【0001】
【発明の属する技術分野】
本発明は、非水電解液二次電池に関し、さらに詳しくは、負荷特性の改善された非水電解液二次電池に関する。
【0002】
【従来の技術】
現在、携帯機器の電源には、主にリチウムイオン二次電池が使用されている。この理由は、ニッカド二次電池やMH二次電池に代表される従来電池に比べて、軽量化が可能で、また高電圧化できるためである。
現行のリチウムイオン二次電池は、正極活物質にLiCoO2 などの金属酸化物を用い、負極材料に黒鉛を用いており、市販の円筒型や角型の電池では、電極として金属箔に活物質を含む合剤を塗布したものが一般的に用いられる。
【0003】
これらの電池の負荷特性は、主に、正極の負荷特性が律速となっており、そのために、正極の導電助剤の選定が重要となる。
正極の導電助剤には、通常、人造黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラックが用いられている。また、繊維径が0.08〜10μmの炭素繊維で、アスペクト比が10以上となるものを導電助剤として使用する提案もなされている(特許文献1参照)。
【0004】
【特許文献1】
特開平7−211320号公報(第2〜3頁)
【0005】
【発明が解決しようとする課題】
しかるに、上記提案の炭素繊維は、実際には、繊維径が0.15μmでアスペクト比が500となるもの、つまり繊維長さが75μmまでのものが記載されているだけで、その繊維径から考えて、結晶性の低い炭素繊維である。
このような炭素繊維を含め、従来の導電助剤では、電池の負荷特性が不十分であり、とくに電極として成型体を用いるコイン型電池では、成型体厚みが0.1mm以上となるため、負荷特性が低下しやすい。導電助剤の量を増加させると、負荷特性の改善は認められるが、活物質比率の低下、真密度の違いによる電極密度の低下により体積あたりの容量を低下させることになる。
【0006】
本発明は、このような事情に照らし、正極の導電助剤を改良することにより、高い放電容量を維持したまま、負荷特性を改善した非水電解液二次電池を提供することを目的としている。
【0007】
【課題を解決するための手段】
本発明者は、上記の目的を達成するため、鋭意検討した結果、非水電解液二次電池において、正極を構成させる導電助剤として、繊維長さが平均0.1mm以上である黒鉛化炭素繊維を使用すると、高い放電容量を維持したまま、負荷特性を改善できることがわかった。
【0008】
本発明は、上記の知見をもとにして、完成されたものてある。
すなわち、本発明は、正極と負極とがセパレータを介して対向配置されているとともに、非水電解液が収容されてなる非水電解液二次電池において、上記の正極は、活物質として金属酸化物を含み、導電助剤として繊維長さが平均0.1mm以上である黒鉛化炭素繊維を含むことを特徴とする非水電解液二次電池に係るものである。
【0009】
【発明の実施の形態】
以下に、本発明の非水電解液二次電池について、正極にペレット状の成型体正極を用いる場合を例にとり、詳しく説明する。
ペレット状の成型体電極では、一般に、成型体厚みを変化させると、負荷特性は大きく変化し、厚みが大きくなるにしたがい、負荷特性は低下する。これは、厚み方向の電子伝導性が十分でないため、分極が生じるためと考えられ、厚みが大きくなるにつれて分極が増大しやすい。導電助剤の粒子径、たとえばカーボンブラックのストラクチヤーが短くても、その量を増加させると、活物質の導電パスを確保でき、これにより電子伝導性が良くなり、負荷特性が改善される。しかし、この場合、活物質比率の低下、真密度の違いによる電極密度の低下により、体積あたりの容量が低下するという問題をさけられない。
【0010】
本発明者は、上記問題の解決のため、鋭意検討を続け、成型体厚みに対応した広い範囲にわたり導電パスを確保する長繊維の導電助剤を用いることで、成型体としてすぐれた負荷特性が得られることがわかった。成型体厚みは、通常0.1mm以上であるため、この厚みと同長程度の炭素繊維、とくに導電性のすぐれた黒鉛化炭素繊維を使用すると、成型体の両端での分極を顕著に低下できた。また、その量についても、カーボンブラックなどと異なり、一定量を使用すれば十分な導電性が得られ、それ以上用いても負荷特性に差がみられないこともわかった。これは、少量の導電助剤ですぐれた負荷特性が得られ、活物質比率を低下させることがないため、高容量化を確保できることを意味する。
【0011】
このように、本発明においては、ペレット状の成型体正極の導電助剤として、繊維長さが平均0.1mm以上、とくに好適には0.2mm以上(通常は、0.5mm以下)である黒鉛化炭素繊維を用いることにより、高い放電容量を維持したまま、負荷特性を大きく改善することに成功したものである。なお、このような黒鉛化炭素繊維の使用量は、活物質100重量部あたり、通常1〜20重量部、好ましくは1〜10重量部とするのがよい。
【0012】
上記の黒鉛化炭素繊維は、炭素面間距離d002 が0.36nm以下であるのが望ましく、このような結晶性を得るための黒鉛化処理過程では繊維径の成長が起こるため、通常は0.01mmを超える繊維径を有している。すなわち、本発明に係る上記の黒鉛化炭素繊維は、その繊維長さだけでなく、繊維径においても、前記提案の炭素繊維とは明らかに異なる構成をとるものである。
【0013】
また、本発明においては、ペレット状の成型体正極の導電助剤として、上記の繊維長さが平均0.1mm以上である黒鉛化炭素繊維をこれ単独で使用してもよいし、これに他の導電助剤としてカーボンブラックなどを加えて使用してもよい。すなわち、上記の黒鉛化炭素繊維により、成型体正極における長距離間の導電パスを確保できるとともに、これにカーボンブラックなどを加えて短距離問の導電パスを確保することにより、より高い負荷特性を得ることできる。
【0014】
本発明において、ペレット状の成型体正極は、活物質としての金属酸化物と、導電助剤としての繊維長さが平均0.1mm以上である黒鉛化炭素繊維および必要により上記のカーボンブラックなどと、さらにポリフッ化ビニリデンなどの適宜のバインダとを混合し、常法にしたがい、ペレット状に成型することにより、作製することができる。活物質としての金属酸化物としては、Liの挿入、脱離が可能なLi含有金属酸化物として、LiCoO2 、LiNi1−x Cox O2 (0<x<1)、LiMnO2 またはLiMn2 O4 などが好ましく用いられる。
【0015】
本発明において、ペレット状の成型体負極は、メソカーボンマイクロビーズやコークスなどを適宜の温度で黒鉛化処理してなる人造黒鉛や、天然で産出される天然黒鉛などの炭素材料を主材とし、これにポリフッ化ビニリデンなどの適宜のバインダとさらに必要により導電助剤などを加えたものを、常法にしたがって、ペレット状に成型することにより、作製することができる。
【0016】
本発明において、非水電解液には、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、γ−ブチロラクトン、1,2−ジエトキシエタン、1,3−ジオキソラン、テトラヒドロフランなどの適宜の有機溶媒に、LiPF6 、LiClO4 、LiBF4 、LiAsF6 、LiSbF6 、LiCF3 SO3 などの適宜の電解質を溶解させてなる電解液が用いられる。
【0017】
本発明の非水電解液二次電池は、たとえば、正極缶と負極缶とがポリプロピレンやゴム質ポリマーなどの適宜のポリマー材料などからなる環状の絶縁性ガスケットを介して接合された密閉容器内に、正極缶に収容された上記のペレット状の成型体正極と、負極缶に収容された上記のペレット状の成型体負極とが、ポリプロピレン製などの適宜のセパレータを介して対向配置されているとともに、上記の非水電解液が収容されてなるものである。
【0018】
なお、上記の非水電解液二次電池は、正極にペレット状の成型体正極を用いた例を示したものであるが、正極は、上記ペレット状の成型体正極に限定されず、金属箔に活物質と導電助剤などを含む合剤を塗布して形成されるものであってもよい。この場合でも、活物質および導電助剤として前記構成のものを用いることにより、上記と同様の効果が奏されるものである。
【0019】
【実施例】
つぎに、本発明の実施例を記載して、より具体的に説明する。
【0020】
実施例1
正極活物質であるLiCoO2 と、導電助剤である繊維長さが平均0.2mm、繊維径が0.02mm、d002 が0.34nmである黒鉛化炭素繊維と、他の導電助剤であるカーボンブラックとを、重量比で、93.5:2:0.5になるように混合し、これを、あらかじめポリフッ化ビニリデンを溶解したn−メチル−2ピロリドン溶液に、全重量比で5%になるように混合し、撹拌して、塗料を調製した。これを一旦乾燥して、溶剤を除去したのち、乳鉢で粉砕し、0.5mmのペレット状に成型し、正極とした。
また、メソカーボンマイクロビーズを黒鉛化処理した炭素材料と、n−メチル−2ピロリドンに溶解したポリフッ化ビニリデン溶液を混合して、上記の炭素材料とバインダとの重量比が93:7となるようにし、正極と同様にして、0.3mmのペレット状に成型し、負極とした。
上記の正負両極を、それぞれ、正負両極缶に収容固定して、ポリプロピレン製セパレータを介して対向配置し、エチレンカーボネートとジメチルカーボネートとの重量比1:1の混合溶媒にLiPF6 を1モル/リットルの割合で溶解した非水電解液を注入し、この正負両極缶を環状の絶縁性ガスケットを介して接合、封口して密閉容器を構成し、コイン形非水電解液二次電池とした。
【0021】
実施例2
正極の成型に際し、LiCoO2 と繊維長さが平均0.2mmの黒鉛化炭素繊維とカーボンブラックとの重量比を、85.5:10:0.5に変更した以外は、実施例1と同様にして、コイン形非水電解液二次電池を作製した。
【0022】
実施例3
正極の成型に際し、繊維長さが平均0.2mmの黒鉛化炭素繊維に代えて、繊維長さが平均0.4mmの黒鉛化炭素繊維を使用し、LiCoO2 と上記繊維長さが平均0.4mmの黒鉛化炭素繊維とカーボンブラックとの重量比が、94:1.5:0.5となるようにした以外は、実施例1と同様にして、コイン形非水電解液二次電池を作製した。
【0023】
比較例1
正極活物質であるLiCoO2 と、導電助剤である繊維長さが平均0.04mmである黒鉛化炭素繊維と、他の導電助剤であるカーボンブラックとを、重量比で93.5:2:0.5になるように混合し、これを、あらかじめポリフッ化ビニリデンを溶解したn−メチル−2ピロリドン溶液に、全重量比で5%になるように混合し、撹拌して、塗料を調製した。これを一旦乾燥して、溶剤を除去したのち、乳鉢で粉砕し、0.5mmのペレット状に成型し、正極とした。
また、メソカーボンマイクロビーズを黒鉛化処理した炭素材料と、n−メチル−2ピロリドンに溶解したポリフッ化ビニリデン溶液を混合して、上記の炭素材料とバインダとの重量比が93:7となるようにし、正極と同様にして、0.3mmのペレット状に成型し、負極とした。
上記の正負両極を、それぞれ、正負両極缶に収容固定して、ポリプロピレン製セパレータを介して対向配置し、エチレンカーボネートとジメチルカーボネートとの重量比1:1の混合溶媒にLiPF6 を1モル/リットルの割合で溶解した非水電解液を注入し、この正負両極缶を環状の絶縁性ガスケットを介して接合、封口して密閉容器を構成し、コイン形非水電解液二次電池とした。
【0024】
比較例2
正極の成型に際し、導電助剤である繊維長さが平均0.04mmである黒鉛化炭素繊維を使用せず、LiCoO2 とカーボンブラックとの重量比が、95.5:0.5となるようにした以外は、比較例1と同様にして、コイン形非水電解液二次電池を作製した。
【0025】
比較例3
正極の成型に際し、導電助剤である繊維長さが平均0.04mmである黒鉛化炭素繊維を使用せず、LiCoO2 とカーボンブラックとの重量比が、90:10となるようにした以外は、比較例1と同様にして、コイン形非水電解液二次電池を作製した。
【0026】
上記の実施例1〜3および比較例1〜3の各コイン形非水電解液二次電池について、4.2〜3.0V、充電電流密度1mA/cm2 に固定し、2mA/cm2 での初回放電容量、15mA/cm2 での放電容量を、調べた。
これらの結果は、表1に示されるとおりであった。
【0027】
【0028】
上記の表1の結果から明らかなように、実施例1〜3では、初回容量が高く、かつ高い電流密度においても高い放電容量が得られて、良好な負荷特性を有している。これに対して、比較例1〜3では、高い電流密度での放電容量が十分に得られず、負荷特性に劣っており、またとくに導電助剤であるカーボンブラックの量を多くした比較例3では、初期容量も低くなった。
【0029】
【発明の効果】
以上のように、本発明では、正極と負極とがセパレータを介して対向配置されているとともに、非水電解液が収容されてなる非水電解液二次電池において、上記の正極として、活物質に金属酸化物を含むとともに、導電助剤として繊維長さが平均0.1mm以上である黒鉛化炭素繊維を含む構成としたことにより、高い放電容量と負荷特性をともに有する非水電解液二次電池を提供できる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly, to a non-aqueous electrolyte secondary battery with improved load characteristics.
[0002]
[Prior art]
At present, lithium-ion secondary batteries are mainly used as power supplies for portable devices. The reason for this is that the weight can be reduced and the voltage can be increased as compared with conventional batteries typified by NiCad secondary batteries and MH secondary batteries.
Current lithium ion secondary batteries use a metal oxide such as LiCoO 2 for the positive electrode active material and graphite for the negative electrode material. In a commercially available cylindrical or prismatic battery, the active material is applied to the metal foil as an electrode. What applied the mixture containing is generally used.
[0003]
The load characteristics of these batteries are mainly determined by the load characteristics of the positive electrode. Therefore, it is important to select a conductive assistant for the positive electrode.
Usually, artificial graphite, carbon black, acetylene black, and Ketjen black are used as the conductive assistant for the positive electrode. It has also been proposed to use a carbon fiber having a fiber diameter of 0.08 to 10 μm and having an aspect ratio of 10 or more as a conductive aid (see Patent Document 1).
[0004]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 7-21320 (pages 2-3)
[0005]
[Problems to be solved by the invention]
However, the carbon fiber proposed above is actually described as having a fiber diameter of 0.15 μm and an aspect ratio of 500, that is, a fiber length of up to 75 μm. And low crystallinity carbon fiber.
The load characteristics of the battery are insufficient with the conventional conductive aids including such carbon fibers, and especially in the coin-type battery using the molded body as the electrode, the molded body thickness is 0.1 mm or more. Characteristics tend to deteriorate. When the amount of the conductive additive is increased, the load characteristics are improved, but the capacity per volume is reduced due to a decrease in the active material ratio and a decrease in the electrode density due to a difference in the true density.
[0006]
In view of such circumstances, an object of the present invention is to provide a non-aqueous electrolyte secondary battery having improved load characteristics while maintaining a high discharge capacity by improving a conductive auxiliary of a positive electrode. .
[0007]
[Means for Solving the Problems]
The present inventor has conducted intensive studies to achieve the above object, and as a result, in a non-aqueous electrolyte secondary battery, as a conductive additive constituting a positive electrode, graphitized carbon having an average fiber length of 0.1 mm or more was used. It has been found that the use of fibers can improve the load characteristics while maintaining a high discharge capacity.
[0008]
The present invention has been completed based on the above findings.
That is, the present invention relates to a non-aqueous electrolyte secondary battery in which a positive electrode and a negative electrode are opposed to each other with a separator interposed therebetween, and the non-aqueous electrolyte is contained therein. A non-aqueous electrolyte secondary battery characterized by containing a graphitized carbon fiber having an average fiber length of 0.1 mm or more as a conductive additive.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the non-aqueous electrolyte secondary battery of the present invention will be described in detail with reference to an example in which a pellet-shaped molded positive electrode is used as the positive electrode.
In the case of a pellet-shaped molded electrode, in general, when the thickness of the molded body is changed, the load characteristics greatly change, and the load characteristics decrease as the thickness increases. This is considered to be because polarization occurs because the electron conductivity in the thickness direction is not sufficient, and the polarization tends to increase as the thickness increases. Even if the particle diameter of the conductive additive, for example, the structure of carbon black is short, an increase in the amount can secure a conductive path for the active material, thereby improving electron conductivity and improving load characteristics. However, in this case, the problem that the capacity per volume decreases due to the decrease in the active material ratio and the decrease in the electrode density due to the difference in the true density cannot be avoided.
[0010]
The inventor of the present invention has been enthusiastically studying to solve the above-mentioned problem, and by using a conductive aid of a long fiber that secures a conductive path over a wide range corresponding to the thickness of the molded body, excellent load characteristics as a molded body are obtained. It turned out to be obtained. Since the thickness of the molded body is usually 0.1 mm or more, the use of a carbon fiber having the same length as this thickness, particularly graphitized carbon fiber having excellent conductivity, can significantly reduce the polarization at both ends of the molded body. Was. Further, it was also found that, unlike carbon black and the like, a sufficient amount of conductivity was obtained when a certain amount was used, and no difference was observed in the load characteristics when more than that was used. This means that excellent load characteristics can be obtained with a small amount of the conductive auxiliary agent, and the active material ratio is not reduced, so that high capacity can be ensured.
[0011]
As described above, in the present invention, the average length of the fiber is 0.1 mm or more, particularly preferably 0.2 mm or more (generally, 0.5 mm or less) as the conductive additive for the pellet-shaped molded body positive electrode. By using graphitized carbon fibers, the load characteristics have been greatly improved while maintaining a high discharge capacity. The amount of the graphitized carbon fiber used is usually 1 to 20 parts by weight, preferably 1 to 10 parts by weight, per 100 parts by weight of the active material.
[0012]
The above graphitized carbon fiber desirably has a carbon surface distance d 002 of 0.36 nm or less. In the graphitization process for obtaining such crystallinity, the fiber diameter grows. It has a fiber diameter exceeding 0.01 mm. That is, the above-mentioned graphitized carbon fiber according to the present invention has a configuration clearly different from the above-mentioned proposed carbon fiber not only in the fiber length but also in the fiber diameter.
[0013]
Further, in the present invention, as the conductive additive for the pellet-shaped molded body positive electrode, the above-described fiber length may be graphitized carbon fiber having an average length of 0.1 mm or more, or may be used alone. Carbon black or the like may be added and used as a conductive assistant. In other words, the above graphitized carbon fiber can secure a long-distance conductive path in the positive electrode of the molded body, and further enhances load characteristics by securing a conductive path for a short distance by adding carbon black or the like to this. You can get.
[0014]
In the present invention, the molded positive electrode in the form of a pellet is a metal oxide as an active material, a graphitized carbon fiber having an average fiber length of 0.1 mm or more as a conductive additive, and the above carbon black and the like as necessary. Further, it can be manufactured by mixing with an appropriate binder such as polyvinylidene fluoride and molding into a pellet according to a conventional method. Examples of the metal oxide as an active material include LiCoO 2 , LiNi 1-x Co x O 2 (0 <x <1), LiMnO 2, and LiMn 2 as a Li-containing metal oxide capable of inserting and removing Li. O 4 and the like are preferably used.
[0015]
In the present invention, the molded negative electrode in the form of pellets is mainly made of artificial graphite obtained by graphitizing mesocarbon microbeads or coke at an appropriate temperature, or a carbon material such as natural graphite produced naturally. It can be produced by molding a mixture obtained by adding an appropriate binder such as polyvinylidene fluoride and, if necessary, a conductive auxiliary agent, etc., to a pellet according to a conventional method.
[0016]
In the present invention, the non-aqueous electrolyte includes dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, ethylene carbonate, propylene carbonate, butylene carbonate, γ-butyrolactone, 1,2-diethoxyethane, 1,3-dioxolan, tetrahydrofuran and the like. of the appropriate organic solvent, LiPF 6, LiClO 4, LiBF 4, LiAsF 6, LiSbF 6, LiCF 3 SO 3 electrolyte solution obtained by dissolving an appropriate electrolyte such as is used.
[0017]
The non-aqueous electrolyte secondary battery of the present invention is, for example, in a closed container in which a positive electrode can and a negative electrode can are joined via an annular insulating gasket made of a suitable polymer material such as polypropylene or rubbery polymer. The above-mentioned pellet-shaped molded positive electrode accommodated in the positive electrode can and the above-mentioned pellet-shaped molded negative electrode accommodated in the negative electrode can are disposed to face each other via an appropriate separator such as polypropylene. And the above non-aqueous electrolyte.
[0018]
Although the above nonaqueous electrolyte secondary battery shows an example in which a pellet-shaped molded positive electrode is used as the positive electrode, the positive electrode is not limited to the pellet-shaped molded positive electrode, and may be a metal foil. It may be formed by applying a mixture containing an active material and a conductive assistant to the mixture. Also in this case, the same effects as above can be obtained by using the active material and the conductive auxiliary having the above-described configuration.
[0019]
【Example】
Next, examples of the present invention will be described in more detail.
[0020]
Example 1
LiCoO 2 as a positive electrode active material, graphitized carbon fibers having an average conductive fiber length of 0.2 mm, a fiber diameter of 0.02 mm, and d 002 of 0.34 nm, and other conductive aids. A certain carbon black was mixed at a weight ratio of 93.5: 2: 0.5, and the resulting mixture was added to an n-methyl-2-pyrrolidone solution in which polyvinylidene fluoride was previously dissolved at a total weight ratio of 5%. % And stirred to prepare a paint. After this was once dried and the solvent was removed, it was pulverized in a mortar and formed into a 0.5 mm pellet to obtain a positive electrode.
Further, a carbon material obtained by graphitizing the mesocarbon microbeads and a polyvinylidene fluoride solution dissolved in n-methyl-2-pyrrolidone are mixed so that the weight ratio between the carbon material and the binder becomes 93: 7. Then, in the same manner as the positive electrode, it was molded into a 0.3 mm pellet to obtain a negative electrode.
The above-mentioned positive and negative electrodes are accommodated and fixed in positive and negative bipolar cans, respectively, and disposed opposite each other via a polypropylene separator. LiPF 6 is mixed with 1 mol / liter of LiPF 6 in a mixed solvent of ethylene carbonate and dimethyl carbonate at a weight ratio of 1: 1. The nonaqueous electrolytic solution dissolved at a ratio of 1 was injected, and the positive and negative bipolar cans were joined via a ring-shaped insulating gasket and sealed to form a closed container, thereby forming a coin-type nonaqueous electrolytic secondary battery.
[0021]
Example 2
Same as Example 1 except that the weight ratio between LiCoO 2 , graphitized carbon fiber having an average fiber length of 0.2 mm, and carbon black was changed to 85.5: 10: 0.5 when molding the positive electrode. Thus, a coin-type non-aqueous electrolyte secondary battery was manufactured.
[0022]
Example 3
Upon molding the positive electrode, the fiber length instead of the graphitized carbon fibers having an average 0.2 mm, fiber length using a graphitized carbon fibers having an average 0.4 mm, LiCoO 2 and the fiber length average 0. A coin-shaped non-aqueous electrolyte secondary battery was manufactured in the same manner as in Example 1 except that the weight ratio between the graphitized carbon fiber of 4 mm and carbon black was 94: 1.5: 0.5. Produced.
[0023]
Comparative Example 1
LiCoO 2 as a positive electrode active material, graphitized carbon fiber having a fiber length of 0.04 mm on average as a conductive additive, and carbon black as another conductive aid in a weight ratio of 93.5: 2 : 0.5, and this was mixed with an n-methyl-2-pyrrolidone solution in which polyvinylidene fluoride was previously dissolved so that the total weight ratio was 5%, followed by stirring to prepare a paint. did. After this was once dried and the solvent was removed, it was pulverized in a mortar and formed into a 0.5 mm pellet to obtain a positive electrode.
In addition, a carbon material obtained by graphitizing mesocarbon microbeads and a polyvinylidene fluoride solution dissolved in n-methyl-2-pyrrolidone are mixed so that the weight ratio of the carbon material to the binder becomes 93: 7. Then, in the same manner as the positive electrode, it was molded into a 0.3 mm pellet to obtain a negative electrode.
The above-mentioned positive and negative electrodes are accommodated and fixed in positive and negative bipolar cans, respectively, and disposed opposite each other via a polypropylene separator. LiPF 6 is mixed with 1 mol / liter of LiPF 6 in a mixed solvent of ethylene carbonate and dimethyl carbonate at a weight ratio of 1: 1. The nonaqueous electrolytic solution dissolved at a ratio of 1 was injected, and the positive and negative bipolar cans were joined via a ring-shaped insulating gasket and sealed to form a closed container, thereby forming a coin-type nonaqueous electrolytic secondary battery.
[0024]
Comparative Example 2
In molding the positive electrode, the weight ratio of LiCoO 2 to carbon black was 95.5: 0.5 without using graphitized carbon fibers having a fiber length of 0.04 mm on average as a conductive additive. A coin-shaped non-aqueous electrolyte secondary battery was produced in the same manner as in Comparative Example 1 except that the above conditions were adopted.
[0025]
Comparative Example 3
Except for using a graphitized carbon fiber having an average fiber length of 0.04 mm as a conductive auxiliary agent during molding of the positive electrode and using a weight ratio of LiCoO 2 to carbon black of 90:10. In the same manner as in Comparative Example 1, a coin-type non-aqueous electrolyte secondary battery was manufactured.
[0026]
Each coin-type non-aqueous electrolyte secondary batteries of Examples 1-3 and Comparative Examples 1~3, 4.2~3.0V, fixed to the charging current density of 1 mA / cm 2, at 2 mA / cm 2 , The discharge capacity at 15 mA / cm 2 was examined.
These results were as shown in Table 1.
[0027]
[0028]
As is clear from the results in Table 1, in Examples 1 to 3, the initial capacity is high, a high discharge capacity is obtained even at a high current density, and the load has good load characteristics. On the other hand, in Comparative Examples 1 to 3, the discharge capacity at a high current density was not sufficiently obtained, and the load characteristics were inferior. Then, the initial capacity was also low.
[0029]
【The invention's effect】
As described above, in the present invention, the positive electrode and the negative electrode are arranged to face each other with the separator interposed therebetween, and in the nonaqueous electrolyte secondary battery containing the nonaqueous electrolyte, the active material is used as the positive electrode. Non-aqueous electrolyte secondary having both high discharge capacity and load characteristics by having a structure including graphitized carbon fibers having an average fiber length of 0.1 mm or more as a conductive aid, in addition to a metal oxide Battery can be provided.