JP2004095745A - 半導体装置およびその製造方法 - Google Patents
半導体装置およびその製造方法 Download PDFInfo
- Publication number
- JP2004095745A JP2004095745A JP2002253094A JP2002253094A JP2004095745A JP 2004095745 A JP2004095745 A JP 2004095745A JP 2002253094 A JP2002253094 A JP 2002253094A JP 2002253094 A JP2002253094 A JP 2002253094A JP 2004095745 A JP2004095745 A JP 2004095745A
- Authority
- JP
- Japan
- Prior art keywords
- semiconductor substrate
- layer
- groove
- insulating film
- diffusion layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 384
- 238000000034 method Methods 0.000 title claims description 94
- 238000004519 manufacturing process Methods 0.000 title claims description 73
- 239000000758 substrate Substances 0.000 claims abstract description 314
- 229910021332 silicide Inorganic materials 0.000 claims abstract description 85
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 claims abstract description 85
- 238000009792 diffusion process Methods 0.000 claims description 296
- 238000000605 extraction Methods 0.000 claims description 96
- 238000005530 etching Methods 0.000 claims description 92
- 238000002955 isolation Methods 0.000 claims description 67
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 63
- 229920005591 polysilicon Polymers 0.000 claims description 63
- 239000012535 impurity Substances 0.000 claims description 47
- 229910052751 metal Inorganic materials 0.000 claims description 35
- 239000002184 metal Substances 0.000 claims description 35
- 238000010438 heat treatment Methods 0.000 claims description 30
- 239000000463 material Substances 0.000 claims description 28
- 238000011049 filling Methods 0.000 claims description 11
- 230000000694 effects Effects 0.000 abstract description 14
- 230000015556 catabolic process Effects 0.000 abstract description 4
- 239000010410 layer Substances 0.000 description 623
- 230000002829 reductive effect Effects 0.000 description 48
- 230000015572 biosynthetic process Effects 0.000 description 33
- 238000005468 ion implantation Methods 0.000 description 33
- 238000003860 storage Methods 0.000 description 33
- 229910052721 tungsten Inorganic materials 0.000 description 30
- 239000010937 tungsten Substances 0.000 description 30
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 28
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 25
- 230000014759 maintenance of location Effects 0.000 description 25
- 229910052814 silicon oxide Inorganic materials 0.000 description 25
- 239000003990 capacitor Substances 0.000 description 24
- 230000005684 electric field Effects 0.000 description 23
- 229910052581 Si3N4 Inorganic materials 0.000 description 22
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 22
- 238000001459 lithography Methods 0.000 description 20
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 17
- 229910052796 boron Inorganic materials 0.000 description 17
- 230000006870 function Effects 0.000 description 16
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 14
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 13
- 229910052698 phosphorus Inorganic materials 0.000 description 13
- 239000011574 phosphorus Substances 0.000 description 13
- 229910001925 ruthenium oxide Inorganic materials 0.000 description 12
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 description 12
- 150000002500 ions Chemical class 0.000 description 10
- 230000001681 protective effect Effects 0.000 description 10
- 238000000151 deposition Methods 0.000 description 9
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 8
- 230000002950 deficient Effects 0.000 description 8
- 230000006866 deterioration Effects 0.000 description 8
- 230000035515 penetration Effects 0.000 description 8
- 229910052710 silicon Inorganic materials 0.000 description 8
- 239000010703 silicon Substances 0.000 description 8
- 229910019001 CoSi Inorganic materials 0.000 description 6
- 229910008484 TiSi Inorganic materials 0.000 description 6
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 6
- KMTYGNUPYSXKGJ-UHFFFAOYSA-N [Si+4].[Si+4].[Ni++] Chemical compound [Si+4].[Si+4].[Ni++] KMTYGNUPYSXKGJ-UHFFFAOYSA-N 0.000 description 6
- 239000010941 cobalt Substances 0.000 description 6
- 229910017052 cobalt Inorganic materials 0.000 description 6
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 6
- 238000002513 implantation Methods 0.000 description 6
- 238000001020 plasma etching Methods 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 230000009467 reduction Effects 0.000 description 6
- 239000010936 titanium Substances 0.000 description 6
- 229910052719 titanium Inorganic materials 0.000 description 6
- 229910021341 titanium silicide Inorganic materials 0.000 description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 5
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 5
- 238000000231 atomic layer deposition Methods 0.000 description 5
- 229910052802 copper Inorganic materials 0.000 description 5
- 239000010949 copper Substances 0.000 description 5
- 230000003647 oxidation Effects 0.000 description 5
- 238000007254 oxidation reaction Methods 0.000 description 5
- 229910052707 ruthenium Inorganic materials 0.000 description 5
- 238000001039 wet etching Methods 0.000 description 5
- 229910002367 SrTiO Inorganic materials 0.000 description 4
- 230000004913 activation Effects 0.000 description 4
- 239000012790 adhesive layer Substances 0.000 description 4
- 230000004888 barrier function Effects 0.000 description 4
- 238000005229 chemical vapour deposition Methods 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- -1 for example Substances 0.000 description 4
- 239000012212 insulator Substances 0.000 description 4
- 230000000149 penetrating effect Effects 0.000 description 4
- 230000002093 peripheral effect Effects 0.000 description 4
- 238000004151 rapid thermal annealing Methods 0.000 description 4
- 230000002441 reversible effect Effects 0.000 description 4
- 229910052715 tantalum Inorganic materials 0.000 description 4
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 4
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 4
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 230000012447 hatching Effects 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- QPJSUIGXIBEQAC-UHFFFAOYSA-N n-(2,4-dichloro-5-propan-2-yloxyphenyl)acetamide Chemical compound CC(C)OC1=CC(NC(C)=O)=C(Cl)C=C1Cl QPJSUIGXIBEQAC-UHFFFAOYSA-N 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- WQJQOUPTWCFRMM-UHFFFAOYSA-N tungsten disilicide Chemical compound [Si]#[W]#[Si] WQJQOUPTWCFRMM-UHFFFAOYSA-N 0.000 description 1
- 229910021342 tungsten silicide Inorganic materials 0.000 description 1
Images
Landscapes
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
- Semiconductor Memories (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
【課題】ワード線(ゲート電極)の低抵抗化、接合リークの抑制、ゲート絶縁膜の耐圧確保を図り、実効チャネル長を延ばすことで短チャネル効果を抑制しトランジスタ特性の安定化を図る。
【解決手段】半導体基板11と、半導体基板11に形成された溝14と、溝14の底部の半導体基板11に形成されたチャネル拡散層15と、溝14内にゲート絶縁膜16を介して埋め込まれたワード線(ゲート電極)18と、ワード線18上部の溝14側壁側に形成した溝部183と、溝部183内を埋め込みワード線18上の溝14の側壁に形成したサイドウォール絶縁膜20と、溝14側壁の半導体基板11表面側に形成された拡散層19と、サイドウォール絶縁膜20の底部よりも高い位置でワード線18上層に形成されたシリサイド層21とを備えたものである。
【選択図】 図1
【解決手段】半導体基板11と、半導体基板11に形成された溝14と、溝14の底部の半導体基板11に形成されたチャネル拡散層15と、溝14内にゲート絶縁膜16を介して埋め込まれたワード線(ゲート電極)18と、ワード線18上部の溝14側壁側に形成した溝部183と、溝部183内を埋め込みワード線18上の溝14の側壁に形成したサイドウォール絶縁膜20と、溝14側壁の半導体基板11表面側に形成された拡散層19と、サイドウォール絶縁膜20の底部よりも高い位置でワード線18上層に形成されたシリサイド層21とを備えたものである。
【選択図】 図1
Description
【0001】
【発明の属する技術分野】
本発明は、半導体装置およびその製造方法に関し、詳しくはDRAM(Dynamic Random Access Memory)からなる半導体装置およびその製造方法、ならびにDRAMとロジック素子とを混載した半導体装置およびその製造方法に関する。
【0002】
【従来の技術】
年々加速される微細化競争によって、特に大容量のDRAMと高速ロジック素子とを1チップに搭載する複合デバイスの開発が行われている。その構成の一例としては、DRAMのメモリセルゲートを基板上に積み上げ、メモリセルトランジスタの拡散層の取り出しには、いわゆるセルフアラインコンタクトを用い、一方、ロジック素子はセルフアラインコンタクトを用いずに形成するという構成のものである。
【0003】
【発明が解決しようとする課題】
しかしながら、積み上げ型のDRAMもさまざまな問題が顕在化してきている。
【0004】
トランジスタ性能を維持するため、DRAMメモリセルの縮小とともに基板濃度はますます高くなり、それにともない、DRAM領域の接合リークも厳しくなっている。このため、メガビット級のDRAMでは、接合リークを抑制することが困難になってきている。すなわち、従来は余裕を持って制御可能であったDRAMのデータ保持特性の維持が困難なものとなってきている。
【0005】
また、DRAMセルの縮小化にともない、拡散層と取り出し電極との接触面積が狭くなり、世代ごとに2倍の勢いでコンタクト抵抗が上昇するようになっている。例えば0.1μm以降の世代では、このコンタクト抵抗が数kΩになることが予想され、メモリセルのワードトランジスタのオン抵抗に匹敵してくるようになると予想される。したがって、セルトランジスタのみならず、このコンタクト抵抗のばらつきがDRAM動作に厳しく影響してくるようになり、製造上、一層の精密性が要求されるようになって来ている。
【0006】
また、DRAMセルの縮小化にともない、ワード線とその脇に形成される拡散層の取り出しコンタクトとの層間絶縁距離は世代ごとに近づきつつある。メガビット級のDRAMを製造する上で、この耐圧を確保するためには20nm〜30nmが限界の距離といわれている。そのため、0.1μm以降の世代のDRAMでは、この耐圧限界距離以下の距離で拡散層の取り出しコンタクトを形成することが必要になってしまう。
【0007】
従来は、タングステンシリサイド(WSi2 )/ドープトポリシリコンのポリサイド構造を採用することで遅延を押さえてきたDRAMのワード線も、近年の微細化とともに、アスペクト比を低く保つことが困難となり、また、ワード線の遅延を抑えるための十分な低抵抗を得ることが困難となってきた。特に高速動作を要求される積み上げDRAMなどでは、このワード線遅延がDRAMのアクセスタイムに影響する深刻な問題となる。ゲートの抵抗を下げる技術として、サリサイドによる配線の低抵抗化が実用化されている。しかしながら、DRAMメモリセルのゲートに適用するためには、オフセット酸化シリコン膜を使えなくなることによるDRAMメモリセル縮小化の障害とデータ保持特性の維持のために、DRAMの拡散層にはサリサイドを形成しないプロセスを必要とするなどの困難から通常は採用できない。
【0008】
また、DRAMの記憶ノードコンタクトもそのセルサイズから余裕の無い開口が必須であり、拡散層コンタクトと同様、耐圧限界での開口が必要となり、その狭いコンタクト径で抵抗上昇を効率的に抑制する技術が必要になっている。
【0009】
一方、ロジック部のトランジスタ性能の向上も目覚しく、特にpチャネルトランジスタのオフリークを抑制するp+ ゲート電極が一般に用いられるように成ってきている。ところがこのp+ ゲートは、不純物のホウ素が熱処理によって基板側に拡散してしまう。いわゆる「突き抜け」の問題を含んでおり、pチャネルトランジスタの特性ばらつきやゲート電極の空乏化といった深刻な問題を引き起こすことが知られている。したがって、DRAM形成工程の熱処理温度は極力抑えたい。
【0010】
以上説明したように、今後の0.1μm世代以降では、pチャネルトランジスタの特性ばらつきやゲート電極の空乏化といった問題に対する何らかの対策が必要となり、チップの性能トレンドを維持するためには、積み上げ型のDRAM構造の抜本的な改良が必要となると予想される。本願発明は、この対策として開発されたDRAM部のワード線を基板に形成した「溝」に埋め込む、トレンチ・アクセス・トランジスタ(Trench Access Transistor:TAT)DRAMセルをさらに改良したものである。すなわち、ゲート電極上に形成されたシリサイドとゲート絶縁膜との物理的距離を確保して、ゲート絶縁耐圧の劣化を抑制するものである。
【0011】
上記TAT・DRAMセルにおいて、ゲート電極に形成されたシリサイド層とゲート絶縁膜との物理的距離を確保するためには、DRAM部のゲート電極を形成する溝の側壁に形成される窒化シリコン膜からなるでサイドウォール絶縁膜を厚く形成する必要がある。しかしながら、サイドウォール絶縁膜の膜厚を厚く形成すると、DRAM部のゲート電極の配線抵抗が上昇してしまうという副作用が生じる。このため、デバイス特性への副作用なく、ゲート電極上のシリサイド層とゲート絶縁膜との物理的距離を良好に確保できる方法が望まれている。
【0012】
【課題を解決するための手段】
本発明は、上記課題を解決するためになされた半導体装置およびその製造方法である。
【0013】
本発明の第1の半導体装置は、半導体基板と、前記半導体基板に形成された溝と、前記溝の底部の前記半導体基板に形成されたチャネル拡散層と、前記溝内にゲート絶縁膜を介して埋め込まれたゲート電極と、前記ゲート電極上部の前記溝側壁側に形成した溝部と、前記溝部内を埋め込み前記ゲート電極上の前記溝の側壁に形成したサイドウォール絶縁膜と、前記溝側壁の前記半導体基板表面側に形成された拡散層と、前記サイドウォール絶縁膜の底部よりも高い位置で前記ゲート電極上層に形成されたシリサイド層とを備えたものである。
【0014】
また前記第1導電層は前記第2導電層よりもエッチングレートが速い導電膜からなる。また前記素子分離領域により分離された前記半導体基板中にウエル拡散層が形成され、前記溝は前記ウエル拡散層上に前記半導体基板の一部を残した状態で前記半導体基板および前記素子分離領域に形成され、前記チャネル拡散層は前記溝の底部と前記ウエル拡散層との間の前記半導体基板に形成されている。
【0015】
上記半導体装置では、ワード線上部の溝側壁側に溝部が形成され、この溝部を埋め込むようにワード線上の溝側壁にサイドウォール絶縁膜が形成されていることから、ワード線上にシリサイド層が形成されても、シリサイド層とゲート絶縁膜との間のサイドウォール絶縁膜がオフセットになり、シリサイド層とゲート絶縁膜との距離が十分に確保されるので、ゲート絶縁耐圧の劣化が抑制される。
【0016】
上記第1の半導体装置において、チャネルが形成される溝下部とウエル拡散層との間の半導体基板にチャネル拡散層が形成されている構成では、溝とウエル拡散層との間の領域の不純物濃度は溝周囲の半導体基板の不純物濃度よりも高くなる。また、ソース・ドレインとなる拡散層下部の半導体基板濃度は極めて低くなっていることから、ソース・ドレインとなる拡散層の接合の電界が弱められるので、ppmオーダーでの接合リークの抑制が可能になり、それによって、データ保持特性が極めてよくなる。
【0017】
上記第1の半導体装置では、ゲート電極上層にシリサイド層が形成されていることから、ゲート電極の抵抗が低減され、遅延の問題が回避されて、動作速度が向上する。それとともに、ゲート電極へのコンタクト抵抗が低減される。
【0018】
しかも、半導体基板表面側に拡散層が形成され、その半導体基板に形成された溝内にゲート絶縁膜を介してワード線が埋め込まれていることから、チャネルはゲート電極が形成されている溝底部側の半導体基板を廻り込むように形成される。そのため、実効的なチャネル長が十分に確保されるため、バックバイアスを印加して、短チャネル効果が厳しいメモリ素子(例えばDRAM)のトランジスタ特性が安定化される。
【0019】
本発明の第1の半導体装置の製造方法は、素子分離領域を形成した半導体基板および前記素子分離領域のゲート電極を形成する位置に溝を形成する工程と、前記溝の底部の前記半導体基板にチャネル拡散層を形成する工程と、前記溝内および前記半導体基板上にゲート絶縁膜を形成する工程と、前記溝の内壁を含む前記半導体基板上に第1導電層を形成する工程と、前記半導体基板上に前記第1導電層を介して前記溝を埋め込む第2導電層を形成する工程と、前記溝の内部における前記第1導電層が前記第2導電層よりも低くなるように前記溝の上部および前記半導体基板上の前記第1導電層および前記第2導電層を除去して、前記溝内部に残した前記第1導電層と前記第2導電層とでゲート電極を形成するとともに、前記溝側壁と前記第2導電層との間に溝部を形成する工程と、前記溝側壁上部の前記半導体基板に拡散層を形成する工程と、前記溝部の内部を埋め込むとともに前記ゲート電極上の前記溝側壁にサイドウォール絶縁膜を形成する工程と、前記ゲート電極上層にシリサイド層を形成する工程とを備えている。
【0020】
また前記第1導電層は前記第2導電層よりもエッチングレートが速い導電膜を用いる。また前記素子分離領域により分離された前記半導体基板中にウエル拡散層を形成し、前記溝を前記ウエル拡散層上に前記半導体基板の一部を残した状態で前記半導体基板および前記素子分離領域に形成し、前記チャネル拡散層を前記溝の底部と前記ウエル拡散層との間の前記半導体基板に形成する。
【0021】
上記第1の半導体装置の製造方法では、ゲート電極上部の溝側壁側に溝部を形成し、この溝部を埋め込むようにゲート電極上の溝側壁にサイドウォール絶縁膜を形成することから、ゲート電極上にシリサイド層が形成されても、サイドウォール絶縁膜がオフセットになり、シリサイド層とゲート絶縁膜との距離は十分に確保されるので、ゲート絶縁耐圧の劣化が抑制される半導体装置となる。上記第1の半導体装置の製造方法において、チャネルが形成される溝下部とウエル拡散層との間の半導体基板にチャネル拡散層を形成する製造方法では、溝とウエル拡散層との間の領域の不純物濃度は溝周囲の半導体基板の不純物濃度よりも高くなる。また、ソース・ドレインとなる拡散層下部の半導体基板濃度は極めて低くい状態に保つことができるので、ソース・ドレインとなる拡散層の接合の電界が弱められる。このため、ppmオーダーでの接合リークの抑制が可能になり、それによって、データ保持特性が極めてよくなる半導体装置が形成される。
【0022】
さらに、ゲート電極上層にシリサイド層を形成することから、ゲート電極の抵抗が低減され、遅延の問題が回避される。それとともに、ゲート電極へのコンタクト抵抗が低減される。
【0023】
また、半導体基板表面側に拡散層を形成し、その半導体基板に形成した溝内にゲート絶縁膜を介してゲート電極を埋め込むように形成することから、チャネルはゲート電極が形成されている溝底部側の半導体基板を廻り込むように形成される。そのため、実効的なチャネル長が十分に確保されるため、バックバイアスを印加して、短チャネル効果が厳しいメモリ素子(例えばDRAM)のトランジスタ特性が安定化される。
【0024】
本発明の第2の半導体装置は、メモリ素子とロジック素子とを同一半導体基板上に形成した半導体装置において、前記メモリ素子のトランジスタは、半導体基板に形成された素子分離領域と、前記素子分離領域により分離された前記半導体基板中に形成されたウエル拡散層と、前記半導体基板および前記素子分離領域に形成されたもので前記ウエル拡散層上に前記半導体基板の一部を残した状態で形成された溝と、前記溝の底部と前記ウエル拡散層との間の前記半導体基板に形成されたチャネル拡散層と、前記溝内にゲート絶縁膜を介して埋め込まれたワード線と、前記ワード線上部の前記溝側壁側に形成した溝部と、前記溝部内を含み前記ワード線上の前記溝の側壁に形成したサイドウォール絶縁膜と、前記溝側壁の前記半導体基板表面側に形成された拡散層と、前記サイドウォール絶縁膜の底部よりも高い位置で前記ワード線上層に形成されたシリサイド層と、前記ワード線上に絶縁膜を介して前記ワード線にオーバラップする状態で前記拡散層に接続された取り出し電極とを備えたもので、前記ロジック素子のトランジスタは、前記半導体基板上に形成されたもので、ポリシリコン電極と金属系電極とが積層されたポリメタル構造のゲート電極と、前記ゲート電極の両側における前記半導体基板表面側に形成された拡散層と、前記拡散層上層に形成されたシリサイド層とを備えたものである。
【0025】
上記第2の半導体装置では、ワード線上部の溝側壁側に溝部が形成され、この溝部を埋め込むようにワード線上の溝側壁にサイドウォール絶縁膜が形成されていることから、ワード線上にシリサイド層が形成されても、シリサイド層とゲート絶縁膜との間のサイドウォール絶縁膜がオフセットになり、シリサイド層とゲート絶縁膜との距離が十分に確保されるので、ゲート絶縁耐圧の劣化が抑制される。
【0026】
上記第2の半導体装置では、チャネルが形成される溝下部とウエル拡散層との間の半導体基板にチャネル拡散層が形成されていることから、溝とウエル拡散層との間の領域の不純物濃度は溝周囲の半導体基板の不純物濃度よりも高くなる。また、ソース・ドレインとなる拡散層下部の半導体基板濃度は極めて低くなっていることから、ソース・ドレインとなる拡散層の接合の電界が弱められるので、ppmオーダーでの接合リークの抑制が可能になり、それによって、データ保持特性が極めてよくなる。
【0027】
ワード線上層にシリサイド層が形成されていることから、ワード線の抵抗が低減され、遅延の問題が回避され、動作速度が向上する。それとともに、ワード線へのコンタクト抵抗が低減される。また、ロジック素子の拡散層上にシリサイド層が形成されていることから、この拡散層へのコンタクト抵抗が低減される。
【0028】
しかも、半導体基板表面側に拡散層が形成され、その半導体基板に形成された溝内にゲート絶縁膜を介してワード線が埋め込まれていることから、チャネルはワード線が形成されている溝底部側の半導体基板を廻り込むように形成される。そのため、実効的なチャネル長が十分に確保されるため、バックバイアスを印加して、短チャネル効果が厳しいメモリ素子(例えばDRAM)のトランジスタ特性が安定化される。
【0029】
また、拡散層は、その深さ方向に不純物濃度が薄くなっていることから、メモリ素子領域の拡散層下部の半導体基板濃度をセルトランジスタに要求されるほどに濃くしなくともよいので、接合の電界が緩和され、メモリ素子のセル縮小化にともない厳しくなるデータ保持特性の性能が維持される。
【0030】
また、ゲート絶縁膜を介して半導体基板に形成された溝内に埋め込まれたワード線上に、絶縁膜を介してこのワード線にオーバラップする状態で、半導体基板表面に形成した拡散層に接続される取り出し電極が形成されていることから、ワード線上の絶縁膜を20nm〜30nm以上の十分な膜厚を確保することが可能になる。それによって、拡散層に接続される取り出し電極との耐圧が確保される。そのため、メモリ素子の拡散層上の全面がコンタクトに使用されるので、実効面積を有効に使用できる。よって、セルデザインで実現可能な最低の抵抗値が実現されるので、コンタクト抵抗の低減が図れる。
【0031】
本発明の第2の半導体装置の製造方法は、メモリ素子とロジック素子とを同一半導体基板上に形成する半導体装置の製造方法において、前記半導体基板に素子分離領域を形成した後該半導体基板上にバッファ層を形成する工程と、前記素子分離領域によって分離されたメモリ素子領域の前記半導体基板中にウエル拡散層を形成する工程と、前記ウエル拡散層上に前記半導体基板の一部を残した状態で前記バッファ層および前記半導体基板および前記素子分離領域のワード線を形成する位置に溝を形成する工程と、前記溝の底部と前記ウエル拡散層との間の前記半導体基板にチャネル拡散層を形成する工程と、前記溝内および前記半導体基板上にゲート絶縁膜を形成する工程と、メモリ素子領域の前記溝の内壁を含む前記半導体基板上に第1導電層を形成する工程と、前記半導体基板上に前記第1導電層を介して前記溝を埋め込む第2導電層を形成する工程と、前記素子分離領域によって分離されたロジック素子領域の前記半導体基板にウエル拡散層を形成する工程と、前記半導体基板上に前記溝を埋め込むポリシリコン層と該ポリシリコン層とのエッチング選択性を有する材料からなるダミー層を順に形成する工程と、前記ポリシリコン層と前記ダミー層とを加工して、ロジック素子領域の半導体基板上に前記ゲート絶縁膜を介して、前記ポリシリコン層と前記ダミー層とでダミーゲートを形成する工程と、前記溝の内部における前記第1導電層が前記第2導電層よりも低くなるように前記溝の上部および前記半導体基板上の前記第1導電層および前記第2導電層を除去して、前記溝内部に残した前記第1導電層と前記第2導電層とでワード線を形成するとともに、前記溝側壁と前記第2導電層との間に溝部を形成する工程と、前記溝側壁上部の前記半導体基板に拡散層を形成する工程と、前記ダミーゲートの両側の半導体基板表面にロジック素子の低濃度拡散層を形成する工程と、前記ダミーゲートの側壁にサイドウォール絶縁膜を形成する工程と、前記ダミーゲートの両側の半導体基板に前記ダミーゲート側に前記低濃度拡散層を介して拡散層を形成する工程と、前記溝部の内部を埋め込むとともに前記ワード線上の前記溝側壁にサイドウォール絶縁膜を形成する工程と、前記ワード線上層および前記ロジック素子の拡散層上層にシリサイド層を形成する工程と、前記溝の上部を埋め込むとともに前記ダミーゲートを覆うように絶縁膜を形成する工程と、前記ワード線上に前記絶縁膜を介して前記ワード線にオーバラップする状態でメモリ素子領域に形成した前記拡散層に達する接続孔を形成する工程と、前記接続孔内に取り出し電極を形成する工程と、前記絶縁膜表面を平坦化するとともに前記ダミーゲートの上部を露出させ、さらに前記ダミー層を除去して前記ポリシリコン層を露出させてゲート溝を形成する工程と、前記ダミーゲートのポリシリコン層に不純物をドーピングする工程と、前記取り出し電極及び前記ポリシリコン層を活性化する熱処理を行う工程と、前記ゲート溝に金属系電極を形成する工程とを備えた半導体装置の製造方法である。
【0032】
上記第2の半導体装置の製造方法では、ワード線上部の溝側壁側に溝部を形成し、この溝部を埋め込むようにワード線上の溝側壁にサイドウォール絶縁膜を形成することから、ワード線上にシリサイド層が形成されても、サイドウォール絶縁膜がオフセットになり、シリサイド層とゲート絶縁膜との距離が十分に確保されるので、ゲート絶縁耐圧の劣化が抑制される半導体装置となる。
【0033】
上記第2の半導体装置の製造方法では、バッファ層を形成していることにより、その後、溝の底部における半導体基板にチャネル拡散層を形成する不純物を導入する際に、バッファ層がマスクとなって、選択的に溝の底部の半導体基板に不純物が導入され、チャネル拡散層が形成される。
【0034】
このように、溝下部とウエル拡散層との間の半導体基板にチャネル拡散層を形成することから、溝とウエル拡散層との間の領域の不純物濃度は溝周囲の半導体基板の不純物濃度よりも高くなる。また、ソース・ドレインとなる拡散層下部の半導体基板濃度は極めて低くい状態に保つことができるので、ソース・ドレインとなる拡散層の接合の電界が弱められる。このため、ppmオーダーでの接合リークの抑制が可能になり、それによって、データ保持特性が極めてよくなる半導体装置が形成される。
【0035】
また、ゲート絶縁膜を介して半導体基板に形成された溝内に埋め込まれたワード線上に、絶縁膜を介してこのワード線にオーバラップする状態で、半導体基板表面に形成した拡散層に接続される取り出し電極を形成することから、ワード線上の絶縁膜を20nm〜30nm以上の十分な膜厚を確保することが可能になる。それによって、拡散層に接続される取り出し電極との耐圧が確保される。そのため、メモリ素子の拡散層上の全面がコンタクトに使用されるので、実効面積を有効に使用できる。よって、セルデザインで実現可能な最低の抵抗値が実現されるので、コンタクト抵抗の低減が図れる。
【0036】
さらに、ワード線上層にシリサイド層を形成することから、ワード線の抵抗が低減され、遅延の問題が回避される。また、ロジック素子の拡散層上にシリサイド層を形成することから、この拡散層へのコンタクト抵抗が低減される。
【0037】
また、半導体基板表面側に拡散層を形成し、その半導体基板に形成した溝内にゲート絶縁膜を介してワード線を埋め込むように形成することから、チャネルはワード線が形成されている溝底部側の半導体基板を廻り込むように形成される。そのため、実効的なチャネル長が十分に確保されるため、バックバイアスを印加して、短チャネル効果が厳しいメモリ素子(例えばDRAM)のトランジスタ特性が安定化される。
【0038】
また、メモリ素子領域の拡散層を、その深さ方向に不純物濃度が薄くなるように形成することから、メモリ素子領域の拡散層下部の半導体基板濃度をセルトランジスタに要求されるほどに濃くしなくともよいので、接合の電界が緩和され、メモリ素子のセル縮小化にともない厳しくなるデータ保持特性の性能が維持される。
【0039】
また、ロジック素子領域に形成するダミーゲートにポリシリコン層とダミー層との積層構造を用いることによって、メモリ素子領域の拡散層の取り出し電極を形成した後にダミー層を除去し、ダミーゲートのポリシリコン層に不純物をドーピングすることが可能になる。その後、熱処理を行い、金属ゲート電極を形成することから、熱処理によるpチャネルゲート電極におけるホウ素の突き抜けの問題が最小限に抑えられる。
【0040】
【発明の実施の形態】
本発明の半導体装置に係る一実施の形態を、図1の概略構成断面図および図2の部分拡大図によって説明する。図1では、本発明の半導体装置をDRAMに適用した一例を示し、図2では図1のA部拡大概略図を示す。
【0041】
図1および図2に示すように、半導体基板11は、例えば1×1017/cm3 程度のp型不純物濃度を有するシリコン基板で構成されている。上記半導体基板11には、メモリ素子領域(以下DRAMとして説明し、図面ではDRAM領域と記す)、標準電圧ロジック領域、高電圧ロジック領域等を分離する素子分離領域12が形成されている。この素子分離領域12は、例えばSTI(Shallow Trench Isolation )技術によって、例えば0.1μm〜0.2μm程度の深さに形成される。さらに半導体基板11上には、素子分離領域12上を覆うバッファ層71が例えば酸化シリコン膜で例えば20nm〜40nmの厚さに形成されている。
【0042】
上記バッファ層71は製造上、必要なものである。すなわち、バッファ層71は、ウエル拡散層13を形成する際の緩衝膜の機能を有するものであり、後に説明するメモリ素子のトランジスタ(アクセストランジスタ)の基板濃度を調整するイオン注入時にDRAMの接合となる領域に対してイオン注入のストッパとして機能するものであり、さらに、溝14に埋め込まれたワード線18の表面にシリサイド層21を形成する際に、DRAM領域の拡散層19にシリサイド層21が形成されるのを防止する機能を有する。
【0043】
上記メモリ素子領域の半導体基板11中には、ウエル拡散層13が、例えば上面が150nm〜200nmよりも深い状態で、下面が素子分離領域12の深さよりもやや深い状態に、かつ深さ方向の厚さが例えば0.8μm程度となるように形成されている。このウエル拡散層13は、P形であり、例えばホウ素を導入して形成されるものであり、例えばイオン注入で形成する場合には、イオン種にホウ素を用い、ドーズ量を例えば5×1012/cm2 〜7×1012/cm2 程度とする。
【0044】
さらに、必要に応じて、素子分離領域12下方の半導体基板11に素子分離拡散層(図示せず)が形成されていてもよい。
【0045】
さらに、バッファ層71を貫通し、上記素子分離領域12および半導体基板11には、DRAM領域のワード線(以下ワード線はゲート電極も含む)が形成される溝14を形成されている。この溝14の深さは、例えば100nm〜150nm程度であり、先に形成したウエル拡散層13とこの溝14の底部との間に半導体基板11が残るように形成されている。なお、半導体基板11に形成された溝14の深さと素子分離領域12に形成された溝14の深さとが多少の差を生じてもよい。
【0046】
また、上記溝14底部のエッジ部分は、セルトランジスタの電界集中を避けるために、いわゆるラウンド形状に形成されていることが望ましく、また、溝14の幅がメモリ素子のアクセストランジスタのチャネル長になるので、溝14の側壁はできうる限り半導体基板11表面に対して垂直に形成されることが望ましい。
【0047】
さらに、上記溝14の底部と上記ウエル拡散層13との間の半導体基板11にはチャネル拡散層15が形成されている。DRAM領域のワードトランジスタの上記チャネル拡散層15として、高濃度(例えば1.0×1018/cm3 〜1.0×1019/cm3 )にしなければならない領域は、半導体基板11を掘り下げた溝14底部の半導体基板11(11a)部分であり、溝14の側壁や上部における半導体基板11は極めて低濃度でよい。したがって、後述する拡散層19下部の半導体基板11部分は、極めて低濃度(例えば1.0×1017/cm3 〜1.0×1018/cm3 )で形成されている。
【0048】
上記溝14の内面および半導体基板11上等には、ゲート絶縁膜16が形成されている。上記ゲート絶縁膜15は、最先端のロジックのトランジスタよりもやや厚めの膜厚を有し、またゲート長もやや長く形成されるため、この世代であっても、熱酸化による酸化シリコン膜の適用が可能である。したがって、DRAM領域の上記ゲート絶縁膜15は、例えば1.5nm〜5nm程度の厚さの酸化シリコン膜で形成されている。
【0049】
さらに各溝14を埋め込むように上記ゲート絶縁膜16を介して、例えばリンドープトポリシリコン膜からなるワード線(ゲート電極も含む)18が形成されている。上記ワード線18は、第1導電層181と第2導電層182の2層のポリシリコン層から形成されている。上記第1導電層181は、例えば5nm〜10nmの厚さのリンドープトポリシリコン膜からなり、上記第2導電層182は例えばノンドープトポリシリコン膜に不純物(例えばリン)をドーピングした膜からなる。また上記ワード線18上部の溝14壁面側(第1導電層181上部)には溝部183が形成されている。
【0050】
また、上記ワード線18のポリシリコン層上の溝14側壁には、上記溝部183を埋め込むサイドウォール絶縁膜20が例えば窒化シリコン膜で形成されている。さらに上記ワード線18は、上層にシリサイド(例えばサリサイド)層21で形成されている。したがって、上記シリサイド層21はゲート絶縁膜16に対してサイドウォール絶縁膜20を介してワード線18の上層に形成されている。
【0051】
また、上記ワード線18として機能する上記シリサイド層21は、少なくとも後に説明する取り出し電極24との耐圧が確保される距離として、その表面が溝14の上部の半導体基板11表面より少なくとも30nm〜100nm程度下がるように、好ましくは50nm〜90nm程度下がるように形成されている。この実施の形態では、例えば50nm程度下がった状態に形成されている。そのため、後述する拡散層の取り出し電極24との耐圧距離が確保されている。
【0052】
さらに、上記シリサイド層21は、例えばコバルトシリサイド(CoSi2 )、チタンシリサイド(TiSi2 )ニッケルシリサイド(NiSi2 )等を用いられている。上記サイドウォール絶縁膜20はシリサイド層21と拡散層19との間の耐圧を確保する機能を有する。なお、半導体基板11に形成された溝14の深さと素子分離領域12に形成された溝14の深さに多少の差を生じていても差し支えはない。
【0053】
さらに、DRAM領域の半導体基板11には、ソース・ドレインとなる拡散層19が形成されている。この拡散層19には、N形の不純物としてリンが用いられ、濃度が1×1017/cm3 〜1×1018/cm3 となっている。そのため、この領域の半導体基板11は1×1016/cm3 〜×1017/cm3 程度の非常に薄い濃度に設定されている。
【0054】
よって、このN−P接合は超グレーディッド接合(非常に緩やかな濃度勾配の接合)となる。このような状態の接合では、逆バイアス時の電界を緩和し、メガビット級のDRAMでわずかppmオーダーの不良ビットに起きる通常よりも2桁程度も悪い接合リークの電流抑制に劇的に寄与する。この不良ビットのデータ保持特性がDRAMのチップ性能を支配しており、今後のDRAMでデータ保持特性を維持する重要な技術となっている。
【0055】
例えば、基板濃度が5×1016/cm3 程度であるならば、85℃で500ms以上のデータ保持特性が基体でき、これは実に4世代〜5世代も前のデータのデータ保持特性に匹敵する性能を発揮すると予想される。また、DRAM領域のアクセストランジスタは、半導体基板11をいわゆるラウンドする形でチャネルが形成されることから、実効的なチャネル長を長く確保することもでき、バックバイアスを印加して使う、短チャネル効果が厳しいDRAMセルのトランジスタ特性の安定化を図ることもできる。
【0056】
上記半導体基板11上の全面には、第1の絶縁膜(絶縁膜)22が形成されている。この第1の絶縁膜22は、表面が平坦化されている。さらに、全面にキャップ絶縁膜80が例えば窒化シリコン膜で形成されている。このキャップ絶縁膜80はサリサイド形成部の接合リークを抑制するのに効果的であるが、不要であれば形成する必要はない。
【0057】
さらに、全面に第1の絶縁膜(絶縁膜)22が形成されている。この第1の絶縁膜22には、キャップ絶縁膜80、バッファ層71等を貫通してDRAM領域の拡散層19に達する接続孔23が形成されている。この接続孔23は、拡散層19の表面全面で取り出し電極をコンタクトさせることが可能なように、接続孔23の開口径をでき得る限り大きく形成することが望ましい。それによってコンタクト抵抗の低減が図られる。
【0058】
また、図面では、多少アライメントずれを起こした状態をわざと記載したが、接続孔開口時に過剰なオーバエッチングを施さなければ、接続孔23内に形成されるワード線の取り出し電極24の物理的な距離を確保することが可能となる。なお、上部からみた投影デザインでは、この接続孔23が完全にワード線(ゲート電極)18にオーバラップする形となっている。上記接続孔23内には、例えばリンドープトポリシリコンで形成される取り出し電極24が形成されている。
【0059】
また、取り出し電極24上面が第2の絶縁膜22表面と同一面になるように、上記第2の絶縁膜22の表面は平坦化されている。さらに、第2の絶縁膜22上には、取り出し電極24を覆うエッチングストップ層25が形成されている。
【0060】
上記エッチングストップ層25、上記第1の絶縁膜22およびキャップ絶縁膜80には、DRAM領域のワード線18上のシリサイド層21に達する接続孔26が形成されている。上記接続孔26内には取り出し電極27が形成されている。上記取り出し電極27は、窒化チタン膜からなる密着層85を介して接続孔26内を埋め込むように形成されたタングステン膜86からなる。
【0061】
上記エッチングストップ層25上には、上記取り出し電極27を覆う第2の絶縁膜31が形成されている。この第2の絶縁膜31は例えば酸化シリコン膜を50nm〜150nmの厚さに堆積して形成されている。
【0062】
上記第2の絶縁膜31、エッチングストップ層25には、取り出し電極24に接続するビットコンタクトホール32が形成されている。また第2の絶縁膜31上にはビット線34が形成されていて、その一部は上記ビットコンタクトホール32を通じて取り出し電極24に接続されている。また、第2の絶縁膜31上にはローカル配線35が形成されている。上記ビット線34およびローカル配線35は、例えばタングステン膜37により形成され、その下部に密着層36が形成され、その上部にキャップ層38が形成されている。
【0063】
上記第2の絶縁膜22上には、上記ビット線34およびローカル配線35を覆うエッチングストッパ層41および第3の絶縁膜42が形成されている。このエッチングストッパ層41は、ALD(Atomic Layer Deposition)法によって成膜された窒化シリコン膜で、例えば30nm〜50nmの厚さに形成されている。
【0064】
上記第3の絶縁膜42から上記エッチングストッパ層25にかけて、記憶ノードコンタクトの取り出し電極24、24に達する記憶ノードコンタクトを形成する接続孔43が形成されている。この接続孔43内においては上記エッチングストッパ層41がビット線と記憶ノードコンタクトとの耐圧が確保される膜厚のサイドウォールとしてビット線34の側壁に残る。さらに上記接続孔43内には取り出し電極24に接続する記憶ノードコンタクト44が形成されている。この記憶ノードコンタクト44は、例えばタングステン、チタン、窒化チタン、タンタル、窒化タンタル、酸化ルテニウム等の材料で形成されている。なお、上記第3の絶縁膜42表面は、例えば、記憶ノードコンタクト44上面とともに平坦化されている。
【0065】
上記第3の絶縁膜42上には第4の絶縁膜45が形成されている。この第4の絶縁膜45には、キャパシタが形成される凹部46が、その底部に上記記憶ノードコンタクト44上面が露出するように形成されている。その凹部46内には、熱処理が不要なMIM(Metal/insulator/Metal)構造のキャパシタ91が形成されている。MIM構造のキャパシタ91は0.1μm以降のDRAMでは必須になると予想され、現在では、一例として、電極92、94にルテニウム(Ru)、酸化ルテニウム(RuO)系材料が用いられ、電極92、94間に形成される誘電体膜93にはBST(BaTiO3 とSrTiO3 との混晶)系の膜が採用されている。
【0066】
上記第4の絶縁膜45上には、上記MIM構造のキャパシタ91を覆う第5の絶縁膜47が形成されている。この第5の絶縁膜47表面は平坦化されている。上記第5の絶縁膜47ないし第1の絶縁膜22には、キャパシタ取り出し電極、ワード線取り出し電極、ローカル配線取り出し電極等を形成するための接続孔111、112、113等が形成されている。
【0067】
各接続孔111、112、113等には、キャパシタ取り出し電極121、ワード線取り出し電極122、ローカル配線取り出し電極123等が形成されている。
【0068】
さらに、第5の絶縁膜47上には第6の絶縁膜48が形成されている。この第6の絶縁膜48には、各電極121、122、123に達する配線溝131、132、133が形成され、各配線溝131〜133には第1の配線141〜143が形成されている。この第1の配線141〜143は例えば銅配線からなる。図示はしないが、さらに必要に応じて上層配線が形成されている。なお、上記電極121〜123および上記配線141〜143には、電極、配線、絶縁膜の材質によって、通常知られている密着層、バリア層が形成されている。
【0069】
上記第1の半導体装置では、溝14内に形成されるワード線18の上部で溝14の側壁側に溝部183を形成し、その溝部183を埋め込むようにワード線(ゲート電極を含む)18上の溝14の側壁にサイドウォール絶縁膜20を形成したことから、このサイドウォール絶縁膜20の溝部183に形成された部分によってワード線18上面のシリサイド層21とゲート絶縁膜16との物理的距離が十分に確保される。このため、ゲート絶縁膜16の耐圧劣化を防止することができる。
【0070】
チャネルが形成される溝14下部とウエル拡散層13との間の半導体基板11にチャネル拡散層15が形成されていることから、溝14とウエル拡散層13との間の領域の不純物濃度は溝14周囲の半導体基板11の不純物濃度よりも高くなる。また、ソース・ドレインとなる拡散層19下部の半導体基板11濃度は極めて低くなっていることから、拡散層19の接合の電界が弱められるので、ppmオーダーでの接合リークの抑制が可能になり、それによって、データ保持特性が極めてよくなる。
【0071】
ワード線18上層にシリサイド層21が形成されていることから、ワード線18の抵抗が低減され、遅延の問題が回避されて、動作速度が向上する。それとともに、ワード線18へのコンタクト抵抗が低減される。
【0072】
しかも、半導体基板11表面側に拡散層が形成され、その半導体基板に形成された溝内にゲート絶縁膜を介してワード線が埋め込まれていることから、チャネルはワード線が形成されている溝底部側の半導体基板を廻り込むように形成される。そのため、実効的なチャネル長が十分に確保されるため、バックバイアスを印加して、短チャネル効果が厳しいメモリ素子(例えばDRAM)のトランジスタ特性が安定化される。
【0073】
また、拡散層19は、その深さ方向に不純物濃度が薄くなっていることから、メモリ素子領域の拡散層19下部の半導体基板11濃度をセルトランジスタに要求されるほどに濃くしなくともよいので、接合の電界が緩和され、メモリ素子のセル縮小化にともない厳しくなるデータ保持特性の性能が維持される。
【0074】
また、ゲート絶縁膜16を介して半導体基板11に形成された溝14内に埋め込まれたワード線18上に、第1の絶縁膜22を介してこのワード線18にオーバラップする状態で、半導体基板11表面に形成した拡散層19に接続される取り出し電極24が形成されていることから、ワード線18上の第1の絶縁膜22を20nm〜30nm以上の十分な膜厚を確保することが可能になる。それによって、拡散層19に接続される取り出し電極との耐圧が確保される。そのため、メモリ素子の拡散層19上の全面がコンタクトに使用されるので、実効面積を有効に使用できる。よって、セルデザインで実現可能な最低の抵抗値が実現されるので、コンタクト抵抗の低減が図れる。
【0075】
本発明の第1の半導体装置の製造方法に係る実施の形態の一例を、図3〜図23の概略構成断面図、部分拡大概略図によって説明する。図3〜図23では、メモリ素子とロジック素子とを同一半導体基板に形成する製造方法を示し、前記図1によって説明したのと同様なる構成部品には同一符号を付与する。
【0076】
図3の(1)に示すように、半導体基板11として、例えば1×1017/cm3 程度のp型不純物濃度を有するシリコン基板を用意する。例えばSTI(Shallow Trench Isolation )技術によって、上記半導体基板11に、メモリ素子領域(以下DRAMとして説明し、図面ではDRAM領域と記す)、標準電圧ロジック領域、高電圧ロジック領域等を分離する素子分離領域12を形成する。この素子分離領域12は例えば0.1μm〜0.2μm程度の深さに形成される。次いで、化学的気相成長(以下CVDという、CVDはChemical Vapor Deposition の略)によって素子分離領域12上を覆うように上記半導体基板11上に例えば酸化シリコン膜からなるバッファ層71を例えば20nm〜40nmの厚さに形成する。
【0077】
さらに半導体基板11上にレジスト膜201を形成した後、リソグラフィー技術に用いてDRAM領域のメモリセル形成領域上に開口部202を形成する。
【0078】
次いで上記レジスト膜201をマスクに用いたイオン注入により、上記メモリ素子領域の半導体基板11中に例えばホウ素を導入してウエル拡散層13を形成する。このイオン注入条件としては、イオン種にホウ素を用い、ドーズ量を例えば5×1012/cm2 〜7×1012/cm2 程度とし、後に形成される溝の深さよりも深くなるように、例えば150nm〜200nmよりも深く、素子分離領域12の深さよりもやや深い状態に形成される。また、ウエル拡散層13は深さ方向の厚さを例えば0.8μm程度とする。
【0079】
さらに、必要に応じて、素子分離領域12下方の半導体基板11に素子分離拡散層(図示せず)を形成してもよい。
【0080】
上記バッファ層71は、上記ウエル拡散層13を形成する際の緩衝膜の機能を有するものである。また、後に行うメモリ素子のトランジスタ(アクセストランジスタ)の基板濃度を調整するイオン注入時にDRAMの接合となる領域に対してイオン注入のストッパとして機能する。さらに、溝に埋め込まれたワード線の表面にサリサイドを形成する際に、DRAM領域の拡散層にサリサイドが形成されるのを防止する機能を有する。その後、上記レジスト膜201を除去する。
【0081】
次いで、図4の(2)に示すように、半導体基板11上にレジスト膜203を形成した後、リソグラフィー技術によりDRAM領域のワード線(ゲート電極)となる領域上のレジスト膜203に開口部204を形成する。
【0082】
次いで、図5の(3)に示すように、上記レジスト膜203をエッチングマスクに用いて、バッファ層71、素子分離領域12および半導体基板11をエッチング(例えば連続的にエッチング)して素子分離領域12(フィールド)および半導体基板11に、DRAM領域のワード線(ゲート電極も含む)が形成される溝14を形成する。この溝14の深さは、例えば100nm〜150nm程度であり、先に形成したウエル拡散層13とこの溝14の底部との間に半導体基板11が残るようにする。なお、半導体基板11に形成された溝14の深さと素子分離領域12に形成された溝14の深さとが多少の差を生じてもよい。
【0083】
また、上記溝14はDRAM領域のみに形成されることから、溝14底部のエッジ部分は、セルトランジスタの電界集中を避けるために、いわゆるラウンド形状に形成することが望ましく、また、溝14の幅がメモリ素子のアクセストランジスタのチャネル長になるので、溝14の側壁はできうる限り半導体基板11表面に対して垂直に形成されることが望ましい。なお、DRAM領域に形成されているバッファ層71は素子分離領域12をエッチングする際に同時にエッチングされる。その後、上記レジスト膜203を通常の除去技術によって除去する。
【0084】
なお、この世代で想定している電圧としては、標準ロジック領域は0.5V〜1.2V、高電圧ロジック領域は1.5V〜2.5V、DRAMセルのワード線昇圧は1.5V〜2.5Vである。
【0085】
次いで図6の(4)に示すように、例えば熱酸化法によって上記半導体基板11の露出している全面に犠牲酸化膜(図示せず)を例えば10nm〜20nmの厚さに形成する。
【0086】
次いで、DRAM領域のアクセストランジスタのチャネルドーピングを行って、上記溝14の底部と上記ウエル拡散層13との間にチャネル拡散層15を形成する。
【0087】
DRAM領域のワードトランジスタの上記チャネル拡散層15として、高濃度(例えば1.0×1018/cm3 〜1.0×1019/cm3 )にしなければならない領域は、半導体基板11を掘り下げた溝14底部の半導体基板11(11a)部分であり、溝14の側壁や上部における半導体基板11には基板濃度としてのイオン注入をほとんど行う必要はない。また、上記イオン注入では、半導体基板11表面やロジック素子領域には、最初に設けたバッファ層71がイオン注入のマスクとなるため、新たなマスクを用いないで溝14の底部のみにチャネル拡散層15を形成することが可能になる。したがって、後述する拡散層19(図35参照)下部の半導体基板11部分は、極めて低濃度(例えば1.0×1017/cm3 〜1.0×1018/cm3 )での形成が可能になる。
【0088】
その後、例えばウエットエッチングによって上記犠牲酸化膜(図示せず)を除去する。その後、DRAM領域の上記溝14の内面および半導体基板11上等にゲート絶縁膜16を通常のゲート酸化膜の形成方法により形成する。
【0089】
図7の(5)および図8に示すように、DRAM領域の各溝14の内壁を被覆するように上記ゲート絶縁膜16表面に第1導電層181を例えば5nm〜10nmの厚さにリンドープトポリシリコンを堆積して形成する。次いでDRAM領域の各溝14を埋め込むように上記第1導電層181表面に第2導電層182を50nm〜150nmの厚さにノンドープトポリシリコンを堆積して形成する。この膜厚は溝14を埋め込むのに十分な厚さであればよく、その膜厚は特に溝状のワード線を形成するためのみに最適化した膜厚に設定される。
【0090】
図9の(6)および図10に示すように、溝14の内部に第1導電層181、第2導電層182が残るよう第1導電層181、第2導電層182をエッチバックする。このエッチングでは、第1導電層181のほうが第2導電層182よりもエッチングレートが速くなるエッチング条件を用いる。言い換えれば、第1導電層181のほうが第2導電層182よりもエッチングレートが速くなる導電膜で形成する。その結果、エッチング速度が速い第1導電層181がより多くエッチングされ、第1導電層181上の第2導電層182と密着4の側壁との間に溝部183が形成される。同時に溝14の内部には第1導電層181、第2導電層182からなるワード線(一部ゲート電極として機能する)18が形成される。その際、ワード線18の表面が半導体基板11表面より30nm〜100nm程度下がるように上記第1導電層181、第2導電層182のエッチバックを行うことで、後に形成される拡散層の取り出し電極との耐圧距離が確保される。このエッチバックでは、ゲート絶縁膜16がエッチングストップ層として機能する。
【0091】
さらに、DRAM領域の半導体基板11にソース・ドレインを形成するためのイオン注入を行い、拡散層19を形成する。このイオン注入条件としては、一例として、イオン注入する不純物にリンを用い、濃度が1×1017/cm3 〜1×1018/cm3 となるように、ドーズ量、注入エネルギーを設定する。バッファ層71を貫通する注入エネルギーであれば十分なため、注入エネルギーを例えば20keV〜50keVに設定し、ドーズ量を1×1018/cm2 〜3×1018/cm2 に設定する。この条件でイオン注入を行えば、DRAM領域の上記拡散層19下層の半導体基板11にはほとんどイオン注入されない。そのため、この領域の半導体基板11は1×1016/cm3 〜×1017/cm3 程度の非常に薄い濃度に設定することが可能となる。上記リンイオン注入により第2導電層182にもリンがドーピングされ、その後の熱処理によって、第1導電層181と第2導電層182は同等の不純物濃度になる。この第1導電層181および第2導電層182は、DRAM領域のワード線のみに使用され、Pチャネルのトランジスタには使用されないため、N+ ゲート材料(例えばリン)をドーピング物質として用いることができる。
【0092】
よって、このN−P接合は超グレーディッド接合(非常に緩やかな濃度勾配の接合)となる。このような状態の接合では、逆バイアス時の電界を緩和し、メガビット級のDRAMでわずかppmオーダーの不良ビットに起きる通常よりも2桁程度も悪い接合リークの電流抑制に劇的に寄与する。この不良ビットのデータ保持特性がDRAMのチップ性能を支配しており、今後のDRAMでデータ保持特性を維持する重要な技術となっている。
【0093】
例えば、基板濃度が5×1016/cm3 程度であるならば、85℃で500ms以上のデータ保持特性が基体でき、これは実に4世代〜5世代も前のデータのデータ保持特性に匹敵する性能を発揮すると予想される。また、DRAM領域のアクセストランジスタは、半導体基板11をいわゆるラウンドする形でチャネルが形成されることから、実効的なチャネル長を長く確保することもでき、バックバイアスを印加して使う、短チャネル効果が厳しいDRAMセルのトランジスタ特性の安定化を図ることもできる。
【0094】
上記イオン注入では、後のDRAM領域のゲート形成に係る熱処理による拡散を考慮して、やや浅めにイオン注入を行うが、DRAMのゲートが基板埋め込み型であるため、DRAM領域のチャネルは埋め込みゲートを形成する溝14の底部に形成されるので、何ら問題はない。また、後の熱処理によって活性化されるため、特にこの段階で熱処理を行う必要もない。
【0095】
次いで、図11の(7)に示すように、DRAM領域のゲートを保護する保護膜78を例えば薄い窒化シリコン膜(例えば厚さが10nm〜50nm)で形成する。この保護膜78は、上記溝部183内を埋め込むように形成され、後にDRAM領域のワード線18上の側壁にサイドウォール状に形成され、サリサイド形成時に、ワード線18側壁の耐圧確保に寄与する。
【0096】
次いで、図12の(8)および図13に示すように、DRAM領域の保護膜78を例えば反応性イオンエッチング(RIE)によりエッチングしてDRAM領域のワード線18を露出させる。この結果、溝部183を埋め込むようにワード線18上の溝14の側壁に保護膜78からなるサイドウォール絶縁膜20が形成される。このサイドウォール絶縁膜20は側壁保護の機能を有する。なお、上記反応性イオンエッチングでは、DRAM領域の拡散層19が露出しないようにすること、すなわち、拡散層19上にバッファ層71を残すようにすることが重要である。
【0097】
さらに、図14の(9)に示すように、通常のシリサイド化技術を用いて、上記DRAM領域のワード線18上にシリサイド層21を選択的に形成する。このようにして、低抵抗を実現する必要が有るDRAM領域のワード線18上に選択的にシリサイド層21が形成される。このシリサイド層としては、例えばコバルトシリサイド(CoSi2 )、チタンシリサイド(TiSi2 )ニッケルシリサイド(NiSi2 )等を用いることができる。
【0098】
その後、全面にキャップ絶縁膜80を例えば窒化シリコン膜で形成する。このキャップ絶縁膜80はサリサイド形成部の接合リークを抑制するのに効果的であるが、不要であれば形成する必要はない。なお、先に記述したように、周辺回路部のトランジスタのゲート電極上にもシリサイド層を形成してサリサイド構造として、ゲート電極の低抵抗化を図っても差し支えはない。
【0099】
次いで、図15の(10)に示すように、全面に第1の絶縁膜(絶縁膜)22を形成した後、CMPによって、第1絶縁膜22表面を平坦化する。上記第1の絶縁膜22表面を平坦化する方法は、平坦化を実現することができる方法であればCMPに限定されることはなく、例えばエッチバック法等を用いることも可能である。その後、上記第1の絶縁膜22上にレジスト膜215を形成した後、リソグラフィー技術によって、上記レジスト膜215にDRAM領域の拡散層取り出しコンタクト用の接続孔パターン216を形成する。
【0100】
次いで、上記レジスト膜215をエッチングマスクに用いてエッチングを行い、図16の(11)に示すように、第1の絶縁膜22を貫通してDRAM領域の拡散層19に達する接続孔23を形成する。このとき、DRAM領域のワード線(ゲート電極)18はコンタクトを取るべき拡散層19よりも半導体基板11表面下に配置されているので、セルフアラインコンタクト等の特別な技術を用いる必要はない。またDRAMの拡散層19全面が取り出し電極とコンタクトできるように、接続孔23の開口径をでき得る限り大きく形成することが望ましい。それによってコンタクト抵抗の低減が図られる。
【0101】
また、図面では、多少アライメントずれを起こした状態をわざと記載したが、接続孔開口時に過剰なオーバエッチングを施さなければ、後の工程で接続孔23内に形成されるワード線取り出し電極の物理的な距離を確保することが可能となる。なお、上部からみた投影デザインでは、この接続孔23が完全にワード線(ゲート電極)18にオーバラップする形となっている。
【0102】
次いで、上記接続孔23内を埋め込むように、第1の絶縁膜22上に、取り出し電極形成膜81を形成する。この取り出し電極形成膜81は、例えばリンドープトポリシリコンで形成される。この拡散層取り出しのための取り出し電極形成膜81は、従来通り、DRAM領域に接合リークの低減を考慮してリンドープトポリシリコンが選択されることが望ましい。なお、この段階では活性化のための熱処理は不要である。
【0103】
その後、図17の(12)に示すように、例えばCMPによって、第1の絶縁膜22上の余剰な取り出し電極形成膜81(リンドープトポリシリコン)を除去して、接続孔23内に拡散層19に接続する取り出し電極形成膜81からなる取り出し電極24を形成するとともに、第1の絶縁膜22を研磨してその表面を平坦化させる。
【0104】
その後、熱処理を行う。この熱処理によって、DRAM領域のポリシリコンからなる取り出し電極24の活性化を行う。この熱処理では、900℃、10秒程度のRTA(Rapid Thermal Annealing )で十分ではあるが、通常の炉を用いた熱アニールを行っても差し支えは無い。なお、これ以降の工程では、高温の熱工程は行われないので、例えば、DRAMと同時にロジック素子を形成する場合には、ロジック素子のゲート電極からホウ素が拡散する、いわゆる「突き抜け」は最小限に抑えられる。
【0105】
次いで、図18の(13)に示すように、第1の絶縁膜22上に、DRAM領域の取り出し電極24を覆うエッチングストップ層25を例えば酸化シリコン膜で全面に形成する。
【0106】
その後、図19の(14)に示すように、エッチングストップ層25上にレジスト膜(図示せず)を形成した後、リソグラフィー技術によって、上記レジスト膜にDRAM領域のワード線取り出しコンタクト用の接続孔パターン(図示せず)を形成する。続いて、上記レジスト膜をエッチングマスクに用いて、上記エッチングストップ層25、上記第1の絶縁膜22およびキャップ絶縁膜80を貫通してDRAM領域のワード線18上のシリサイド層21に達する接続孔26を形成する。
【0107】
その後、上記レジスト膜を除去する。次に、通常のタングステンプラグの形成技術により上記接続孔26に内面に窒化チタン膜からなる密着層85を形成した後、接続孔26内を埋め込むようにタングステン膜86を形成する。その後CMPにより上記エッチングストップ層25上の上記タングステン膜86および密着層85の余剰な部分を除去し、上記接続孔26の内部に取り出し電極27を形成する。
【0108】
次いで、上記取り出し電極27を覆うように上記エッチングストップ層25上の全面に第2の絶縁膜31を例えば酸化シリコン膜を50nm〜150nmの厚さに堆積して形成する。
【0109】
その後、第2の絶縁膜31上にレジスト膜(図示せず)を形成した後、リソグラフィー技術により上記レジスト膜にビットコンタクトを形成する位置に開口部(図示せず)を形成する。そのレジスト膜をマスクに用いたエッチングにより、図20の(15)に示すように、上記エッチングストッパ層25および第2の絶縁膜31に所定の取り出し電極24に達するビットコンタクトホール32を形成する。
【0110】
次いで、ビット線34、ローカル配線35を形成するための配線金属層を形成する。この配線金属層は、まず上記ビットコンタクトホール32の内面および第2の絶縁膜31上に、例えばチタン膜と窒化チタン膜を積層してなる密着層36を形成する。さらにビットコンタクトホール32を埋め込むようにして、上記密着層36上に金属配線の主材料となるタングステン膜37を成膜する。さらにタングステン膜37上にキャップ層38を例えば窒化シリコン膜で形成する。
【0111】
その後、通常のリソグラフィー技術とエッチング技術とによって上記キャップ層38、タングステン膜37、密着層36をパターニングしてビットコンタクトホール32を通じてビットコンタクトの取り出し電極24に接続されるビット線34が形成されるとともに、ローカル配線35が形成される。したがって、ビット線34上およびローカル配線35上にはキャップ層38が形成される。
【0112】
その後、上記第2の絶縁膜31上に、ビット線34を覆うエッチングストッパ層41をALD窒化シリコン膜で、例えば30nm〜50nmの厚さに形成する。
【0113】
次に、図21の(16)に示すように、上記エッチングストッパ層41上に第3の絶縁膜42を形成する。そして、第3の絶縁膜42表面を例えばCMPを用いて平坦化する。次に、上記第3の絶縁膜42上にレジスト膜219を形成した後、リソグラフィー技術により記憶ノードコンタクトを開口するための開口パターン220を形成する。この開口パターン220は、実際の記憶ノードコンタクトが形成される接続孔の口径よりも大きく形成することができる。
【0114】
次いで、上記レジスト膜219をエッチングマスクに用いて、図22の(17)に示すように、上記第3の絶縁膜42からエッチングストップ層25までをエッチングして、記憶ノードコンタクトの取り出し電極24、24に達する記憶ノードコンタクトを形成する接続孔43を形成する。このエッチングでは、上記レジスト膜219〔前記図21の(16)参照〕の他にキャップ層38およびエッチングストッパ層41がエッチングマスクとなっている。なお、上記エッチングストッパ層41は、その一部がエッチングされるが、ビット線と記憶ノードコンタクトとの耐圧が確保される膜厚のサイドウォールとしてビット線34の側壁に残る。その後上記レジスト膜219〔図21の(16)参照〕を除去する。
【0115】
次に、図23の(18)に示すように、上記接続孔43内に取り出し電極24に接続する記憶ノードコンタクト44を形成する。この記憶ノードコンタクト44は、例えば上記接続孔43を埋め込むように上記第3の絶縁膜42上にタングステン、チタン、窒化チタン、タンタル、窒化タンタル、酸化ルテニウム等を堆積して材料層を形成した後、第3の絶縁膜42上の余剰な上記材料層を例えばCMPによって除去することによって、接続孔43内に残した上記材料層で形成される。
【0116】
次に、第3の絶縁膜42上に上記記憶ノードコンタクト44等を覆う第4の絶縁膜45を形成する。次いで、第4の絶縁膜45にキャパシタが形成される凹部46を、その底部に上記記憶ノードコンタクト44上面が露出するように形成する。
【0117】
その後、凹部46内に、熱処理が不要なMIM(Metal/insulator/Metal)構造のキャパシタ91を形成する。MIM構造のキャパシタ91は0.1μm以降のDRAMでは必須になると予想され、現在では、一例として、電極92、94には、ルテニウム(Ru)、酸化ルテニウム(RuO)系材料が用いられ、誘電体膜93にはBST(BaTiO3 とSrTiO3 との混晶)系の膜が採用される。
【0118】
次いで、上記第4の絶縁膜45上に、上記MIM構造のキャパシタ91を覆う第5の絶縁膜47を形成する。その後、CMPによって上記第5の絶縁膜47表面を平坦化する。次いで、第5の絶縁膜47ないし第2の絶縁膜31に、キャパシタ取り出し電極、ワード線取り出し電極等を形成するための接続孔111、112、113等を形成する。
【0119】
さらに、接続孔111、112、113等に、キャパシタ取り出し電極121、ワード線取り出し電極122、ローカル配線取り出し電極123等を形成する。さらに、第5の絶縁膜47上に第6の絶縁膜48を形成する。次いで、この第6の絶縁膜48に各電極121、122、123等に達する各配線溝131、132、133を形成し、配線溝131、132、133に配線141、142、143を形成する。この配線141、142、143は例えば銅配線からなる。図示はしないが、さらに必要に応じて上層配線を形成する。なお、上記電極121、122、123および上記配線141、142、143には、電極、配線、絶縁膜の材質によって、通常知られている密着層、バリア層が形成される。
【0120】
上記第1の半導体装置の製造方法では、ワード線(ゲート電極)18上部の溝14側壁側に溝部183を形成し、この溝部183を埋め込むようにワード線(ゲート電極)18上の溝14側壁にサイドウォール絶縁膜20を形成することから、ワード線(ゲート電極)18上にシリサイド層21が形成されても。シリサイド層21とゲート絶縁膜16との距離はサイドウォール絶縁膜20の溝部183に形成された部分によって十分に確保されるので、ゲート絶縁耐圧の劣化が抑制される半導体装置となる。
【0121】
上記第1の半導体装置の製造方法では、バッファ層71を形成していることにより、その後、溝14の底部における半導体基板11にチャネル拡散層15を形成する不純物を導入する際に、バッファ層71がマスクとなって、選択的に溝14の底部の半導体基板11に不純物が導入され、チャネル拡散層15が形成される。
【0122】
このように、溝14下部とウエル拡散層13との間の半導体基板11にチャネル拡散層15を形成することから、溝14とウエル拡散層13との間の領域の不純物濃度は溝14周囲の半導体基板11の不純物濃度よりも高くなる。また、ソース・ドレインとなる拡散層19下部の半導体基板11濃度は極めて低くい状態に保つことができるので、拡散層19の接合の電界が弱められる。このため、ppmオーダーでの接合リークの抑制が可能になり、それによって、データ保持特性が極めてよくなる半導体装置が形成される。
【0123】
また、ゲート絶縁膜16を介して半導体基板11に形成された溝14内に埋め込まれたワード線18上に、第2の絶縁膜22を介してこのワード線18にオーバラップする状態で、半導体基板11表面に形成した拡散層19に接続される取り出し電極24を形成することから、ワード線18上の第2の絶縁膜22を20nm〜30nm以上の十分な膜厚を確保することが可能になる。それによって、拡散層19に接続される取り出し電極24との耐圧が確保される。そのため、メモリ素子の拡散層19上の全面がコンタクトに使用されるので、実効面積を有効に使用できる。よって、セルデザインで実現可能な最低の抵抗値が実現されるので、コンタクト抵抗の低減が図れる。
【0124】
さらに、ワード線18上層にシリサイド層21を形成することから、ワード線18の抵抗が低減され、遅延の問題が回避される。それとともに、ワード線18へのコンタクト抵抗が低減される。
【0125】
また、半導体基板11表面側に拡散層19を形成し、その半導体基板11に形成した溝14内にゲート絶縁膜16を介してワード線18を埋め込むように形成することから、チャネルはワード線18が形成されている溝14底部側の半導体基板11を廻り込むように形成される。そのため、実効的なチャネル長が十分に確保されるため、バックバイアスを印加して、短チャネル効果が厳しいメモリ素子(例えばDRAM)のトランジスタ特性が安定化される。
【0126】
また、メモリ素子領域の拡散層19を、その深さ方向に不純物濃度が薄くなるように形成することから、メモリ素子領域の拡散層19下部の半導体基板11濃度をセルトランジスタに要求されるほどに濃くしなくともよいので、接合の電界が緩和され、メモリ素子のセル縮小化にともない厳しくなるデータ保持特性の性能が維持される。
【0127】
本発明の第2の半導体装置に係る一実施の形態を、図24の概略構成断面図および図25のE部拡大図によって説明する。
【0128】
図24および図25に示すように、半導体基板11は、例えば1×1017/cm3 程度のp型不純物濃度を有するシリコン基板で構成されている。上記半導体基板11には、メモリ素子領域(以下DRAMとして説明し、図面ではDRAM領域と記す)、標準電圧ロジック領域、高電圧ロジック領域等を分離する素子分離領域12が形成されている。この素子分離領域12は、例えばSTI(Shallow Trench Isolation )技術によって、例えば0.1μm〜0.2μm程度の深さに形成される。さらに半導体基板11上には、素子分離領域12上を覆うバッファ層71が例えば酸化シリコン膜で例えば20nm〜40nmの厚さに形成されている。
【0129】
上記バッファ層71は製造上、必要なものである。すなわち、バッファ層71は、ウエル拡散層13を形成する際の緩衝膜の機能を有するものであり、後に説明するメモリ素子のトランジスタ(アクセストランジスタ)の基板濃度を調整するイオン注入時にDRAMの接合となる領域に対してイオン注入のストッパとして機能するものであり、さらに、溝14に埋め込まれたワード線18の表面にシリサイド層27を形成する際に、DRAM領域の拡散層19にシリサイド層27が形成されるのを防止する機能を有する。
【0130】
上記メモリ素子領域の半導体基板11中には、ウエル拡散層13が、例えば上面が150nm〜200nmよりも深い状態で、下面が素子分離領域12の深さよりもやや深い状態に、かつ深さ方向の厚さが例えば0.8μm程度となるように形成されている。このウエル拡散層13は、P形であり、例えばホウ素を導入して形成されるものであり、例えばイオン注入で形成する場合には、イオン種にホウ素を用い、ドーズ量を例えば5×1012/cm2 〜7×1012/cm2 程度とする。
【0131】
さらに、必要に応じて、素子分離領域12下方の半導体基板11に素子分離拡散層(図示せず)が形成されていてもよい。
【0132】
さらに、バッファ層71を貫通し、上記素子分離領域12および半導体基板11には、DRAM領域のワード線(ゲート電極も含む)が形成される溝14を形成されている。この溝14の深さは、例えば100nm〜150nm程度であり、先に形成したウエル拡散層13とこの溝14の底部との間に半導体基板11が残るように形成されている。なお、半導体基板11に形成された溝14の深さと素子分離領域12に形成された溝14の深さとが多少の差を生じてもよい。
【0133】
また、上記溝14底部のエッジ部分は、セルトランジスタの電界集中を避けるために、いわゆるラウンド形状に形成されていることが望ましく、また、溝14の幅がメモリ素子のアクセストランジスタのチャネル長になるので、溝14の側壁はできうる限り半導体基板11表面に対して垂直に形成されることが望ましい。
【0134】
さらに、上記溝14の底部と上記ウエル拡散層13との間の半導体基板11にはチャネル拡散層15が形成されている。DRAM領域のワードトランジスタの上記チャネル拡散層15として、高濃度(例えば1.0×1018/cm3 〜1.0×1019/cm3 )にしなければならない領域は、半導体基板11を掘り下げた溝14底部の半導体基板11(11a)部分であり、溝14の側壁や上部における半導体基板11は極めて低濃度でよい。したがって、後述する拡散層19下部の半導体基板11部分は、極めて低濃度(例えば1.0×1017/cm3 〜1.0×1018/cm3 )で形成されている。
【0135】
上記溝14の内面および半導体基板11上等には、ゲート絶縁膜16が形成されている。上記ゲート絶縁膜15は、最先端のロジックのトランジスタよりもやや厚めの膜厚を有し、またゲート長もやや長く形成されるため、この世代であっても、熱酸化による酸化シリコン膜の適用が可能である。したがって、DRAM領域の上記ゲート絶縁膜15は、例えば1.5nm〜5nm程度の厚さの酸化シリコン膜で形成されている。
【0136】
さらに各溝14を埋め込むように上記ゲート絶縁膜16を介して、例えばリンドープトポリシリコン膜からなるワード線(ゲート電極も含む)18が形成されている。上記ワード線18は、第1導電層181と第2導電層182の2層のポリシリコン層から形成されている。上記第1導電層181は、例えば5nm〜10nmの厚さのリンドープトポリシリコン膜からなり、上記第2導電層182は例えばノンドープトポリシリコン膜に不純物(例えばリン)をドーピングした膜からなる。また上記ワード線18上部の溝14壁面側(第1導電層181上部)には溝部183が形成されている。
【0137】
また、上記ワード線18のポリシリコン層上の溝14側壁には、上記溝部183を埋め込むサイドウォール絶縁膜20が例えば窒化シリコン膜で形成されている。さらに上記ワード線18は、上層にシリサイド(例えばサリサイド)層21で形成されている。したがって、上記シリサイド層21はゲート絶縁膜16に対してサイドウォール絶縁膜20を介してワード線18の上層に形成されている。
【0138】
また、上記ワード線18として機能する上記シリサイド層21は、少なくとも後に説明する取り出し電極24との耐圧が確保される距離として、その表面が溝14の上部の半導体基板11表面より少なくとも30nm〜100nm程度下がるように、好ましくは50nm〜90nm程度下がるように形成されている。この実施の形態では、例えば50nm程度下がった状態に形成されている。そのため、後述する拡散層の取り出し電極24との耐圧距離が確保されている。
【0139】
さらに、上記シリサイド層21は、例えばコバルトシリサイド(CoSi2 )、チタンシリサイド(TiSi2 )ニッケルシリサイド(NiSi2 )等を用いられている。上記サイドウォール絶縁膜20はシリサイド層21と拡散層19との間の耐圧を確保する機能を有する。なお、半導体基板11に形成された溝14の深さと素子分離領域12に形成された溝14の深さに多少の差を生じていても差し支えはない。
【0140】
さらに、DRAM領域の半導体基板11には、ソース・ドレインとなる拡散層19が形成されている。この拡散層19には、N形の不純物としてリンが用いられ、濃度が1×1017/cm3 〜1×1018/cm3 となっている。そのため、この領域の半導体基板11は1×1016/cm3 〜×1017/cm3 程度の非常に薄い濃度に設定されている。
【0141】
よって、このN−P接合は超グレーディッド接合(非常に緩やかな濃度勾配の接合)となる。このような状態の接合では、逆バイアス時の電界を緩和し、メガビット級のDRAMでわずかppmオーダーの不良ビットに起きる通常よりも2桁程度も悪い接合リークの電流抑制に劇的に寄与する。この不良ビットのデータ保持特性がDRAMのチップ性能を支配しており、今後のDRAMでデータ保持特性を維持する重要な技術となっている。
【0142】
例えば、基板濃度が5×1016/cm3 程度であるならば、85℃で500ms以上のデータ保持特性が基体でき、これは実に4世代〜5世代も前のデータのデータ保持特性に匹敵する性能を発揮すると予想される。また、DRAM領域のアクセストランジスタは、半導体基板11をいわゆるラウンドする形でチャネルが形成されることから、実効的なチャネル長を長く確保することもでき、バックバイアスを印加して使う、短チャネル効果が厳しいDRAMセルのトランジスタ特性の安定化を図ることもできる。
【0143】
一方、標準電圧ロジック領域の半導体基板11には、NチャネルトランジスタのPウエル拡散層51と、PチャネルトランジスタのNウエル拡散層(図示せず)が形成されている。また高電圧ロジック領域の半導体基板11には、NチャネルトランジスタのPウエル拡散層(図示せず)と、PチャネルトランジスタのNウエル拡散層61が形成されている。なお、必用に応じてチャネルドーピングがなされている。
【0144】
さらに、標準電圧ロジック領域のNチャネルトランジスタの形成領域における半導体基板11(Pウエル拡散層51)には、Nチャネルトランジスタの低濃度拡散層52、52が形成されている。また標準電圧ロジック領域のpチャネルトランジスタの形成領域における半導体基板11には、Pチャネルトランジスタの低濃度拡散層(図示せず)が形成されている。
【0145】
さらに、高電圧ロジック領域のPチャネルトランジスタの形成領域における半導体基板11(Nウエル拡散層61)には、Pチャネルトランジスタの低濃度拡散層62、62が形成されている。また高電圧ロジック領域のNチャネルトランジスタの形成領域における半導体基板11には、Nチャネルトランジスタの低濃度拡散層(図示せず)が形成されている。
【0146】
このロジック素子領域の半導体基板11(素子分離領域12も含む)上には、ロジック素子のゲート絶縁膜17が形成されている。この世代では、ゲート絶縁膜を膜厚に応じて作り分けるのが一般的であり、レジストプロセスを用いて作り分けが行われている。ゲート絶縁膜には酸化シリコンもしくは耐熱性が必要な場合には窒化シリコンが用いられている。また、Pチャネルゲートからのホウ素(B)の突き抜けを防止するために、Pチャネルゲートには例えば酸窒化シリコン膜が用いられている。
【0147】
一方、上記標準電圧ロジック領域の半導体基板11上には、ゲート絶縁膜17を介してゲート電極51が形成されている。このゲート電極51は、下層がリンドープトポリシリコンからなるポリシリコン層で形成され、上層がダミー層を置き換えて形成した密着層と金属層との積層膜からなる金属系ゲート電極で形成され、上記密着層には例えば窒化チタン層が用いられ、金属層にはタングステン層が用いられている。さらに、ゲート電極51の側壁にはゲート絶縁膜17を介してサイドウォール54が形成されている。上記サイドウォール54下部における半導体基板11には上記低濃度拡散層52、52が形成され、この低濃度拡散層52、52を介したゲート電極51の両側の半導体基板11には拡散層55、55が形成されている。この拡散層55の上層にはシリサイド層58が形成されている。このシリサイド層58としては、例えばコバルトシリサイド(CoSi2 )、チタンシリサイド(TiSi2 )ニッケルシリサイド(NiSi2 )等を用いることができる。
【0148】
また、上記高電圧ロジック領域の半導体基板11上には、ゲート絶縁膜17を介してゲート電極61が形成されている。このゲート電極61は、下層がホウ素ドープトポリシリコンからなるポリシリコン層で形成され、上層がダミー層を置き換えて形成した密着層と金属層との積層膜からなる金属系ゲート電極で形成され、上記密着層には例えば窒化チタン層が用いられ、金属層にはタングステン層が用いられている。さらに、ゲート電極61の側壁にはゲート絶縁膜17を介してサイドウォール64が形成されている。上記サイドウォール64下部における半導体基板11には上記低濃度拡散層62、62が形成され、この低濃度拡散層62、62を介したゲート電極61の両側の半導体基板11には拡散層65、65が形成されている。この拡散層65の上層にはシリサイド層68が形成されている。このシリサイド層58としては、例えばコバルトシリサイド(CoSi2 )、チタンシリサイド(TiSi2 )ニッケルシリサイド(NiSi2 )等を用いることができる。
【0149】
上記サイドウォール54、64は、窒化シリコンよりも低応力でウエット処理による剥離性のよい酸化シリコンで形成することが好ましい。または、酸化シリコン膜と窒化シリコン膜の積層膜もしくは酸化窒化シリコン膜で形成することも可能である。
【0150】
また、ロジック領域の素子分離領域12上には、上記ゲート電極51と同様な構造のゲート電極(ゲート配線)51が形成されている。
【0151】
上記半導体基板11上の全面には、第1の絶縁膜(絶縁膜)19が形成されている。この第1の絶縁膜19は、表面が平坦化されていて、上記ロジック領域のゲート電極51、61の各表面が同一平面上にある。
【0152】
さらに、全面にキャップ絶縁膜80が例えば窒化シリコン膜で形成されている。このキャップ絶縁膜80はサリサイド形成部の接合リークを抑制するのに効果的であるが、不要であれば形成する必要はない。
【0153】
さらに、全面に第1の絶縁膜(絶縁膜)22が形成されている。この第1の絶縁膜22には、キャップ絶縁膜80、バッファ層71等を貫通してDRAM領域の拡散層19に達する接続孔23が形成されている。この接続孔23は、拡散層19の表面全面で取り出し電極をコンタクトさせることが可能なように、接続孔23の開口径をでき得る限り大きく形成することが望ましい。それによってコンタクト抵抗の低減が図られる。
【0154】
また、図面では、多少アライメントずれを起こした状態をわざと記載したが、接続孔開口時に過剰なオーバエッチングを施さなければ、接続孔23内に形成されるワード線の取り出し電極24の物理的な距離を確保することが可能となる。なお、上部からみた投影デザインでは、この接続孔23が完全にワード線(ゲート電極)18にオーバラップする形となっている。上記接続孔23内には、例えばリンドープトポリシリコンで形成される取り出し電極24が形成されている。
【0155】
また、取り出し電極24上面、ゲート電極51、61各上面が第2の絶縁膜22表面と同一面になるように、上記第2の絶縁膜22の表面は平坦化されている。さらに、第2の絶縁膜22上には、取り出し電極24、ゲート電極51、61を覆うエッチングストップ層25が形成されている。
【0156】
上記エッチングストップ層25、上記第1の絶縁膜22およびキャップ絶縁膜80には、DRAM領域のワード線18上のシリサイド層21、ロジック領域のトランジスタのシリサイド層57、67に達する接続孔26、58、68が形成されている。上記接続孔26、58、68内には取り出し電極27、59、69が形成されている。上記取り出し電極27、59、69は、窒化チタン膜からなる密着層を介して接続孔26、58、68内を埋め込むように形成されたタングステン膜からなる。
【0157】
上記エッチングストップ層25上には、上記取り出し電極27、59、69を覆う第2の絶縁膜31が形成されている。この第2の絶縁膜31は例えば酸化シリコン膜を50nm〜150nmの厚さに堆積して形成されている。
【0158】
上記第2の絶縁膜31、エッチングストップ層25には、取り出し電極24に接続するビットコンタクトホール32と取り出し電極59に接続するローカルハッチングコンタクトホール33が形成されている。また第2の絶縁膜31上にはビット線34が形成されていて、その一部は上記ビットコンタクトホール32を通じて取り出し電極24に接続されている。また、第2の絶縁膜31上にはローカル配線35が形成されていて、その一部は上記ローカル配線コンタクトホール33を通じて取り出し電極59に接続されている。上記ビット線34およびローカル配線35は、例えばタングステン膜37により形成され、その下部に密着層36が形成され、その上部にキャップ層38が形成されている。
【0159】
上記第2の絶縁膜22上には、上記ビット線34およびローカル配線35を覆うエッチングストッパ層41および第3の絶縁膜42が形成されている。このエッチングストッパ層41は、ALD窒化シリコン膜で、例えば30nm〜50nmの厚さに形成されている。
【0160】
上記第3の絶縁膜42から上記エッチングストッパ層25にかけて、記憶ノードコンタクトの取り出し電極24、24に達する記憶ノードコンタクトを形成する接続孔43が形成されている。この接続孔43内においては上記エッチングストッパ層41がビット線と記憶ノードコンタクトとの耐圧が確保される膜厚のサイドウォールとしてビット線34の側壁に残る。さらに上記接続孔43内には取り出し電極24に接続する記憶ノードコンタクト44が形成されている。この記憶ノードコンタクト44は、例えばタングステン、チタン、窒化チタン、タンタル、窒化タンタル、酸化ルテニウム等の材料で形成されている。なお、上記第3の絶縁膜42表面は、例えば、記憶ノードコンタクト44上面とともに平坦化されている。
【0161】
上記第3の絶縁膜42上には第4の絶縁膜45が形成されている。この第4の絶縁膜45には、キャパシタが形成される凹部46が、その底部に上記記憶ノードコンタクト44上面が露出するように形成されている。その凹部46内には、熱処理が不要なMIM(Metal/insulator/Metal)構造のキャパシタ91が形成されている。MIM構造のキャパシタ91は0.1μm以降のDRAMでは必須になると予想され、現在では、一例として、電極92、94にルテニウム(Ru)、酸化ルテニウム(RuO)系材料が用いられ、電極92、94間に形成される誘電体膜93にはBST(BaTiO3 とSrTiO3 との混晶)系の膜が採用されている。
【0162】
上記第4の絶縁膜45上には、上記MIM構造のキャパシタ91を覆う第5の絶縁膜47が形成されている。この第5の絶縁膜47表面は平坦化されている。上記第5の絶縁膜47ないし第1の絶縁膜22には、キャパシタ取り出し電極、ワード線取り出し電極、ローカル配線取り出し電極、ロジック領域の拡散層取り出し電極、ロジック領域のゲート取り出し電極等を形成するための接続孔111、112、113、114〜116、117等が形成されている。
【0163】
各接続孔111、112、113、114〜116、117等には、キャパシタ取り出し電極121、ワード線取り出し電極122、ローカル配線取り出し電極123、標準電圧ロジック領域の拡散層取り出し電極124、高電圧ロジック領域の拡散層取り出し電極125,126、ロジック領域のゲート取り出し電極127等が形成されている。
【0164】
さらに、第5の絶縁膜47上には第6の絶縁膜48が形成されている。この第6の絶縁膜48には、各電極121、122、123、124,127、125、126に達する配線溝131、132、133、134、135、136が形成され、各配線溝131〜136には第1の配線141〜146が形成されている。この第1の配線141〜146は例えば銅配線からなる。図示はしないが、さらに必要に応じて上層配線が形成されている。なお、上記電極121〜127および上記配線141〜146には、電極、配線、絶縁膜の材質によって、通常知られている密着層、バリア層が形成されている。
【0165】
上記第2の半導体装置では、溝14内に形成されるワード線18の上部で溝14の側壁側に溝部183を形成し、その溝部183を埋め込むようにワード線(ゲート電極を含む)18上の溝14の側壁にサイドウォール絶縁膜20を形成したことから、このサイドウォール絶縁膜20の溝部183に形成された部分によってワード線18上面のシリサイド層21とゲート絶縁膜16との物理的距離が十分に確保される。このため、ゲート絶縁膜16の耐圧劣化を防止することができる。
【0166】
上記第2の半導体装置では、チャネルが形成される溝14下部とウエル拡散層13との間の半導体基板11にチャネル拡散層15が形成されていることから、溝14とウエル拡散層13との間の領域の不純物濃度は溝14周囲の半導体基板11の不純物濃度よりも高くなる。また、ソース・ドレインとなる拡散層19下部の半導体基板11濃度は極めて低くなっていることから、ソース・ドレインとなる拡散層19の接合の電界が弱められるので、ppmオーダーでの接合リークの抑制が可能になり、それによって、データ保持特性が極めてよくなる。
【0167】
ワード線18上層にシリサイド層21が形成されていることから、ワード線18の抵抗が低減され、遅延の問題が回避され、動作速度が向上する。それとともに、ワード線18へのコンタクト抵抗が低減される。また、ロジック素子の拡散層55、65上にシリサイド層57、67が形成されていることから、この拡散層55、65へのコンタクト抵抗が低減される。
【0168】
しかも、半導体基板11表面側に拡散層19が形成され、その半導体基板11に形成された溝14内にゲート絶縁膜16を介してワード線18が埋め込まれていることから、チャネルはワード線18が形成されている溝14底部側の半導体基板11を廻り込むように形成される。そのため、実効的なチャネル長が十分に確保されるため、バックバイアスを印加して、短チャネル効果が厳しいメモリ素子(例えばDRAM)のトランジスタ特性が安定化される。
【0169】
また、拡散層19は、その深さ方向に不純物濃度が薄くなっていることから、メモリ素子領域の拡散層19下部の半導体基板11濃度をセルトランジスタに要求されるほどに濃くしなくともよいので、接合の電界が緩和され、メモリ素子のセル縮小化にともない厳しくなるデータ保持特性の性能が維持される。
【0170】
また、ゲート絶縁膜16を介して溝14内に埋め込まれたワード線18上に、第1の絶縁膜22を介してこのワード線18にオーバラップする状態で、半導体基板11表面に形成した拡散層19に接続される取り出し電極24が形成されていることから、ワード線18上の第2の絶縁膜22を20nm〜30nm以上の十分な膜厚を確保することが可能になる。それによって、拡散層19に接続される取り出し電極24との耐圧が確保される。そのため、メモリ素子の拡散層19上の全面がコンタクトに使用されるので、実効面積を有効に使用できる。よって、セルデザインで実現可能な最低の抵抗値が実現されるので、コンタクト抵抗の低減が図れる。
【0171】
本発明の半導体装置の製造方法に係る実施の形態の一例を、図26〜図52の概略構成断面図、部分拡大図によって説明する。図26〜図52では、メモリ素子とロジック素子とを同一半導体基板に形成する製造方法を示し、前記図25によって説明したのと同様なる構成部品には同一符号を付与する。
【0172】
図26の(1)に示すように、半導体基板11として、例えば1×1017/cm3 程度のp型不純物濃度を有するシリコン基板を用意する。例えばSTI(Shallow Trench Isolation )技術によって、上記半導体基板11に、メモリ素子領域(以下DRAMとして説明し、図面ではDRAM領域と記す)、標準電圧ロジック領域、高電圧ロジック領域等を分離する素子分離領域12を形成する。この素子分離領域12は例えば0.1μm〜0.2μm程度の深さに形成される。次いで、化学的気相成長(以下CVDという、CVDはChemical Vapor Deposition の略)によって素子分離領域12上を覆うように上記半導体基板11上に例えば酸化シリコン膜からなるバッファ層71を例えば20nm〜40nmの厚さに形成する。
【0173】
さらに半導体基板11上にレジスト膜201を形成した後、リソグラフィー技術に用いてDRAM領域となる部分のレジスト膜201を除去し、ロジック領域(以下、標準電圧ロジック領域と高電圧ロジック領域とをロジック領域という)上にレジスト膜201を残す。
【0174】
次いで上記レジスト膜201をマスクに用いたイオン注入により、上記メモリ素子領域の半導体基板11中に例えばホウ素を導入してウエル拡散層13を形成する。このイオン注入条件としては、イオン種にホウ素を用い、ドーズ量を例えば5×1012/cm2 〜7×1012/cm2 程度とし、後に形成される溝の深さよりも深くなるように、例えば150nm〜200nmよりも深く、素子分離領域12の深さよりもやや深い状態に形成される。また、ウエル拡散層13は深さ方向の厚さを例えば0.8μm程度とする。
【0175】
さらに、必要に応じて、素子分離領域12下方の半導体基板11に素子分離拡散層(図示せず)を形成してもよい。
【0176】
上記バッファ層71は、上記ウエル拡散層13を形成する際の緩衝膜の機能を有するものである。また、後に行うメモリ素子のトランジスタ(アクセストランジスタ)の基板濃度を調整するイオン注入時にDRAMの接合となる領域に対してイオン注入のストッパとして機能する。さらに、溝に埋め込まれたワード線の表面にサリサイドを形成する際に、DRAM領域の拡散層にサリサイドが形成されるのを防止する機能を有する。
【0177】
さらに、図27の(2)に示すように、半導体基板11上にレジスト膜203を形成した後、リソグラフィー技術によりDRAM領域のワード線(ゲート電極)となる領域上のレジスト膜203に開口部204を形成する。
【0178】
次いで、図28の(3)に示すように、上記レジスト膜203をエッチングマスクに用いて、バッファ層71、素子分離領域12および半導体基板11をエッチング(例えば連続的にエッチング)して素子分離領域12(フィールド)および半導体基板11に、DRAM領域のワード線(ゲート電極も含む)が形成される溝14を形成する。この溝14の深さは、例えば100nm〜150nm程度であり、先に形成したウエル拡散層13とこの溝14の底部との間に半導体基板11が残るようにする。なお、半導体基板11に形成された溝14の深さと素子分離領域12に形成された溝14の深さとが多少の差を生じてもよい。
【0179】
また、上記溝14はDRAM領域のみに形成されることから、溝14底部のエッジ部分は、セルトランジスタの電界集中を避けるために、いわゆるラウンド形状に形成することが望ましく、また、溝14の幅がメモリ素子のアクセストランジスタのチャネル長になるので、溝14の側壁はできうる限り半導体基板11表面に対して垂直に形成されることが望ましい。なお、DRAM領域に形成されているバッファ層71は素子分離領域12をエッチングする際に同時にエッチングされる。その後、上記レジスト膜203を通常の除去技術によって除去する。
【0180】
なお、この世代で想定している電圧としては、標準ロジック領域は0.5V〜1.2V、高電圧ロジック領域は1.5V〜2.5V、DRAMセルのワード線昇圧は1.5V〜2.5Vである。
【0181】
次いで図29の(4)に示すように、例えば熱酸化法によって上記半導体基板11の露出している全面に犠牲酸化膜(図示せず)を例えば10nm〜20nmの厚さに形成する。
【0182】
次いで、DRAM領域のアクセストランジスタのチャネルドーピングを行って、上記溝14の底部と上記ウエル拡散層13との間にチャネル拡散層15を形成する。
【0183】
DRAM領域のワードトランジスタの上記チャネル拡散層15として、高濃度(例えば1.0×1018/cm3 〜1.0×1019/cm3 )にしなければならない領域は、半導体基板11を掘り下げた溝14底部の半導体基板11(11a)部分であり、溝14の側壁や上部における半導体基板11には基板濃度としてのイオン注入をほとんど行う必要はない。また、上記イオン注入では、半導体基板11表面やロジック素子領域には、最初に設けたバッファ層71がイオン注入のマスクとなるため、新たなマスクを用いないで溝14の底部のみにチャネル拡散層15を形成することが可能になる。したがって、後述する拡散層19(図30参照)下部の半導体基板11部分は、極めて低濃度(例えば1.0×1017/cm3 〜1.0×1018/cm3 )での形成が可能になる。
【0184】
その後、例えばウエットエッチングによって上記犠牲酸化膜(図示せず)を除去する。その後、DRAM領域の上記溝14の内面および半導体基板11上等にゲート絶縁膜16を通常のゲート酸化膜の形成方法により形成する。
【0185】
図30の(5)に示すように、DRAM領域の各溝14の内壁を被覆するように上記ゲート絶縁膜16表面に第1導電層181を例えば5nm〜10nmの厚さにリンドープトポリシリコンを堆積して形成する。次いでDRAM領域の各溝14を埋め込むように上記第1導電層181表面に第2導電層182を50nm〜150nmの厚さにノンドープトポリシリコンを堆積して形成する。この膜厚は溝14を埋め込むのに十分な厚さであればよく、その膜厚は特に溝状のワード線を形成するためのみに最適化した膜厚に設定される。さらに、第2導電層182上にレジスト膜205を形成した後、リソグラフィー技術によりDRAM領域上のレジスト膜205を残してロジック領域上のレジスト膜205を除去する。
【0186】
次いで、図31の(6)に示すように、上記レジスト膜205をマスクにしてロジック素子領域上の第2導電層182、第1導電層181、ゲート絶縁膜16およびバッファ層71をエッチングにより除去する。このエッチングでは、第2導電層182、第1導電層181のエッチングではバッファ層71がエッチングストッパとなり、これによって、ロジック素子領域の半導体基板11表面が露出される。さらに、このエッチングでは、バッファ層71を除去するエッチングはフッ酸系のウエットエッチングが望ましい。その後、レジスト膜205を除去する。
【0187】
その後、図32の(7)に示すように、ロジック素子領域の表面に犠牲酸化膜(図示せず)を形成する。次いで、標準電圧ロジック領域のNチャネルトランジスタの形成領域上を開口したレジスト膜(図示せず)を形成し、続いてそのレジスト膜をマスクに用いて半導体基板11にイオン注入を行い、NチャネルトランジスタのPウエル拡散層51を形成する。その際、必用に応じてチャネルドーピングを行うこともできる。その後、上記レジスト膜を除去する。同様にして、標準電圧ロジック領域のPチャネルトランジスタの形成領域上を開口したレジスト膜(図示せず)を形成し、続いてそのレジスト膜をマスクに用いて半導体基板11にイオン注入を行い、PチャネルトランジスタのNウエル拡散層61を形成する。その際、必用に応じてチャネルドーピングを行うこともできる。その後、上記レジスト膜を除去する。
【0188】
次に、上記犠牲酸化膜を除去する。そして、DRAM領域上に残したゲート形成膜72上およびロジック素子領域の半導体基板11(素子分離領域12も含む)上にロジック素子のゲート絶縁膜17を形成する。この世代では、ゲート絶縁膜を膜厚に応じて作り分けるのが一般的であり、レジストプロセスを用いて作り分けを行う。ゲート絶縁膜には酸化シリコンもしくは耐熱性が必要な場合には窒化シリコンを用いる。また、Pチャネルゲートからのホウ素(B)の突き抜けを防止するために、Pチャネルゲートには例えば酸窒化シリコン膜を用いる。これらの処理時には、DRAM領域はリンドープトポリシリコンからなるゲート形成膜72で覆われているため、その表面は酸化されるが、チャネル領域は熱処理がかかるのみで酸化等の影響はない。
【0189】
図33の(8)に示すように、半導体基板11、素子分離領域12および第2導電層182上に上記ゲート絶縁膜17を介してポリシリコン層73を、例えばノンドープトポリシリコンで形成する。そして、Nチャネル領域のゲート電極形成層にリンをイオン注入してN型のゲート電極形成層とする。このポリシリコン層73はロジック領域のトランジスタのゲート電極に最適化されているため、例えばその膜厚は70nm〜200nm、好ましくは100nm程度に形成することが好ましい。なおPチャネル領域のポリシリコン層73にはイオン注入を行わず、ノンドープ状態としておく。これによって、その後のLDD(Lightly Doped Drain )形成やサイドウォール形成時におけるホウ素(B)の突き抜けは無くなる。
【0190】
その後、上記ポリシリコン層73上にダミー層74を形成する。このダミー層74は、例えば、窒化タングステン膜とタングステン膜とを積層して形成する。また、上記ダミー層74は、後のロジック素子領域のポリシリコン層73を露出させるために行うウエットエッチングのために選択される膜種であり、抵抗自体は関係がない。絶縁膜の酸化シリコン膜とポリシリコン層73とに高選択比でウエットエッチングできるものなら何でもよい。次いで、上記ダミー層74上にバッファ層75を例えば酸化シリコン膜で形成する。
【0191】
次に、上記バッファ層75上の全面にレジスト膜を形成した後、リソグラフィー技術によって、そのレジスト膜を加工してロジック素子領域のゲート電極を形成するためのレジストパターン207を形成する。
【0192】
次いで、図34の(9)に示すように、上記レジストパターン207をマスクに用いて、上記バッファ層75、ダミー層74、ポリシリコン層73をエッチング加工して、各ロジック素子領域にダミーゲート76を形成する。上記バッファ層75は、後のサリサイド形成時に金属系電極上のタングステンにサリサイドが形成されるのを防ぐために堆積しているが、汚染や加工上の問題がない場合には、特には不要である。また、周辺部のゲート電極にサリサイド構造を採用する場合には不要である。その後、レジストパターン207を除去する。
【0193】
図35の(10)に示すように、半導体基板11上にダミーゲート76を覆うレジスト膜209を形成した後、リソグラフィー技術に用いてDRAM領域となる部分のレジスト膜209を除去し、ロジック領域上にレジスト膜209を残す。
【0194】
その後、上記レジスト膜209をマスクにして、溝14の内部に第1導電層181、第2導電層182が残るようこの第1導電層181、第2導電層182をエッチバックする。このエッチングでは、第1導電層181のほうが第2導電層182よりもエッチングレートが速くなるエッチング条件を用いる。言い換えれば、第1導電層181のほうが第2導電層182よりもエッチングレートが速くなる導電膜で形成する。その結果、エッチング速度が速い第1導電層181がより多くエッチングされ、第1導電層181上の第2導電層182と溝14の側壁との間に溝部183が形成される。同時に、溝14の内部に第1導電層181、第2導電層182からなるワード線(一部ゲート電極として機能する)18が形成される。その際、ワード線18の表面が半導体基板11表面より50nm〜100nm程度下がるように上記第1導電層181、第2導電層182のエッチバックを行うことで、後に形成される拡散層の取り出し電極との耐圧距離が確保される。このエッチバックでは、ゲート絶縁膜16がエッチングストップ層として機能する。
【0195】
さらに、上記レジスト膜209をマスクに用いて、DRAM領域の半導体基板11にソース・ドレインを形成するためのイオン注入を行い、拡散層19を形成する。このイオン注入条件としては、一例として、イオン注入する不純物にリンを用い、濃度が1×1017/cm3 〜1×1018/cm3 となるように、ドーズ量、注入エネルギーを設定する。バッファ層71を貫通する注入エネルギーであれば十分なため、注入エネルギーを例えば20keV〜50keVに設定し、ドーズ量を1×1018/cm2 〜3×1018/cm2 に設定する。この条件でイオン注入を行えば、DRAM領域の上記拡散層19下層の半導体基板11にはほとんどイオン注入されない。そのため、この領域の半導体基板11は1×1016/cm3 〜×1017/cm3 程度の非常に薄い濃度に設定することが可能となる。上記リンイオン注入により第2導電層182にもリンがドーピングされ、その後の熱処理によって、第1導電層181と第2導電層182は同等の不純物濃度になる。この第1導電層181および第2導電層182は、DRAM領域のワード線のみに使用され、Pチャネルのトランジスタには使用されないため、N+ ゲート材料(例えばリン)をドーピング物質として用いることができる。
【0196】
よって、このN−P接合は超グレーディッド接合(非常に緩やかな濃度勾配の接合)となる。このような状態の接合では、逆バイアス時の電界を緩和し、メガビット級のDRAMでわずかppmオーダーの不良ビットに起きる通常よりも2桁程度も悪い接合リークの電流抑制に劇的に寄与する。この不良ビットのデータ保持特性がDRAMのチップ性能を支配しており、今後のDRAMでデータ保持特性を維持する重要な技術となっている。
【0197】
例えば、基板濃度が5×1016/cm3 程度であるならば、85℃で500ms以上のデータ保持特性が基体でき、これは実に4世代〜5世代も前のデータのデータ保持特性に匹敵する性能を発揮すると予想される。また、DRAM領域のアクセストランジスタは、半導体基板11をいわゆるラウンドする形でチャネルが形成されることから、実効的なチャネル長を長く確保することもでき、バックバイアスを印加して使う、短チャネル効果が厳しいDRAMセルのトランジスタ特性の安定化を図ることもできる。
【0198】
その後、上記レジスト膜209を除去する。上記イオン注入では、後のDRAM領域のゲート形成に係る熱処理による拡散を考慮して、やや浅めにイオン注入を行うが、DRAMのゲートが基板埋め込み型であるため、DRAM領域のチャネルは埋め込みゲートを形成する溝14の底部に形成されるので、何ら問題はない。また、後の熱処理によって活性化されるため、特にこの段階で熱処理を行う必要もない。
【0199】
図37の(11)に示すように、標準電圧ロジック領域のNチャネルトランジスタの形成領域上を開口したレジスト膜(図示せず)を形成し、続いてそのレジスト膜およびダミーゲート76をマスクに用いて半導体基板11(Pウエル拡散層51)にイオン注入を行い、Nチャネルトランジスタの低濃度拡散層52、52を形成する。その後、上記レジスト膜を除去する。同様にして、標準電圧ロジック領域のPチャネルトランジスタの形成領域上を開口したレジスト膜(図示せず)を形成し、続いてそのレジスト膜およびダミーゲート(図示せず)をマスクに用いて半導体基板11にイオン注入を行い、Pチャネルトランジスタの低濃度拡散層(図示せず)を形成する。その後、上記レジスト膜を除去する。
【0200】
さらに、同様にして、高電圧ロジック領域のPチャネルトランジスタの形成領域上を開口したレジスト膜(図示せず)を形成し、続いてそのレジスト膜およびダミーゲート76をマスクに用いて半導体基板11(Nウエル拡散層61)にイオン注入を行い、Pチャネルトランジスタの低濃度拡散層62、62を形成する。その後、上記レジスト膜を除去する。同様にして、高電圧ロジック領域のpチャネルトランジスタの形成領域上を開口したレジスト膜(図示せず)を形成し、続いてそのレジスト膜およびゲート電極(図示せず)をマスクに用いて半導体基板11にイオン注入を行い、Nチャネルトランジスタの低濃度拡散層(図示せず)を形成する。その後、上記レジスト膜を除去する。
【0201】
次いで、図38の(12)に示すように、DRAM領域のゲートを保護する保護膜78を例えば薄い窒化シリコン膜(例えば厚さが10nm〜50nm)で形成する。この保護膜78は、上記溝部183内を埋め込むように形成され、後にDRAM領域のワード線18上の側壁にサイドウォール状に形成され、サリサイド形成時に、ワード線18側壁の耐圧確保に寄与する。
【0202】
次いで、サイドウォール形成膜79を全面に形成する。このサイドウォール形成膜79は、窒化シリコンよりも低応力でウエット処理による剥離性のよい酸化シリコンで形成することが好ましい。または、酸化シリコン膜と窒化シリコン膜の積層膜もしくは酸化窒化シリコン膜で形成することも可能である。上記保護膜78は、後にDRAM内で周辺回路用トランジスタのサイドウォール形成膜79を除去する際のエッチングストッパとなるとともに、後にDRAM領域のワード線18上の側壁にサイドウォール状に形成され、サリサイド形成時に、溝14側壁の耐圧確保に寄与する。
【0203】
その後、図39の(13)に示すように、全面にレジスト膜211を形成し、例えばリソグラフィー技術によってロジック領域のレジスト膜211を除去し、DRAM領域のレジスト膜211は残して、DRAM領域を保護しておく。その状態で、上記サイドウォール形成膜79をエッチバックする。
【0204】
その結果、標準電圧ロジック領域のダミーゲート76の側壁にサイドウォール形成膜79でサイドウォール54が形成され、高電圧ロジック領域のダミーゲート76の側壁にサイドウォール形成膜79でサイドウォール64が形成される。上記エッチングでは、ダミーゲート76上の保護膜78はその膜厚によってはエッチング除去される。その後、上記レジスト膜211を除去する。
【0205】
次いで、図40の(14)に示すように、標準電圧ロジック領域のnチャネルトランジスタの形成領域上を開口したレジスト膜(図示せず)を形成し、続いてそのレジスト膜およびダミーゲート76、サイドウォール54をマスクに用いて半導体基板11にイオン注入を行い、ダミーゲート76側に低濃度拡散層52を残すようにnチャネルトランジスタの拡散層55、55を形成する。その後、上記レジスト膜を除去する。同様にして、標準電圧ロジック領域のpチャネルトランジスタの形成領域上を開口したレジスト膜(図示せず)を形成し、続いてそのレジスト膜およびダミーゲート(図示せず)、サイドウォール(図示せず)をマスクに用いて半導体基板11にイオン注入を行い、ダミーゲート側に低濃度拡散層(図示せず)を残すようにpチャネルトランジスタの拡散層(図示せず)を形成する。その後、上記レジスト膜を除去する。
【0206】
さらに、同様にして、高電圧ロジック領域のnチャネルトランジスタの形成領域上を開口したレジスト膜(図示せず)を形成し、続いてそのレジスト膜およびダミーゲート76をマスクに用いて半導体基板11にイオン注入を行い、ダミーゲート76側に低濃度拡散層62を残すようにしてnチャネルトランジスタの拡散層65、65を形成する。その後、上記レジスト膜を除去する。同様にして、高電圧ロジック領域のpチャネルトランジスタの形成領域上を開口したレジスト膜(図示せず)を形成し、続いてそのレジスト膜およびダミーゲート(図示せず)をマスクに用いて半導体基板11にイオン注入を行い、ダミーゲート側(図示せず)に低濃度拡散層(図示せず)を残すようにしてpチャネルトランジスタの拡散層(図示せず)を形成する。その後、上記レジスト膜を除去する。
【0207】
次いで、全面にレジスト膜213を形成した後、リソグラフィー技術によって、DRAM領域のレジスト膜213を除去し、上記レジスト膜213でロジック領域を覆うようにパターニングを行う。次いで、上記レジスト膜213をマスクに用いて例えばウエット処理によって、DRAM領域の酸化シリコンからなるサイドウォール形成膜79のエッチバックを行う。このエッチングでは、先に形成されているDRAMのワード線18直上に形成されている窒化シリコンからなる保護膜78がエッチングストッパとなる。
【0208】
また、上記レジスト膜213をそのまま利用して、DRAM領域の保護膜78を例えば反応性イオンエッチング(RIE)によりエッチングしてDRAM領域のワード線18を露出させる。この結果。ワード線18上の溝14の側壁に保護膜78からなるサイドウォール絶縁膜20が形成される。このサイドウォール絶縁膜20は側壁保護の機能を有する。なお、上記反応性イオンエッチングでは、DRAM領域の拡散層19が露出しないようにすること、すなわち、拡散層19上にバッファ層71を残すようにすることが重要である。その後、上記レジスト膜213を除去する。
【0209】
さらに、図41の(15)に示すように、通常のシリサイド化技術を用いて、上記ロジック領域の各拡散層55、65上、DRAM領域のワード線18上に、シリサイド層57、67、21を選択的に形成する。このとき、ダミーゲート76の頂上部には、酸化シリコン膜からなるバッファ層75が形成されているので、シリサイド層は形成されない。このようにして、低抵抗を実現する必要が有るロジック領域の各拡散層55、65上、DRAM領域のワード線18上に選択的にシリサイド層57、67、21が形成される。このシリサイド層としては、例えばコバルトシリサイド(CoSi2 )、チタンシリサイド(TiSi2 )ニッケルシリサイド(NiSi2 )等を用いることができる。
【0210】
その後、全面にキャップ絶縁膜80を例えば窒化シリコン膜で形成する。このキャップ絶縁膜80はサリサイド形成部の接合リークを抑制するのに効果的であるが、不要であれば形成する必要はない。なお、先に記述したように、周辺回路部のトランジスタのゲート電極上にもシリサイド層を形成してサリサイド構造として、ゲート電極の低抵抗化を図っても差し支えはない。
【0211】
次いで、図42の(16)に示すように、全面に第1の絶縁膜(絶縁膜)22を形成した後、CMPによって、第1絶縁膜22表面を平坦化する。上記第1の絶縁膜22表面を平坦化する方法は、平坦化を実現することができる方法であればCMPに限定されることはなく、例えばエッチバック法等を用いることも可能である。その後、上記第1の絶縁膜22上にレジスト膜215を形成した後、リソグラフィー技術によって、上記レジスト膜215にDRAM領域の拡散層取り出しコンタクト用の接続孔パターン216を形成する。
【0212】
次いで、上記レジスト膜215をエッチングマスクに用いてエッチングを行い、図43の(17)に示すように、第1の絶縁膜22、バッファ層71等を貫通してDRAM領域の拡散層19に達する接続孔23を形成する。このとき、DRAM領域のワード線(ゲート電極)18はコンタクトを取るべき拡散層19よりも半導体基板11表面下に配置されているので、セルフアラインコンタクト等の特別な技術を用いる必要はない。またDRAMの拡散層19全面が取り出し電極とコンタクトできるように、接続孔23の開口径をでき得る限り大きく形成することが望ましい。それによってコンタクト抵抗の低減が図られる。
【0213】
また、図面では、多少アライメントずれを起こした状態をわざと記載したが、接続孔開口時に過剰なオーバエッチングを施さなければ、後の工程で接続孔23内に形成されるワード線取り出し電極の物理的な距離を確保することが可能となる。なお、上部からみた投影デザインでは、この接続孔23が完全にワード線(ゲート電極)18にオーバラップする形となっている。
【0214】
次いで、上記接続孔23内を埋め込むように、第1の絶縁膜22上に、取り出し電極形成膜81を形成する。この取り出し電極形成膜81は、例えばリンドープトポリシリコンで形成される。この拡散層取り出しのための取り出し電極形成膜81は、従来通り、DRAM領域に接合リークの低減を考慮してリンドープトポリシリコンが選択されることが望ましい。なお、この段階では活性化のための熱処理は不要である。
【0215】
その後、図44の(18)に示すように、例えばCMPによって、第1の絶縁膜22上の余剰な取り出し電極形成膜81(リンドープトポリシリコン)を除去して、接続孔23内に拡散層19に接続する取り出し電極形成膜81からなる取り出し電極24を形成するとともに、第1の絶縁膜22を研磨してその表面を平坦化させる。その際、各ロジック領域のダミーゲート76のバッファ層75〔図34の(9)参照〕を除去してダミーゲート76のダミー層74上部を露出させる。
【0216】
次いで、ロジック領域におけるダミーゲート76のダミー層74〔図44の(18)参照〕を除去する。その結果、図45の(19)に示すように、上記各ダミーゲート76のポリシリコン層73上に溝83が形成される。このエッチングは、例えば、硫酸過水もしくはフッ硝酸によるウエットエッチングにより行うことが好ましい。
【0217】
次いで、上記第1の絶縁膜22側の全面にレジスト膜217を形成した後、リソグラフィー技術によって、ロジック素子領域のpチャネルトランジスタの形成領域上に開口部218を形成する。続いてそのレジスト膜217をマスクに用いてノンドープトポリシリコンからなるポリシリコン層73にp型不純物として例えばホウ素をイオン注入する。
【0218】
その後、上記レジスト膜217を除去する。次いで熱処理を行う。この熱処理によって、DRAM領域のポリシリコンからなる取り出し電極24と、ロジック素子領域のゲート電極の不純物がドーピングされたポリシリコン層73の活性化を行う。この熱処理では、900℃、10秒程度のRTA(Rapid Thermal Annealing )で十分ではあるが、通常の炉を用いた熱アニールを行っても差し支えは無い。なお、これ以降の工程では、高温の熱工程は行われないので、ロジック素子領域のゲート電極からホウ素が拡散する、いわゆる「突き抜け」は最小限に抑えられる。
【0219】
そして、図46の(20)に示すように、上記溝83内部を埋め込むように金属系ゲート電極形成膜84を形成する。上記金属系ゲート電極形成膜84は金属膜(例えばタングステン膜)84W/密着膜(例えば窒化チタン膜84T)の積層膜で形成することが一般的である。または、タングステン/窒化タングステン、銅/窒化チタン、ルテニウム等の電極を形成することも可能である。
【0220】
再びCMPによって、第1の絶縁膜22上の余剰な金属系ゲート電極形成膜84を除去する。
【0221】
その結果、図47の(21)に示すように、溝83内に残した金属系ゲート電極形成膜84からなる金属系ゲート電極84Gが形成され、金属系ゲート電極84Gとポリシリコン層73とからなるゲート電極51、61が形成されるとともに、第1の絶縁膜22表面が平坦化される。その際、DRAM領域の拡散層を取り出すための取り出し電極24の上部も研磨されるが、何ら問題はない。
【0222】
次いで、第1の絶縁膜22上に、DRAM領域の取り出し電極24およびロジック素子領域のゲート電極51、61を覆うエッチングストップ層25を例えば酸化シリコン膜で全面に形成する。
【0223】
その後、図48の(22)に示すように、エッチングストップ層25上にレジスト膜(図示せず)を形成した後、リソグラフィー技術によって、上記レジスト膜にDRAM領域のワード線取り出しコンタクト用およびロジック領域の拡散層取り出し電極用の接続孔パターン(図示せず)を形成する。続いて、上記レジスト膜をエッチングマスクに用いて、上記エッチングストップ層25、上記第1の絶縁膜22およびキャップ絶縁膜80を貫通してDRAM領域のワード線18上のシリサイド層21、ロジック領域のトランジスタのシリサイド層57、67に達する接続孔26、58、68を形成する。
【0224】
その後、上記レジスト膜を除去する。次に、通常のタングステンプラグの形成技術により上記接続孔26、58、68に内面に窒化チタン膜からなる密着層85を形成した後、接続孔26、58、68内を埋め込むようにタングステン膜86を形成する。その後CMPにより上記エッチングストップ層25上の上記タングステン膜86および密着層85の余剰な部分を除去し、上記接続孔26、58、68の内部に取り出し電極27、59、69を形成する。
【0225】
次いで、上記取り出し電極27、59、69を覆うように上記エッチングストップ層25上の全面に第2の絶縁膜31を例えば酸化シリコン膜を50nm〜150nmの厚さに堆積して形成する。
【0226】
その後、第2の絶縁膜31上にレジスト膜(図示せず)を形成した後、リソグラフィー技術により上記レジスト膜にビットコンタクトを形成する位置に開口部(図示せず)を形成する。そのレジスト膜をマスクに用いたエッチングにより、図49の(23)に示すように、上記第2の絶縁膜31、エッチングストッパ層25にビットコンタクトホール32およびローカル配線コンタクトホール33を形成する。
【0227】
次いで、ビット線34およびローカル配線35を形成するための配線金属層を形成する。この配線金属層は、まず上記ビットコンタクトホール32およびローカル配線コンタクトホール33の内面および第2の絶縁膜31上に、例えばチタン膜と窒化チタン膜を積層してなる密着層36を形成する。さらにビットコンタクトホール32およびローカル配線コンタクトホール33を埋め込むようにして、上記密着層36上に金属配線の主材料となるタングステン膜37を成膜する。さらにタングステン膜37上にキャップ層38を例えば窒化シリコン膜で形成する。
【0228】
その後、通常のリソグラフィー技術とエッチング技術とによって上記キャップ層38、タングステン膜37、密着層36をパターニングしてビットコンタクトホール32を通じてビットコンタクトの取り出し電極24に接続されるビット線34と、ローカル配線コンタクトホール33を通じて取り出し電極59に接続されるローカル配線35とが形成される。したがって、ビット線34上およびローカル配線35上にはキャップ層38が形成される。
【0229】
その後、上記第2の絶縁膜31上に、ビット線34、ローカル配線35等を覆うエッチングストッパ層41をALD窒化シリコン膜で、例えば30nm〜50nmの厚さに形成する。
【0230】
次に、図50の(24)に示すように、上記エッチングストッパ層41上に第3の絶縁膜42を形成する。そして、第3の絶縁膜42表面を例えばCMPを用いて平坦化する。次に、上記第3の絶縁膜42上にレジスト膜219を形成した後、リソグラフィー技術により記憶ノードコンタクトを開口するための開口パターン220を形成する。この開口パターン220は、実際の記憶ノードコンタクトが形成される接続孔の口径よりも大きく形成することができる。
【0231】
次いで、上記レジスト膜219をエッチングマスクに用いて、図51の(25)に示すように、記憶ノード上記第3の絶縁膜42からエッチングストップ層25までをエッチングして、コンタクトの取り出し電極24、24に達する記憶ノードコンタクトを形成する接続孔43を形成する。このエッチングでは、上記レジスト膜219〔前記図50の(24)参照〕の他にキャップ層38およびエッチングストッパ層41がエッチングマスクとなっている。なお、上記エッチングストッパ層41は、その一部がエッチングされるが、ビット線と記憶ノードコンタクトとの耐圧が確保される膜厚のサイドウォールとしてビット線34の側壁に残る。その後上記レジスト膜219〔図50の(24)参照〕を除去する。
【0232】
次に、図52の(26)に示すように、上記接続孔43内に取り出し電極24に接続する記憶ノードコンタクト44を形成する。この記憶ノードコンタクト44は、例えば上記接続孔43を埋め込むように上記第3の絶縁膜42上にタングステン、チタン、窒化チタン、タンタル、窒化タンタル、酸化ルテニウム等を堆積して材料層を形成した後、第3の絶縁膜42上の余剰な上記材料層を例えばCMPによって除去することによって、接続孔43内に残した上記材料層で形成される。
【0233】
次に、第3の絶縁膜42上に上記記憶ノードコンタクト44等を覆う第4の絶縁膜45を形成する。次いで、第4の絶縁膜45にキャパシタが形成される凹部46を、その底部に上記記憶ノードコンタクト44上面が露出するように形成する。
【0234】
その後、凹部46内に、熱処理が不要なMIM(Metal/insulator/Metal)構造のキャパシタ91を形成する。MIM構造のキャパシタ91は0.1μm以降のDRAMでは必須になると予想され、現在では、一例として、電極92、94には、ルテニウム(Ru)、酸化ルテニウム(RuO)系材料が用いられ、誘電体膜93にはBST(BaTiO3 とSrTiO3 との混晶)系の膜が採用される。
【0235】
次いで、上記第4の絶縁膜45上に、上記MIM構造のキャパシタ91を覆う第5の絶縁膜47を形成する。その後、CMPによって上記第5の絶縁膜47表面を平坦化する。次いで、第5の絶縁膜47ないし第2の絶縁膜31に、キャパシタ取り出し電極、ワード線取り出し電極、ローカル配線取り出し電極、ロジック領域の拡散層取り出し電極、ロジック領域のゲート取り出し電極等を形成するための接続孔111、112、113、114〜116、117等を形成する。
【0236】
さらに、接続孔111、112、113、114〜116、117等に、キャパシタ取り出し電極121、ワード線取り出し電極122、ローカル配線取り出し電極123、ロジック領域の拡散層取り出し電極124〜126、ロジック領域のゲート取り出し電極127を形成する。さらに、第5の絶縁膜47上に第6の絶縁膜48を形成する。次いで、この第6の絶縁膜48に各電極121〜127等に達する各配線溝131〜136を形成し、配線溝131〜136に配線141〜146を形成する。この配線141〜146は例えば銅配線からなる。図示はしないが、さらに必要に応じて上層配線を形成する。なお、上記電極121〜127および上記配線141〜146には、電極、配線、絶縁膜の材質によって、通常知られている密着層、バリア層が形成される。
【0237】
上記第2の半導体装置の製造方法では、ワード線(ゲート電極)18上部の溝14側壁側に溝部183を形成し、この溝部183を埋め込むようにワード線(ゲート電極)18上の溝14側壁にサイドウォール絶縁膜20を形成することから、ワード線(ゲート電極)18上にシリサイド層21が形成されても。シリサイド層21とゲート絶縁膜16との距離はサイドウォール絶縁膜20の溝部183に形成された部分によって十分に確保されるので、ゲート絶縁耐圧の劣化が抑制される半導体装置となる。
【0238】
上記第2の半導体装置の製造方法では、バッファ層71を形成していることにより、その後、溝14の底部における半導体基板11にチャネル拡散層15を形成する不純物を導入する際に、バッファ層71がマスクとなって、選択的に溝14の底部の半導体基板11に不純物が導入され、チャネル拡散層15が形成される。
【0239】
このように、溝14下部とウエル拡散層13との間の半導体基板11にチャネル拡散層15を形成することから、溝144とウエル拡散層13との間の領域の不純物濃度は溝14周囲の半導体基板11の不純物濃度よりも高くなる。また、ソース・ドレインとなる拡散層19下部の半導体基板11濃度は極めて低くい状態に保つことができるので、ソース・ドレインとなる拡散層19の接合の電界が弱められる。このため、ppmオーダーでの接合リークの抑制が可能になり、それによって、データ保持特性が極めてよくなる半導体装置が形成される。
【0240】
また、ゲート絶縁膜16を介して半導体基板11に形成された溝14内に埋め込まれたワード線8上に、第1の絶縁膜22を介してこのワード線18にオーバラップする状態で、半導体基板11表面に形成した拡散層19に接続される取り出し電極を形成することから、ワード線18上の第1の絶縁膜22を20nm〜30nm以上の十分な膜厚を確保することが可能になる。それによって、拡散層19に接続される取り出し電極24との耐圧が確保される。そのため、メモリ素子の拡散層上の全面がコンタクトに使用されるので、実効面積を有効に使用できる。よって、セルデザインで実現可能な最低の抵抗値が実現されるので、コンタクト抵抗の低減が図れる。
【0241】
さらに、ワード線18上層にシリサイド層21を形成することから、ワード線18の抵抗が低減され、遅延の問題が回避される。また、ロジック素子の拡散層55、65上にシリサイド層57、67を形成することから、この拡散層55、65へのコンタクト抵抗が低減される。
【0242】
また、半導体基板11表面側に拡散層19を形成し、その半導体基板11に形成した溝14内にゲート絶縁膜16を介してワード線18を埋め込むように形成することから、チャネルはワード線18が形成されている溝14底部側の半導体基板11を廻り込むように形成される。そのため、実効的なチャネル長が十分に確保されるため、バックバイアスを印加して、短チャネル効果が厳しいメモリ素子(例えばDRAM)のトランジスタ特性が安定化される。
【0243】
また、メモリ素子領域の拡散層19を、その深さ方向に不純物濃度が薄くなるように形成することから、拡散層19下部の半導体基板11濃度をセルトランジスタに要求されるほどに濃くしなくともよいので、接合の電界が緩和され、メモリ素子のセル縮小化にともない厳しくなるデータ保持特性の性能が維持される。
【0244】
また、ロジック素子領域に形成するダミーゲート76にポリシリコン層73とダミー層74との積層構造を用いることによって、メモリ素子領域の拡散層の取り出し電極を形成した後にダミー層74を除去し、ダミーゲート76のポリシリコン層73に不純物をドーピングすることが可能になる。その後、熱処理を行い、金属ゲート電極形成膜84で金属ゲート電極84Gを形成することから、熱処理によるpチャネルゲート電極におけるホウ素の突き抜けの問題が最小限に抑えられる。
【0245】
上記DRAM領域に用いた技術は、汎用DRAMのメモリチップの製造にも適用することが可能である。
【0246】
【発明の効果】
以上、説明したように本発明の第1、第2の半導体装置およびその製造方法によれば、半導体基板に形成した溝内に形成されるワード線の上部で溝の側壁側に溝部を形成し、その溝部を埋め込むようにワード線(ゲート電極を含む)上の溝の側壁にサイドウォール絶縁膜を形成することから、このサイドウォール絶縁膜の溝部に形成された部分によってワード線上面のシリサイド層とゲート絶縁膜との物理的距離が十分に確保される。このため、デバイス特性に副作用を与えること無くゲート絶縁膜の耐圧劣化を防止することができる。ワード線上層にシリサイド層が形成されているので、ワード線抵抗の低減が図れ、微細加工化で問題となるワード線の遅延の問題が回避できる。
【0247】
また、半導体基板表面側に拡散層が形成され、その半導体基板に形成された溝内にゲート絶縁膜を介してワード線が埋め込まれているので、チャネルはワード線が形成されている溝底部側の半導体基板を廻り込むように形成される。そのため、メモリ素子領域のセルトランジスタの実効的なチャネル長が十分に確保されるため、バックバイアスを印加して短チャネル効果が厳しいメモリ素子(例えばDRAM)のトランジスタ特性が安定化される。
【0248】
半導体基板に形成した溝内に埋め込まれたワード線上に、サイドウォール、絶縁膜等を介してこのワード線にオーバラップする状態で、半導体基板表面に形成した拡散層に接続される取り出し電極を形成するので、ワード線上の絶縁膜等によって、拡散層と取り出し電極との耐圧を確保することができる。そのため、ワード線よりも高い位置にあるメモリ素子領域の拡散層上の全面をコンタクトに使用できるようになるので、実効面積を有効に使用できる。よって、セルデザインで実現可能な最低の抵抗値を実現することができ、コンタクト抵抗の低減が図れる。
【0249】
したがって、上部投影デザイン的に、メモリ素子領域の拡散層の取り出し電極と、ワード線(ゲート電極)とがオーバラップすることが可能となり、セルの微細化が可能になる。すなわち、基板面方向にはワード線と取り出し電極間の耐圧確保のための距離が必要なくなる。よって、メモリ素子の拡散層上の全面がコンタクトに使用できるので、実効面積を有効に使用でき、セルデザインで実現可能な最低の抵抗値が実現され、コンタクト抵抗の低減が図れる。
【0250】
また、メモリ素子領域の拡散層はその濃度が深さ方向に薄くなるように形成されるので、この拡散層下部の基板濃度をセルトランジスタに要求されるほど濃くする必要がない。そのため、この拡散層の接合の電界を緩和することが可能になり、メモリ素子領域のセル縮小化でますます厳しくなるデータ保持特性の性能を維持することが可能になる。
【0251】
また、第2の半導体装置およびその製造方法によれば、ロジック素子の拡散層上にシリサイド層が形成されているので、この拡散層へのコンタクト抵抗を低減することができる。
【0252】
さらに、ロジック領域の高駆動力トランジスタを実現するためのいわゆるリプレースメントゲート電極を有するロジックトランジスタとメモリ素子との1チップ化が実現される。これによって、ロジック領域のゲートは、熱処理に対するケアが不要となり、ゲート絶縁膜に高誘電率材料を用いることが可能となり、ゲート電極をポリメタル構造で形成することが可能になる。
【図面の簡単な説明】
【図1】本発明の半導体装置に係る実施の形態の一例を示す概略構成断面図である。
【図2】図1のA部拡大概略図である。
【図3】本発明の半導体装置の製造方法に係る実施の形態の一例を示す概略構成断面図(1)である。
【図4】本発明の半導体装置の製造方法に係る実施の形態の一例を示す概略構成断面図(2)である。
【図5】本発明の半導体装置の製造方法に係る実施の形態の一例を示す概略構成断面図(3)である。
【図6】本発明の半導体装置の製造方法に係る実施の形態の一例を示す概略構成断面図(4)である。
【図7】本発明の半導体装置の製造方法に係る実施の形態の一例を示す概略構成断面図(5)である。
【図8】図7のB部拡大概略図である。
【図9】本発明の半導体装置の製造方法に係る実施の形態の一例を示す概略構成断面図(6)である。
【図10】図9のC部拡大概略図である。
【図11】本発明の半導体装置の製造方法に係る実施の形態の一例を示す概略構成断面図(7)である。
【図12】本発明の半導体装置の製造方法に係る実施の形態の一例を示す概略構成断面図(8)である。
【図13】図12のD部拡大概略図である。
【図14】本発明の半導体装置の製造方法に係る実施の形態の一例を示す概略構成断面図(9)である。
【図15】本発明の半導体装置の製造方法に係る実施の形態の一例を示す概略構成断面図(10)である。
【図16】本発明の半導体装置の製造方法に係る実施の形態の一例を示す概略構成断面図(11)である。
【図17】本発明の半導体装置の製造方法に係る実施の形態の一例を示す概略構成断面図(12)である。
【図18】本発明の半導体装置の製造方法に係る実施の形態の一例を示す概略構成断面図(13)である。
【図19】本発明の半導体装置の製造方法に係る実施の形態の一例を示す概略構成断面図(14)である。
【図20】本発明の半導体装置の製造方法に係る実施の形態の一例を示す概略構成断面図(15)である。
【図21】本発明の半導体装置の製造方法に係る実施の形態の一例を示す概略構成断面図(16)である。
【図22】本発明の半導体装置の製造方法に係る実施の形態の一例を示す概略構成断面図(17)である。
【図23】本発明の半導体装置の製造方法に係る実施の形態の一例を示す概略構成断面図(18)である。
【図24】本発明の半導体装置に係る実施の形態の一例を示す概略構成断面図である。
【図25】図24のE部拡大概略図である。
【図26】本発明の半導体装置の製造方法に係る実施の形態の一例を示す概略構成断面図(1)である。
【図27】本発明の半導体装置の製造方法に係る実施の形態の一例を示す概略構成断面図(2)である。
【図28】本発明の半導体装置の製造方法に係る実施の形態の一例を示す概略構成断面図(3)である。
【図29】本発明の半導体装置の製造方法に係る実施の形態の一例を示す概略構成断面図(4)である。
【図30】本発明の半導体装置の製造方法に係る実施の形態の一例を示す概略構成断面図(5)である。
【図31】本発明の半導体装置の製造方法に係る実施の形態の一例を示す概略構成断面図(6)である。
【図32】本発明の半導体装置の製造方法に係る実施の形態の一例を示す概略構成断面図(7)である。
【図33】本発明の半導体装置の製造方法に係る実施の形態の一例を示す概略構成断面図(8)である。
【図34】本発明の半導体装置の製造方法に係る実施の形態の一例を示す概略構成断面図(9)である。
【図35】本発明の半導体装置の製造方法に係る実施の形態の一例を示す概略構成断面図(10)である。
【図36】図35のF部拡大概略図である。
【図37】本発明の半導体装置の製造方法に係る実施の形態の一例を示す概略構成断面図(11)である。
【図38】本発明の半導体装置の製造方法に係る実施の形態の一例を示す概略構成断面図(12)である。
【図39】本発明の半導体装置の製造方法に係る実施の形態の一例を示す概略構成断面図(13)である。
【図40】本発明の半導体装置の製造方法に係る実施の形態の一例を示す概略構成断面図(14)である。
【図41】本発明の半導体装置の製造方法に係る実施の形態の一例を示す概略構成断面図(15)である。
【図42】本発明の半導体装置の製造方法に係る実施の形態の一例を示す概略構成断面図(16)である。
【図43】本発明の半導体装置の製造方法に係る実施の形態の一例を示す概略構成断面図(17)である。
【図44】本発明の半導体装置の製造方法に係る実施の形態の一例を示す概略構成断面図(18)である。
【図45】本発明の半導体装置の製造方法に係る実施の形態の一例を示す概略構成断面図(19)である。
【図46】本発明の半導体装置の製造方法に係る実施の形態の一例を示す概略構成断面図(20)である。
【図47】本発明の半導体装置の製造方法に係る実施の形態の一例を示す概略構成断面図(21)である。
【図48】本発明の半導体装置の製造方法に係る実施の形態の一例を示す概略構成断面図(22)である。
【図49】本発明の半導体装置の製造方法に係る実施の形態の一例を示す概略構成断面図(23)である。
【図50】本発明の半導体装置の製造方法に係る実施の形態の一例を示す概略構成断面図(24)である。
【図51】本発明の半導体装置の製造方法に係る実施の形態の一例を示す概略構成断面図(25)である。
【図52】本発明の半導体装置の製造方法に係る実施の形態の一例を示す概略構成断面図(26)である。
【符号の説明】
11…半導体基板、14…溝、15…チャネル拡散層、16…ゲート絶縁膜、18…ワード線(ゲート電極も含む)、19…拡散層、20…サイドウォール絶縁膜、21…シリサイド層、
【発明の属する技術分野】
本発明は、半導体装置およびその製造方法に関し、詳しくはDRAM(Dynamic Random Access Memory)からなる半導体装置およびその製造方法、ならびにDRAMとロジック素子とを混載した半導体装置およびその製造方法に関する。
【0002】
【従来の技術】
年々加速される微細化競争によって、特に大容量のDRAMと高速ロジック素子とを1チップに搭載する複合デバイスの開発が行われている。その構成の一例としては、DRAMのメモリセルゲートを基板上に積み上げ、メモリセルトランジスタの拡散層の取り出しには、いわゆるセルフアラインコンタクトを用い、一方、ロジック素子はセルフアラインコンタクトを用いずに形成するという構成のものである。
【0003】
【発明が解決しようとする課題】
しかしながら、積み上げ型のDRAMもさまざまな問題が顕在化してきている。
【0004】
トランジスタ性能を維持するため、DRAMメモリセルの縮小とともに基板濃度はますます高くなり、それにともない、DRAM領域の接合リークも厳しくなっている。このため、メガビット級のDRAMでは、接合リークを抑制することが困難になってきている。すなわち、従来は余裕を持って制御可能であったDRAMのデータ保持特性の維持が困難なものとなってきている。
【0005】
また、DRAMセルの縮小化にともない、拡散層と取り出し電極との接触面積が狭くなり、世代ごとに2倍の勢いでコンタクト抵抗が上昇するようになっている。例えば0.1μm以降の世代では、このコンタクト抵抗が数kΩになることが予想され、メモリセルのワードトランジスタのオン抵抗に匹敵してくるようになると予想される。したがって、セルトランジスタのみならず、このコンタクト抵抗のばらつきがDRAM動作に厳しく影響してくるようになり、製造上、一層の精密性が要求されるようになって来ている。
【0006】
また、DRAMセルの縮小化にともない、ワード線とその脇に形成される拡散層の取り出しコンタクトとの層間絶縁距離は世代ごとに近づきつつある。メガビット級のDRAMを製造する上で、この耐圧を確保するためには20nm〜30nmが限界の距離といわれている。そのため、0.1μm以降の世代のDRAMでは、この耐圧限界距離以下の距離で拡散層の取り出しコンタクトを形成することが必要になってしまう。
【0007】
従来は、タングステンシリサイド(WSi2 )/ドープトポリシリコンのポリサイド構造を採用することで遅延を押さえてきたDRAMのワード線も、近年の微細化とともに、アスペクト比を低く保つことが困難となり、また、ワード線の遅延を抑えるための十分な低抵抗を得ることが困難となってきた。特に高速動作を要求される積み上げDRAMなどでは、このワード線遅延がDRAMのアクセスタイムに影響する深刻な問題となる。ゲートの抵抗を下げる技術として、サリサイドによる配線の低抵抗化が実用化されている。しかしながら、DRAMメモリセルのゲートに適用するためには、オフセット酸化シリコン膜を使えなくなることによるDRAMメモリセル縮小化の障害とデータ保持特性の維持のために、DRAMの拡散層にはサリサイドを形成しないプロセスを必要とするなどの困難から通常は採用できない。
【0008】
また、DRAMの記憶ノードコンタクトもそのセルサイズから余裕の無い開口が必須であり、拡散層コンタクトと同様、耐圧限界での開口が必要となり、その狭いコンタクト径で抵抗上昇を効率的に抑制する技術が必要になっている。
【0009】
一方、ロジック部のトランジスタ性能の向上も目覚しく、特にpチャネルトランジスタのオフリークを抑制するp+ ゲート電極が一般に用いられるように成ってきている。ところがこのp+ ゲートは、不純物のホウ素が熱処理によって基板側に拡散してしまう。いわゆる「突き抜け」の問題を含んでおり、pチャネルトランジスタの特性ばらつきやゲート電極の空乏化といった深刻な問題を引き起こすことが知られている。したがって、DRAM形成工程の熱処理温度は極力抑えたい。
【0010】
以上説明したように、今後の0.1μm世代以降では、pチャネルトランジスタの特性ばらつきやゲート電極の空乏化といった問題に対する何らかの対策が必要となり、チップの性能トレンドを維持するためには、積み上げ型のDRAM構造の抜本的な改良が必要となると予想される。本願発明は、この対策として開発されたDRAM部のワード線を基板に形成した「溝」に埋め込む、トレンチ・アクセス・トランジスタ(Trench Access Transistor:TAT)DRAMセルをさらに改良したものである。すなわち、ゲート電極上に形成されたシリサイドとゲート絶縁膜との物理的距離を確保して、ゲート絶縁耐圧の劣化を抑制するものである。
【0011】
上記TAT・DRAMセルにおいて、ゲート電極に形成されたシリサイド層とゲート絶縁膜との物理的距離を確保するためには、DRAM部のゲート電極を形成する溝の側壁に形成される窒化シリコン膜からなるでサイドウォール絶縁膜を厚く形成する必要がある。しかしながら、サイドウォール絶縁膜の膜厚を厚く形成すると、DRAM部のゲート電極の配線抵抗が上昇してしまうという副作用が生じる。このため、デバイス特性への副作用なく、ゲート電極上のシリサイド層とゲート絶縁膜との物理的距離を良好に確保できる方法が望まれている。
【0012】
【課題を解決するための手段】
本発明は、上記課題を解決するためになされた半導体装置およびその製造方法である。
【0013】
本発明の第1の半導体装置は、半導体基板と、前記半導体基板に形成された溝と、前記溝の底部の前記半導体基板に形成されたチャネル拡散層と、前記溝内にゲート絶縁膜を介して埋め込まれたゲート電極と、前記ゲート電極上部の前記溝側壁側に形成した溝部と、前記溝部内を埋め込み前記ゲート電極上の前記溝の側壁に形成したサイドウォール絶縁膜と、前記溝側壁の前記半導体基板表面側に形成された拡散層と、前記サイドウォール絶縁膜の底部よりも高い位置で前記ゲート電極上層に形成されたシリサイド層とを備えたものである。
【0014】
また前記第1導電層は前記第2導電層よりもエッチングレートが速い導電膜からなる。また前記素子分離領域により分離された前記半導体基板中にウエル拡散層が形成され、前記溝は前記ウエル拡散層上に前記半導体基板の一部を残した状態で前記半導体基板および前記素子分離領域に形成され、前記チャネル拡散層は前記溝の底部と前記ウエル拡散層との間の前記半導体基板に形成されている。
【0015】
上記半導体装置では、ワード線上部の溝側壁側に溝部が形成され、この溝部を埋め込むようにワード線上の溝側壁にサイドウォール絶縁膜が形成されていることから、ワード線上にシリサイド層が形成されても、シリサイド層とゲート絶縁膜との間のサイドウォール絶縁膜がオフセットになり、シリサイド層とゲート絶縁膜との距離が十分に確保されるので、ゲート絶縁耐圧の劣化が抑制される。
【0016】
上記第1の半導体装置において、チャネルが形成される溝下部とウエル拡散層との間の半導体基板にチャネル拡散層が形成されている構成では、溝とウエル拡散層との間の領域の不純物濃度は溝周囲の半導体基板の不純物濃度よりも高くなる。また、ソース・ドレインとなる拡散層下部の半導体基板濃度は極めて低くなっていることから、ソース・ドレインとなる拡散層の接合の電界が弱められるので、ppmオーダーでの接合リークの抑制が可能になり、それによって、データ保持特性が極めてよくなる。
【0017】
上記第1の半導体装置では、ゲート電極上層にシリサイド層が形成されていることから、ゲート電極の抵抗が低減され、遅延の問題が回避されて、動作速度が向上する。それとともに、ゲート電極へのコンタクト抵抗が低減される。
【0018】
しかも、半導体基板表面側に拡散層が形成され、その半導体基板に形成された溝内にゲート絶縁膜を介してワード線が埋め込まれていることから、チャネルはゲート電極が形成されている溝底部側の半導体基板を廻り込むように形成される。そのため、実効的なチャネル長が十分に確保されるため、バックバイアスを印加して、短チャネル効果が厳しいメモリ素子(例えばDRAM)のトランジスタ特性が安定化される。
【0019】
本発明の第1の半導体装置の製造方法は、素子分離領域を形成した半導体基板および前記素子分離領域のゲート電極を形成する位置に溝を形成する工程と、前記溝の底部の前記半導体基板にチャネル拡散層を形成する工程と、前記溝内および前記半導体基板上にゲート絶縁膜を形成する工程と、前記溝の内壁を含む前記半導体基板上に第1導電層を形成する工程と、前記半導体基板上に前記第1導電層を介して前記溝を埋め込む第2導電層を形成する工程と、前記溝の内部における前記第1導電層が前記第2導電層よりも低くなるように前記溝の上部および前記半導体基板上の前記第1導電層および前記第2導電層を除去して、前記溝内部に残した前記第1導電層と前記第2導電層とでゲート電極を形成するとともに、前記溝側壁と前記第2導電層との間に溝部を形成する工程と、前記溝側壁上部の前記半導体基板に拡散層を形成する工程と、前記溝部の内部を埋め込むとともに前記ゲート電極上の前記溝側壁にサイドウォール絶縁膜を形成する工程と、前記ゲート電極上層にシリサイド層を形成する工程とを備えている。
【0020】
また前記第1導電層は前記第2導電層よりもエッチングレートが速い導電膜を用いる。また前記素子分離領域により分離された前記半導体基板中にウエル拡散層を形成し、前記溝を前記ウエル拡散層上に前記半導体基板の一部を残した状態で前記半導体基板および前記素子分離領域に形成し、前記チャネル拡散層を前記溝の底部と前記ウエル拡散層との間の前記半導体基板に形成する。
【0021】
上記第1の半導体装置の製造方法では、ゲート電極上部の溝側壁側に溝部を形成し、この溝部を埋め込むようにゲート電極上の溝側壁にサイドウォール絶縁膜を形成することから、ゲート電極上にシリサイド層が形成されても、サイドウォール絶縁膜がオフセットになり、シリサイド層とゲート絶縁膜との距離は十分に確保されるので、ゲート絶縁耐圧の劣化が抑制される半導体装置となる。上記第1の半導体装置の製造方法において、チャネルが形成される溝下部とウエル拡散層との間の半導体基板にチャネル拡散層を形成する製造方法では、溝とウエル拡散層との間の領域の不純物濃度は溝周囲の半導体基板の不純物濃度よりも高くなる。また、ソース・ドレインとなる拡散層下部の半導体基板濃度は極めて低くい状態に保つことができるので、ソース・ドレインとなる拡散層の接合の電界が弱められる。このため、ppmオーダーでの接合リークの抑制が可能になり、それによって、データ保持特性が極めてよくなる半導体装置が形成される。
【0022】
さらに、ゲート電極上層にシリサイド層を形成することから、ゲート電極の抵抗が低減され、遅延の問題が回避される。それとともに、ゲート電極へのコンタクト抵抗が低減される。
【0023】
また、半導体基板表面側に拡散層を形成し、その半導体基板に形成した溝内にゲート絶縁膜を介してゲート電極を埋め込むように形成することから、チャネルはゲート電極が形成されている溝底部側の半導体基板を廻り込むように形成される。そのため、実効的なチャネル長が十分に確保されるため、バックバイアスを印加して、短チャネル効果が厳しいメモリ素子(例えばDRAM)のトランジスタ特性が安定化される。
【0024】
本発明の第2の半導体装置は、メモリ素子とロジック素子とを同一半導体基板上に形成した半導体装置において、前記メモリ素子のトランジスタは、半導体基板に形成された素子分離領域と、前記素子分離領域により分離された前記半導体基板中に形成されたウエル拡散層と、前記半導体基板および前記素子分離領域に形成されたもので前記ウエル拡散層上に前記半導体基板の一部を残した状態で形成された溝と、前記溝の底部と前記ウエル拡散層との間の前記半導体基板に形成されたチャネル拡散層と、前記溝内にゲート絶縁膜を介して埋め込まれたワード線と、前記ワード線上部の前記溝側壁側に形成した溝部と、前記溝部内を含み前記ワード線上の前記溝の側壁に形成したサイドウォール絶縁膜と、前記溝側壁の前記半導体基板表面側に形成された拡散層と、前記サイドウォール絶縁膜の底部よりも高い位置で前記ワード線上層に形成されたシリサイド層と、前記ワード線上に絶縁膜を介して前記ワード線にオーバラップする状態で前記拡散層に接続された取り出し電極とを備えたもので、前記ロジック素子のトランジスタは、前記半導体基板上に形成されたもので、ポリシリコン電極と金属系電極とが積層されたポリメタル構造のゲート電極と、前記ゲート電極の両側における前記半導体基板表面側に形成された拡散層と、前記拡散層上層に形成されたシリサイド層とを備えたものである。
【0025】
上記第2の半導体装置では、ワード線上部の溝側壁側に溝部が形成され、この溝部を埋め込むようにワード線上の溝側壁にサイドウォール絶縁膜が形成されていることから、ワード線上にシリサイド層が形成されても、シリサイド層とゲート絶縁膜との間のサイドウォール絶縁膜がオフセットになり、シリサイド層とゲート絶縁膜との距離が十分に確保されるので、ゲート絶縁耐圧の劣化が抑制される。
【0026】
上記第2の半導体装置では、チャネルが形成される溝下部とウエル拡散層との間の半導体基板にチャネル拡散層が形成されていることから、溝とウエル拡散層との間の領域の不純物濃度は溝周囲の半導体基板の不純物濃度よりも高くなる。また、ソース・ドレインとなる拡散層下部の半導体基板濃度は極めて低くなっていることから、ソース・ドレインとなる拡散層の接合の電界が弱められるので、ppmオーダーでの接合リークの抑制が可能になり、それによって、データ保持特性が極めてよくなる。
【0027】
ワード線上層にシリサイド層が形成されていることから、ワード線の抵抗が低減され、遅延の問題が回避され、動作速度が向上する。それとともに、ワード線へのコンタクト抵抗が低減される。また、ロジック素子の拡散層上にシリサイド層が形成されていることから、この拡散層へのコンタクト抵抗が低減される。
【0028】
しかも、半導体基板表面側に拡散層が形成され、その半導体基板に形成された溝内にゲート絶縁膜を介してワード線が埋め込まれていることから、チャネルはワード線が形成されている溝底部側の半導体基板を廻り込むように形成される。そのため、実効的なチャネル長が十分に確保されるため、バックバイアスを印加して、短チャネル効果が厳しいメモリ素子(例えばDRAM)のトランジスタ特性が安定化される。
【0029】
また、拡散層は、その深さ方向に不純物濃度が薄くなっていることから、メモリ素子領域の拡散層下部の半導体基板濃度をセルトランジスタに要求されるほどに濃くしなくともよいので、接合の電界が緩和され、メモリ素子のセル縮小化にともない厳しくなるデータ保持特性の性能が維持される。
【0030】
また、ゲート絶縁膜を介して半導体基板に形成された溝内に埋め込まれたワード線上に、絶縁膜を介してこのワード線にオーバラップする状態で、半導体基板表面に形成した拡散層に接続される取り出し電極が形成されていることから、ワード線上の絶縁膜を20nm〜30nm以上の十分な膜厚を確保することが可能になる。それによって、拡散層に接続される取り出し電極との耐圧が確保される。そのため、メモリ素子の拡散層上の全面がコンタクトに使用されるので、実効面積を有効に使用できる。よって、セルデザインで実現可能な最低の抵抗値が実現されるので、コンタクト抵抗の低減が図れる。
【0031】
本発明の第2の半導体装置の製造方法は、メモリ素子とロジック素子とを同一半導体基板上に形成する半導体装置の製造方法において、前記半導体基板に素子分離領域を形成した後該半導体基板上にバッファ層を形成する工程と、前記素子分離領域によって分離されたメモリ素子領域の前記半導体基板中にウエル拡散層を形成する工程と、前記ウエル拡散層上に前記半導体基板の一部を残した状態で前記バッファ層および前記半導体基板および前記素子分離領域のワード線を形成する位置に溝を形成する工程と、前記溝の底部と前記ウエル拡散層との間の前記半導体基板にチャネル拡散層を形成する工程と、前記溝内および前記半導体基板上にゲート絶縁膜を形成する工程と、メモリ素子領域の前記溝の内壁を含む前記半導体基板上に第1導電層を形成する工程と、前記半導体基板上に前記第1導電層を介して前記溝を埋め込む第2導電層を形成する工程と、前記素子分離領域によって分離されたロジック素子領域の前記半導体基板にウエル拡散層を形成する工程と、前記半導体基板上に前記溝を埋め込むポリシリコン層と該ポリシリコン層とのエッチング選択性を有する材料からなるダミー層を順に形成する工程と、前記ポリシリコン層と前記ダミー層とを加工して、ロジック素子領域の半導体基板上に前記ゲート絶縁膜を介して、前記ポリシリコン層と前記ダミー層とでダミーゲートを形成する工程と、前記溝の内部における前記第1導電層が前記第2導電層よりも低くなるように前記溝の上部および前記半導体基板上の前記第1導電層および前記第2導電層を除去して、前記溝内部に残した前記第1導電層と前記第2導電層とでワード線を形成するとともに、前記溝側壁と前記第2導電層との間に溝部を形成する工程と、前記溝側壁上部の前記半導体基板に拡散層を形成する工程と、前記ダミーゲートの両側の半導体基板表面にロジック素子の低濃度拡散層を形成する工程と、前記ダミーゲートの側壁にサイドウォール絶縁膜を形成する工程と、前記ダミーゲートの両側の半導体基板に前記ダミーゲート側に前記低濃度拡散層を介して拡散層を形成する工程と、前記溝部の内部を埋め込むとともに前記ワード線上の前記溝側壁にサイドウォール絶縁膜を形成する工程と、前記ワード線上層および前記ロジック素子の拡散層上層にシリサイド層を形成する工程と、前記溝の上部を埋め込むとともに前記ダミーゲートを覆うように絶縁膜を形成する工程と、前記ワード線上に前記絶縁膜を介して前記ワード線にオーバラップする状態でメモリ素子領域に形成した前記拡散層に達する接続孔を形成する工程と、前記接続孔内に取り出し電極を形成する工程と、前記絶縁膜表面を平坦化するとともに前記ダミーゲートの上部を露出させ、さらに前記ダミー層を除去して前記ポリシリコン層を露出させてゲート溝を形成する工程と、前記ダミーゲートのポリシリコン層に不純物をドーピングする工程と、前記取り出し電極及び前記ポリシリコン層を活性化する熱処理を行う工程と、前記ゲート溝に金属系電極を形成する工程とを備えた半導体装置の製造方法である。
【0032】
上記第2の半導体装置の製造方法では、ワード線上部の溝側壁側に溝部を形成し、この溝部を埋め込むようにワード線上の溝側壁にサイドウォール絶縁膜を形成することから、ワード線上にシリサイド層が形成されても、サイドウォール絶縁膜がオフセットになり、シリサイド層とゲート絶縁膜との距離が十分に確保されるので、ゲート絶縁耐圧の劣化が抑制される半導体装置となる。
【0033】
上記第2の半導体装置の製造方法では、バッファ層を形成していることにより、その後、溝の底部における半導体基板にチャネル拡散層を形成する不純物を導入する際に、バッファ層がマスクとなって、選択的に溝の底部の半導体基板に不純物が導入され、チャネル拡散層が形成される。
【0034】
このように、溝下部とウエル拡散層との間の半導体基板にチャネル拡散層を形成することから、溝とウエル拡散層との間の領域の不純物濃度は溝周囲の半導体基板の不純物濃度よりも高くなる。また、ソース・ドレインとなる拡散層下部の半導体基板濃度は極めて低くい状態に保つことができるので、ソース・ドレインとなる拡散層の接合の電界が弱められる。このため、ppmオーダーでの接合リークの抑制が可能になり、それによって、データ保持特性が極めてよくなる半導体装置が形成される。
【0035】
また、ゲート絶縁膜を介して半導体基板に形成された溝内に埋め込まれたワード線上に、絶縁膜を介してこのワード線にオーバラップする状態で、半導体基板表面に形成した拡散層に接続される取り出し電極を形成することから、ワード線上の絶縁膜を20nm〜30nm以上の十分な膜厚を確保することが可能になる。それによって、拡散層に接続される取り出し電極との耐圧が確保される。そのため、メモリ素子の拡散層上の全面がコンタクトに使用されるので、実効面積を有効に使用できる。よって、セルデザインで実現可能な最低の抵抗値が実現されるので、コンタクト抵抗の低減が図れる。
【0036】
さらに、ワード線上層にシリサイド層を形成することから、ワード線の抵抗が低減され、遅延の問題が回避される。また、ロジック素子の拡散層上にシリサイド層を形成することから、この拡散層へのコンタクト抵抗が低減される。
【0037】
また、半導体基板表面側に拡散層を形成し、その半導体基板に形成した溝内にゲート絶縁膜を介してワード線を埋め込むように形成することから、チャネルはワード線が形成されている溝底部側の半導体基板を廻り込むように形成される。そのため、実効的なチャネル長が十分に確保されるため、バックバイアスを印加して、短チャネル効果が厳しいメモリ素子(例えばDRAM)のトランジスタ特性が安定化される。
【0038】
また、メモリ素子領域の拡散層を、その深さ方向に不純物濃度が薄くなるように形成することから、メモリ素子領域の拡散層下部の半導体基板濃度をセルトランジスタに要求されるほどに濃くしなくともよいので、接合の電界が緩和され、メモリ素子のセル縮小化にともない厳しくなるデータ保持特性の性能が維持される。
【0039】
また、ロジック素子領域に形成するダミーゲートにポリシリコン層とダミー層との積層構造を用いることによって、メモリ素子領域の拡散層の取り出し電極を形成した後にダミー層を除去し、ダミーゲートのポリシリコン層に不純物をドーピングすることが可能になる。その後、熱処理を行い、金属ゲート電極を形成することから、熱処理によるpチャネルゲート電極におけるホウ素の突き抜けの問題が最小限に抑えられる。
【0040】
【発明の実施の形態】
本発明の半導体装置に係る一実施の形態を、図1の概略構成断面図および図2の部分拡大図によって説明する。図1では、本発明の半導体装置をDRAMに適用した一例を示し、図2では図1のA部拡大概略図を示す。
【0041】
図1および図2に示すように、半導体基板11は、例えば1×1017/cm3 程度のp型不純物濃度を有するシリコン基板で構成されている。上記半導体基板11には、メモリ素子領域(以下DRAMとして説明し、図面ではDRAM領域と記す)、標準電圧ロジック領域、高電圧ロジック領域等を分離する素子分離領域12が形成されている。この素子分離領域12は、例えばSTI(Shallow Trench Isolation )技術によって、例えば0.1μm〜0.2μm程度の深さに形成される。さらに半導体基板11上には、素子分離領域12上を覆うバッファ層71が例えば酸化シリコン膜で例えば20nm〜40nmの厚さに形成されている。
【0042】
上記バッファ層71は製造上、必要なものである。すなわち、バッファ層71は、ウエル拡散層13を形成する際の緩衝膜の機能を有するものであり、後に説明するメモリ素子のトランジスタ(アクセストランジスタ)の基板濃度を調整するイオン注入時にDRAMの接合となる領域に対してイオン注入のストッパとして機能するものであり、さらに、溝14に埋め込まれたワード線18の表面にシリサイド層21を形成する際に、DRAM領域の拡散層19にシリサイド層21が形成されるのを防止する機能を有する。
【0043】
上記メモリ素子領域の半導体基板11中には、ウエル拡散層13が、例えば上面が150nm〜200nmよりも深い状態で、下面が素子分離領域12の深さよりもやや深い状態に、かつ深さ方向の厚さが例えば0.8μm程度となるように形成されている。このウエル拡散層13は、P形であり、例えばホウ素を導入して形成されるものであり、例えばイオン注入で形成する場合には、イオン種にホウ素を用い、ドーズ量を例えば5×1012/cm2 〜7×1012/cm2 程度とする。
【0044】
さらに、必要に応じて、素子分離領域12下方の半導体基板11に素子分離拡散層(図示せず)が形成されていてもよい。
【0045】
さらに、バッファ層71を貫通し、上記素子分離領域12および半導体基板11には、DRAM領域のワード線(以下ワード線はゲート電極も含む)が形成される溝14を形成されている。この溝14の深さは、例えば100nm〜150nm程度であり、先に形成したウエル拡散層13とこの溝14の底部との間に半導体基板11が残るように形成されている。なお、半導体基板11に形成された溝14の深さと素子分離領域12に形成された溝14の深さとが多少の差を生じてもよい。
【0046】
また、上記溝14底部のエッジ部分は、セルトランジスタの電界集中を避けるために、いわゆるラウンド形状に形成されていることが望ましく、また、溝14の幅がメモリ素子のアクセストランジスタのチャネル長になるので、溝14の側壁はできうる限り半導体基板11表面に対して垂直に形成されることが望ましい。
【0047】
さらに、上記溝14の底部と上記ウエル拡散層13との間の半導体基板11にはチャネル拡散層15が形成されている。DRAM領域のワードトランジスタの上記チャネル拡散層15として、高濃度(例えば1.0×1018/cm3 〜1.0×1019/cm3 )にしなければならない領域は、半導体基板11を掘り下げた溝14底部の半導体基板11(11a)部分であり、溝14の側壁や上部における半導体基板11は極めて低濃度でよい。したがって、後述する拡散層19下部の半導体基板11部分は、極めて低濃度(例えば1.0×1017/cm3 〜1.0×1018/cm3 )で形成されている。
【0048】
上記溝14の内面および半導体基板11上等には、ゲート絶縁膜16が形成されている。上記ゲート絶縁膜15は、最先端のロジックのトランジスタよりもやや厚めの膜厚を有し、またゲート長もやや長く形成されるため、この世代であっても、熱酸化による酸化シリコン膜の適用が可能である。したがって、DRAM領域の上記ゲート絶縁膜15は、例えば1.5nm〜5nm程度の厚さの酸化シリコン膜で形成されている。
【0049】
さらに各溝14を埋め込むように上記ゲート絶縁膜16を介して、例えばリンドープトポリシリコン膜からなるワード線(ゲート電極も含む)18が形成されている。上記ワード線18は、第1導電層181と第2導電層182の2層のポリシリコン層から形成されている。上記第1導電層181は、例えば5nm〜10nmの厚さのリンドープトポリシリコン膜からなり、上記第2導電層182は例えばノンドープトポリシリコン膜に不純物(例えばリン)をドーピングした膜からなる。また上記ワード線18上部の溝14壁面側(第1導電層181上部)には溝部183が形成されている。
【0050】
また、上記ワード線18のポリシリコン層上の溝14側壁には、上記溝部183を埋め込むサイドウォール絶縁膜20が例えば窒化シリコン膜で形成されている。さらに上記ワード線18は、上層にシリサイド(例えばサリサイド)層21で形成されている。したがって、上記シリサイド層21はゲート絶縁膜16に対してサイドウォール絶縁膜20を介してワード線18の上層に形成されている。
【0051】
また、上記ワード線18として機能する上記シリサイド層21は、少なくとも後に説明する取り出し電極24との耐圧が確保される距離として、その表面が溝14の上部の半導体基板11表面より少なくとも30nm〜100nm程度下がるように、好ましくは50nm〜90nm程度下がるように形成されている。この実施の形態では、例えば50nm程度下がった状態に形成されている。そのため、後述する拡散層の取り出し電極24との耐圧距離が確保されている。
【0052】
さらに、上記シリサイド層21は、例えばコバルトシリサイド(CoSi2 )、チタンシリサイド(TiSi2 )ニッケルシリサイド(NiSi2 )等を用いられている。上記サイドウォール絶縁膜20はシリサイド層21と拡散層19との間の耐圧を確保する機能を有する。なお、半導体基板11に形成された溝14の深さと素子分離領域12に形成された溝14の深さに多少の差を生じていても差し支えはない。
【0053】
さらに、DRAM領域の半導体基板11には、ソース・ドレインとなる拡散層19が形成されている。この拡散層19には、N形の不純物としてリンが用いられ、濃度が1×1017/cm3 〜1×1018/cm3 となっている。そのため、この領域の半導体基板11は1×1016/cm3 〜×1017/cm3 程度の非常に薄い濃度に設定されている。
【0054】
よって、このN−P接合は超グレーディッド接合(非常に緩やかな濃度勾配の接合)となる。このような状態の接合では、逆バイアス時の電界を緩和し、メガビット級のDRAMでわずかppmオーダーの不良ビットに起きる通常よりも2桁程度も悪い接合リークの電流抑制に劇的に寄与する。この不良ビットのデータ保持特性がDRAMのチップ性能を支配しており、今後のDRAMでデータ保持特性を維持する重要な技術となっている。
【0055】
例えば、基板濃度が5×1016/cm3 程度であるならば、85℃で500ms以上のデータ保持特性が基体でき、これは実に4世代〜5世代も前のデータのデータ保持特性に匹敵する性能を発揮すると予想される。また、DRAM領域のアクセストランジスタは、半導体基板11をいわゆるラウンドする形でチャネルが形成されることから、実効的なチャネル長を長く確保することもでき、バックバイアスを印加して使う、短チャネル効果が厳しいDRAMセルのトランジスタ特性の安定化を図ることもできる。
【0056】
上記半導体基板11上の全面には、第1の絶縁膜(絶縁膜)22が形成されている。この第1の絶縁膜22は、表面が平坦化されている。さらに、全面にキャップ絶縁膜80が例えば窒化シリコン膜で形成されている。このキャップ絶縁膜80はサリサイド形成部の接合リークを抑制するのに効果的であるが、不要であれば形成する必要はない。
【0057】
さらに、全面に第1の絶縁膜(絶縁膜)22が形成されている。この第1の絶縁膜22には、キャップ絶縁膜80、バッファ層71等を貫通してDRAM領域の拡散層19に達する接続孔23が形成されている。この接続孔23は、拡散層19の表面全面で取り出し電極をコンタクトさせることが可能なように、接続孔23の開口径をでき得る限り大きく形成することが望ましい。それによってコンタクト抵抗の低減が図られる。
【0058】
また、図面では、多少アライメントずれを起こした状態をわざと記載したが、接続孔開口時に過剰なオーバエッチングを施さなければ、接続孔23内に形成されるワード線の取り出し電極24の物理的な距離を確保することが可能となる。なお、上部からみた投影デザインでは、この接続孔23が完全にワード線(ゲート電極)18にオーバラップする形となっている。上記接続孔23内には、例えばリンドープトポリシリコンで形成される取り出し電極24が形成されている。
【0059】
また、取り出し電極24上面が第2の絶縁膜22表面と同一面になるように、上記第2の絶縁膜22の表面は平坦化されている。さらに、第2の絶縁膜22上には、取り出し電極24を覆うエッチングストップ層25が形成されている。
【0060】
上記エッチングストップ層25、上記第1の絶縁膜22およびキャップ絶縁膜80には、DRAM領域のワード線18上のシリサイド層21に達する接続孔26が形成されている。上記接続孔26内には取り出し電極27が形成されている。上記取り出し電極27は、窒化チタン膜からなる密着層85を介して接続孔26内を埋め込むように形成されたタングステン膜86からなる。
【0061】
上記エッチングストップ層25上には、上記取り出し電極27を覆う第2の絶縁膜31が形成されている。この第2の絶縁膜31は例えば酸化シリコン膜を50nm〜150nmの厚さに堆積して形成されている。
【0062】
上記第2の絶縁膜31、エッチングストップ層25には、取り出し電極24に接続するビットコンタクトホール32が形成されている。また第2の絶縁膜31上にはビット線34が形成されていて、その一部は上記ビットコンタクトホール32を通じて取り出し電極24に接続されている。また、第2の絶縁膜31上にはローカル配線35が形成されている。上記ビット線34およびローカル配線35は、例えばタングステン膜37により形成され、その下部に密着層36が形成され、その上部にキャップ層38が形成されている。
【0063】
上記第2の絶縁膜22上には、上記ビット線34およびローカル配線35を覆うエッチングストッパ層41および第3の絶縁膜42が形成されている。このエッチングストッパ層41は、ALD(Atomic Layer Deposition)法によって成膜された窒化シリコン膜で、例えば30nm〜50nmの厚さに形成されている。
【0064】
上記第3の絶縁膜42から上記エッチングストッパ層25にかけて、記憶ノードコンタクトの取り出し電極24、24に達する記憶ノードコンタクトを形成する接続孔43が形成されている。この接続孔43内においては上記エッチングストッパ層41がビット線と記憶ノードコンタクトとの耐圧が確保される膜厚のサイドウォールとしてビット線34の側壁に残る。さらに上記接続孔43内には取り出し電極24に接続する記憶ノードコンタクト44が形成されている。この記憶ノードコンタクト44は、例えばタングステン、チタン、窒化チタン、タンタル、窒化タンタル、酸化ルテニウム等の材料で形成されている。なお、上記第3の絶縁膜42表面は、例えば、記憶ノードコンタクト44上面とともに平坦化されている。
【0065】
上記第3の絶縁膜42上には第4の絶縁膜45が形成されている。この第4の絶縁膜45には、キャパシタが形成される凹部46が、その底部に上記記憶ノードコンタクト44上面が露出するように形成されている。その凹部46内には、熱処理が不要なMIM(Metal/insulator/Metal)構造のキャパシタ91が形成されている。MIM構造のキャパシタ91は0.1μm以降のDRAMでは必須になると予想され、現在では、一例として、電極92、94にルテニウム(Ru)、酸化ルテニウム(RuO)系材料が用いられ、電極92、94間に形成される誘電体膜93にはBST(BaTiO3 とSrTiO3 との混晶)系の膜が採用されている。
【0066】
上記第4の絶縁膜45上には、上記MIM構造のキャパシタ91を覆う第5の絶縁膜47が形成されている。この第5の絶縁膜47表面は平坦化されている。上記第5の絶縁膜47ないし第1の絶縁膜22には、キャパシタ取り出し電極、ワード線取り出し電極、ローカル配線取り出し電極等を形成するための接続孔111、112、113等が形成されている。
【0067】
各接続孔111、112、113等には、キャパシタ取り出し電極121、ワード線取り出し電極122、ローカル配線取り出し電極123等が形成されている。
【0068】
さらに、第5の絶縁膜47上には第6の絶縁膜48が形成されている。この第6の絶縁膜48には、各電極121、122、123に達する配線溝131、132、133が形成され、各配線溝131〜133には第1の配線141〜143が形成されている。この第1の配線141〜143は例えば銅配線からなる。図示はしないが、さらに必要に応じて上層配線が形成されている。なお、上記電極121〜123および上記配線141〜143には、電極、配線、絶縁膜の材質によって、通常知られている密着層、バリア層が形成されている。
【0069】
上記第1の半導体装置では、溝14内に形成されるワード線18の上部で溝14の側壁側に溝部183を形成し、その溝部183を埋め込むようにワード線(ゲート電極を含む)18上の溝14の側壁にサイドウォール絶縁膜20を形成したことから、このサイドウォール絶縁膜20の溝部183に形成された部分によってワード線18上面のシリサイド層21とゲート絶縁膜16との物理的距離が十分に確保される。このため、ゲート絶縁膜16の耐圧劣化を防止することができる。
【0070】
チャネルが形成される溝14下部とウエル拡散層13との間の半導体基板11にチャネル拡散層15が形成されていることから、溝14とウエル拡散層13との間の領域の不純物濃度は溝14周囲の半導体基板11の不純物濃度よりも高くなる。また、ソース・ドレインとなる拡散層19下部の半導体基板11濃度は極めて低くなっていることから、拡散層19の接合の電界が弱められるので、ppmオーダーでの接合リークの抑制が可能になり、それによって、データ保持特性が極めてよくなる。
【0071】
ワード線18上層にシリサイド層21が形成されていることから、ワード線18の抵抗が低減され、遅延の問題が回避されて、動作速度が向上する。それとともに、ワード線18へのコンタクト抵抗が低減される。
【0072】
しかも、半導体基板11表面側に拡散層が形成され、その半導体基板に形成された溝内にゲート絶縁膜を介してワード線が埋め込まれていることから、チャネルはワード線が形成されている溝底部側の半導体基板を廻り込むように形成される。そのため、実効的なチャネル長が十分に確保されるため、バックバイアスを印加して、短チャネル効果が厳しいメモリ素子(例えばDRAM)のトランジスタ特性が安定化される。
【0073】
また、拡散層19は、その深さ方向に不純物濃度が薄くなっていることから、メモリ素子領域の拡散層19下部の半導体基板11濃度をセルトランジスタに要求されるほどに濃くしなくともよいので、接合の電界が緩和され、メモリ素子のセル縮小化にともない厳しくなるデータ保持特性の性能が維持される。
【0074】
また、ゲート絶縁膜16を介して半導体基板11に形成された溝14内に埋め込まれたワード線18上に、第1の絶縁膜22を介してこのワード線18にオーバラップする状態で、半導体基板11表面に形成した拡散層19に接続される取り出し電極24が形成されていることから、ワード線18上の第1の絶縁膜22を20nm〜30nm以上の十分な膜厚を確保することが可能になる。それによって、拡散層19に接続される取り出し電極との耐圧が確保される。そのため、メモリ素子の拡散層19上の全面がコンタクトに使用されるので、実効面積を有効に使用できる。よって、セルデザインで実現可能な最低の抵抗値が実現されるので、コンタクト抵抗の低減が図れる。
【0075】
本発明の第1の半導体装置の製造方法に係る実施の形態の一例を、図3〜図23の概略構成断面図、部分拡大概略図によって説明する。図3〜図23では、メモリ素子とロジック素子とを同一半導体基板に形成する製造方法を示し、前記図1によって説明したのと同様なる構成部品には同一符号を付与する。
【0076】
図3の(1)に示すように、半導体基板11として、例えば1×1017/cm3 程度のp型不純物濃度を有するシリコン基板を用意する。例えばSTI(Shallow Trench Isolation )技術によって、上記半導体基板11に、メモリ素子領域(以下DRAMとして説明し、図面ではDRAM領域と記す)、標準電圧ロジック領域、高電圧ロジック領域等を分離する素子分離領域12を形成する。この素子分離領域12は例えば0.1μm〜0.2μm程度の深さに形成される。次いで、化学的気相成長(以下CVDという、CVDはChemical Vapor Deposition の略)によって素子分離領域12上を覆うように上記半導体基板11上に例えば酸化シリコン膜からなるバッファ層71を例えば20nm〜40nmの厚さに形成する。
【0077】
さらに半導体基板11上にレジスト膜201を形成した後、リソグラフィー技術に用いてDRAM領域のメモリセル形成領域上に開口部202を形成する。
【0078】
次いで上記レジスト膜201をマスクに用いたイオン注入により、上記メモリ素子領域の半導体基板11中に例えばホウ素を導入してウエル拡散層13を形成する。このイオン注入条件としては、イオン種にホウ素を用い、ドーズ量を例えば5×1012/cm2 〜7×1012/cm2 程度とし、後に形成される溝の深さよりも深くなるように、例えば150nm〜200nmよりも深く、素子分離領域12の深さよりもやや深い状態に形成される。また、ウエル拡散層13は深さ方向の厚さを例えば0.8μm程度とする。
【0079】
さらに、必要に応じて、素子分離領域12下方の半導体基板11に素子分離拡散層(図示せず)を形成してもよい。
【0080】
上記バッファ層71は、上記ウエル拡散層13を形成する際の緩衝膜の機能を有するものである。また、後に行うメモリ素子のトランジスタ(アクセストランジスタ)の基板濃度を調整するイオン注入時にDRAMの接合となる領域に対してイオン注入のストッパとして機能する。さらに、溝に埋め込まれたワード線の表面にサリサイドを形成する際に、DRAM領域の拡散層にサリサイドが形成されるのを防止する機能を有する。その後、上記レジスト膜201を除去する。
【0081】
次いで、図4の(2)に示すように、半導体基板11上にレジスト膜203を形成した後、リソグラフィー技術によりDRAM領域のワード線(ゲート電極)となる領域上のレジスト膜203に開口部204を形成する。
【0082】
次いで、図5の(3)に示すように、上記レジスト膜203をエッチングマスクに用いて、バッファ層71、素子分離領域12および半導体基板11をエッチング(例えば連続的にエッチング)して素子分離領域12(フィールド)および半導体基板11に、DRAM領域のワード線(ゲート電極も含む)が形成される溝14を形成する。この溝14の深さは、例えば100nm〜150nm程度であり、先に形成したウエル拡散層13とこの溝14の底部との間に半導体基板11が残るようにする。なお、半導体基板11に形成された溝14の深さと素子分離領域12に形成された溝14の深さとが多少の差を生じてもよい。
【0083】
また、上記溝14はDRAM領域のみに形成されることから、溝14底部のエッジ部分は、セルトランジスタの電界集中を避けるために、いわゆるラウンド形状に形成することが望ましく、また、溝14の幅がメモリ素子のアクセストランジスタのチャネル長になるので、溝14の側壁はできうる限り半導体基板11表面に対して垂直に形成されることが望ましい。なお、DRAM領域に形成されているバッファ層71は素子分離領域12をエッチングする際に同時にエッチングされる。その後、上記レジスト膜203を通常の除去技術によって除去する。
【0084】
なお、この世代で想定している電圧としては、標準ロジック領域は0.5V〜1.2V、高電圧ロジック領域は1.5V〜2.5V、DRAMセルのワード線昇圧は1.5V〜2.5Vである。
【0085】
次いで図6の(4)に示すように、例えば熱酸化法によって上記半導体基板11の露出している全面に犠牲酸化膜(図示せず)を例えば10nm〜20nmの厚さに形成する。
【0086】
次いで、DRAM領域のアクセストランジスタのチャネルドーピングを行って、上記溝14の底部と上記ウエル拡散層13との間にチャネル拡散層15を形成する。
【0087】
DRAM領域のワードトランジスタの上記チャネル拡散層15として、高濃度(例えば1.0×1018/cm3 〜1.0×1019/cm3 )にしなければならない領域は、半導体基板11を掘り下げた溝14底部の半導体基板11(11a)部分であり、溝14の側壁や上部における半導体基板11には基板濃度としてのイオン注入をほとんど行う必要はない。また、上記イオン注入では、半導体基板11表面やロジック素子領域には、最初に設けたバッファ層71がイオン注入のマスクとなるため、新たなマスクを用いないで溝14の底部のみにチャネル拡散層15を形成することが可能になる。したがって、後述する拡散層19(図35参照)下部の半導体基板11部分は、極めて低濃度(例えば1.0×1017/cm3 〜1.0×1018/cm3 )での形成が可能になる。
【0088】
その後、例えばウエットエッチングによって上記犠牲酸化膜(図示せず)を除去する。その後、DRAM領域の上記溝14の内面および半導体基板11上等にゲート絶縁膜16を通常のゲート酸化膜の形成方法により形成する。
【0089】
図7の(5)および図8に示すように、DRAM領域の各溝14の内壁を被覆するように上記ゲート絶縁膜16表面に第1導電層181を例えば5nm〜10nmの厚さにリンドープトポリシリコンを堆積して形成する。次いでDRAM領域の各溝14を埋め込むように上記第1導電層181表面に第2導電層182を50nm〜150nmの厚さにノンドープトポリシリコンを堆積して形成する。この膜厚は溝14を埋め込むのに十分な厚さであればよく、その膜厚は特に溝状のワード線を形成するためのみに最適化した膜厚に設定される。
【0090】
図9の(6)および図10に示すように、溝14の内部に第1導電層181、第2導電層182が残るよう第1導電層181、第2導電層182をエッチバックする。このエッチングでは、第1導電層181のほうが第2導電層182よりもエッチングレートが速くなるエッチング条件を用いる。言い換えれば、第1導電層181のほうが第2導電層182よりもエッチングレートが速くなる導電膜で形成する。その結果、エッチング速度が速い第1導電層181がより多くエッチングされ、第1導電層181上の第2導電層182と密着4の側壁との間に溝部183が形成される。同時に溝14の内部には第1導電層181、第2導電層182からなるワード線(一部ゲート電極として機能する)18が形成される。その際、ワード線18の表面が半導体基板11表面より30nm〜100nm程度下がるように上記第1導電層181、第2導電層182のエッチバックを行うことで、後に形成される拡散層の取り出し電極との耐圧距離が確保される。このエッチバックでは、ゲート絶縁膜16がエッチングストップ層として機能する。
【0091】
さらに、DRAM領域の半導体基板11にソース・ドレインを形成するためのイオン注入を行い、拡散層19を形成する。このイオン注入条件としては、一例として、イオン注入する不純物にリンを用い、濃度が1×1017/cm3 〜1×1018/cm3 となるように、ドーズ量、注入エネルギーを設定する。バッファ層71を貫通する注入エネルギーであれば十分なため、注入エネルギーを例えば20keV〜50keVに設定し、ドーズ量を1×1018/cm2 〜3×1018/cm2 に設定する。この条件でイオン注入を行えば、DRAM領域の上記拡散層19下層の半導体基板11にはほとんどイオン注入されない。そのため、この領域の半導体基板11は1×1016/cm3 〜×1017/cm3 程度の非常に薄い濃度に設定することが可能となる。上記リンイオン注入により第2導電層182にもリンがドーピングされ、その後の熱処理によって、第1導電層181と第2導電層182は同等の不純物濃度になる。この第1導電層181および第2導電層182は、DRAM領域のワード線のみに使用され、Pチャネルのトランジスタには使用されないため、N+ ゲート材料(例えばリン)をドーピング物質として用いることができる。
【0092】
よって、このN−P接合は超グレーディッド接合(非常に緩やかな濃度勾配の接合)となる。このような状態の接合では、逆バイアス時の電界を緩和し、メガビット級のDRAMでわずかppmオーダーの不良ビットに起きる通常よりも2桁程度も悪い接合リークの電流抑制に劇的に寄与する。この不良ビットのデータ保持特性がDRAMのチップ性能を支配しており、今後のDRAMでデータ保持特性を維持する重要な技術となっている。
【0093】
例えば、基板濃度が5×1016/cm3 程度であるならば、85℃で500ms以上のデータ保持特性が基体でき、これは実に4世代〜5世代も前のデータのデータ保持特性に匹敵する性能を発揮すると予想される。また、DRAM領域のアクセストランジスタは、半導体基板11をいわゆるラウンドする形でチャネルが形成されることから、実効的なチャネル長を長く確保することもでき、バックバイアスを印加して使う、短チャネル効果が厳しいDRAMセルのトランジスタ特性の安定化を図ることもできる。
【0094】
上記イオン注入では、後のDRAM領域のゲート形成に係る熱処理による拡散を考慮して、やや浅めにイオン注入を行うが、DRAMのゲートが基板埋め込み型であるため、DRAM領域のチャネルは埋め込みゲートを形成する溝14の底部に形成されるので、何ら問題はない。また、後の熱処理によって活性化されるため、特にこの段階で熱処理を行う必要もない。
【0095】
次いで、図11の(7)に示すように、DRAM領域のゲートを保護する保護膜78を例えば薄い窒化シリコン膜(例えば厚さが10nm〜50nm)で形成する。この保護膜78は、上記溝部183内を埋め込むように形成され、後にDRAM領域のワード線18上の側壁にサイドウォール状に形成され、サリサイド形成時に、ワード線18側壁の耐圧確保に寄与する。
【0096】
次いで、図12の(8)および図13に示すように、DRAM領域の保護膜78を例えば反応性イオンエッチング(RIE)によりエッチングしてDRAM領域のワード線18を露出させる。この結果、溝部183を埋め込むようにワード線18上の溝14の側壁に保護膜78からなるサイドウォール絶縁膜20が形成される。このサイドウォール絶縁膜20は側壁保護の機能を有する。なお、上記反応性イオンエッチングでは、DRAM領域の拡散層19が露出しないようにすること、すなわち、拡散層19上にバッファ層71を残すようにすることが重要である。
【0097】
さらに、図14の(9)に示すように、通常のシリサイド化技術を用いて、上記DRAM領域のワード線18上にシリサイド層21を選択的に形成する。このようにして、低抵抗を実現する必要が有るDRAM領域のワード線18上に選択的にシリサイド層21が形成される。このシリサイド層としては、例えばコバルトシリサイド(CoSi2 )、チタンシリサイド(TiSi2 )ニッケルシリサイド(NiSi2 )等を用いることができる。
【0098】
その後、全面にキャップ絶縁膜80を例えば窒化シリコン膜で形成する。このキャップ絶縁膜80はサリサイド形成部の接合リークを抑制するのに効果的であるが、不要であれば形成する必要はない。なお、先に記述したように、周辺回路部のトランジスタのゲート電極上にもシリサイド層を形成してサリサイド構造として、ゲート電極の低抵抗化を図っても差し支えはない。
【0099】
次いで、図15の(10)に示すように、全面に第1の絶縁膜(絶縁膜)22を形成した後、CMPによって、第1絶縁膜22表面を平坦化する。上記第1の絶縁膜22表面を平坦化する方法は、平坦化を実現することができる方法であればCMPに限定されることはなく、例えばエッチバック法等を用いることも可能である。その後、上記第1の絶縁膜22上にレジスト膜215を形成した後、リソグラフィー技術によって、上記レジスト膜215にDRAM領域の拡散層取り出しコンタクト用の接続孔パターン216を形成する。
【0100】
次いで、上記レジスト膜215をエッチングマスクに用いてエッチングを行い、図16の(11)に示すように、第1の絶縁膜22を貫通してDRAM領域の拡散層19に達する接続孔23を形成する。このとき、DRAM領域のワード線(ゲート電極)18はコンタクトを取るべき拡散層19よりも半導体基板11表面下に配置されているので、セルフアラインコンタクト等の特別な技術を用いる必要はない。またDRAMの拡散層19全面が取り出し電極とコンタクトできるように、接続孔23の開口径をでき得る限り大きく形成することが望ましい。それによってコンタクト抵抗の低減が図られる。
【0101】
また、図面では、多少アライメントずれを起こした状態をわざと記載したが、接続孔開口時に過剰なオーバエッチングを施さなければ、後の工程で接続孔23内に形成されるワード線取り出し電極の物理的な距離を確保することが可能となる。なお、上部からみた投影デザインでは、この接続孔23が完全にワード線(ゲート電極)18にオーバラップする形となっている。
【0102】
次いで、上記接続孔23内を埋め込むように、第1の絶縁膜22上に、取り出し電極形成膜81を形成する。この取り出し電極形成膜81は、例えばリンドープトポリシリコンで形成される。この拡散層取り出しのための取り出し電極形成膜81は、従来通り、DRAM領域に接合リークの低減を考慮してリンドープトポリシリコンが選択されることが望ましい。なお、この段階では活性化のための熱処理は不要である。
【0103】
その後、図17の(12)に示すように、例えばCMPによって、第1の絶縁膜22上の余剰な取り出し電極形成膜81(リンドープトポリシリコン)を除去して、接続孔23内に拡散層19に接続する取り出し電極形成膜81からなる取り出し電極24を形成するとともに、第1の絶縁膜22を研磨してその表面を平坦化させる。
【0104】
その後、熱処理を行う。この熱処理によって、DRAM領域のポリシリコンからなる取り出し電極24の活性化を行う。この熱処理では、900℃、10秒程度のRTA(Rapid Thermal Annealing )で十分ではあるが、通常の炉を用いた熱アニールを行っても差し支えは無い。なお、これ以降の工程では、高温の熱工程は行われないので、例えば、DRAMと同時にロジック素子を形成する場合には、ロジック素子のゲート電極からホウ素が拡散する、いわゆる「突き抜け」は最小限に抑えられる。
【0105】
次いで、図18の(13)に示すように、第1の絶縁膜22上に、DRAM領域の取り出し電極24を覆うエッチングストップ層25を例えば酸化シリコン膜で全面に形成する。
【0106】
その後、図19の(14)に示すように、エッチングストップ層25上にレジスト膜(図示せず)を形成した後、リソグラフィー技術によって、上記レジスト膜にDRAM領域のワード線取り出しコンタクト用の接続孔パターン(図示せず)を形成する。続いて、上記レジスト膜をエッチングマスクに用いて、上記エッチングストップ層25、上記第1の絶縁膜22およびキャップ絶縁膜80を貫通してDRAM領域のワード線18上のシリサイド層21に達する接続孔26を形成する。
【0107】
その後、上記レジスト膜を除去する。次に、通常のタングステンプラグの形成技術により上記接続孔26に内面に窒化チタン膜からなる密着層85を形成した後、接続孔26内を埋め込むようにタングステン膜86を形成する。その後CMPにより上記エッチングストップ層25上の上記タングステン膜86および密着層85の余剰な部分を除去し、上記接続孔26の内部に取り出し電極27を形成する。
【0108】
次いで、上記取り出し電極27を覆うように上記エッチングストップ層25上の全面に第2の絶縁膜31を例えば酸化シリコン膜を50nm〜150nmの厚さに堆積して形成する。
【0109】
その後、第2の絶縁膜31上にレジスト膜(図示せず)を形成した後、リソグラフィー技術により上記レジスト膜にビットコンタクトを形成する位置に開口部(図示せず)を形成する。そのレジスト膜をマスクに用いたエッチングにより、図20の(15)に示すように、上記エッチングストッパ層25および第2の絶縁膜31に所定の取り出し電極24に達するビットコンタクトホール32を形成する。
【0110】
次いで、ビット線34、ローカル配線35を形成するための配線金属層を形成する。この配線金属層は、まず上記ビットコンタクトホール32の内面および第2の絶縁膜31上に、例えばチタン膜と窒化チタン膜を積層してなる密着層36を形成する。さらにビットコンタクトホール32を埋め込むようにして、上記密着層36上に金属配線の主材料となるタングステン膜37を成膜する。さらにタングステン膜37上にキャップ層38を例えば窒化シリコン膜で形成する。
【0111】
その後、通常のリソグラフィー技術とエッチング技術とによって上記キャップ層38、タングステン膜37、密着層36をパターニングしてビットコンタクトホール32を通じてビットコンタクトの取り出し電極24に接続されるビット線34が形成されるとともに、ローカル配線35が形成される。したがって、ビット線34上およびローカル配線35上にはキャップ層38が形成される。
【0112】
その後、上記第2の絶縁膜31上に、ビット線34を覆うエッチングストッパ層41をALD窒化シリコン膜で、例えば30nm〜50nmの厚さに形成する。
【0113】
次に、図21の(16)に示すように、上記エッチングストッパ層41上に第3の絶縁膜42を形成する。そして、第3の絶縁膜42表面を例えばCMPを用いて平坦化する。次に、上記第3の絶縁膜42上にレジスト膜219を形成した後、リソグラフィー技術により記憶ノードコンタクトを開口するための開口パターン220を形成する。この開口パターン220は、実際の記憶ノードコンタクトが形成される接続孔の口径よりも大きく形成することができる。
【0114】
次いで、上記レジスト膜219をエッチングマスクに用いて、図22の(17)に示すように、上記第3の絶縁膜42からエッチングストップ層25までをエッチングして、記憶ノードコンタクトの取り出し電極24、24に達する記憶ノードコンタクトを形成する接続孔43を形成する。このエッチングでは、上記レジスト膜219〔前記図21の(16)参照〕の他にキャップ層38およびエッチングストッパ層41がエッチングマスクとなっている。なお、上記エッチングストッパ層41は、その一部がエッチングされるが、ビット線と記憶ノードコンタクトとの耐圧が確保される膜厚のサイドウォールとしてビット線34の側壁に残る。その後上記レジスト膜219〔図21の(16)参照〕を除去する。
【0115】
次に、図23の(18)に示すように、上記接続孔43内に取り出し電極24に接続する記憶ノードコンタクト44を形成する。この記憶ノードコンタクト44は、例えば上記接続孔43を埋め込むように上記第3の絶縁膜42上にタングステン、チタン、窒化チタン、タンタル、窒化タンタル、酸化ルテニウム等を堆積して材料層を形成した後、第3の絶縁膜42上の余剰な上記材料層を例えばCMPによって除去することによって、接続孔43内に残した上記材料層で形成される。
【0116】
次に、第3の絶縁膜42上に上記記憶ノードコンタクト44等を覆う第4の絶縁膜45を形成する。次いで、第4の絶縁膜45にキャパシタが形成される凹部46を、その底部に上記記憶ノードコンタクト44上面が露出するように形成する。
【0117】
その後、凹部46内に、熱処理が不要なMIM(Metal/insulator/Metal)構造のキャパシタ91を形成する。MIM構造のキャパシタ91は0.1μm以降のDRAMでは必須になると予想され、現在では、一例として、電極92、94には、ルテニウム(Ru)、酸化ルテニウム(RuO)系材料が用いられ、誘電体膜93にはBST(BaTiO3 とSrTiO3 との混晶)系の膜が採用される。
【0118】
次いで、上記第4の絶縁膜45上に、上記MIM構造のキャパシタ91を覆う第5の絶縁膜47を形成する。その後、CMPによって上記第5の絶縁膜47表面を平坦化する。次いで、第5の絶縁膜47ないし第2の絶縁膜31に、キャパシタ取り出し電極、ワード線取り出し電極等を形成するための接続孔111、112、113等を形成する。
【0119】
さらに、接続孔111、112、113等に、キャパシタ取り出し電極121、ワード線取り出し電極122、ローカル配線取り出し電極123等を形成する。さらに、第5の絶縁膜47上に第6の絶縁膜48を形成する。次いで、この第6の絶縁膜48に各電極121、122、123等に達する各配線溝131、132、133を形成し、配線溝131、132、133に配線141、142、143を形成する。この配線141、142、143は例えば銅配線からなる。図示はしないが、さらに必要に応じて上層配線を形成する。なお、上記電極121、122、123および上記配線141、142、143には、電極、配線、絶縁膜の材質によって、通常知られている密着層、バリア層が形成される。
【0120】
上記第1の半導体装置の製造方法では、ワード線(ゲート電極)18上部の溝14側壁側に溝部183を形成し、この溝部183を埋め込むようにワード線(ゲート電極)18上の溝14側壁にサイドウォール絶縁膜20を形成することから、ワード線(ゲート電極)18上にシリサイド層21が形成されても。シリサイド層21とゲート絶縁膜16との距離はサイドウォール絶縁膜20の溝部183に形成された部分によって十分に確保されるので、ゲート絶縁耐圧の劣化が抑制される半導体装置となる。
【0121】
上記第1の半導体装置の製造方法では、バッファ層71を形成していることにより、その後、溝14の底部における半導体基板11にチャネル拡散層15を形成する不純物を導入する際に、バッファ層71がマスクとなって、選択的に溝14の底部の半導体基板11に不純物が導入され、チャネル拡散層15が形成される。
【0122】
このように、溝14下部とウエル拡散層13との間の半導体基板11にチャネル拡散層15を形成することから、溝14とウエル拡散層13との間の領域の不純物濃度は溝14周囲の半導体基板11の不純物濃度よりも高くなる。また、ソース・ドレインとなる拡散層19下部の半導体基板11濃度は極めて低くい状態に保つことができるので、拡散層19の接合の電界が弱められる。このため、ppmオーダーでの接合リークの抑制が可能になり、それによって、データ保持特性が極めてよくなる半導体装置が形成される。
【0123】
また、ゲート絶縁膜16を介して半導体基板11に形成された溝14内に埋め込まれたワード線18上に、第2の絶縁膜22を介してこのワード線18にオーバラップする状態で、半導体基板11表面に形成した拡散層19に接続される取り出し電極24を形成することから、ワード線18上の第2の絶縁膜22を20nm〜30nm以上の十分な膜厚を確保することが可能になる。それによって、拡散層19に接続される取り出し電極24との耐圧が確保される。そのため、メモリ素子の拡散層19上の全面がコンタクトに使用されるので、実効面積を有効に使用できる。よって、セルデザインで実現可能な最低の抵抗値が実現されるので、コンタクト抵抗の低減が図れる。
【0124】
さらに、ワード線18上層にシリサイド層21を形成することから、ワード線18の抵抗が低減され、遅延の問題が回避される。それとともに、ワード線18へのコンタクト抵抗が低減される。
【0125】
また、半導体基板11表面側に拡散層19を形成し、その半導体基板11に形成した溝14内にゲート絶縁膜16を介してワード線18を埋め込むように形成することから、チャネルはワード線18が形成されている溝14底部側の半導体基板11を廻り込むように形成される。そのため、実効的なチャネル長が十分に確保されるため、バックバイアスを印加して、短チャネル効果が厳しいメモリ素子(例えばDRAM)のトランジスタ特性が安定化される。
【0126】
また、メモリ素子領域の拡散層19を、その深さ方向に不純物濃度が薄くなるように形成することから、メモリ素子領域の拡散層19下部の半導体基板11濃度をセルトランジスタに要求されるほどに濃くしなくともよいので、接合の電界が緩和され、メモリ素子のセル縮小化にともない厳しくなるデータ保持特性の性能が維持される。
【0127】
本発明の第2の半導体装置に係る一実施の形態を、図24の概略構成断面図および図25のE部拡大図によって説明する。
【0128】
図24および図25に示すように、半導体基板11は、例えば1×1017/cm3 程度のp型不純物濃度を有するシリコン基板で構成されている。上記半導体基板11には、メモリ素子領域(以下DRAMとして説明し、図面ではDRAM領域と記す)、標準電圧ロジック領域、高電圧ロジック領域等を分離する素子分離領域12が形成されている。この素子分離領域12は、例えばSTI(Shallow Trench Isolation )技術によって、例えば0.1μm〜0.2μm程度の深さに形成される。さらに半導体基板11上には、素子分離領域12上を覆うバッファ層71が例えば酸化シリコン膜で例えば20nm〜40nmの厚さに形成されている。
【0129】
上記バッファ層71は製造上、必要なものである。すなわち、バッファ層71は、ウエル拡散層13を形成する際の緩衝膜の機能を有するものであり、後に説明するメモリ素子のトランジスタ(アクセストランジスタ)の基板濃度を調整するイオン注入時にDRAMの接合となる領域に対してイオン注入のストッパとして機能するものであり、さらに、溝14に埋め込まれたワード線18の表面にシリサイド層27を形成する際に、DRAM領域の拡散層19にシリサイド層27が形成されるのを防止する機能を有する。
【0130】
上記メモリ素子領域の半導体基板11中には、ウエル拡散層13が、例えば上面が150nm〜200nmよりも深い状態で、下面が素子分離領域12の深さよりもやや深い状態に、かつ深さ方向の厚さが例えば0.8μm程度となるように形成されている。このウエル拡散層13は、P形であり、例えばホウ素を導入して形成されるものであり、例えばイオン注入で形成する場合には、イオン種にホウ素を用い、ドーズ量を例えば5×1012/cm2 〜7×1012/cm2 程度とする。
【0131】
さらに、必要に応じて、素子分離領域12下方の半導体基板11に素子分離拡散層(図示せず)が形成されていてもよい。
【0132】
さらに、バッファ層71を貫通し、上記素子分離領域12および半導体基板11には、DRAM領域のワード線(ゲート電極も含む)が形成される溝14を形成されている。この溝14の深さは、例えば100nm〜150nm程度であり、先に形成したウエル拡散層13とこの溝14の底部との間に半導体基板11が残るように形成されている。なお、半導体基板11に形成された溝14の深さと素子分離領域12に形成された溝14の深さとが多少の差を生じてもよい。
【0133】
また、上記溝14底部のエッジ部分は、セルトランジスタの電界集中を避けるために、いわゆるラウンド形状に形成されていることが望ましく、また、溝14の幅がメモリ素子のアクセストランジスタのチャネル長になるので、溝14の側壁はできうる限り半導体基板11表面に対して垂直に形成されることが望ましい。
【0134】
さらに、上記溝14の底部と上記ウエル拡散層13との間の半導体基板11にはチャネル拡散層15が形成されている。DRAM領域のワードトランジスタの上記チャネル拡散層15として、高濃度(例えば1.0×1018/cm3 〜1.0×1019/cm3 )にしなければならない領域は、半導体基板11を掘り下げた溝14底部の半導体基板11(11a)部分であり、溝14の側壁や上部における半導体基板11は極めて低濃度でよい。したがって、後述する拡散層19下部の半導体基板11部分は、極めて低濃度(例えば1.0×1017/cm3 〜1.0×1018/cm3 )で形成されている。
【0135】
上記溝14の内面および半導体基板11上等には、ゲート絶縁膜16が形成されている。上記ゲート絶縁膜15は、最先端のロジックのトランジスタよりもやや厚めの膜厚を有し、またゲート長もやや長く形成されるため、この世代であっても、熱酸化による酸化シリコン膜の適用が可能である。したがって、DRAM領域の上記ゲート絶縁膜15は、例えば1.5nm〜5nm程度の厚さの酸化シリコン膜で形成されている。
【0136】
さらに各溝14を埋め込むように上記ゲート絶縁膜16を介して、例えばリンドープトポリシリコン膜からなるワード線(ゲート電極も含む)18が形成されている。上記ワード線18は、第1導電層181と第2導電層182の2層のポリシリコン層から形成されている。上記第1導電層181は、例えば5nm〜10nmの厚さのリンドープトポリシリコン膜からなり、上記第2導電層182は例えばノンドープトポリシリコン膜に不純物(例えばリン)をドーピングした膜からなる。また上記ワード線18上部の溝14壁面側(第1導電層181上部)には溝部183が形成されている。
【0137】
また、上記ワード線18のポリシリコン層上の溝14側壁には、上記溝部183を埋め込むサイドウォール絶縁膜20が例えば窒化シリコン膜で形成されている。さらに上記ワード線18は、上層にシリサイド(例えばサリサイド)層21で形成されている。したがって、上記シリサイド層21はゲート絶縁膜16に対してサイドウォール絶縁膜20を介してワード線18の上層に形成されている。
【0138】
また、上記ワード線18として機能する上記シリサイド層21は、少なくとも後に説明する取り出し電極24との耐圧が確保される距離として、その表面が溝14の上部の半導体基板11表面より少なくとも30nm〜100nm程度下がるように、好ましくは50nm〜90nm程度下がるように形成されている。この実施の形態では、例えば50nm程度下がった状態に形成されている。そのため、後述する拡散層の取り出し電極24との耐圧距離が確保されている。
【0139】
さらに、上記シリサイド層21は、例えばコバルトシリサイド(CoSi2 )、チタンシリサイド(TiSi2 )ニッケルシリサイド(NiSi2 )等を用いられている。上記サイドウォール絶縁膜20はシリサイド層21と拡散層19との間の耐圧を確保する機能を有する。なお、半導体基板11に形成された溝14の深さと素子分離領域12に形成された溝14の深さに多少の差を生じていても差し支えはない。
【0140】
さらに、DRAM領域の半導体基板11には、ソース・ドレインとなる拡散層19が形成されている。この拡散層19には、N形の不純物としてリンが用いられ、濃度が1×1017/cm3 〜1×1018/cm3 となっている。そのため、この領域の半導体基板11は1×1016/cm3 〜×1017/cm3 程度の非常に薄い濃度に設定されている。
【0141】
よって、このN−P接合は超グレーディッド接合(非常に緩やかな濃度勾配の接合)となる。このような状態の接合では、逆バイアス時の電界を緩和し、メガビット級のDRAMでわずかppmオーダーの不良ビットに起きる通常よりも2桁程度も悪い接合リークの電流抑制に劇的に寄与する。この不良ビットのデータ保持特性がDRAMのチップ性能を支配しており、今後のDRAMでデータ保持特性を維持する重要な技術となっている。
【0142】
例えば、基板濃度が5×1016/cm3 程度であるならば、85℃で500ms以上のデータ保持特性が基体でき、これは実に4世代〜5世代も前のデータのデータ保持特性に匹敵する性能を発揮すると予想される。また、DRAM領域のアクセストランジスタは、半導体基板11をいわゆるラウンドする形でチャネルが形成されることから、実効的なチャネル長を長く確保することもでき、バックバイアスを印加して使う、短チャネル効果が厳しいDRAMセルのトランジスタ特性の安定化を図ることもできる。
【0143】
一方、標準電圧ロジック領域の半導体基板11には、NチャネルトランジスタのPウエル拡散層51と、PチャネルトランジスタのNウエル拡散層(図示せず)が形成されている。また高電圧ロジック領域の半導体基板11には、NチャネルトランジスタのPウエル拡散層(図示せず)と、PチャネルトランジスタのNウエル拡散層61が形成されている。なお、必用に応じてチャネルドーピングがなされている。
【0144】
さらに、標準電圧ロジック領域のNチャネルトランジスタの形成領域における半導体基板11(Pウエル拡散層51)には、Nチャネルトランジスタの低濃度拡散層52、52が形成されている。また標準電圧ロジック領域のpチャネルトランジスタの形成領域における半導体基板11には、Pチャネルトランジスタの低濃度拡散層(図示せず)が形成されている。
【0145】
さらに、高電圧ロジック領域のPチャネルトランジスタの形成領域における半導体基板11(Nウエル拡散層61)には、Pチャネルトランジスタの低濃度拡散層62、62が形成されている。また高電圧ロジック領域のNチャネルトランジスタの形成領域における半導体基板11には、Nチャネルトランジスタの低濃度拡散層(図示せず)が形成されている。
【0146】
このロジック素子領域の半導体基板11(素子分離領域12も含む)上には、ロジック素子のゲート絶縁膜17が形成されている。この世代では、ゲート絶縁膜を膜厚に応じて作り分けるのが一般的であり、レジストプロセスを用いて作り分けが行われている。ゲート絶縁膜には酸化シリコンもしくは耐熱性が必要な場合には窒化シリコンが用いられている。また、Pチャネルゲートからのホウ素(B)の突き抜けを防止するために、Pチャネルゲートには例えば酸窒化シリコン膜が用いられている。
【0147】
一方、上記標準電圧ロジック領域の半導体基板11上には、ゲート絶縁膜17を介してゲート電極51が形成されている。このゲート電極51は、下層がリンドープトポリシリコンからなるポリシリコン層で形成され、上層がダミー層を置き換えて形成した密着層と金属層との積層膜からなる金属系ゲート電極で形成され、上記密着層には例えば窒化チタン層が用いられ、金属層にはタングステン層が用いられている。さらに、ゲート電極51の側壁にはゲート絶縁膜17を介してサイドウォール54が形成されている。上記サイドウォール54下部における半導体基板11には上記低濃度拡散層52、52が形成され、この低濃度拡散層52、52を介したゲート電極51の両側の半導体基板11には拡散層55、55が形成されている。この拡散層55の上層にはシリサイド層58が形成されている。このシリサイド層58としては、例えばコバルトシリサイド(CoSi2 )、チタンシリサイド(TiSi2 )ニッケルシリサイド(NiSi2 )等を用いることができる。
【0148】
また、上記高電圧ロジック領域の半導体基板11上には、ゲート絶縁膜17を介してゲート電極61が形成されている。このゲート電極61は、下層がホウ素ドープトポリシリコンからなるポリシリコン層で形成され、上層がダミー層を置き換えて形成した密着層と金属層との積層膜からなる金属系ゲート電極で形成され、上記密着層には例えば窒化チタン層が用いられ、金属層にはタングステン層が用いられている。さらに、ゲート電極61の側壁にはゲート絶縁膜17を介してサイドウォール64が形成されている。上記サイドウォール64下部における半導体基板11には上記低濃度拡散層62、62が形成され、この低濃度拡散層62、62を介したゲート電極61の両側の半導体基板11には拡散層65、65が形成されている。この拡散層65の上層にはシリサイド層68が形成されている。このシリサイド層58としては、例えばコバルトシリサイド(CoSi2 )、チタンシリサイド(TiSi2 )ニッケルシリサイド(NiSi2 )等を用いることができる。
【0149】
上記サイドウォール54、64は、窒化シリコンよりも低応力でウエット処理による剥離性のよい酸化シリコンで形成することが好ましい。または、酸化シリコン膜と窒化シリコン膜の積層膜もしくは酸化窒化シリコン膜で形成することも可能である。
【0150】
また、ロジック領域の素子分離領域12上には、上記ゲート電極51と同様な構造のゲート電極(ゲート配線)51が形成されている。
【0151】
上記半導体基板11上の全面には、第1の絶縁膜(絶縁膜)19が形成されている。この第1の絶縁膜19は、表面が平坦化されていて、上記ロジック領域のゲート電極51、61の各表面が同一平面上にある。
【0152】
さらに、全面にキャップ絶縁膜80が例えば窒化シリコン膜で形成されている。このキャップ絶縁膜80はサリサイド形成部の接合リークを抑制するのに効果的であるが、不要であれば形成する必要はない。
【0153】
さらに、全面に第1の絶縁膜(絶縁膜)22が形成されている。この第1の絶縁膜22には、キャップ絶縁膜80、バッファ層71等を貫通してDRAM領域の拡散層19に達する接続孔23が形成されている。この接続孔23は、拡散層19の表面全面で取り出し電極をコンタクトさせることが可能なように、接続孔23の開口径をでき得る限り大きく形成することが望ましい。それによってコンタクト抵抗の低減が図られる。
【0154】
また、図面では、多少アライメントずれを起こした状態をわざと記載したが、接続孔開口時に過剰なオーバエッチングを施さなければ、接続孔23内に形成されるワード線の取り出し電極24の物理的な距離を確保することが可能となる。なお、上部からみた投影デザインでは、この接続孔23が完全にワード線(ゲート電極)18にオーバラップする形となっている。上記接続孔23内には、例えばリンドープトポリシリコンで形成される取り出し電極24が形成されている。
【0155】
また、取り出し電極24上面、ゲート電極51、61各上面が第2の絶縁膜22表面と同一面になるように、上記第2の絶縁膜22の表面は平坦化されている。さらに、第2の絶縁膜22上には、取り出し電極24、ゲート電極51、61を覆うエッチングストップ層25が形成されている。
【0156】
上記エッチングストップ層25、上記第1の絶縁膜22およびキャップ絶縁膜80には、DRAM領域のワード線18上のシリサイド層21、ロジック領域のトランジスタのシリサイド層57、67に達する接続孔26、58、68が形成されている。上記接続孔26、58、68内には取り出し電極27、59、69が形成されている。上記取り出し電極27、59、69は、窒化チタン膜からなる密着層を介して接続孔26、58、68内を埋め込むように形成されたタングステン膜からなる。
【0157】
上記エッチングストップ層25上には、上記取り出し電極27、59、69を覆う第2の絶縁膜31が形成されている。この第2の絶縁膜31は例えば酸化シリコン膜を50nm〜150nmの厚さに堆積して形成されている。
【0158】
上記第2の絶縁膜31、エッチングストップ層25には、取り出し電極24に接続するビットコンタクトホール32と取り出し電極59に接続するローカルハッチングコンタクトホール33が形成されている。また第2の絶縁膜31上にはビット線34が形成されていて、その一部は上記ビットコンタクトホール32を通じて取り出し電極24に接続されている。また、第2の絶縁膜31上にはローカル配線35が形成されていて、その一部は上記ローカル配線コンタクトホール33を通じて取り出し電極59に接続されている。上記ビット線34およびローカル配線35は、例えばタングステン膜37により形成され、その下部に密着層36が形成され、その上部にキャップ層38が形成されている。
【0159】
上記第2の絶縁膜22上には、上記ビット線34およびローカル配線35を覆うエッチングストッパ層41および第3の絶縁膜42が形成されている。このエッチングストッパ層41は、ALD窒化シリコン膜で、例えば30nm〜50nmの厚さに形成されている。
【0160】
上記第3の絶縁膜42から上記エッチングストッパ層25にかけて、記憶ノードコンタクトの取り出し電極24、24に達する記憶ノードコンタクトを形成する接続孔43が形成されている。この接続孔43内においては上記エッチングストッパ層41がビット線と記憶ノードコンタクトとの耐圧が確保される膜厚のサイドウォールとしてビット線34の側壁に残る。さらに上記接続孔43内には取り出し電極24に接続する記憶ノードコンタクト44が形成されている。この記憶ノードコンタクト44は、例えばタングステン、チタン、窒化チタン、タンタル、窒化タンタル、酸化ルテニウム等の材料で形成されている。なお、上記第3の絶縁膜42表面は、例えば、記憶ノードコンタクト44上面とともに平坦化されている。
【0161】
上記第3の絶縁膜42上には第4の絶縁膜45が形成されている。この第4の絶縁膜45には、キャパシタが形成される凹部46が、その底部に上記記憶ノードコンタクト44上面が露出するように形成されている。その凹部46内には、熱処理が不要なMIM(Metal/insulator/Metal)構造のキャパシタ91が形成されている。MIM構造のキャパシタ91は0.1μm以降のDRAMでは必須になると予想され、現在では、一例として、電極92、94にルテニウム(Ru)、酸化ルテニウム(RuO)系材料が用いられ、電極92、94間に形成される誘電体膜93にはBST(BaTiO3 とSrTiO3 との混晶)系の膜が採用されている。
【0162】
上記第4の絶縁膜45上には、上記MIM構造のキャパシタ91を覆う第5の絶縁膜47が形成されている。この第5の絶縁膜47表面は平坦化されている。上記第5の絶縁膜47ないし第1の絶縁膜22には、キャパシタ取り出し電極、ワード線取り出し電極、ローカル配線取り出し電極、ロジック領域の拡散層取り出し電極、ロジック領域のゲート取り出し電極等を形成するための接続孔111、112、113、114〜116、117等が形成されている。
【0163】
各接続孔111、112、113、114〜116、117等には、キャパシタ取り出し電極121、ワード線取り出し電極122、ローカル配線取り出し電極123、標準電圧ロジック領域の拡散層取り出し電極124、高電圧ロジック領域の拡散層取り出し電極125,126、ロジック領域のゲート取り出し電極127等が形成されている。
【0164】
さらに、第5の絶縁膜47上には第6の絶縁膜48が形成されている。この第6の絶縁膜48には、各電極121、122、123、124,127、125、126に達する配線溝131、132、133、134、135、136が形成され、各配線溝131〜136には第1の配線141〜146が形成されている。この第1の配線141〜146は例えば銅配線からなる。図示はしないが、さらに必要に応じて上層配線が形成されている。なお、上記電極121〜127および上記配線141〜146には、電極、配線、絶縁膜の材質によって、通常知られている密着層、バリア層が形成されている。
【0165】
上記第2の半導体装置では、溝14内に形成されるワード線18の上部で溝14の側壁側に溝部183を形成し、その溝部183を埋め込むようにワード線(ゲート電極を含む)18上の溝14の側壁にサイドウォール絶縁膜20を形成したことから、このサイドウォール絶縁膜20の溝部183に形成された部分によってワード線18上面のシリサイド層21とゲート絶縁膜16との物理的距離が十分に確保される。このため、ゲート絶縁膜16の耐圧劣化を防止することができる。
【0166】
上記第2の半導体装置では、チャネルが形成される溝14下部とウエル拡散層13との間の半導体基板11にチャネル拡散層15が形成されていることから、溝14とウエル拡散層13との間の領域の不純物濃度は溝14周囲の半導体基板11の不純物濃度よりも高くなる。また、ソース・ドレインとなる拡散層19下部の半導体基板11濃度は極めて低くなっていることから、ソース・ドレインとなる拡散層19の接合の電界が弱められるので、ppmオーダーでの接合リークの抑制が可能になり、それによって、データ保持特性が極めてよくなる。
【0167】
ワード線18上層にシリサイド層21が形成されていることから、ワード線18の抵抗が低減され、遅延の問題が回避され、動作速度が向上する。それとともに、ワード線18へのコンタクト抵抗が低減される。また、ロジック素子の拡散層55、65上にシリサイド層57、67が形成されていることから、この拡散層55、65へのコンタクト抵抗が低減される。
【0168】
しかも、半導体基板11表面側に拡散層19が形成され、その半導体基板11に形成された溝14内にゲート絶縁膜16を介してワード線18が埋め込まれていることから、チャネルはワード線18が形成されている溝14底部側の半導体基板11を廻り込むように形成される。そのため、実効的なチャネル長が十分に確保されるため、バックバイアスを印加して、短チャネル効果が厳しいメモリ素子(例えばDRAM)のトランジスタ特性が安定化される。
【0169】
また、拡散層19は、その深さ方向に不純物濃度が薄くなっていることから、メモリ素子領域の拡散層19下部の半導体基板11濃度をセルトランジスタに要求されるほどに濃くしなくともよいので、接合の電界が緩和され、メモリ素子のセル縮小化にともない厳しくなるデータ保持特性の性能が維持される。
【0170】
また、ゲート絶縁膜16を介して溝14内に埋め込まれたワード線18上に、第1の絶縁膜22を介してこのワード線18にオーバラップする状態で、半導体基板11表面に形成した拡散層19に接続される取り出し電極24が形成されていることから、ワード線18上の第2の絶縁膜22を20nm〜30nm以上の十分な膜厚を確保することが可能になる。それによって、拡散層19に接続される取り出し電極24との耐圧が確保される。そのため、メモリ素子の拡散層19上の全面がコンタクトに使用されるので、実効面積を有効に使用できる。よって、セルデザインで実現可能な最低の抵抗値が実現されるので、コンタクト抵抗の低減が図れる。
【0171】
本発明の半導体装置の製造方法に係る実施の形態の一例を、図26〜図52の概略構成断面図、部分拡大図によって説明する。図26〜図52では、メモリ素子とロジック素子とを同一半導体基板に形成する製造方法を示し、前記図25によって説明したのと同様なる構成部品には同一符号を付与する。
【0172】
図26の(1)に示すように、半導体基板11として、例えば1×1017/cm3 程度のp型不純物濃度を有するシリコン基板を用意する。例えばSTI(Shallow Trench Isolation )技術によって、上記半導体基板11に、メモリ素子領域(以下DRAMとして説明し、図面ではDRAM領域と記す)、標準電圧ロジック領域、高電圧ロジック領域等を分離する素子分離領域12を形成する。この素子分離領域12は例えば0.1μm〜0.2μm程度の深さに形成される。次いで、化学的気相成長(以下CVDという、CVDはChemical Vapor Deposition の略)によって素子分離領域12上を覆うように上記半導体基板11上に例えば酸化シリコン膜からなるバッファ層71を例えば20nm〜40nmの厚さに形成する。
【0173】
さらに半導体基板11上にレジスト膜201を形成した後、リソグラフィー技術に用いてDRAM領域となる部分のレジスト膜201を除去し、ロジック領域(以下、標準電圧ロジック領域と高電圧ロジック領域とをロジック領域という)上にレジスト膜201を残す。
【0174】
次いで上記レジスト膜201をマスクに用いたイオン注入により、上記メモリ素子領域の半導体基板11中に例えばホウ素を導入してウエル拡散層13を形成する。このイオン注入条件としては、イオン種にホウ素を用い、ドーズ量を例えば5×1012/cm2 〜7×1012/cm2 程度とし、後に形成される溝の深さよりも深くなるように、例えば150nm〜200nmよりも深く、素子分離領域12の深さよりもやや深い状態に形成される。また、ウエル拡散層13は深さ方向の厚さを例えば0.8μm程度とする。
【0175】
さらに、必要に応じて、素子分離領域12下方の半導体基板11に素子分離拡散層(図示せず)を形成してもよい。
【0176】
上記バッファ層71は、上記ウエル拡散層13を形成する際の緩衝膜の機能を有するものである。また、後に行うメモリ素子のトランジスタ(アクセストランジスタ)の基板濃度を調整するイオン注入時にDRAMの接合となる領域に対してイオン注入のストッパとして機能する。さらに、溝に埋め込まれたワード線の表面にサリサイドを形成する際に、DRAM領域の拡散層にサリサイドが形成されるのを防止する機能を有する。
【0177】
さらに、図27の(2)に示すように、半導体基板11上にレジスト膜203を形成した後、リソグラフィー技術によりDRAM領域のワード線(ゲート電極)となる領域上のレジスト膜203に開口部204を形成する。
【0178】
次いで、図28の(3)に示すように、上記レジスト膜203をエッチングマスクに用いて、バッファ層71、素子分離領域12および半導体基板11をエッチング(例えば連続的にエッチング)して素子分離領域12(フィールド)および半導体基板11に、DRAM領域のワード線(ゲート電極も含む)が形成される溝14を形成する。この溝14の深さは、例えば100nm〜150nm程度であり、先に形成したウエル拡散層13とこの溝14の底部との間に半導体基板11が残るようにする。なお、半導体基板11に形成された溝14の深さと素子分離領域12に形成された溝14の深さとが多少の差を生じてもよい。
【0179】
また、上記溝14はDRAM領域のみに形成されることから、溝14底部のエッジ部分は、セルトランジスタの電界集中を避けるために、いわゆるラウンド形状に形成することが望ましく、また、溝14の幅がメモリ素子のアクセストランジスタのチャネル長になるので、溝14の側壁はできうる限り半導体基板11表面に対して垂直に形成されることが望ましい。なお、DRAM領域に形成されているバッファ層71は素子分離領域12をエッチングする際に同時にエッチングされる。その後、上記レジスト膜203を通常の除去技術によって除去する。
【0180】
なお、この世代で想定している電圧としては、標準ロジック領域は0.5V〜1.2V、高電圧ロジック領域は1.5V〜2.5V、DRAMセルのワード線昇圧は1.5V〜2.5Vである。
【0181】
次いで図29の(4)に示すように、例えば熱酸化法によって上記半導体基板11の露出している全面に犠牲酸化膜(図示せず)を例えば10nm〜20nmの厚さに形成する。
【0182】
次いで、DRAM領域のアクセストランジスタのチャネルドーピングを行って、上記溝14の底部と上記ウエル拡散層13との間にチャネル拡散層15を形成する。
【0183】
DRAM領域のワードトランジスタの上記チャネル拡散層15として、高濃度(例えば1.0×1018/cm3 〜1.0×1019/cm3 )にしなければならない領域は、半導体基板11を掘り下げた溝14底部の半導体基板11(11a)部分であり、溝14の側壁や上部における半導体基板11には基板濃度としてのイオン注入をほとんど行う必要はない。また、上記イオン注入では、半導体基板11表面やロジック素子領域には、最初に設けたバッファ層71がイオン注入のマスクとなるため、新たなマスクを用いないで溝14の底部のみにチャネル拡散層15を形成することが可能になる。したがって、後述する拡散層19(図30参照)下部の半導体基板11部分は、極めて低濃度(例えば1.0×1017/cm3 〜1.0×1018/cm3 )での形成が可能になる。
【0184】
その後、例えばウエットエッチングによって上記犠牲酸化膜(図示せず)を除去する。その後、DRAM領域の上記溝14の内面および半導体基板11上等にゲート絶縁膜16を通常のゲート酸化膜の形成方法により形成する。
【0185】
図30の(5)に示すように、DRAM領域の各溝14の内壁を被覆するように上記ゲート絶縁膜16表面に第1導電層181を例えば5nm〜10nmの厚さにリンドープトポリシリコンを堆積して形成する。次いでDRAM領域の各溝14を埋め込むように上記第1導電層181表面に第2導電層182を50nm〜150nmの厚さにノンドープトポリシリコンを堆積して形成する。この膜厚は溝14を埋め込むのに十分な厚さであればよく、その膜厚は特に溝状のワード線を形成するためのみに最適化した膜厚に設定される。さらに、第2導電層182上にレジスト膜205を形成した後、リソグラフィー技術によりDRAM領域上のレジスト膜205を残してロジック領域上のレジスト膜205を除去する。
【0186】
次いで、図31の(6)に示すように、上記レジスト膜205をマスクにしてロジック素子領域上の第2導電層182、第1導電層181、ゲート絶縁膜16およびバッファ層71をエッチングにより除去する。このエッチングでは、第2導電層182、第1導電層181のエッチングではバッファ層71がエッチングストッパとなり、これによって、ロジック素子領域の半導体基板11表面が露出される。さらに、このエッチングでは、バッファ層71を除去するエッチングはフッ酸系のウエットエッチングが望ましい。その後、レジスト膜205を除去する。
【0187】
その後、図32の(7)に示すように、ロジック素子領域の表面に犠牲酸化膜(図示せず)を形成する。次いで、標準電圧ロジック領域のNチャネルトランジスタの形成領域上を開口したレジスト膜(図示せず)を形成し、続いてそのレジスト膜をマスクに用いて半導体基板11にイオン注入を行い、NチャネルトランジスタのPウエル拡散層51を形成する。その際、必用に応じてチャネルドーピングを行うこともできる。その後、上記レジスト膜を除去する。同様にして、標準電圧ロジック領域のPチャネルトランジスタの形成領域上を開口したレジスト膜(図示せず)を形成し、続いてそのレジスト膜をマスクに用いて半導体基板11にイオン注入を行い、PチャネルトランジスタのNウエル拡散層61を形成する。その際、必用に応じてチャネルドーピングを行うこともできる。その後、上記レジスト膜を除去する。
【0188】
次に、上記犠牲酸化膜を除去する。そして、DRAM領域上に残したゲート形成膜72上およびロジック素子領域の半導体基板11(素子分離領域12も含む)上にロジック素子のゲート絶縁膜17を形成する。この世代では、ゲート絶縁膜を膜厚に応じて作り分けるのが一般的であり、レジストプロセスを用いて作り分けを行う。ゲート絶縁膜には酸化シリコンもしくは耐熱性が必要な場合には窒化シリコンを用いる。また、Pチャネルゲートからのホウ素(B)の突き抜けを防止するために、Pチャネルゲートには例えば酸窒化シリコン膜を用いる。これらの処理時には、DRAM領域はリンドープトポリシリコンからなるゲート形成膜72で覆われているため、その表面は酸化されるが、チャネル領域は熱処理がかかるのみで酸化等の影響はない。
【0189】
図33の(8)に示すように、半導体基板11、素子分離領域12および第2導電層182上に上記ゲート絶縁膜17を介してポリシリコン層73を、例えばノンドープトポリシリコンで形成する。そして、Nチャネル領域のゲート電極形成層にリンをイオン注入してN型のゲート電極形成層とする。このポリシリコン層73はロジック領域のトランジスタのゲート電極に最適化されているため、例えばその膜厚は70nm〜200nm、好ましくは100nm程度に形成することが好ましい。なおPチャネル領域のポリシリコン層73にはイオン注入を行わず、ノンドープ状態としておく。これによって、その後のLDD(Lightly Doped Drain )形成やサイドウォール形成時におけるホウ素(B)の突き抜けは無くなる。
【0190】
その後、上記ポリシリコン層73上にダミー層74を形成する。このダミー層74は、例えば、窒化タングステン膜とタングステン膜とを積層して形成する。また、上記ダミー層74は、後のロジック素子領域のポリシリコン層73を露出させるために行うウエットエッチングのために選択される膜種であり、抵抗自体は関係がない。絶縁膜の酸化シリコン膜とポリシリコン層73とに高選択比でウエットエッチングできるものなら何でもよい。次いで、上記ダミー層74上にバッファ層75を例えば酸化シリコン膜で形成する。
【0191】
次に、上記バッファ層75上の全面にレジスト膜を形成した後、リソグラフィー技術によって、そのレジスト膜を加工してロジック素子領域のゲート電極を形成するためのレジストパターン207を形成する。
【0192】
次いで、図34の(9)に示すように、上記レジストパターン207をマスクに用いて、上記バッファ層75、ダミー層74、ポリシリコン層73をエッチング加工して、各ロジック素子領域にダミーゲート76を形成する。上記バッファ層75は、後のサリサイド形成時に金属系電極上のタングステンにサリサイドが形成されるのを防ぐために堆積しているが、汚染や加工上の問題がない場合には、特には不要である。また、周辺部のゲート電極にサリサイド構造を採用する場合には不要である。その後、レジストパターン207を除去する。
【0193】
図35の(10)に示すように、半導体基板11上にダミーゲート76を覆うレジスト膜209を形成した後、リソグラフィー技術に用いてDRAM領域となる部分のレジスト膜209を除去し、ロジック領域上にレジスト膜209を残す。
【0194】
その後、上記レジスト膜209をマスクにして、溝14の内部に第1導電層181、第2導電層182が残るようこの第1導電層181、第2導電層182をエッチバックする。このエッチングでは、第1導電層181のほうが第2導電層182よりもエッチングレートが速くなるエッチング条件を用いる。言い換えれば、第1導電層181のほうが第2導電層182よりもエッチングレートが速くなる導電膜で形成する。その結果、エッチング速度が速い第1導電層181がより多くエッチングされ、第1導電層181上の第2導電層182と溝14の側壁との間に溝部183が形成される。同時に、溝14の内部に第1導電層181、第2導電層182からなるワード線(一部ゲート電極として機能する)18が形成される。その際、ワード線18の表面が半導体基板11表面より50nm〜100nm程度下がるように上記第1導電層181、第2導電層182のエッチバックを行うことで、後に形成される拡散層の取り出し電極との耐圧距離が確保される。このエッチバックでは、ゲート絶縁膜16がエッチングストップ層として機能する。
【0195】
さらに、上記レジスト膜209をマスクに用いて、DRAM領域の半導体基板11にソース・ドレインを形成するためのイオン注入を行い、拡散層19を形成する。このイオン注入条件としては、一例として、イオン注入する不純物にリンを用い、濃度が1×1017/cm3 〜1×1018/cm3 となるように、ドーズ量、注入エネルギーを設定する。バッファ層71を貫通する注入エネルギーであれば十分なため、注入エネルギーを例えば20keV〜50keVに設定し、ドーズ量を1×1018/cm2 〜3×1018/cm2 に設定する。この条件でイオン注入を行えば、DRAM領域の上記拡散層19下層の半導体基板11にはほとんどイオン注入されない。そのため、この領域の半導体基板11は1×1016/cm3 〜×1017/cm3 程度の非常に薄い濃度に設定することが可能となる。上記リンイオン注入により第2導電層182にもリンがドーピングされ、その後の熱処理によって、第1導電層181と第2導電層182は同等の不純物濃度になる。この第1導電層181および第2導電層182は、DRAM領域のワード線のみに使用され、Pチャネルのトランジスタには使用されないため、N+ ゲート材料(例えばリン)をドーピング物質として用いることができる。
【0196】
よって、このN−P接合は超グレーディッド接合(非常に緩やかな濃度勾配の接合)となる。このような状態の接合では、逆バイアス時の電界を緩和し、メガビット級のDRAMでわずかppmオーダーの不良ビットに起きる通常よりも2桁程度も悪い接合リークの電流抑制に劇的に寄与する。この不良ビットのデータ保持特性がDRAMのチップ性能を支配しており、今後のDRAMでデータ保持特性を維持する重要な技術となっている。
【0197】
例えば、基板濃度が5×1016/cm3 程度であるならば、85℃で500ms以上のデータ保持特性が基体でき、これは実に4世代〜5世代も前のデータのデータ保持特性に匹敵する性能を発揮すると予想される。また、DRAM領域のアクセストランジスタは、半導体基板11をいわゆるラウンドする形でチャネルが形成されることから、実効的なチャネル長を長く確保することもでき、バックバイアスを印加して使う、短チャネル効果が厳しいDRAMセルのトランジスタ特性の安定化を図ることもできる。
【0198】
その後、上記レジスト膜209を除去する。上記イオン注入では、後のDRAM領域のゲート形成に係る熱処理による拡散を考慮して、やや浅めにイオン注入を行うが、DRAMのゲートが基板埋め込み型であるため、DRAM領域のチャネルは埋め込みゲートを形成する溝14の底部に形成されるので、何ら問題はない。また、後の熱処理によって活性化されるため、特にこの段階で熱処理を行う必要もない。
【0199】
図37の(11)に示すように、標準電圧ロジック領域のNチャネルトランジスタの形成領域上を開口したレジスト膜(図示せず)を形成し、続いてそのレジスト膜およびダミーゲート76をマスクに用いて半導体基板11(Pウエル拡散層51)にイオン注入を行い、Nチャネルトランジスタの低濃度拡散層52、52を形成する。その後、上記レジスト膜を除去する。同様にして、標準電圧ロジック領域のPチャネルトランジスタの形成領域上を開口したレジスト膜(図示せず)を形成し、続いてそのレジスト膜およびダミーゲート(図示せず)をマスクに用いて半導体基板11にイオン注入を行い、Pチャネルトランジスタの低濃度拡散層(図示せず)を形成する。その後、上記レジスト膜を除去する。
【0200】
さらに、同様にして、高電圧ロジック領域のPチャネルトランジスタの形成領域上を開口したレジスト膜(図示せず)を形成し、続いてそのレジスト膜およびダミーゲート76をマスクに用いて半導体基板11(Nウエル拡散層61)にイオン注入を行い、Pチャネルトランジスタの低濃度拡散層62、62を形成する。その後、上記レジスト膜を除去する。同様にして、高電圧ロジック領域のpチャネルトランジスタの形成領域上を開口したレジスト膜(図示せず)を形成し、続いてそのレジスト膜およびゲート電極(図示せず)をマスクに用いて半導体基板11にイオン注入を行い、Nチャネルトランジスタの低濃度拡散層(図示せず)を形成する。その後、上記レジスト膜を除去する。
【0201】
次いで、図38の(12)に示すように、DRAM領域のゲートを保護する保護膜78を例えば薄い窒化シリコン膜(例えば厚さが10nm〜50nm)で形成する。この保護膜78は、上記溝部183内を埋め込むように形成され、後にDRAM領域のワード線18上の側壁にサイドウォール状に形成され、サリサイド形成時に、ワード線18側壁の耐圧確保に寄与する。
【0202】
次いで、サイドウォール形成膜79を全面に形成する。このサイドウォール形成膜79は、窒化シリコンよりも低応力でウエット処理による剥離性のよい酸化シリコンで形成することが好ましい。または、酸化シリコン膜と窒化シリコン膜の積層膜もしくは酸化窒化シリコン膜で形成することも可能である。上記保護膜78は、後にDRAM内で周辺回路用トランジスタのサイドウォール形成膜79を除去する際のエッチングストッパとなるとともに、後にDRAM領域のワード線18上の側壁にサイドウォール状に形成され、サリサイド形成時に、溝14側壁の耐圧確保に寄与する。
【0203】
その後、図39の(13)に示すように、全面にレジスト膜211を形成し、例えばリソグラフィー技術によってロジック領域のレジスト膜211を除去し、DRAM領域のレジスト膜211は残して、DRAM領域を保護しておく。その状態で、上記サイドウォール形成膜79をエッチバックする。
【0204】
その結果、標準電圧ロジック領域のダミーゲート76の側壁にサイドウォール形成膜79でサイドウォール54が形成され、高電圧ロジック領域のダミーゲート76の側壁にサイドウォール形成膜79でサイドウォール64が形成される。上記エッチングでは、ダミーゲート76上の保護膜78はその膜厚によってはエッチング除去される。その後、上記レジスト膜211を除去する。
【0205】
次いで、図40の(14)に示すように、標準電圧ロジック領域のnチャネルトランジスタの形成領域上を開口したレジスト膜(図示せず)を形成し、続いてそのレジスト膜およびダミーゲート76、サイドウォール54をマスクに用いて半導体基板11にイオン注入を行い、ダミーゲート76側に低濃度拡散層52を残すようにnチャネルトランジスタの拡散層55、55を形成する。その後、上記レジスト膜を除去する。同様にして、標準電圧ロジック領域のpチャネルトランジスタの形成領域上を開口したレジスト膜(図示せず)を形成し、続いてそのレジスト膜およびダミーゲート(図示せず)、サイドウォール(図示せず)をマスクに用いて半導体基板11にイオン注入を行い、ダミーゲート側に低濃度拡散層(図示せず)を残すようにpチャネルトランジスタの拡散層(図示せず)を形成する。その後、上記レジスト膜を除去する。
【0206】
さらに、同様にして、高電圧ロジック領域のnチャネルトランジスタの形成領域上を開口したレジスト膜(図示せず)を形成し、続いてそのレジスト膜およびダミーゲート76をマスクに用いて半導体基板11にイオン注入を行い、ダミーゲート76側に低濃度拡散層62を残すようにしてnチャネルトランジスタの拡散層65、65を形成する。その後、上記レジスト膜を除去する。同様にして、高電圧ロジック領域のpチャネルトランジスタの形成領域上を開口したレジスト膜(図示せず)を形成し、続いてそのレジスト膜およびダミーゲート(図示せず)をマスクに用いて半導体基板11にイオン注入を行い、ダミーゲート側(図示せず)に低濃度拡散層(図示せず)を残すようにしてpチャネルトランジスタの拡散層(図示せず)を形成する。その後、上記レジスト膜を除去する。
【0207】
次いで、全面にレジスト膜213を形成した後、リソグラフィー技術によって、DRAM領域のレジスト膜213を除去し、上記レジスト膜213でロジック領域を覆うようにパターニングを行う。次いで、上記レジスト膜213をマスクに用いて例えばウエット処理によって、DRAM領域の酸化シリコンからなるサイドウォール形成膜79のエッチバックを行う。このエッチングでは、先に形成されているDRAMのワード線18直上に形成されている窒化シリコンからなる保護膜78がエッチングストッパとなる。
【0208】
また、上記レジスト膜213をそのまま利用して、DRAM領域の保護膜78を例えば反応性イオンエッチング(RIE)によりエッチングしてDRAM領域のワード線18を露出させる。この結果。ワード線18上の溝14の側壁に保護膜78からなるサイドウォール絶縁膜20が形成される。このサイドウォール絶縁膜20は側壁保護の機能を有する。なお、上記反応性イオンエッチングでは、DRAM領域の拡散層19が露出しないようにすること、すなわち、拡散層19上にバッファ層71を残すようにすることが重要である。その後、上記レジスト膜213を除去する。
【0209】
さらに、図41の(15)に示すように、通常のシリサイド化技術を用いて、上記ロジック領域の各拡散層55、65上、DRAM領域のワード線18上に、シリサイド層57、67、21を選択的に形成する。このとき、ダミーゲート76の頂上部には、酸化シリコン膜からなるバッファ層75が形成されているので、シリサイド層は形成されない。このようにして、低抵抗を実現する必要が有るロジック領域の各拡散層55、65上、DRAM領域のワード線18上に選択的にシリサイド層57、67、21が形成される。このシリサイド層としては、例えばコバルトシリサイド(CoSi2 )、チタンシリサイド(TiSi2 )ニッケルシリサイド(NiSi2 )等を用いることができる。
【0210】
その後、全面にキャップ絶縁膜80を例えば窒化シリコン膜で形成する。このキャップ絶縁膜80はサリサイド形成部の接合リークを抑制するのに効果的であるが、不要であれば形成する必要はない。なお、先に記述したように、周辺回路部のトランジスタのゲート電極上にもシリサイド層を形成してサリサイド構造として、ゲート電極の低抵抗化を図っても差し支えはない。
【0211】
次いで、図42の(16)に示すように、全面に第1の絶縁膜(絶縁膜)22を形成した後、CMPによって、第1絶縁膜22表面を平坦化する。上記第1の絶縁膜22表面を平坦化する方法は、平坦化を実現することができる方法であればCMPに限定されることはなく、例えばエッチバック法等を用いることも可能である。その後、上記第1の絶縁膜22上にレジスト膜215を形成した後、リソグラフィー技術によって、上記レジスト膜215にDRAM領域の拡散層取り出しコンタクト用の接続孔パターン216を形成する。
【0212】
次いで、上記レジスト膜215をエッチングマスクに用いてエッチングを行い、図43の(17)に示すように、第1の絶縁膜22、バッファ層71等を貫通してDRAM領域の拡散層19に達する接続孔23を形成する。このとき、DRAM領域のワード線(ゲート電極)18はコンタクトを取るべき拡散層19よりも半導体基板11表面下に配置されているので、セルフアラインコンタクト等の特別な技術を用いる必要はない。またDRAMの拡散層19全面が取り出し電極とコンタクトできるように、接続孔23の開口径をでき得る限り大きく形成することが望ましい。それによってコンタクト抵抗の低減が図られる。
【0213】
また、図面では、多少アライメントずれを起こした状態をわざと記載したが、接続孔開口時に過剰なオーバエッチングを施さなければ、後の工程で接続孔23内に形成されるワード線取り出し電極の物理的な距離を確保することが可能となる。なお、上部からみた投影デザインでは、この接続孔23が完全にワード線(ゲート電極)18にオーバラップする形となっている。
【0214】
次いで、上記接続孔23内を埋め込むように、第1の絶縁膜22上に、取り出し電極形成膜81を形成する。この取り出し電極形成膜81は、例えばリンドープトポリシリコンで形成される。この拡散層取り出しのための取り出し電極形成膜81は、従来通り、DRAM領域に接合リークの低減を考慮してリンドープトポリシリコンが選択されることが望ましい。なお、この段階では活性化のための熱処理は不要である。
【0215】
その後、図44の(18)に示すように、例えばCMPによって、第1の絶縁膜22上の余剰な取り出し電極形成膜81(リンドープトポリシリコン)を除去して、接続孔23内に拡散層19に接続する取り出し電極形成膜81からなる取り出し電極24を形成するとともに、第1の絶縁膜22を研磨してその表面を平坦化させる。その際、各ロジック領域のダミーゲート76のバッファ層75〔図34の(9)参照〕を除去してダミーゲート76のダミー層74上部を露出させる。
【0216】
次いで、ロジック領域におけるダミーゲート76のダミー層74〔図44の(18)参照〕を除去する。その結果、図45の(19)に示すように、上記各ダミーゲート76のポリシリコン層73上に溝83が形成される。このエッチングは、例えば、硫酸過水もしくはフッ硝酸によるウエットエッチングにより行うことが好ましい。
【0217】
次いで、上記第1の絶縁膜22側の全面にレジスト膜217を形成した後、リソグラフィー技術によって、ロジック素子領域のpチャネルトランジスタの形成領域上に開口部218を形成する。続いてそのレジスト膜217をマスクに用いてノンドープトポリシリコンからなるポリシリコン層73にp型不純物として例えばホウ素をイオン注入する。
【0218】
その後、上記レジスト膜217を除去する。次いで熱処理を行う。この熱処理によって、DRAM領域のポリシリコンからなる取り出し電極24と、ロジック素子領域のゲート電極の不純物がドーピングされたポリシリコン層73の活性化を行う。この熱処理では、900℃、10秒程度のRTA(Rapid Thermal Annealing )で十分ではあるが、通常の炉を用いた熱アニールを行っても差し支えは無い。なお、これ以降の工程では、高温の熱工程は行われないので、ロジック素子領域のゲート電極からホウ素が拡散する、いわゆる「突き抜け」は最小限に抑えられる。
【0219】
そして、図46の(20)に示すように、上記溝83内部を埋め込むように金属系ゲート電極形成膜84を形成する。上記金属系ゲート電極形成膜84は金属膜(例えばタングステン膜)84W/密着膜(例えば窒化チタン膜84T)の積層膜で形成することが一般的である。または、タングステン/窒化タングステン、銅/窒化チタン、ルテニウム等の電極を形成することも可能である。
【0220】
再びCMPによって、第1の絶縁膜22上の余剰な金属系ゲート電極形成膜84を除去する。
【0221】
その結果、図47の(21)に示すように、溝83内に残した金属系ゲート電極形成膜84からなる金属系ゲート電極84Gが形成され、金属系ゲート電極84Gとポリシリコン層73とからなるゲート電極51、61が形成されるとともに、第1の絶縁膜22表面が平坦化される。その際、DRAM領域の拡散層を取り出すための取り出し電極24の上部も研磨されるが、何ら問題はない。
【0222】
次いで、第1の絶縁膜22上に、DRAM領域の取り出し電極24およびロジック素子領域のゲート電極51、61を覆うエッチングストップ層25を例えば酸化シリコン膜で全面に形成する。
【0223】
その後、図48の(22)に示すように、エッチングストップ層25上にレジスト膜(図示せず)を形成した後、リソグラフィー技術によって、上記レジスト膜にDRAM領域のワード線取り出しコンタクト用およびロジック領域の拡散層取り出し電極用の接続孔パターン(図示せず)を形成する。続いて、上記レジスト膜をエッチングマスクに用いて、上記エッチングストップ層25、上記第1の絶縁膜22およびキャップ絶縁膜80を貫通してDRAM領域のワード線18上のシリサイド層21、ロジック領域のトランジスタのシリサイド層57、67に達する接続孔26、58、68を形成する。
【0224】
その後、上記レジスト膜を除去する。次に、通常のタングステンプラグの形成技術により上記接続孔26、58、68に内面に窒化チタン膜からなる密着層85を形成した後、接続孔26、58、68内を埋め込むようにタングステン膜86を形成する。その後CMPにより上記エッチングストップ層25上の上記タングステン膜86および密着層85の余剰な部分を除去し、上記接続孔26、58、68の内部に取り出し電極27、59、69を形成する。
【0225】
次いで、上記取り出し電極27、59、69を覆うように上記エッチングストップ層25上の全面に第2の絶縁膜31を例えば酸化シリコン膜を50nm〜150nmの厚さに堆積して形成する。
【0226】
その後、第2の絶縁膜31上にレジスト膜(図示せず)を形成した後、リソグラフィー技術により上記レジスト膜にビットコンタクトを形成する位置に開口部(図示せず)を形成する。そのレジスト膜をマスクに用いたエッチングにより、図49の(23)に示すように、上記第2の絶縁膜31、エッチングストッパ層25にビットコンタクトホール32およびローカル配線コンタクトホール33を形成する。
【0227】
次いで、ビット線34およびローカル配線35を形成するための配線金属層を形成する。この配線金属層は、まず上記ビットコンタクトホール32およびローカル配線コンタクトホール33の内面および第2の絶縁膜31上に、例えばチタン膜と窒化チタン膜を積層してなる密着層36を形成する。さらにビットコンタクトホール32およびローカル配線コンタクトホール33を埋め込むようにして、上記密着層36上に金属配線の主材料となるタングステン膜37を成膜する。さらにタングステン膜37上にキャップ層38を例えば窒化シリコン膜で形成する。
【0228】
その後、通常のリソグラフィー技術とエッチング技術とによって上記キャップ層38、タングステン膜37、密着層36をパターニングしてビットコンタクトホール32を通じてビットコンタクトの取り出し電極24に接続されるビット線34と、ローカル配線コンタクトホール33を通じて取り出し電極59に接続されるローカル配線35とが形成される。したがって、ビット線34上およびローカル配線35上にはキャップ層38が形成される。
【0229】
その後、上記第2の絶縁膜31上に、ビット線34、ローカル配線35等を覆うエッチングストッパ層41をALD窒化シリコン膜で、例えば30nm〜50nmの厚さに形成する。
【0230】
次に、図50の(24)に示すように、上記エッチングストッパ層41上に第3の絶縁膜42を形成する。そして、第3の絶縁膜42表面を例えばCMPを用いて平坦化する。次に、上記第3の絶縁膜42上にレジスト膜219を形成した後、リソグラフィー技術により記憶ノードコンタクトを開口するための開口パターン220を形成する。この開口パターン220は、実際の記憶ノードコンタクトが形成される接続孔の口径よりも大きく形成することができる。
【0231】
次いで、上記レジスト膜219をエッチングマスクに用いて、図51の(25)に示すように、記憶ノード上記第3の絶縁膜42からエッチングストップ層25までをエッチングして、コンタクトの取り出し電極24、24に達する記憶ノードコンタクトを形成する接続孔43を形成する。このエッチングでは、上記レジスト膜219〔前記図50の(24)参照〕の他にキャップ層38およびエッチングストッパ層41がエッチングマスクとなっている。なお、上記エッチングストッパ層41は、その一部がエッチングされるが、ビット線と記憶ノードコンタクトとの耐圧が確保される膜厚のサイドウォールとしてビット線34の側壁に残る。その後上記レジスト膜219〔図50の(24)参照〕を除去する。
【0232】
次に、図52の(26)に示すように、上記接続孔43内に取り出し電極24に接続する記憶ノードコンタクト44を形成する。この記憶ノードコンタクト44は、例えば上記接続孔43を埋め込むように上記第3の絶縁膜42上にタングステン、チタン、窒化チタン、タンタル、窒化タンタル、酸化ルテニウム等を堆積して材料層を形成した後、第3の絶縁膜42上の余剰な上記材料層を例えばCMPによって除去することによって、接続孔43内に残した上記材料層で形成される。
【0233】
次に、第3の絶縁膜42上に上記記憶ノードコンタクト44等を覆う第4の絶縁膜45を形成する。次いで、第4の絶縁膜45にキャパシタが形成される凹部46を、その底部に上記記憶ノードコンタクト44上面が露出するように形成する。
【0234】
その後、凹部46内に、熱処理が不要なMIM(Metal/insulator/Metal)構造のキャパシタ91を形成する。MIM構造のキャパシタ91は0.1μm以降のDRAMでは必須になると予想され、現在では、一例として、電極92、94には、ルテニウム(Ru)、酸化ルテニウム(RuO)系材料が用いられ、誘電体膜93にはBST(BaTiO3 とSrTiO3 との混晶)系の膜が採用される。
【0235】
次いで、上記第4の絶縁膜45上に、上記MIM構造のキャパシタ91を覆う第5の絶縁膜47を形成する。その後、CMPによって上記第5の絶縁膜47表面を平坦化する。次いで、第5の絶縁膜47ないし第2の絶縁膜31に、キャパシタ取り出し電極、ワード線取り出し電極、ローカル配線取り出し電極、ロジック領域の拡散層取り出し電極、ロジック領域のゲート取り出し電極等を形成するための接続孔111、112、113、114〜116、117等を形成する。
【0236】
さらに、接続孔111、112、113、114〜116、117等に、キャパシタ取り出し電極121、ワード線取り出し電極122、ローカル配線取り出し電極123、ロジック領域の拡散層取り出し電極124〜126、ロジック領域のゲート取り出し電極127を形成する。さらに、第5の絶縁膜47上に第6の絶縁膜48を形成する。次いで、この第6の絶縁膜48に各電極121〜127等に達する各配線溝131〜136を形成し、配線溝131〜136に配線141〜146を形成する。この配線141〜146は例えば銅配線からなる。図示はしないが、さらに必要に応じて上層配線を形成する。なお、上記電極121〜127および上記配線141〜146には、電極、配線、絶縁膜の材質によって、通常知られている密着層、バリア層が形成される。
【0237】
上記第2の半導体装置の製造方法では、ワード線(ゲート電極)18上部の溝14側壁側に溝部183を形成し、この溝部183を埋め込むようにワード線(ゲート電極)18上の溝14側壁にサイドウォール絶縁膜20を形成することから、ワード線(ゲート電極)18上にシリサイド層21が形成されても。シリサイド層21とゲート絶縁膜16との距離はサイドウォール絶縁膜20の溝部183に形成された部分によって十分に確保されるので、ゲート絶縁耐圧の劣化が抑制される半導体装置となる。
【0238】
上記第2の半導体装置の製造方法では、バッファ層71を形成していることにより、その後、溝14の底部における半導体基板11にチャネル拡散層15を形成する不純物を導入する際に、バッファ層71がマスクとなって、選択的に溝14の底部の半導体基板11に不純物が導入され、チャネル拡散層15が形成される。
【0239】
このように、溝14下部とウエル拡散層13との間の半導体基板11にチャネル拡散層15を形成することから、溝144とウエル拡散層13との間の領域の不純物濃度は溝14周囲の半導体基板11の不純物濃度よりも高くなる。また、ソース・ドレインとなる拡散層19下部の半導体基板11濃度は極めて低くい状態に保つことができるので、ソース・ドレインとなる拡散層19の接合の電界が弱められる。このため、ppmオーダーでの接合リークの抑制が可能になり、それによって、データ保持特性が極めてよくなる半導体装置が形成される。
【0240】
また、ゲート絶縁膜16を介して半導体基板11に形成された溝14内に埋め込まれたワード線8上に、第1の絶縁膜22を介してこのワード線18にオーバラップする状態で、半導体基板11表面に形成した拡散層19に接続される取り出し電極を形成することから、ワード線18上の第1の絶縁膜22を20nm〜30nm以上の十分な膜厚を確保することが可能になる。それによって、拡散層19に接続される取り出し電極24との耐圧が確保される。そのため、メモリ素子の拡散層上の全面がコンタクトに使用されるので、実効面積を有効に使用できる。よって、セルデザインで実現可能な最低の抵抗値が実現されるので、コンタクト抵抗の低減が図れる。
【0241】
さらに、ワード線18上層にシリサイド層21を形成することから、ワード線18の抵抗が低減され、遅延の問題が回避される。また、ロジック素子の拡散層55、65上にシリサイド層57、67を形成することから、この拡散層55、65へのコンタクト抵抗が低減される。
【0242】
また、半導体基板11表面側に拡散層19を形成し、その半導体基板11に形成した溝14内にゲート絶縁膜16を介してワード線18を埋め込むように形成することから、チャネルはワード線18が形成されている溝14底部側の半導体基板11を廻り込むように形成される。そのため、実効的なチャネル長が十分に確保されるため、バックバイアスを印加して、短チャネル効果が厳しいメモリ素子(例えばDRAM)のトランジスタ特性が安定化される。
【0243】
また、メモリ素子領域の拡散層19を、その深さ方向に不純物濃度が薄くなるように形成することから、拡散層19下部の半導体基板11濃度をセルトランジスタに要求されるほどに濃くしなくともよいので、接合の電界が緩和され、メモリ素子のセル縮小化にともない厳しくなるデータ保持特性の性能が維持される。
【0244】
また、ロジック素子領域に形成するダミーゲート76にポリシリコン層73とダミー層74との積層構造を用いることによって、メモリ素子領域の拡散層の取り出し電極を形成した後にダミー層74を除去し、ダミーゲート76のポリシリコン層73に不純物をドーピングすることが可能になる。その後、熱処理を行い、金属ゲート電極形成膜84で金属ゲート電極84Gを形成することから、熱処理によるpチャネルゲート電極におけるホウ素の突き抜けの問題が最小限に抑えられる。
【0245】
上記DRAM領域に用いた技術は、汎用DRAMのメモリチップの製造にも適用することが可能である。
【0246】
【発明の効果】
以上、説明したように本発明の第1、第2の半導体装置およびその製造方法によれば、半導体基板に形成した溝内に形成されるワード線の上部で溝の側壁側に溝部を形成し、その溝部を埋め込むようにワード線(ゲート電極を含む)上の溝の側壁にサイドウォール絶縁膜を形成することから、このサイドウォール絶縁膜の溝部に形成された部分によってワード線上面のシリサイド層とゲート絶縁膜との物理的距離が十分に確保される。このため、デバイス特性に副作用を与えること無くゲート絶縁膜の耐圧劣化を防止することができる。ワード線上層にシリサイド層が形成されているので、ワード線抵抗の低減が図れ、微細加工化で問題となるワード線の遅延の問題が回避できる。
【0247】
また、半導体基板表面側に拡散層が形成され、その半導体基板に形成された溝内にゲート絶縁膜を介してワード線が埋め込まれているので、チャネルはワード線が形成されている溝底部側の半導体基板を廻り込むように形成される。そのため、メモリ素子領域のセルトランジスタの実効的なチャネル長が十分に確保されるため、バックバイアスを印加して短チャネル効果が厳しいメモリ素子(例えばDRAM)のトランジスタ特性が安定化される。
【0248】
半導体基板に形成した溝内に埋め込まれたワード線上に、サイドウォール、絶縁膜等を介してこのワード線にオーバラップする状態で、半導体基板表面に形成した拡散層に接続される取り出し電極を形成するので、ワード線上の絶縁膜等によって、拡散層と取り出し電極との耐圧を確保することができる。そのため、ワード線よりも高い位置にあるメモリ素子領域の拡散層上の全面をコンタクトに使用できるようになるので、実効面積を有効に使用できる。よって、セルデザインで実現可能な最低の抵抗値を実現することができ、コンタクト抵抗の低減が図れる。
【0249】
したがって、上部投影デザイン的に、メモリ素子領域の拡散層の取り出し電極と、ワード線(ゲート電極)とがオーバラップすることが可能となり、セルの微細化が可能になる。すなわち、基板面方向にはワード線と取り出し電極間の耐圧確保のための距離が必要なくなる。よって、メモリ素子の拡散層上の全面がコンタクトに使用できるので、実効面積を有効に使用でき、セルデザインで実現可能な最低の抵抗値が実現され、コンタクト抵抗の低減が図れる。
【0250】
また、メモリ素子領域の拡散層はその濃度が深さ方向に薄くなるように形成されるので、この拡散層下部の基板濃度をセルトランジスタに要求されるほど濃くする必要がない。そのため、この拡散層の接合の電界を緩和することが可能になり、メモリ素子領域のセル縮小化でますます厳しくなるデータ保持特性の性能を維持することが可能になる。
【0251】
また、第2の半導体装置およびその製造方法によれば、ロジック素子の拡散層上にシリサイド層が形成されているので、この拡散層へのコンタクト抵抗を低減することができる。
【0252】
さらに、ロジック領域の高駆動力トランジスタを実現するためのいわゆるリプレースメントゲート電極を有するロジックトランジスタとメモリ素子との1チップ化が実現される。これによって、ロジック領域のゲートは、熱処理に対するケアが不要となり、ゲート絶縁膜に高誘電率材料を用いることが可能となり、ゲート電極をポリメタル構造で形成することが可能になる。
【図面の簡単な説明】
【図1】本発明の半導体装置に係る実施の形態の一例を示す概略構成断面図である。
【図2】図1のA部拡大概略図である。
【図3】本発明の半導体装置の製造方法に係る実施の形態の一例を示す概略構成断面図(1)である。
【図4】本発明の半導体装置の製造方法に係る実施の形態の一例を示す概略構成断面図(2)である。
【図5】本発明の半導体装置の製造方法に係る実施の形態の一例を示す概略構成断面図(3)である。
【図6】本発明の半導体装置の製造方法に係る実施の形態の一例を示す概略構成断面図(4)である。
【図7】本発明の半導体装置の製造方法に係る実施の形態の一例を示す概略構成断面図(5)である。
【図8】図7のB部拡大概略図である。
【図9】本発明の半導体装置の製造方法に係る実施の形態の一例を示す概略構成断面図(6)である。
【図10】図9のC部拡大概略図である。
【図11】本発明の半導体装置の製造方法に係る実施の形態の一例を示す概略構成断面図(7)である。
【図12】本発明の半導体装置の製造方法に係る実施の形態の一例を示す概略構成断面図(8)である。
【図13】図12のD部拡大概略図である。
【図14】本発明の半導体装置の製造方法に係る実施の形態の一例を示す概略構成断面図(9)である。
【図15】本発明の半導体装置の製造方法に係る実施の形態の一例を示す概略構成断面図(10)である。
【図16】本発明の半導体装置の製造方法に係る実施の形態の一例を示す概略構成断面図(11)である。
【図17】本発明の半導体装置の製造方法に係る実施の形態の一例を示す概略構成断面図(12)である。
【図18】本発明の半導体装置の製造方法に係る実施の形態の一例を示す概略構成断面図(13)である。
【図19】本発明の半導体装置の製造方法に係る実施の形態の一例を示す概略構成断面図(14)である。
【図20】本発明の半導体装置の製造方法に係る実施の形態の一例を示す概略構成断面図(15)である。
【図21】本発明の半導体装置の製造方法に係る実施の形態の一例を示す概略構成断面図(16)である。
【図22】本発明の半導体装置の製造方法に係る実施の形態の一例を示す概略構成断面図(17)である。
【図23】本発明の半導体装置の製造方法に係る実施の形態の一例を示す概略構成断面図(18)である。
【図24】本発明の半導体装置に係る実施の形態の一例を示す概略構成断面図である。
【図25】図24のE部拡大概略図である。
【図26】本発明の半導体装置の製造方法に係る実施の形態の一例を示す概略構成断面図(1)である。
【図27】本発明の半導体装置の製造方法に係る実施の形態の一例を示す概略構成断面図(2)である。
【図28】本発明の半導体装置の製造方法に係る実施の形態の一例を示す概略構成断面図(3)である。
【図29】本発明の半導体装置の製造方法に係る実施の形態の一例を示す概略構成断面図(4)である。
【図30】本発明の半導体装置の製造方法に係る実施の形態の一例を示す概略構成断面図(5)である。
【図31】本発明の半導体装置の製造方法に係る実施の形態の一例を示す概略構成断面図(6)である。
【図32】本発明の半導体装置の製造方法に係る実施の形態の一例を示す概略構成断面図(7)である。
【図33】本発明の半導体装置の製造方法に係る実施の形態の一例を示す概略構成断面図(8)である。
【図34】本発明の半導体装置の製造方法に係る実施の形態の一例を示す概略構成断面図(9)である。
【図35】本発明の半導体装置の製造方法に係る実施の形態の一例を示す概略構成断面図(10)である。
【図36】図35のF部拡大概略図である。
【図37】本発明の半導体装置の製造方法に係る実施の形態の一例を示す概略構成断面図(11)である。
【図38】本発明の半導体装置の製造方法に係る実施の形態の一例を示す概略構成断面図(12)である。
【図39】本発明の半導体装置の製造方法に係る実施の形態の一例を示す概略構成断面図(13)である。
【図40】本発明の半導体装置の製造方法に係る実施の形態の一例を示す概略構成断面図(14)である。
【図41】本発明の半導体装置の製造方法に係る実施の形態の一例を示す概略構成断面図(15)である。
【図42】本発明の半導体装置の製造方法に係る実施の形態の一例を示す概略構成断面図(16)である。
【図43】本発明の半導体装置の製造方法に係る実施の形態の一例を示す概略構成断面図(17)である。
【図44】本発明の半導体装置の製造方法に係る実施の形態の一例を示す概略構成断面図(18)である。
【図45】本発明の半導体装置の製造方法に係る実施の形態の一例を示す概略構成断面図(19)である。
【図46】本発明の半導体装置の製造方法に係る実施の形態の一例を示す概略構成断面図(20)である。
【図47】本発明の半導体装置の製造方法に係る実施の形態の一例を示す概略構成断面図(21)である。
【図48】本発明の半導体装置の製造方法に係る実施の形態の一例を示す概略構成断面図(22)である。
【図49】本発明の半導体装置の製造方法に係る実施の形態の一例を示す概略構成断面図(23)である。
【図50】本発明の半導体装置の製造方法に係る実施の形態の一例を示す概略構成断面図(24)である。
【図51】本発明の半導体装置の製造方法に係る実施の形態の一例を示す概略構成断面図(25)である。
【図52】本発明の半導体装置の製造方法に係る実施の形態の一例を示す概略構成断面図(26)である。
【符号の説明】
11…半導体基板、14…溝、15…チャネル拡散層、16…ゲート絶縁膜、18…ワード線(ゲート電極も含む)、19…拡散層、20…サイドウォール絶縁膜、21…シリサイド層、
Claims (8)
- 半導体基板と、
前記半導体基板に形成された溝と、
前記溝の底部の前記半導体基板に形成されたチャネル拡散層と、
前記溝内にゲート絶縁膜を介して埋め込まれたゲート電極と、
前記ゲート電極上部の前記溝側壁側に形成した溝部と、
前記溝部内を埋め込み前記ゲート電極上の前記溝の側壁に形成したサイドウォール絶縁膜と、
前記溝側壁の前記半導体基板表面側に形成された拡散層と、
前記サイドウォール絶縁膜の底部よりも高い位置で前記ゲート電極上層に形成されたシリサイド層と
を備えたことを特徴とする半導体装置。 - 前記半導体基板に形成された素子分離領域により分離された前記半導体基板中にウエル拡散層が形成され、
前記溝は前記ウエル拡散層上に前記半導体基板の一部を残した状態で前記半導体基板および前記素子分離領域に形成され、
前記チャネル拡散層は前記溝の底部と前記ウエル拡散層との間の前記半導体基板に形成された
ことを特徴とする請求項1記載の半導体装置。 - 半導体基板のワード線を形成する位置に溝を形成する工程と、
前記溝の底部の前記半導体基板にチャネル拡散層を形成する工程と、
前記溝内および前記半導体基板上にゲート絶縁膜を形成する工程と、
前記溝の内壁を含む前記半導体基板上に第1導電層を形成する工程と、
前記半導体基板上に前記第1導電層を介して前記溝を埋め込む第2導電層を形成する工程と、
前記溝の内部における前記第1導電層が前記第2導電層よりも低くなるように前記溝の上部および前記半導体基板上の前記第1導電層および前記第2導電層を除去して、前記溝内部に残した前記第1導電層と前記第2導電層とでゲート電極を形成するとともに、前記溝側壁と前記第2導電層との間に溝部を形成する工程と、
前記溝側壁上部の前記半導体基板に拡散層を形成する工程と、
前記溝部の内部を埋め込むとともに前記ゲート電極上の前記溝側壁にサイドウォール絶縁膜を形成する工程と、
前記ゲート電極上層にシリサイド層を形成する工程と
を備えたことを特徴とする半導体装置の製造方法。 - 前記第1導電層は前記第2導電層よりもエッチングレートが速い膜からなる
ことを特徴とする請求項3記載の半導体装置の製造方法。 - 前記半導体基板に形成された素子分離領域により分離された前記半導体基板中にウエル拡散層を形成し、
前記溝は前記ウエル拡散層上に前記半導体基板の一部を残した状態で前記半導体基板および前記素子分離領域に形成し、
前記チャネル拡散層は前記溝の底部と前記ウエル拡散層との間の前記半導体基板に形成する
ことを特徴とする請求項3記載の半導体装置の製造方法。 - メモリ素子とロジック素子とを同一半導体基板上に形成した半導体装置において、
前記メモリ素子のトランジスタは、
半導体基板に形成された素子分離領域と、
前記素子分離領域により分離された前記半導体基板中に形成されたウエル拡散層と、
前記半導体基板および前記素子分離領域に形成されたもので前記ウエル拡散層上に前記半導体基板の一部を残した状態で形成された溝と、
前記溝の底部と前記ウエル拡散層との間の前記半導体基板に形成されたチャネル拡散層と、
前記溝内にゲート絶縁膜を介して埋め込まれたワード線と、
前記ワード線上部の前記溝側壁側に形成した溝部と、
前記溝部内を含み前記ワード線上の前記溝の側壁に形成したサイドウォール絶縁膜と、
前記溝側壁の前記半導体基板表面側に形成された拡散層と、
前記サイドウォール絶縁膜の底部よりも高い位置で前記ワード線上層に形成されたシリサイド層と、
前記ワード線上に絶縁膜を介して前記ワード線にオーバラップする状態で前記拡散層に接続された取り出し電極とを備えたもので、
前記ロジック素子のトランジスタは、
前記半導体基板上に形成されたもので、ポリシリコン電極と金属系電極とが積層されたポリメタル構造のゲート電極と、
前記ゲート電極の両側における前記半導体基板表面側に形成された拡散層と、
前記拡散層上層に形成されたシリサイド層とを備えたものである
ことを特徴とする半導体装置。 - メモリ素子とロジック素子とを同一半導体基板上に形成する半導体装置の製造方法において、
前記半導体基板に素子分離領域を形成した後該半導体基板上にバッファ層を形成する工程と、
前記素子分離領域によって分離されたメモリ素子領域の前記半導体基板中にウエル拡散層を形成する工程と、
前記ウエル拡散層上に前記半導体基板の一部を残した状態で前記バッファ層および前記半導体基板および前記素子分離領域のワード線を形成する位置に溝を形成する工程と、
前記溝の底部と前記ウエル拡散層との間の前記半導体基板にチャネル拡散層を形成する工程と、
前記溝内および前記半導体基板上にゲート絶縁膜を形成する工程と、
メモリ素子領域の前記溝の内壁を含む前記半導体基板上に第1導電層を形成する工程と、
前記半導体基板上に前記第1導電層を介して前記溝を埋め込む第2導電層を形成する工程と、
前記素子分離領域によって分離されたロジック素子領域の前記半導体基板にウエル拡散層を形成する工程と、
前記半導体基板上に前記溝を埋め込むポリシリコン層と該ポリシリコン層とのエッチング選択性を有する材料からなるダミー層を順に形成する工程と、
前記ポリシリコン層と前記ダミー層とを加工して、ロジック素子領域の半導体基板上に前記ゲート絶縁膜を介して、前記ポリシリコン層と前記ダミー層とでダミーゲートを形成する工程と、
前記溝の内部における前記第1導電層が前記第2導電層よりも低くなるように前記溝の上部および前記半導体基板上の前記第1導電層および前記第2導電層を除去して、前記溝内部に残した前記第1導電層と前記第2導電層とでワード線を形成するとともに、前記溝側壁と前記第2導電層との間に溝部を形成する工程と、
前記溝側壁上部の前記半導体基板に拡散層を形成する工程と、
前記ダミーゲートの両側の半導体基板表面にロジック素子の低濃度拡散層を形成する工程と、
前記ダミーゲートの側壁にサイドウォール絶縁膜を形成する工程と、
前記ダミーゲートの両側の半導体基板に前記ダミーゲート側に前記低濃度拡散層を介して拡散層を形成する工程と、
前記溝部の内部を埋め込むとともに前記ワード線上の前記溝側壁にサイドウォール絶縁膜を形成する工程と、
前記ワード線上層および前記ロジック素子の拡散層上層にシリサイド層を形成する工程と、
前記溝の上部を埋め込むとともに前記ダミーゲートを覆うように絶縁膜を形成する工程と、
前記ワード線上に前記絶縁膜を介して前記ワード線にオーバラップする状態でメモリ素子領域に形成した前記拡散層に達する接続孔を形成する工程と、
前記接続孔内に取り出し電極を形成する工程と、
前記絶縁膜表面を平坦化するとともに前記ダミーゲートの上部を露出させ、さらに前記ダミー層を除去して前記ポリシリコン層を露出させてゲート溝を形成する工程と、
前記ダミーゲートのポリシリコン層に不純物をドーピングする工程と、
前記取り出し電極及び前記ポリシリコン層を活性化する熱処理を行う工程と、
前記ゲート溝に金属系電極を形成する工程と
を備えたことを特徴とする半導体装置の製造方法。 - 前記第1導電層は前記第2導電層よりもエッチングレートが速い導電膜からなる
ことを特徴とする請求項7記載の半導体装置の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002253094A JP2004095745A (ja) | 2002-08-30 | 2002-08-30 | 半導体装置およびその製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002253094A JP2004095745A (ja) | 2002-08-30 | 2002-08-30 | 半導体装置およびその製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004095745A true JP2004095745A (ja) | 2004-03-25 |
Family
ID=32059199
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002253094A Pending JP2004095745A (ja) | 2002-08-30 | 2002-08-30 | 半導体装置およびその製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004095745A (ja) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006135117A (ja) * | 2004-11-08 | 2006-05-25 | Elpida Memory Inc | 半導体装置及びその製造方法 |
JP2008205477A (ja) * | 2007-02-21 | 2008-09-04 | Samsung Electronics Co Ltd | 互いに段差を有するゲートパターン、そして、このパターン間に位置する接続線を有する半導体集積回路装置及びその形成方法 |
US7576389B2 (en) | 2006-06-22 | 2009-08-18 | Elpida Memory, Inc. | Semiconductor device and manufacture method thereof |
US7723755B2 (en) * | 2007-01-04 | 2010-05-25 | Samsung Electronics Co., Ltd. | Semiconductor having buried word line cell structure and method of fabricating the same |
JP2012089566A (ja) * | 2010-10-15 | 2012-05-10 | Elpida Memory Inc | 半導体装置及びその製造方法、並びにデータ処理システム |
WO2014050590A1 (ja) * | 2012-09-26 | 2014-04-03 | ピーエスフォー ルクスコ エスエイアールエル | 半導体装置及びその製造方法 |
US9276074B2 (en) | 2012-04-30 | 2016-03-01 | Samsung Electronics Co., Ltd. | Methods of fabricating semiconductor devices having buried channel array |
US9941127B2 (en) | 2015-08-12 | 2018-04-10 | Kabushiki Kaisha Toshiba | Semiconductor device and method of manufacturing semiconductor device |
CN108695327A (zh) * | 2017-04-12 | 2018-10-23 | 三星电子株式会社 | 半导体器件及其制造方法 |
CN113314563A (zh) * | 2020-02-26 | 2021-08-27 | 铠侠股份有限公司 | 非易失性半导体存储装置及其制造方法 |
CN113539972A (zh) * | 2021-07-13 | 2021-10-22 | 长鑫存储技术有限公司 | 存储器及其制作方法 |
CN115172277A (zh) * | 2021-04-07 | 2022-10-11 | 长鑫存储技术有限公司 | 存储器的制作方法及存储器 |
-
2002
- 2002-08-30 JP JP2002253094A patent/JP2004095745A/ja active Pending
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006135117A (ja) * | 2004-11-08 | 2006-05-25 | Elpida Memory Inc | 半導体装置及びその製造方法 |
US7576389B2 (en) | 2006-06-22 | 2009-08-18 | Elpida Memory, Inc. | Semiconductor device and manufacture method thereof |
US7723755B2 (en) * | 2007-01-04 | 2010-05-25 | Samsung Electronics Co., Ltd. | Semiconductor having buried word line cell structure and method of fabricating the same |
JP2008205477A (ja) * | 2007-02-21 | 2008-09-04 | Samsung Electronics Co Ltd | 互いに段差を有するゲートパターン、そして、このパターン間に位置する接続線を有する半導体集積回路装置及びその形成方法 |
US9299827B2 (en) | 2007-02-21 | 2016-03-29 | Samsung Electronics Co., Ltd. | Semiconductor integrated circuit devices including gates having connection lines thereon |
TWI455188B (zh) * | 2007-02-21 | 2014-10-01 | Samsung Electronics Co Ltd | 包括其間具有步進差異之閘極圖案之半導體積體電路裝置,配置在閘極圖案之間之連接線,以及製造其之方法 |
US8872262B2 (en) | 2007-02-21 | 2014-10-28 | Samsung Electronics Co., Ltd. | Semiconductor integrated circuit devices including gates having connection lines thereon |
JP2012089566A (ja) * | 2010-10-15 | 2012-05-10 | Elpida Memory Inc | 半導体装置及びその製造方法、並びにデータ処理システム |
US9276074B2 (en) | 2012-04-30 | 2016-03-01 | Samsung Electronics Co., Ltd. | Methods of fabricating semiconductor devices having buried channel array |
WO2014050590A1 (ja) * | 2012-09-26 | 2014-04-03 | ピーエスフォー ルクスコ エスエイアールエル | 半導体装置及びその製造方法 |
US9941127B2 (en) | 2015-08-12 | 2018-04-10 | Kabushiki Kaisha Toshiba | Semiconductor device and method of manufacturing semiconductor device |
CN108695327A (zh) * | 2017-04-12 | 2018-10-23 | 三星电子株式会社 | 半导体器件及其制造方法 |
CN108695327B (zh) * | 2017-04-12 | 2023-09-12 | 三星电子株式会社 | 半导体器件及其制造方法 |
CN113314563A (zh) * | 2020-02-26 | 2021-08-27 | 铠侠股份有限公司 | 非易失性半导体存储装置及其制造方法 |
CN113314563B (zh) * | 2020-02-26 | 2024-02-09 | 铠侠股份有限公司 | 非易失性半导体存储装置及其制造方法 |
CN115172277A (zh) * | 2021-04-07 | 2022-10-11 | 长鑫存储技术有限公司 | 存储器的制作方法及存储器 |
CN113539972A (zh) * | 2021-07-13 | 2021-10-22 | 长鑫存储技术有限公司 | 存储器及其制作方法 |
CN113539972B (zh) * | 2021-07-13 | 2023-10-27 | 长鑫存储技术有限公司 | 存储器及其制作方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4635333B2 (ja) | 半導体装置の製造方法 | |
JP4540142B2 (ja) | 半導体装置の製造方法 | |
US6235574B1 (en) | High performance DRAM and method of manufacture | |
US6545360B1 (en) | Semiconductor device and manufacturing method thereof | |
US6555450B2 (en) | Contact forming method for semiconductor device | |
US6690050B2 (en) | Semiconductor device and its manufacture | |
JP2004095745A (ja) | 半導体装置およびその製造方法 | |
JP2003158201A (ja) | 半導体装置およびその製造方法 | |
JP4759819B2 (ja) | 半導体装置の製造方法 | |
JP4639524B2 (ja) | 半導体装置の製造方法 | |
JPWO2003069675A1 (ja) | 半導体装置の製造方法 | |
JP4759821B2 (ja) | 半導体装置の製造方法 | |
JP4946870B2 (ja) | 半導体装置およびその製造方法 | |
US6864546B2 (en) | Semiconductor device having memory cell portion and manufacturing method thereof | |
JP4715065B2 (ja) | 半導体装置およびその製造方法 | |
JP5023415B2 (ja) | 半導体装置の製造方法 | |
JP3588566B2 (ja) | 半導体装置の製造方法 | |
JP3116889B2 (ja) | 半導体装置の製造方法 | |
KR100995329B1 (ko) | 반도체 소자의 제조 방법 | |
US6313006B1 (en) | Method of field implantation | |
JP2003037185A (ja) | 半導体装置の作製方法 | |
JP4031777B2 (ja) | 半導体装置 | |
JP2002261258A (ja) | 半導体装置およびその製造方法 | |
JP2012099530A (ja) | 半導体装置およびその製造方法 | |
JP2003037184A (ja) | 半導体装置及びその作製方法 |