AEROSIL R972V (manufactured by Nippon Aerosil Co., Ltd.) were added to methyl acetate. 75 kg of ethanol and 25 kg of ethanol were mixed and dissolved by stirring to prepare an ultraviolet absorbent solution. 2 kg of the ultraviolet absorbent solution was added to 100 kg of the above-mentioned dope, and the mixture was sufficiently mixed with a static mixer. The mixture was cast from a die onto a stainless steel belt at a dope temperature of 45 ° C. On the stainless steel belt whose temperature is controlled by contacting hot water of 45 ° C from the back surface of the stainless steel belt, apply hot air of 65 ° C from above and dry it. After being dried, and further kept in contact with cold water of 11 ° C. on the back surface of the stainless steel belt for 10 seconds, it was peeled off from the stainless steel belt. The residual solvent amount in the web at the time of peeling was 90% by mass. Next, both ends of the peeled web were slit and cut off to have a predetermined width, and then gripped with a biaxial stretching tenter. When the residual solvent amount was 12% by mass at 120 ° C., 1.4 was set in the width direction. The film was stretched twice and relaxed to 0.97 times in the longitudinal direction. Next, the width retention was released, and the portion held by the tenter clip was cut off to obtain a predetermined width, followed by drying at 120 ° C., and a knurling having a height of 10 μm and a width of 1 cm provided at both ends of the width. A retardation film 14 having a thickness of 80 μm, a width of 1.3 m and a length of 2500 m was obtained. The residual solvent amount was less than 0.01% by mass. In addition, the film waste cut off before and after the tenter was reused as a part of the cellulose ester raw material.
[0125]
(Preparation of solution 1)
Compound 1 was dissolved in a solvent of water: methanol = 3: 2 to prepare a solution 1.
[0126]
(Preparation of solution 2)
Compound 2 was dissolved in a solvent of water: methanol = 3: 1 to prepare solution 2.
[0127]
(Preparation of solution LC-1)
Solution LC-1 having the following composition was prepared.
[0128]
Compound 3 3 parts by mass
Compound 4 5 parts by mass
Compound 5 4 parts by mass
Compound 6 8 parts by mass
Irgacure 369 (manufactured by Ciba Specialty Chemicals) 1 part by mass
80 parts by mass of 2-butanone
Cyclohexanone 5 parts by mass
(Preparation of solution LC-2)
Solution LC-2 having the following composition was prepared.
[0129]
Compound 3 4 parts by mass
Compound 4 3 parts by mass
Compound 5 6 parts by mass
Compound 6 8 parts by mass
Irgacure 369 (manufactured by Ciba Specialty Chemicals) 1 part by mass
84 parts by mass of 2-butanone
[0130]
Embedded image
[0131]
Embedded image
[0132]
(Preparation of optical compensation films 1 and 2)
After gelatin subbing is performed on the retardation film 14 to a thickness of 0.1 μm and dried, the solution 1 and the solution 2 are applied using a wire bar # 3 to a dry thickness of 0.2 μm. After drying with warm air at 70 ° C., a rubbing treatment was performed. The rubbing treatment was performed so as to be orthogonal to the slow axis direction of the retardation film 14. After applying the solution LC-1 thereon using a wire bar # 5, the solution LC-1 was dried at 90 ° C. for 1 minute in a windless state while being conveyed, and 500 mJ / cm under a nitrogen atmosphere (oxygen concentration less than 0.1%). 2 UV light was applied to fix the orientation of the liquid crystalline compound to produce an optical compensation film 1. Ro of the obtained optically anisotropic layer was 80 nm.
[0133]
Next, a gelatin undercoat is performed on the retardation film 14 to a thickness of 0.1 μm, and after drying, the solution 1 and the solution 2 are applied using a wire bar # 3 to a dry thickness of 0.2 μm. After drying with hot air at 70 ° C., a rubbing treatment was performed. The rubbing treatment was performed so as to be orthogonal to the slow axis direction of the retardation film 14. After applying the above solution LC-2 thereon using a wire bar # 5, the solution was dried at 90 ° C. for 1 minute in a windless state while being transported, and then 500 mJ / cm under a nitrogen atmosphere (oxygen concentration less than 0.1%). 2 The ultraviolet ray was irradiated to fix the orientation of the liquid crystal compound to produce an optical compensation film 2. Ro of the obtained optically anisotropic layer was 100 nm.
[0134]
Next, in the production of the polarizing plate 1 of Example 1, the retardation film 1 was changed to the optical compensation film 1 and the surface having no optically anisotropic layer was bonded to the polarizer side, and the polarizing plate 6 was similarly formed. Was prepared. Similarly, a polarizing plate 7 was produced in the same manner except that the retardation film 1 was changed to the optical compensation film 2.
[0135]
In the same manner as in Example 1, the polarizing plates 6 and 7 of the present invention were arranged on both surfaces of a commercially available TN-type liquid crystal cell such that the surface having the optically anisotropic layer was on the liquid crystal cell side, thereby producing a liquid crystal display device. As a result, it was confirmed that a wide viewing angle of 150 ° or more in the vertical direction and 150 ° or more in the horizontal direction was obtained in each case. In addition, even when used for several months, no significant change was observed in the viewing angle, and it was confirmed that the viewing angle was stable.
[0136]
【The invention's effect】
According to the present invention, a retardation film having little change in retardation characteristics, a polarizing plate and an optical compensation film using the same, and a liquid crystal capable of maintaining an excellent viewing angle even when used with a wide viewing angle using the polarizing plate for a long time. It has become possible to provide a display device.
Claims (7)
1.2≦A≦2.0
B≧1.1
であることを特徴とする位相差フィルム。Regarding the difference spectrum of the infrared absorption before and after the stretching when the stretching treatment was performed by applying a tension, the change rate A of the absorbance of the carbonyl group from 15 seconds to 1 hour and the change in the absorbance of the carbonyl group from 10 minutes to 1 hour. Rate B is
1.2 ≦ A ≦ 2.0
B ≧ 1.1
A retardation film, characterized in that:
1.75≦X≦2.15
0.60≦Y≦0.80
であることを特徴とする請求項1記載の位相差フィルム。When the acyl group is an acetyl group and a propionyl group or a butyryl group, and the substitution degree of the acetyl group is X, and the total substitution degree of the propionyl group or the butyryl group is Y,
1.75 ≦ X ≦ 2.15
0.60 ≦ Y ≦ 0.80
The retardation film according to claim 1, wherein:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002278605A JP2004117625A (en) | 2002-09-25 | 2002-09-25 | Phase difference film, polarizing plate, optical compensating film, and liquid crystal display device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002278605A JP2004117625A (en) | 2002-09-25 | 2002-09-25 | Phase difference film, polarizing plate, optical compensating film, and liquid crystal display device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004117625A true JP2004117625A (en) | 2004-04-15 |
Family
ID=32273839
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002278605A Pending JP2004117625A (en) | 2002-09-25 | 2002-09-25 | Phase difference film, polarizing plate, optical compensating film, and liquid crystal display device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004117625A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006010828A (en) * | 2004-06-23 | 2006-01-12 | Fuji Photo Film Co Ltd | Cellulose acylate film and its manufacturing method |
JP2006232959A (en) * | 2005-02-24 | 2006-09-07 | Fuji Photo Film Co Ltd | Cellulose acylate film, retardation plate, polarizing plate, liquid crystal display device, and method for producing the cellulose acylate film, |
JP2006342227A (en) * | 2005-06-08 | 2006-12-21 | Konica Minolta Opto Inc | Cellulose ester film, polarizing plate, and liquid crystal display device |
WO2008032848A1 (en) | 2006-09-15 | 2008-03-20 | Mgc Filsheet Co., Ltd. | Retardation film |
-
2002
- 2002-09-25 JP JP2002278605A patent/JP2004117625A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006010828A (en) * | 2004-06-23 | 2006-01-12 | Fuji Photo Film Co Ltd | Cellulose acylate film and its manufacturing method |
JP2006232959A (en) * | 2005-02-24 | 2006-09-07 | Fuji Photo Film Co Ltd | Cellulose acylate film, retardation plate, polarizing plate, liquid crystal display device, and method for producing the cellulose acylate film, |
JP2006342227A (en) * | 2005-06-08 | 2006-12-21 | Konica Minolta Opto Inc | Cellulose ester film, polarizing plate, and liquid crystal display device |
WO2008032848A1 (en) | 2006-09-15 | 2008-03-20 | Mgc Filsheet Co., Ltd. | Retardation film |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5329088B2 (en) | Cellulose ester film, polarizing plate and liquid crystal display device | |
JP2003279729A (en) | Retardation film and method for manufacturing the same, polarization plate, liquid crystal display and optical compensation film | |
JP4337345B2 (en) | Polarizing plate and liquid crystal display device using the same | |
JP5422165B2 (en) | Cellulose acylate film, optical film, polarizing plate and liquid crystal display device | |
US20060246232A1 (en) | Optical film, polarizing plate and in-plane switching mode liquid crystal display | |
JP4207379B2 (en) | Polarizing plate protective film, method for producing the same, polarizing plate and liquid crystal display device | |
JP2002296422A (en) | Optical retardation film, method for manufacturing the same, and elliptically polarizing plate | |
WO2015022867A1 (en) | Cellulose acylate film, polarizer, and liquid-crystal display device | |
KR20080106109A (en) | Optical film, and polarizing plate and liquid crystal display device using the same | |
JP5741850B2 (en) | Optical film, polarizing plate including the same, and liquid crystal display device | |
CN101131437A (en) | Optical film, polarizing plate and liquid crystal display device | |
JP2007331388A (en) | Cellulose acylate film and method for producing the same, retardation film using the same, polarizing plate and liquid crystal display device | |
JP2002225054A (en) | Cellulose ester film, its production method, polarizing plate, and liquid crystal display | |
CN100443933C (en) | Optical compensation polarizing plate, image display unit and liquid crystal display unit | |
JP2007056102A (en) | Cellulose acylate film, production method thereof, polarizing plate and liquid crystal display device using the same | |
JP4904665B2 (en) | Liquid crystal display and polarizing plate set | |
JP2006052329A (en) | Cellulose acylate film | |
JP2004117625A (en) | Phase difference film, polarizing plate, optical compensating film, and liquid crystal display device | |
JP2006305751A (en) | Cellulose acylate film, its manufacturing method, phase difference film, polarizing plate and liquid crystal display device | |
JP2008064941A (en) | Polarizer protective film, its manufacturing method, and polarizer and liquid crystal display using it | |
JP4596940B2 (en) | Method for producing cellulose acylate film | |
JP2006257143A (en) | Cellulose acylate film, polarizing plate using the same and liquid crystal display device | |
JP4904663B2 (en) | Liquid crystal display and polarizing plate set | |
JP2004170760A (en) | Phase difference film, its manufacturing method, and polarizing plate | |
JP2007181987A (en) | Method for producing cellulose ester film, polarizing plate using the film, liquid crystal display device, and optical compensation film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050901 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080822 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080909 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20090210 |