[go: up one dir, main page]

JP2004087336A - Insulating film material, coating varnish for insulating film and insulating film using this - Google Patents

Insulating film material, coating varnish for insulating film and insulating film using this Download PDF

Info

Publication number
JP2004087336A
JP2004087336A JP2002247625A JP2002247625A JP2004087336A JP 2004087336 A JP2004087336 A JP 2004087336A JP 2002247625 A JP2002247625 A JP 2002247625A JP 2002247625 A JP2002247625 A JP 2002247625A JP 2004087336 A JP2004087336 A JP 2004087336A
Authority
JP
Japan
Prior art keywords
insulating film
acid
formula
bis
film material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002247625A
Other languages
Japanese (ja)
Inventor
Yoko Hase
長谷 陽子
Hisafumi Enoki
榎 尚史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2002247625A priority Critical patent/JP2004087336A/en
Publication of JP2004087336A publication Critical patent/JP2004087336A/en
Pending legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)
  • Inorganic Insulating Materials (AREA)
  • Organic Insulating Materials (AREA)
  • Polyamides (AREA)
  • Paints Or Removers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat resisting insulating film excellent in heat characteristic, electrical characteristic and water absorption, and particularly, with an extremely low inductive capacity. <P>SOLUTION: The resin composition for the insulating film has a composite of polyamide provided with a repeating unit of a specific structure and oligomers dissolved uniformly as an essential component. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、絶縁膜用材料、絶縁膜用コーティングワニス、及びこれを用いた絶縁膜に関するものであり、更に詳しくは、電気特性、熱特性、機械特性に優れ、半導体用の層間絶縁膜、保護膜、多層回路の層間絶縁膜、フレキシブル銅張板のカバーコート、ソルダーレジスト膜、液晶配向膜などに好適な絶縁膜用材料、絶縁膜用コーティングワニス、及びこれを用いた絶縁膜に関するものである。
【0002】
【従来の技術】
半導体用材料には、必要とされる特性に応じて、無機材料、有機材料などが、様々な部分で用いられている。例えば、半導体用の層間絶縁膜としては、化学気相法で作製した二酸化シリコン等の無機酸化膜が使用されている。しかしながら、近年の半導体の高速化、高性能化に伴い、上記のような無機酸化膜では、比誘電率が高いことが問題となっている。この改良手段の一つとして、有機材料の適用が検討されている。
【0003】
半導体用途の有機材料としては、耐熱性、電気特性、機械特性などに優れたポリイミド樹脂が挙げられ、ソルダーレジスト、カバーレイ、液晶配向膜などに用いられている。しかしながら、一般にポリイミド樹脂はイミド環にカルボニル基を2個有していることから、吸水性、電気特性に問題がある。これらの問題に対して、フッ素あるいはフッ素含有基を有機高分子内に導入することにより、吸水性、電気特性を改良することが試みられており、実用化されているものもある。また、ポリイミド樹脂に比べて、耐熱性、吸水性、電気特性に関して、より優れた性能を示すポリベンゾオキサゾール樹脂があり、様々な分野への適用が試みられている。例えば、4,4’−ジアミノ−3,3’−ジヒドロキシビフェニルとテレフタル酸からなる構造を有するもの、2,2−ビス(3−アミノ−4−ヒドロキシフェニル)ヘキサフルオロプロパンとテレフタル酸からなる構造を有するポリベンゾオキサゾール樹脂等がある。
【0004】
しかし、さらに厳しい耐熱性、電気特性、吸水性等の向上を要求されている先端分野では、このような要求全てを満足する材料は、未だ得られていないのが現状である。つまり、優れた耐熱性を示すが、誘電率等の電気特性は十分ではない、また、フッ素導入により電気特性は向上するものの、耐熱性の低下を招くといった不具合が発生している。特に、半導体用層間絶縁膜として有機材料を適用する場合、無機材料に匹敵する耐熱性、機械特性、吸水性を要求され、その上で更なる低誘電率化が求められている。
【0005】
このような高性能化の要求に対して、無機材料である無機酸化膜の膜中に微細孔を開けることにより、低密度化を図り、比誘電率を低減させる方法が検討されている。空気の比誘電率は1であり、膜中に空気を導入して比誘電率を下げることはScheuerleinらの米国特許第3,883,452号公報(1975年5月13日発行)の約20μmの平均孔径を有する発泡重合体を生成させる方法から類推される。しかしながら、空気を膜中に導入することによって効果的な絶縁体にするためには、膜厚がサブマイクロメーターオーダーで、平均化された比誘電率を有する必要があり、そして膜自体の機械特性も各工程に耐え得るものでなければならい。このような問題を克服する無機材料が、未だ得られていないのが現状である。
【0006】
一方、有機材料においては、サブマイクロメーターオーダーの微細孔を得る技術については、Hedrickらの米国特許第5,776,990号公報(1998年7月7日発行)には、ブロックコポリマーをサブマイクロメーターオーダーの微細孔を有する樹脂を生成させることが開示されている。ブロックコポリマーがサブマイクロメーターオーダーで相分離することは、公知(T.Hashimoto, M.Shibayama, M.Fujimura and H.Kawai,”Microphase Separation and the Polymer−polymer Interphase in Block Polymers” in ”Block Copolymers−Science and Technology”,p.63, Ed. By D.J.Meier(Academic Pub., 1983))のことであり、天井温度の低いポリマー類が容易に分解することも、高分子化学の分野では、一般に良く知られていることである。しかしながら、比誘電率のみならず、機械特性、電気特性、耐吸水性、耐熱性を満足させながら、微細孔を有する樹脂組成物を得るためには、樹脂、ブロック化技術、熱分解性成分を組み合わせる、その選択が非常に限定され、すべての特性を満足できるものは得られていない。
【0007】
【発明が解決しようとする課題】
本発明は、半導体用途において、優れた耐熱性を維持し、低誘電率化を可能とする絶縁膜用材料、絶縁膜用コーティングワニス、及びこれを用いた絶縁膜を提供することにある。
【0008】
【課題を解決するための手段】
本発明者らは、前記のような従来の問題点に鑑み、鋭意検討を重ねた結果、特定構造のポリアミドと、熱分解性オリゴマーとを組成物からなる絶縁膜用材料が、本発明の目的を満たし得ることを見出し、さらに検討を進めて、本発明を完成するに至った。
【0009】
即ち、本発明は、一般式(A)で表される繰り返し単位からなるポリアミドと、熱分解性オリゴマーとが均一な混合物となることを特徴とする絶縁膜用材料である。
【0010】
【化9】

Figure 2004087336
【0011】
(但し、式中のmおよびnは、m>0、n≧0、2≦m+n≦1000、及び0.05≦m/(m+n)≦1を満たす整数である。
また、 R〜Rは、水素原子または一価の有機基であり、Xは、式(B)で表される構造から選ばれ、Yは、式(C),式(D),式(E),及び式(F)で表される構造からなる群より選ばれる少なくとも1つの基を表す。Yは、式(G)で表される構造より、選ばれる基を表す。一般式(A)において繰り返し単位の配列は、ブロック的であってもランダム的であっても構わない。 )
【0012】
【化10】
Figure 2004087336
【0013】
【化11】
Figure 2004087336
【0014】
【化12】
Figure 2004087336
【0015】
【化13】
Figure 2004087336
【0016】
【化14】
Figure 2004087336
【0017】
【化15】
Figure 2004087336
【0018】
(但し、式(B)及び式(G)中、Xは式(H)で表される構造より選ばれる基を示す。式(D)中のRは、ナフタレン基、フェニル基、又はアルキル基を示す。また、式(B),式(D),式(E),式(F),式(G),及び式(H)で表される構造中、ベンゼン環上の水素原子は、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、t−ブチル基、フッ素原子、及びトリフルオロメチル基からなる群より選ばれる、少なくとも1個の基で置換されていても良い。)
【0019】
【化16】
Figure 2004087336
【0020】
また、本発明は、前記絶縁膜用材料と、該絶縁膜用材料を均一に溶解することが可能な有機溶媒からなることを特徴とする、絶縁膜を作製することが可能なコーティング用ワニスであり、更には、前記絶縁膜用材料又はコーティング用ワニスを、加熱処理して架橋反応及び縮合反応せしめて得られるポリベンゾオキサゾールを主構造とする樹脂の層からなり、かつ微細孔を有してなる絶縁膜である。
【0021】
【発明の実施の形態】
本発明において、必須成分であるポリアミドの主鎖に、加熱により架橋するエチニル、フェニルエチニル、アルキルエチニル、ビフェニレン、及び内部アセチレンの少なくとも1種の骨格を導入し、アミド基の閉環反応によるポリベンゾオキサゾールへの変換と共に、エチニル、フェニルエチニル、アルキルエチニル、ビフェニレン、内部アセチレン骨格の架橋反応によって、樹脂構造を3次元化させることにより、高い耐熱性を有する樹脂を得ることができる。そして、絶縁膜用材料中の熱分解性オリゴマーを、樹脂加熱時において熱分解させ、揮散せしめることにより、ポリベンゾオキサゾール樹脂を主構造とする樹脂膜中に微細孔を形成させ、耐熱性と電気特性を両立させた多孔質絶縁膜を得ることが本発明の骨子である。
【0022】
本発明において、必須成分であるポリアミドは、前記式(B)に表された4価の基の中のいずれかを有するビスアミノフェノール化合物の少なくとも1種と、式(C),式(D),式(E),式(F)に表された2価の基の中のいずれかを有するジカルボン酸の少なくとも1種とを用いて、あるいはジカルボン酸として、前記ジカルボン酸と式(G)に表された2価の基の中のいずれかを有するジカルボン酸とを併用し、従来の酸クロリド法、活性化エステル法、ポリリン酸やジシクロヘキシルカルボジイミド等の脱水縮合剤の存在下での縮合反応等の方法により得ることが出来る。また、このエチニル、フェニルエチニル、アルキルエチニル、ビフェニレン、及び内部アセチレンの少なくとも1種の骨格を有するポリアミドに、従来から用いられてきた、架橋反応しないタイプの別のポリアミドを組み合わせて、相互侵入網目構造とすることによっても、同様に高耐熱性の樹脂を得ることが可能である。この場合、エチニル、フェニルエチニル、アルキルエチニル、ビフェニレン、内部アセチレン骨格を有さないポリアミドは、前記式(B)に表された4価の基の中のいずれかを有するビスアミノフェノール化合物の少なくとも1種と、式(G)に表された2価の基の中のいずれかを有するジカルボン酸の少なくとも1種とを用いて、同様の方法により得ることが出来る。
【0023】
本発明で用いる、式(B)に表された4価の基を有するビスアミノフェノール化合物としては,2,4−ジアミノレゾルシノール、4,6−ジアミノレゾルシノール、2,2−ビス(3−アミノ−4−ヒドロキシフェニル)ヘキサフルオロプロパン、2,2−ビス(4−アミノ−3−ヒドロキシフェニル)ヘキサフルオロプロパン、2,2−ビス(3−アミノ−4−ヒドロキシフェニル)プロパン、2,2−ビス(4−アミノ−3−ヒドロキシフェニル)プロパン、3,3’−ジアミノ−4,4 ’−ジヒドロキシジフェニルスルホン、4,4’−ジアミノ−3,3’−ジヒドロキシジフェニルスルホン、3,3’−ジアミノ−4,4’−ジヒドロキシビフェニル、4,4’−ジアミノ−3,3’−ジヒドロキシビフェニル、9,9−ビス(4−((4−アミノ−3−ヒドロキシ)フェノキシ)フェニル)フルオレン、9,9−ビス(4−((3−アミノ−4−ヒドロキシ)フェノキシ)フェニル)フルオレン、9,9−ビス((4−アミノ−3−ヒドロキシ)フェニル))フルオレン、9,9−ビス((3−アミノ−4−ヒドロキシ)フェニル))フルオレン、3,3’−ジアミノ−4,4’−ジヒドロキシジフェニルエーテル、4,4’−ジアミノ−3,3’−ジヒドロキシフェニルエーテル、2,2−ビス(3−アミノ−4−ヒドロキシ−2−トリフルオロメチルフェニル)プロパン、2,2−ビス(4−アミノ−3−ヒドロキシ−2−トリフルオロメチルフェニル)プロパン、2,2−ビス(3−アミノ−4−ヒドロキシ−5−トリフルオロメチルフェニル)プロパン、2,2−ビス(4−アミノ−3−ヒドロキシ−5−トリフルオロメチルフェニル)プロパン、2,2−ビス(3−アミノ−4−ヒドロキシ−6−トリフルオロメチルフェニル)プロパン、2,2−ビス(4−アミノ−3−ヒドロキシ−6−トリフルオロメチルフェニル)プロパン、2,2−ビス(3−アミノ−4−ヒドロキシ−2−トリフルオロメチルフェニル)ヘキサフルオロプロパン、2,2−ビス(4−アミノ−3−ヒドロキシ−2−トリフルオロメチルフェニル)ヘキサフルオロプロパン、2,2−ビス(3−アミノ−4−ヒドロキシ−5−トリフルオロメチルフェニル)ヘキサフルオロプロパン、2,2−ビス(4−アミノ−3−ヒドロキシ−5−トリフルオロメチルフェニル)ヘキサフルオロプロパン、2,2−ビス(3−アミノ−4−ヒドロキシ−6−トリフルオロメチルフェニル)ヘキサフルオロプロパン、2,2−ビス(4−アミノ−3−ヒドロキシ−6−トリフルオロメチルフェニル)ヘキサフルオロプロパン、3,3’−ジアミノ−4,4’−ジヒドロキシ−2,2’−ビス(トリフルオロメチル)ビフェニル、4,4’−ジアミノ−3,3’−ジヒドロキシ−2,2’−ビス(トリフルオロメチル)ビフェニル、3,3’−ジアミノ−4,4’−ジヒドロキシ−5,5’−ビス(トリフルオロメチル)ビフェニル、4,4’−ジアミノ−3,3’−ジヒドロキシ−5,5’−ビス(トリフルオロメチル)ビフェニル、3,3’−ジアミノ−4,4’−ジヒドロキシ−6,6’−ビス(トリフルオロメチル)ビフェニル、4,4’−ジアミノ−3,3’−ジヒドロキシ−6,6’−ビス(トリフルオロメチル)ビフェニル等が挙げられる。これらは単独で用いてもよく、また2種類以上組み合わせて使用してもよい。
【0024】
本発明で用いる、式(C)に表された2価の基を有するエチニル骨格を持つジカルボン酸の例としては、3−エチニルフタル酸、4−エチニルフタル酸、2−エチニルイソフタル酸、4−エチニルイソフタル酸、5−エチニルイソフタル酸、2−エチニルテレフタル酸、3−エチニルテレフタル酸、2−エチニル−1,5−ナフタレンジカルボン酸、3−エチニル−1,5−ナフタレンジカルボン酸、4−エチニル−1,5−ナフタレンジカルボン酸、1−エチニル−2,6−ナフタレンジカルボン酸、3−エチニル−2,6−ナフタレンジカルボン酸、4−エチニル−2,6−ナフタレンジカルボン酸、2−エチニル−1,6−ナフタレンジカルボン酸、3−エチニル−1,6−ナフタレンジカルボン酸、4−エチニル−1,6−ナフタレンジカルボン酸、5−エチニル−1,6−ナフタレンジカルボン酸、7−エチニル−1,6−ナフタレンジカルボン酸、8−エチニル−1,6−ナフタレンジカルボン酸、3,3’−ジエチニル−2,2’−ビフェニルジカルボン酸、4,4’−ジエチニル−2,2’−ビフェニルジカルボン酸、5,5’−ジエチニル−2,2’−ビフェニルジカルボン酸、6,6’−ジエチニル−2,2’−ビフェニルジカルボン酸、2,2’−ジエチニル−3,3’−ビフェニルジカルボン酸、4,4’−ジエチニル−3,3’−ビフェニルジカルボン酸、5,5’−ジエチニル−3,3’−ビフェニルジカルボン酸、6,6’−ジエチニル−3,3’−ビフェニルジカルボン酸、2,2’−ジエチニル−4,4’−ビフェニルジカルボン酸、3,3’−ジエチニル−4,4’−ビフェニルジカルボン酸、2,2−ビス(2−カルボキシ−3−エチニルフェニル)プロパン、2,2−ビス(2−カルボキシ−4−エチニルフェニル)プロパン、2,2−ビス(2−カルボキシ−5−エチニルフェニル)プロパン、2,2−ビス(2−カルボキシ−6−エチニルフェニル)プロパン、2,2−ビス(3−カルボキシ−2−エチニルフェニル)プロパン、2,2−ビス(3−カルボキシ−4−エチニルフェニル)プロパン、2,2−ビス(3−カルボキシ−5−エチニルフェニル)プロパン、2,2−ビス(3−カルボキシ−6−エチニルフェニル)プロパン、2,2−ビス(4−カルボキシ−2−エチニルフェニル)プロパン、2,2−ビス(4−カルボキシ−3−エチニルフェニル)プロパン、2,2−ビス(2−カルボキシ−4−エチニルフェニル)ヘキサフルオロプロパン、2,2−ビス(3−カルボキシ−5−エチニルフェニル)ヘキサフルオロプロパン、2,2−ビス(4−カルボキシ−2−エチニルフェニル)ヘキサフルオロプロパン、2,2−ビス(4−カルボキシ−2−エチニルフェニル)ヘキサフルオロプロパン、4−エチニル−1,3−ジカルボキシシクロプロパン、5−エチニル−2,2−ジカルボキシシクロプロパン等が挙げられるが、これらに限定されるものではない。これらは単独で用いてもよく、また2種類以上組み合わせて使用してもよい。また、2種以上のビスアミノフェノール化合物を組み合わせて使用することも可能である。
【0025】
本発明で用いる、式(D)に表された2価の基を有するジカルボン酸の例としては、3−フェニルエチニルフタル酸、4−フェニルエチニルフタル酸、2−フェニルエチニルイソフタル酸、4−フェニルエチニルイソフタル酸、5−フェニルエチニルイソフタル酸、2−フェニルエチニルテレフタル酸、3−フェニルエチニルテレフタル酸、2−フェニルエチニル−1,5−ナフタレンジカルボン酸、3−フェニルエチニル−1,5−ナフタレンジカルボン酸、4−フェニルエチニル−1,5−ナフタレンジカルボン酸、1−フェニルエチニル−2,6−ナフタレンジカルボン酸、3−フェニルエチニル−2,6−ナフタレンジカルボン酸、4−フェニルエチニル−2,6−ナフタレンジカルボン酸、2−フェニルエチニル−1,6−ナフタレンジカルボン酸、3−フェニルエチニル−1,6−ナフタレンジカルボン酸、4−フェニルエチニル−1,6−ナフタレンジカルボン酸、5−フェニルエチニル−1,6−ナフタレンジカルボン酸、7−フェニルエチニル−1,6−ナフタレンジカルボン酸、8−フェニルエチニル−1,6−ナフタレンジカルボン酸、3,3’−ジフェニルエチニル−2,2’−ビフェニルジカルボン酸、4,4’−ジフェニルエチニル−2,2’−ビフェニルジカルボン酸、5,5’−ジフェニルエチニル−2,2’−ビフェニルジカルボン酸、6,6’−ジフェニルエチニル−2,2’−ビフェニルジカルボン酸、2,2’−ジフェニルエチニル−3,3’−ビフェニルジカルボン酸、4,4’−ジフェニルエチニル−3,3’−ビフェニルジカルボン酸、5,5’−ジフェニルエチニル−3,3’−ビフェニルジカルボン酸、6,6’−ジフェニルエチニル−3,3’−ビフェニルジカルボン酸、2,2’−ジフェニルエチニル−4,4’−ビフェニルジカルボン酸、3,3’−ジフェニルエチニル−4,4’−ビフェニルジカルボン酸、2,2−ビス(2−カルボキシ−3−フェニルエチニルフェニル)プロパン、2,2−ビス(2−カルボキシ−4−フェニルエチニルフェニル)プロパン、2,2−ビス(2−カルボキシ−5−フェニルエチニルフェニル)プロパン、2,2−ビス(2−カルボキシ−6−フェニルエチニルフェニル)プロパン、2,2−ビス(3−カルボキシ−2−フェニルエチニルフェニル)プロパン、2,2−ビス(3−カルボキシ−4−フェニルエチニルフェニル)プロパン、2,2−ビス(3−カルボキシ−5−フェニルエチニルフェニル)プロパン、2,2−ビス(3−カルボキシ−6−フェニルエチニルフェニル)プロパン、2,2−ビス(4−カルボキシ−2−フェニルエチニルフェニル)プロパン、2,2−ビス(4−カルボキシ−3−フェニルエチニルフェニル)プロパン、2,2−ビス(2−カルボキシ−4−フェニルエチニルフェニル)ヘキサフルオロプロパン、2,2−ビス(3−カルボキシ−5−フェニルエチニルフェニル)ヘキサフルオロプロパン、2,2−ビス(4−カルボキシ−2−フェニルエチニルフェニル)ヘキサフルオロプロパン、2,2−ビス(4−カルボキシ−2−フェニルエチニルフェニル)ヘキサフルオロプロパン、4−フェニルエチニル−1,3−ジカルボキシシクロプロパン、5−フェニルエチニル−2,2−ジカルボキシシクロプロパン等が挙げられる。 Rがアルキル基である例としては、3−ヘキシニルフタル酸、4−へキシニルフタル酸、2−へキシニルイソフタル酸、4−へキシニルイソフタル酸、5−へキシニルイソフタル酸、2−へキシニルテレフタル酸、3−へキシニルテレフタル酸、2−へキシニル−1,5−ナフタレンジカルボン酸、3−へキシニル−1,5−ナフタレンジカルボン酸、4−へキシニル−1,5−ナフタレンジカルボン酸、1−へキシニル−2,6−ナフタレンジカルボン酸、3−へキシニル−2,6−ナフタレンジカルボン酸、4−へキシニル−2,6−ナフタレンジカルボン酸、2−へキシニル−1,6−ナフタレンジカルボン酸、3−へキシニル−1,6−ナフタレンジカルボン酸、4−へキシニル−1,6−ナフタレンジカルボン酸、5−へキシニル−1,6−ナフタレンジカルボン酸、7−へキシニル−1,6−ナフタレンジカルボン酸、8−へキシニル−1,6−ナフタレンジカルボン酸、3,3’−ジへキシニル−2,2’−ビフェニルジカルボン酸、4,4’−ジへキシニル−2,2’−ビフェニルジカルボン酸、5,5’−ジヘキシニル−2,2’−ビフェニルジカルボン酸、6,6’−ジへキシニル−2,2’−ビフェニルジカルボン酸、2,2’−ジへキシニル−3,3’−ビフェニルジカルボン酸、4,4’−ジへキシニル−3,3’−ビフェニルジカルボン酸、5,5’−ジへキシニル−3,3’−ビフェニルジカルボン酸、6,6’−ジへキシニル−3,3’−ビフェニルジカルボン酸、2,2’−ジへキシニル−4,4’−ビフェニルジカルボン酸、3,3’−ジへキシニル−4,4’−ビフェニルジカルボン酸、2,2−ビス(2−カルボキシ−3−へキシニルフェニル)プロパン、2,2−ビス(2−カルボキシ−4−へキシニルフェニル)プロパン、2,2−ビス(2−カルボキシ−5−へキシニルフェニル)プロパン、2,2−ビス(2−カルボキシ−6−へキシニルフェニル)プロパン、2,2−ビス(3−カルボキシ−2−へキシニルフェニル)プロパン、2,2−ビス(3−カルボキシ−4−へキシニルフェニル)プロパン、2,2−ビス(3−カルボキシ−5−へキシニルフェニル)プロパン、2,2−ビス(3−カルボキシ−6−へキシニルフェニル)プロパン、2,2−ビス(4−カルボキシ−2−へキシニルフェニル)プロパン、2,2−ビス(4−カルボキシ−3−へキシニルフェニル)プロパン、2,2−ビス(2−カルボキシ−4−へキシニルフェニル)ヘキサフルオロプロパン、2,2−ビス(3−カルボキシ−5−へキシニルフェニル)ヘキサフルオロプロパン、2,2−ビス(4−カルボキシ−2−へキシニルフェニル)ヘキサフルオロプロパン、2,2−ビス(4−カルボキシ−2−へキシニルフェニル)ヘキサフルオロプロパン、4−へキシニル−1,3−ジカルボキシシクロプロパン、5−エチニル−2,2−ジカルボキシシクロプロパン等が挙げられるが、これらに限定されるものではない。これらは単独で用いてもよく、また2種類以上組み合わせて使用してもよい。また、2種以上のビスアミノフェノール化合物を組み合わせて使用することも可能である。
【0026】
本発明で用いる、式(E)に表された2価の基を有するビフェニレン骨格を持つジカルボン酸の例としては、1,2−ビフェニレンジカルボン酸、1,3−ビフェニレンジカルボン酸、1,4−ビフェニレンジカルボン酸、1,5−ビフェニレンジカルボン酸、1,6−ビフェニレンジカルボン酸、1,7−ビフェニレンジカルボン酸、1,8−ビフェニレンジカルボン酸、2,3−ビフェニレンジカルボン酸、2,6−ビフェニレンジカルボン酸、2,7−ビフェニレンジカルボン酸などが挙げられ、得られる塗膜の性能から、2,6−ビフェニレンジカルボン酸、2,7−ビフェニレンジカルボン酸が特に好ましい。これらは単独で用いてもよく、また2種類以上組み合わせて使用してもよい。
【0027】
本発明で用いる式(F)に表された2価の基を有するジカルボン酸の例としては、4,4’−トランジカルボン酸、3,4’−トランジカルボン酸、3,3‘−トランジカルボン酸、2,4’−トランジカルボン酸、2,3’−トランジカルボン酸、2,2’−トランジカルボン酸などを1種、または2種以上混合して用いることが出来る。
【0028】
本発明で用いる、式(G)に表された2価の基を有するジカルボン酸の例としては、イソフタル酸、テレフタル酸、4,4’−ビフェニルジカルボン酸、3,4’−ビフェニルジカルボン酸、3,3’−ビフェニルジカルボン酸、1,4−ナフタレンジカルボン酸、2,3−ナフタレンジカルボン酸、2,6−ナフタレンジカルボン酸、4,4’−スルホニルビス安息香酸、3,4’−スルホニルビス安息香酸、3,3’−スルホニルビス安息香酸、4,4’−オキシビス安息香酸、3,4’−オキシビス安息香酸、3,3’−オキシビス安息香酸、2,2−ビス(4−カルボキシフェニル)プロパン、2,2−ビス(3−カルボキシフェニル)プロパン、2,2−ビス(4−カルボキシフェニル)ヘキサフルオロプロパン、2,2−ビス(3−カルボキシフェニル)ヘキサフルオロプロパン、2,2’−ジメチル−4,4’−ビフェニルジカルボン酸、3,3’−ジメチル−4,4’−ビフェニルジカルボン酸、2,2’−ジメチル−3,3’−ビフェニルジカルボン酸、2,2’−ビス(トリフルオロメチル)−4,4’−ビフェニルジカルボン酸、3,3’−ビス(トリフルオロメチル)−4,4’−ビフェニルジカルボン酸、2,2’−ビス(トリフルオロメチル)−3,3’−ビフェニルジカルボン酸、9,9−ビス(4−(4−カルボキシフェノキシ)フェニル)フルオレン、9,9−ビス(4−(3−カルボキシフェノキシ)フェニル)フルオレン、4,4’−ビス(4−カルボキシフェノキシ)ビフェニル、4,4’−ビス(3−カルボキシフェノキシ)ビフェニル、3,4’−ビス(4−カルボキシフェノキシ)ビフェニル、3,4’−ビス(3−カルボキシフェノキシ)ビフェニル、3,3’−ビス(4−カルボキシフェノキシ)ビフェニル、3,3’−ビス(3−カルボキシフェノキシ)ビフェニル、4,4’−ビス(4−カルボキシフェノキシ)−p−ターフェニル、4,4’−ビス(4−カルボキシフェノキシ)−m−ターフェニル、3,4’−ビス(4−カルボキシフェノキシ)−p−ターフェニル、3,3’−ビス(4−カルボキシフェノキシ)−p−ターフェニル、3,4’−ビス(4−カルボキシフェノキシ)−m−ターフェニル、3,3’−ビス(4−カルボキシフェノキシ)−m−ターフェニル、4,4’−ビス(3−カルボキシフェノキシ)−p−ターフェニル、4,4’−ビス(3−カルボキシフェノキシ)−m−ターフェニル、3,4’−ビス(3−カルボキシフェノキシ)−p−ターフェニル、3,3’−ビス(3−カルボキシフェノキシ)−p−ターフェニル、3,4’−ビス(3−カルボキシフェノキシ)−m−ターフェニル、3,3’−ビス(3−カルボキシフェノキシ)−m−ターフェニル、3−フルオロイソフタル酸、2−フルオロイソフタル酸、2−フルオロテレフタル酸、2,4,5,6−テトラフルオロイソフタル酸、2,3,5,6−テトラフルオロテレフタル酸、5−トリフルオロメチルイソフタル酸等が挙げられ、これらは単独で用いてもよく、また2種類以上組み合わせて使用してもよい。
【0029】
本発明におけるポリアミドは、架橋する骨格を有する繰り返し単位と、架橋する骨格を持たない繰り返し単位の数である式(A)中のmとnについて、m及びnは 、m>0、n≧0、2≦m+n≦1000、0.05≦m/(m+n)≦1を満たす整数である。mとnの和は、好ましくは5以上100以下である。ここでmとnの和が、2未満であると成膜性が低下し、膜の機械強度が十分でなくなる。また1000を越えると分子量が大きくなりすぎて、溶剤に溶けにくくなったり、溶解しても粘調なワニスとなり実用にそぐわない。m及びnは0.05≦m/(m+n)≦1を満たす整数であることが必須であり、さらには、0.5≦m/(m+n)≦1を満たすことが好ましい。0.05>m/(m+n)であると、架橋する骨格を持つ繰り返し単位の数が少ないことを意味し、架橋反応部位が少ないため耐熱性が向上せず、微細孔が保持できなかったり、不均一な微細孔となり好ましくない。
【0030】
一般式(A)において繰り返し単位の配列は、ブロック的であっても、ランダム的であってもかまわない。例えば、ブロック的な繰り返し単位の場合は、ビスアミノフェノール化合物と式(G)で表される基の中から選ばれる2価の基を有するジカルボン酸クロリドとを、予め反応させて分子量を上げた後、更にビスアミノフェノール化合物と、式(C)、式(D)、式(E)、及び式(F)で表される基の中から選ばれる架橋に寄与する2価の基を有するジカルボン酸クロリドとを反応させることにより得ることができる。また、逆に、ビスアミノフェノール化合物と、式(C)、式(D)、式(E)、及び式(F)で表される基の中から選ばれる架橋に寄与する2価の基を有するジカルボン酸クロリドとを、予め反応させて分子量を上げた後、更にビスアミノフェノール化合物と式(G)で表される基の中から選ばれる2価の基を有するジカルボン酸クロリドとを反応させてもよい。ランダムな繰り返し単位の場合は、ビスアミノフェノール化合物と式(G)で表される基の中から選ばれる2価の基を有するジカルボン酸クロリドと式(C)、式(D)、式(E)、及び式(F)で表される基の中から選ばれる架橋に寄与する2価の基を有するジカルボン酸クロリドとを、同時に反応させることにより得ることができる。
【0031】
本発明に用いる熱分解性オリゴマーは、ポリアミドの熱分解温度より低い温度で熱分解し、分解物が気化するオリゴマーでなければならない。具体的に例示すると、ポリオキシメチレン、ポリオキシエチレン、ポリオキシメチレン−オキシエチレン共重合体、ポリオキシメチレン−オキシプロピレン共重合体、ポリオキシエチレン−オキシプロピレン共重合体等のポリオキシアルキレンや、ポリメチルメタクリレート、ポリウレタン、ポリα−メチルスチレン、ポリスチレン、ポリエステル、ポリエーテルエステル、ポリカプロラクトン等が好適に挙げられる。
【0032】
該オリゴマーは、数平均分子量が100〜40,000の範囲のものが好ましい。より好ましくは、数平均分子量が100〜20,000であり、更に好ましくは、数平均分子量が100〜10,000の範囲のものである。分子量が100未満であると、分解・気化した後の空隙が小さく潰れやすくなり、比誘電率の低減させることができなくなる恐れがある。また分子量が40,000を越えると、空隙が大きくなりすぎて絶縁膜の機械特性が極端に低下し、実用に供すことができなくなる恐れがある。
【0033】
絶縁膜用材料における該オリゴマーの配合量に関しては、ポリアミド100重量部に対して、5〜70重量部の該オリゴマーを配合することが好ましい。より好ましくは、5〜50重量部であり、更に好ましくは、5〜40重量部である。反応させた後の樹脂中の該オリゴマー成分量も同様に5〜70重量部を満たすことが好ましい。5重量部未満であると絶縁膜中の空隙率が小さく、誘電率を低減させることが不十分となる恐れがあり、また、70重量部を越えると、膜中の空隙率が大きくなり膜の機械強度が極端に低下したり、空隙が連続し不均一となり、誘電率が場所により異なる等の問題が発生する恐れがある。
【0034】
本発明において、ポリアミドの製造方法の例としては、従来の酸クロリド法、活性化エステル法、ポリリン酸やジシクロヘキシルカルボジイミド等の脱水縮合剤の存在下での縮合反応等の方法を用いることが出来る。例えば、酸クロリド法では、使用する酸クロリドは、まず、N,N−ジメチルホルムアミド等の触媒存在下で、ジカルボン酸と過剰量の塩化チオニルとを、室温ないし130℃で反応させ、過剰の塩化チオニルを加熱及び減圧により留去した後、残査をヘキサン等の溶媒で再結晶することにより得ることができる。このようにして製造したジカルボン酸クロリドと、前記他のジカルボン酸を併用する場合、同様にして得られる酸クロリドとを、ビスアミノフェノール化合物と共に、通常N−メチル−2−ピロリドン、N,N−ジメチルアセトアミド等の極性溶媒に溶解し、ピリジン、トリエチルアミン等の酸受容剤滴下後、室温ないし−30℃で反応させ、ポリアミドを合成する。反応液を蒸留水とイソプロピルアルコールの混合溶液に滴下し、沈殿物を集め,乾燥することによりポリアミドを得ることが出来る。
【0035】
本発明の絶縁膜用材料には、上記ポリアミドとオリゴマーの他に、目的に応じて添加剤を用いる。各種添加剤としては、界面活性剤、シラン系に代表されるカップリング剤、酸素ラジカルやイオウラジカルを加熱により発生するラジカル開始剤、ジスルフィド類などの触媒等が挙げられる。
【0036】
また、本発明におけるポリアミドは、前記一般式(A)で示された前駆体の構造中の、R及びR,また、R及びRの少なくとも一方がHである場合は、感光剤としてナフトキノンジアジド化合物と一緒に用いることで、ポジ型の感光性樹脂組成物として、また、R及びR,また、R及びRの少なくとも一方が、メタクリロイル基のような光架橋性基を有する基である場合は、光開始剤を用いることでネガ型感光性樹脂組成物として用いることが可能である。
【0037】
本発明の絶縁膜用材料の使用方法としては、ポリアミドとオリゴマーを適当な有機溶媒に均一に溶解させて、コーティングワニスとして使用することが可能である。具体的に例示すると、当該絶縁膜用材料を有機溶媒に均一に溶解させ、適当な支持体、例えば、ガラス、繊維、金属、シリコンウエハー、セラミック基板等に塗布する。その塗布方法は、浸漬、スクリーン印刷、スプレー、回転塗布、ロールコーティングなどが挙げられ、塗布後に加熱乾燥して溶剤を揮発せしめ、タックフリーな塗膜とすることができる。その後、加熱処理して、ポリベンゾオキサゾール樹脂架橋体に変換して用いるのが好ましい。また、ジカルボン酸成分、ビスアミノフェノール成分及び反応性オリゴマー成分を選択することにより、溶剤に可溶なポリベンゾオキサゾール樹脂として用いることも出来る。
【0038】
本発明の絶縁膜用材料を均一に溶解させる、有機溶媒としては、固形分を完全に溶解する溶媒が好ましく、例えば、N−メチル−2−ピロリドン、γ−ブチロラクトン、N,N−ジメチルアセトアミド、ジメチルスルホキシド、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、乳酸メチル、乳酸エチル、乳酸ブチル、メチル−1,3−ブチレングリコールアセテート、1,3−ブチレングリコール−3−モノメチルエーテル、ピルビン酸メチル、ピルビン酸エチル、メチル−3−メトキシプロピオネート、メチルエチルケトン、メチルイソブチルケトン、シクロペンタノン、シクロヘキサノン、テトラヒドロフラン等を、1種、または2種以上混合して用いることが出来る。その使用量としては、絶縁膜用材料を完全に溶解し得る量ならば問題なく、その使用用途に応じて調整可能である。
【0039】
本発明の絶縁膜用材料は、上記のようにして得られた塗膜を、80℃〜200℃の温度範囲で溶媒を蒸発させ、200℃から500℃の温度範囲で加熱することにより、絶縁膜用材料中のポリアミドが、環化縮合反応及び架橋反応を生じポリベンゾオキサゾール樹脂となり、また、絶縁膜用材料中の該オリゴマーは、このとき熱分解して、分解物が気化・揮散し、ポリベンゾオキサゾール樹脂を主構造とする樹脂の層に微細孔を形成させることにより、多孔質絶縁膜である本発明の絶縁膜を得ることができる。この際の熱履歴も微細孔を形成させるには重要である。
【0040】
本発明のポリベンゾオキサゾールを主構造とする樹脂の層からなり、微細孔を有してなる絶縁膜における、微細孔の大きさは、絶縁膜の用途や膜の厚みにもよるが、一般的には、少なくとも1μ以下、好ましくは500nm以下、100nm以下がより好ましく、半導体用層間絶縁膜等の用途においては、好ましくは20nm以下、さらに好ましくは5nm以下であることが望ましい。半導体用層間絶縁膜においては、孔径が20nmより大きいと配線間に用いられた絶縁膜における空隙が不均一になり、電気特性が一定とならない。また、膜の機械強度が低下し、接着性に悪影響が出る等の問題が発生する。ただし、フィルムの用途により最適な膜厚、最適な微細孔の大きさ、があるので必ずしも5nmが必要というわけではない。
【0041】
また、絶縁膜の空隙率としては、5%から70%が好ましい。より好ましくは5%から50%、さらに好ましくは5%から40%である。空隙率が5%より小さいと十分な誘電率の低下しなくなる恐れがある。空隙率が70%よりも大きいと膜の機械強度が低下し、接着性に悪影響が出る等の問題が発生する恐れがある。
【0042】
本発明の絶縁膜用材料及び絶縁膜は、半導体用層間絶縁膜、保護膜、多層回路の層間絶縁膜、フレキシブル銅張板のカバーコート、ソルダーレジスト膜、液晶配向膜等の形成に用いることが出来る。
【0043】
【実施例】
以下、実施例により本発明を具体的に説明するが、本発明はこれによって何ら限定されるものではない。
【0044】
実施例及び比較例で作成したフィルムを用いて、特性評価のため、下記の方法により、誘電率、耐熱性、及びガラス転移温度を測定した。また、フィルムの断面を観察し、これらの結果は、表1にまとめて示した。
【0045】
1.比誘電率
JIS−K6911に準拠し、周波数100KHzで、ヒューレットパッカード社製HP−4284A Precision LCRメーターを用いて測定を行った。
【0046】
2.耐熱性
セイコーインスツルメンツ(株)製TG/DTA6200を用いて、窒素ガス200mL/分フロー下、昇温速度10℃/分の条件により、重量減少5%の時の温度を測定した。
【0047】
3.ガラス転移温度(Tg)
セイコーインスツルメンツ(株)製DMS6100を用いて、窒素ガス300mL/分フロー下、測定周波数1Hz、昇温速度3℃/分の条件で、引張りモードで測定し、損失正接(tanδ)のピークトップ温度をガラス転移温度とした。
【0048】
4.吸水率
5cm角、厚み10μmの試験フィルムを、23℃の純水に24時間浸漬した後の、重量変化率を算出した。
【0049】
5.フィルム断面観察
フィルムの断面について、透過型電子顕微鏡(TEM)を用いて、微細孔の有無とその孔径を観察した。
【0050】
「合成例1」
スチレン10g(96mmol)を乾燥窒素雰囲気下で乾燥したテトラヒドロフラン100gに溶解して、−78℃まで冷却し、ここへ反応試剤として1.3Mのsec−ブチルリチウム(溶媒:シクロヘキサン)0.77mlを加えて3時間攪拌した。続けてエチレンエポキサイド0.044g(1.0mmol)を加えて3時間攪拌した後、メタノール3gを加え、この溶液を濃縮して溶媒を除去したものをテトラヒドロフラン100gに溶解し濾過した。得られた濾液を減圧濃縮、乾燥させることにより、末端が水酸基で分子量9,600のスチレンオリゴマーを得た。
【0051】
「合成例3」
スチレン10g(96mmol)をスチレン49.9g(480mmol)に代えた以外は「合成例1」と同様にして、末端が水酸基で分子量50,000のスチレンオリゴマーを得た。
【0052】
(実施例1)
3,3’−ジアミノ−4,4’−ジヒドロキシビフェニル0.636g(2.94mmol)を、乾燥したN−メチル−2−ピロリドン10mLに溶解し、この溶液に4−エチニル−2,6−ナフタレンジカルボン酸クロリド0.831g(3.0mmol)を、乾燥窒素下10℃で添加した。添加後、10℃で1時間、続いて20℃で1時間撹拌した。10℃にした後、トリエチルアミン0.668g(6.6mmol)を添加した。添加後、10℃で1時間、続いて20℃で20時間攪拌した。反応終了後、反応液を濾過してトリエチルアミン塩酸塩を除去し、濾過した液をイオン交換水200mLとイソプロパノール200mLの混合溶液に滴下し、沈殿物を集めて乾燥することにより、重合体1.19gを得た。得られた重合体の分子量を、東ソー株式会社製GPCを用いてポリスチレン換算で求めたところ、重量平均分子量25,600、分子量分布2.23であった。
【0053】
得られた重合体0.64gとスチレンオリゴマー0.36g(0.038mmol、数平均分子量9,600)をγ−ブチロラクトン10.00gに溶解し、孔径0.2μmのテフロン(R)フィルターで濾過してワニスを得た。このワニスを、スピンコーターを用いてアルミニウムを蒸着したシリコンウエハー上に塗布した。このとき熱処理後の膜厚が1〜10μmとなるようにスピンコーターの回転数と時間を設定した。塗布後、120℃のホットプレート上で240秒間乾燥した後、窒素を流入して酸素濃度を100ppm以下に制御したオーブンを用いて、300℃で60分間加熱させることで、オリゴマーを含むポリベンゾオキサゾール樹脂の皮膜を得た。さらに、400℃で60分間加熱してオリゴマー基を分解し、細孔を有するポリベンゾオキサゾール樹脂の皮膜を得た。皮膜上にアルミニウムを蒸着してパターンニングを行い所定の大きさの電極を形成した。シリコンウエハー側のアルミニウムと、この電極による容量を測定し、測定後に皮膜の電極隣接部を、酸素プラズマによりエッチングして、表面粗さ計により膜厚を測定することにより、周波数1MHzにおける誘電率を算出したところ2.10であった。また、この皮膜について断面をTEMにより観察したところ、得られた空隙は、平均孔径15nmで非連続であった。 耐熱性、Tg、吸水率も併せて表1にまとめた。
【0054】
(実施例2)
3,3’−ジアミノ−4,4’−ジヒドロキシビフェニル0.584g(2.70mmol)を、乾燥したN−メチル−2−ピロリドン10mLに溶解し、この溶液に5−エチニル−テレフタル酸クロリド0.681g(3.0mmol)を、乾燥窒素下10℃で添加した。添加後、10℃で1時間、続いて20℃で1時間撹拌した。10℃にした後、トリエチルアミン0.668g(6.6mmol)を添加した。添加後、10℃で1時間、続いて20℃で20時間攪拌した。反応終了後、反応液を濾過してトリエチルアミン塩酸塩を除去し、濾過した液をイオン交換水200mLとイソプロパノール200mLの混合溶液に滴下し、沈殿物を集めて乾燥することにより、重合体1.01gを得た。得られた重合体の分子量を、東ソー株式会社製GPCを用いてポリスチレン換算で求めたところ、重量平均分子量20,000、分子量分布2.20であった。
得られた重合体0.52gとアルドリッチ社製ポリ(エチレングリコール)−ブロック−ポリ(プロピレングリコール)−ブロック−ポリ(エチレングリコール)0.48g(0.17mmol、数平均分子量2,800)をγ−ブチロラクトン10gに溶解し、実施例1と同様にワニスを作成し、評価サンプルを得た。測定結果を表1にまとめた。
【0055】
(実施例3)
9,9−ビス(4−ヒドロキシ−3−アミノフェニル)フルオレン1.084g(2.85mmol)を、乾燥したN−メチル−2−ピロリドン10mLに溶解し、この溶液に5−エチニルイソフタル酸クロリド0.681g(3.0mmol)を、乾燥窒素下10℃で添加した。添加後、10℃で1時間、続いて20℃で1時間撹拌した。10℃にした後、トリエチルアミン0.668g(6.6mmol)を添加した。添加後、10℃で1時間、続いて20℃で20時間攪拌した。反応終了後、反応液を濾過してトリエチルアミン塩酸塩を除去し、濾過した液をイオン交換水200mLとイソプロパノール200mLの混合溶液に滴下し、沈殿物を集めて乾燥することにより、重合体1.48gを得た。得られた重合体の分子量を、東ソー株式会社製GPCを用いてポリスチレン換算で求めたところ、重量平均分子量25,200、分子量分布2.20であった。
得られた重合体0.66gとアルドリッチ社製ポリ(プロピレングリコール)0.34g(0.085mmol、数平均分子量4,000)γ−ブチロラクトン10gに溶解し、実施例1と同様にワニスを作成し、評価サンプルを得た。測定結果を表1にまとめた。
【0056】
(実施例4)
4,4’−ジアミノ−3,3’−ジヒドロキシビフェニル0.616g(2.85mmol)を、乾燥したN−メチル−2−ピロリドン10mLに溶解し、この溶液に5−エチニル−テレフタル酸クロリド0.341g(1.5mmol)と2,6−ナフタレンジカルボン酸クロリド0.380g(1.5mmol)を、乾燥窒素下10℃で添加した。添加後、10℃で1時間、続いて20℃で1時間撹拌した。10℃にした後、トリエチルアミン0.668g(6.6mmol)を添加した。添加後、10℃で1時間、続いて20℃で20時間攪拌した。反応終了後、反応液を濾過してトリエチルアミン塩酸塩を除去し、濾過した液をイオン交換水200mLとイソプロパノール200mLの混合溶液に滴下し、沈殿物を集めて乾燥することにより、共重合体1.07gを得た。得られた共重合体の分子量を、東ソー株式会社製GPCを用いてポリスチレン換算で求めたところ、重量平均分子量25,000、分子量分布2.25であった。
得られた重合体0.73gとアルドリッチ社製ポリ(プロピレングリコール)0.27g(0.11mmol、数平均分子量2,500)γ−ブチロラクトン10gに溶解し、実施例1と同様にワニスを作成し、評価サンプルを得た。測定結果を表1にまとめた。
【0057】
(実施例5)
ビス(3−アミノ−4−ヒドロキシフェニル)エーテル0.662g(2.85mmol)を、乾燥したN−メチル−2−ピロリドン10mLに溶解し、この溶液に5−フェニルエチニルイソフタル酸クロリド0.909g(3.0mmol)を、乾燥窒素下10℃で添加した。添加後、10℃で1時間、続いて20℃で1時間撹拌した。10℃にした後、トリエチルアミン0.668g(6.6mmol)を添加した。添加後、10℃で1時間、続いて20℃で20時間攪拌した。反応終了後、反応液を濾過してトリエチルアミン塩酸塩を除去し、濾過した液をイオン交換水200mLとイソプロパノール200mLの混合溶液に滴下し、沈殿物を集めて乾燥することにより、重合体1.30gを得た。得られた重合体の分子量を、東ソー株式会社製GPCを用いてポリスチレン換算で求めたところ、重量平均分子量25,000、分子量分布2.20であった。
得られた重合体0.64gとアルドリッチ社製ポリ(プロピレングリコール)0.36g(0.09mmol、数平均分子量4,000)γ−ブチロラクトン10gに溶解し、実施例1と同様にワニスを作成し、評価サンプルを得た。測定結果を表1にまとめた。
【0058】
(実施例6)
3,3’−ジアミノ−4,4’−ジヒドロキシビフェニル0.616g(2.85mmol)を、乾燥したN−メチル−2−ピロリドン10mLに溶解し、この溶液に2,7−ビフェニレンジカルボン酸クロリド0.828g(3.0mmol)を、乾燥窒素下10℃で添加した。添加後、10℃で1時間、続いて20℃で1時間撹拌した。10℃にした後、トリエチルアミン0.668g(6.6mmol)を添加した。添加後、10℃で1時間、続いて20℃で20時間攪拌した。反応終了後、反応液を濾過してトリエチルアミン塩酸塩を除去し、濾過した液をイオン交換水200mLとイソプロパノール200mLの混合溶液に滴下し、沈殿物を集めて乾燥することにより、重合体1.17gを得た。得られた重合体の分子量を、東ソー株式会社製GPCを用いてポリスチレン換算で求めたところ、重量平均分子量25,300、分子量分布2.21であった。
得られた重合体0.62gとアルドリッチ社製ポリ(プロピレングリコール)0.38g(0.095mmol、数平均分子量4,000)γ−ブチロラクトン10gに溶解し、実施例1と同様にワニスを作成し、評価サンプルを得た。測定結果を表1にまとめた。
【0059】
(実施例7)
4,3’−ジアミノ−3,3’−ジヒドロキシビフェニル0.616g(2.85mmol)を、乾燥したN−メチル−2−ピロリドン10mLに溶解し、この溶液に4,4’−トランジカルボン酸クロリド0.906g(3.0mmol)を、乾燥窒素下10℃で添加した。添加後、10℃で1時間、続いて20℃で1時間撹拌した。10℃にした後、トリエチルアミン0.668g(6.6mmol)を添加した。添加後、10℃で1時間、続いて20℃で20時間攪拌した。反応終了後、反応液を濾過してトリエチルアミン塩酸塩を除去し、濾過した液をイオン交換水200mLとイソプロパノール200mLの混合溶液に滴下し、沈殿物を集めて乾燥することにより、重合体1.25gを得た。得られた重合体の分子量を、東ソー株式会社製GPCを用いてポリスチレン換算で求めたところ、重量平均分子量25,100、分子量分布2.21であった。
得られた重合体0.63gとアルドリッチ社製ポリ(プロピレングリコール)0.33g(0.0825mmol、数平均分子量4,000)γ−ブチロラクトン10gに溶解し、実施例1と同様にワニスを作成し、評価サンプルを得た。測定結果を表1にまとめた。
【0060】
(比較例1)
3,3’−ジアミノ−4,4’−ジヒドロキシビフェニル0.636g(2.94mmol)を、乾燥したN−メチル−2−ピロリドン10mLに溶解し、この溶液に4−エチニル−2,6−ナフタレンジカルボン酸クロリド0.831g(3.0mmol)を、乾燥窒素下10℃で添加した。添加後、10℃で1時間、続いて20℃で1時間撹拌した。10℃にした後、トリエチルアミン0.668g(6.6mmol)を添加した。添加後、10℃で1時間、続いて20℃で20時間攪拌した。反応終了後、反応液を濾過してトリエチルアミン塩酸塩を除去し、濾過した液をイオン交換水200mLとイソプロパノール200mLの混合溶液に滴下し、沈殿物を集めて乾燥することにより、重合体1.19gを得た。得られた重合体の分子量を、東ソー株式会社製GPCを用いてポリスチレン換算で求めたところ、重量平均分子量25,600、分子量分布2.23であった。得られたポリマー1.00gをγ−ブチロラクトン10gに溶解し、実施例1と同様にワニスを作成し、評価サンプルを得た。測定結果を表1にまとめた。
【0061】
(比較例2)
3,3’−ジアミノ−4,4’−ジヒドロキシビフェニル0.584g(2.70mmol)を、乾燥したN−メチル−2−ピロリドン10mLに溶解し、この溶液にテレフタル酸クロリド0.609g(3.0mmol)を、乾燥窒素下10℃で添加した。添加後、10℃で1時間、続いて20℃で1時間撹拌した。10℃にした後、トリエチルアミン0.668g(6.6mmol)を添加した。添加後、10℃で1時間、続いて20℃で20時間攪拌した。反応終了後、反応液を濾過してトリエチルアミン塩酸塩を除去し、濾過した液をイオン交換水200mLとイソプロパノール200mLの混合溶液に滴下し、沈殿物を集めて乾燥することにより、重合体0.94gを得た。得られた重合体の分子量を、東ソー株式会社製GPCを用いてポリスチレン換算で求めたところ、重量平均分子量20,000、分子量分布2.20であった。
得られた重合体0.52gとアルドリッチ社製ポリ(エチレングリコール)−ブロック−ポリ(プロピレングリコール)−ブロック−ポリ(エチレングリコール)0.48g(0.17mmol、数平均分子量2,800)をγ−ブチロラクトン10gに溶解し、実施例1と同様にワニスを作成し、評価サンプルを得た。測定結果を表1にまとめた。
【0062】
(比較例3)
3,3’−ジアミノ−4,4’−ジヒドロキシビフェニル0.584g(2.70mmol)を、乾燥したN−メチル−2−ピロリドン10mLに溶解し、この溶液に5−エチニル−テレフタル酸クロリド0.681g(3.0mmol)を、乾燥窒素下10℃で添加した。添加後、10℃で1時間、続いて20℃で1時間撹拌した。10℃にした後、トリエチルアミン0.668g(6.6mmol)を添加した。添加後、10℃で1時間、続いて20℃で20時間攪拌した。反応終了後、反応液を濾過してトリエチルアミン塩酸塩を除去し、濾過した液をイオン交換水200mLとイソプロパノール200mLの混合溶液に滴下し、沈殿物を集めて乾燥することにより、重合体1.01gを得た。得られた重合体の分子量を、東ソー株式会社製GPCを用いてポリスチレン換算で求めたところ、重量平均分子量20,000、分子量分布2.20であった。
得られた重合体0.38gとアルドリッチ社製ポリ(エチレングリコール)−ブロック−ポリ(プロピレングリコール)−ブロック−ポリ(エチレングリコール)0.72g(0.257mmol、数平均分子量2,800)をγ−ブチロラクトン10gに溶解し、実施例1と同様にワニスを作成し、評価サンプルを得た。測定結果を表1にまとめた。
【0063】
(比較例4)
3,3’−ジアミノ−4,4’−ジヒドロキシビフェニル0.584g(2.70mmol)を、乾燥したN−メチル−2−ピロリドン10mLに溶解し、この溶液に5−エチニル−テレフタル酸クロリド0.681g(3.0mmol)を、乾燥窒素下10℃で添加した。添加後、10℃で1時間、続いて20℃で1時間撹拌した。10℃にした後、トリエチルアミン0.668g(6.6mmol)を添加した。添加後、10℃で1時間、続いて20℃で20時間攪拌した。反応終了後、反応液を濾過してトリエチルアミン塩酸塩を除去し、濾過した液をイオン交換水200mLとイソプロパノール200mLの混合溶液に滴下し、沈殿物を集めて乾燥することにより、重合体1.01gを得た。得られた重合体の分子量を、東ソー株式会社製GPCを用いてポリスチレン換算で求めたところ、重量平均分子量20,000、分子量分布2.20であった。
得られた重合体0.58gとポリスチレン0.42g(0.0084mmol、数平均分子量50,000)をγ−ブチロラクトン10gに溶解し、実施例1と同様にワニスを作成し、評価サンプルを得た。測定結果を表1にまとめた。
【0064】
【表1】
Figure 2004087336
【0065】
表1にまとめた、実施例および比較例の評価結果から、本発明の絶縁膜用材料から得られた絶縁膜(被膜)は、優れた耐熱性と低吸水性を維持しながら、低誘電率化を可能とすることがわかる。また、測定した誘電率を用いて対数混合式から計算した空隙率とオリゴマー導入率とほぼ一致した。
【0066】
【発明の効果】
本発明の絶縁膜用材料及びコーティング用ワニスにより得られる絶縁膜は、優れた熱特性、電気特性、吸水性を達成することができ、特に、誘電率の極めて低く、半導体用の層間絶縁膜、保護膜、多層回路の層間絶縁膜、フレキシブル銅張板のカバーコート、ソルダーレジスト膜、液晶配向膜等の用途に、好適に使用することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a material for an insulating film, a coating varnish for an insulating film, and an insulating film using the same. More specifically, the present invention relates to an interlayer insulating film for semiconductors having excellent electrical properties, thermal properties, and mechanical properties. The present invention relates to an insulating film material suitable for a film, an interlayer insulating film of a multilayer circuit, a cover coat of a flexible copper clad board, a solder resist film, a liquid crystal alignment film, etc., a coating varnish for an insulating film, and an insulating film using the same. .
[0002]
[Prior art]
In the semiconductor material, an inorganic material, an organic material, and the like are used in various parts depending on required characteristics. For example, as an interlayer insulating film for a semiconductor, an inorganic oxide film such as silicon dioxide manufactured by a chemical vapor deposition method is used. However, with the recent increase in the speed and performance of semiconductors, the inorganic oxide film as described above has a problem that the relative dielectric constant is high. As one of the improvement means, application of an organic material is being studied.
[0003]
As an organic material for semiconductor use, a polyimide resin having excellent heat resistance, electric properties, mechanical properties, and the like can be given, and is used for a solder resist, a coverlay, a liquid crystal alignment film, and the like. However, polyimide resins generally have two carbonyl groups on the imide ring, and thus have problems in water absorption and electrical properties. To solve these problems, attempts have been made to improve water absorption and electrical properties by introducing fluorine or a fluorine-containing group into an organic polymer, and some of them have been put to practical use. In addition, there is a polybenzoxazole resin exhibiting better performance with respect to heat resistance, water absorption, and electrical properties than polyimide resin, and application to various fields has been attempted. For example, those having a structure composed of 4,4'-diamino-3,3'-dihydroxybiphenyl and terephthalic acid, and those having a structure composed of 2,2-bis (3-amino-4-hydroxyphenyl) hexafluoropropane and terephthalic acid And the like.
[0004]
However, in advanced fields that require stricter improvements in heat resistance, electrical properties, water absorption, and the like, a material that satisfies all of these requirements has not yet been obtained. In other words, although excellent heat resistance is exhibited, electric characteristics such as dielectric constant are not sufficient. Further, although electric characteristics are improved by introduction of fluorine, a problem such as lowering of heat resistance is caused. In particular, when an organic material is applied as an interlayer insulating film for a semiconductor, heat resistance, mechanical properties, and water absorption comparable to those of an inorganic material are required, and further lowering the dielectric constant is required.
[0005]
In response to such demands for higher performance, a method of reducing the density and lowering the relative dielectric constant by forming fine holes in the inorganic oxide film, which is an inorganic material, is being studied. The relative permittivity of air is 1, and reducing the relative permittivity by introducing air into the film is described in US Pat. No. 3,883,452 to Scheuerlein et al. (US Pat. No. 3,883,452, issued May 13, 1975). From the method of producing a foamed polymer having an average pore size of However, in order to be an effective insulator by introducing air into the film, the film thickness needs to be on the order of sub-micrometer, has an averaged relative dielectric constant, and the mechanical properties of the film itself Must be able to withstand each step. At present, an inorganic material that overcomes such problems has not yet been obtained.
[0006]
On the other hand, in organic materials, a technique for obtaining submicrometer-order micropores is disclosed in US Pat. No. 5,776,990 to Hedrick et al. (Issued on July 7, 1998). It is disclosed to produce a resin having fine pores on the order of meters. It is known that block copolymers are phase-separated on the order of sub-micrometers (T. Hashimoto, M. Shibayama, M. Fujimura and H. Kawai, "Microphase Separation and the Polymer-Polymer-Polymer-Polymer-Interpolymer-Polymer-Polymer-Interpolymer-Polymer-Polymer-Polymer-Polymer-Polymer-Polymer-Polymer-Polymer-Polymer-Polymer-Interior-Polymer" Science and Technology ", p. 63, Ed. By DJ Meier (Academic Pub., 1983), in which polymers with low ceiling temperatures are easily decomposed, and in the field of polymer chemistry. It is generally well known. However, in order to obtain a resin composition having micropores while satisfying not only the relative permittivity but also mechanical properties, electrical properties, water absorption resistance, and heat resistance, it is necessary to use a resin, a blocking technique, and a thermally decomposable component. The choice of combinations is very limited, and none can satisfy all the characteristics.
[0007]
[Problems to be solved by the invention]
An object of the present invention is to provide a material for an insulating film, a coating varnish for an insulating film, and an insulating film using the same, which maintain excellent heat resistance and reduce the dielectric constant in semiconductor applications.
[0008]
[Means for Solving the Problems]
The present inventors have conducted intensive studies in view of the conventional problems as described above. As a result, an insulating film material comprising a composition having a polyamide having a specific structure and a thermally decomposable oligomer has been developed. Were found to be satisfied, and further studies were made, and the present invention was completed.
[0009]
That is, the present invention is a material for an insulating film, which is characterized in that a polyamide comprising a repeating unit represented by the general formula (A) and a thermally decomposable oligomer form a uniform mixture.
[0010]
Embedded image
Figure 2004087336
[0011]
(However, m and n in the formula are integers satisfying m> 0, n ≧ 0, 2 ≦ m + n ≦ 1000, and 0.05 ≦ m / (m + n) ≦ 1.
Also, R 1 ~ R 4 Is a hydrogen atom or a monovalent organic group; X is selected from the structure represented by formula (B); 1 Represents at least one group selected from the group consisting of the structures represented by the formulas (C), (D), (E), and (F). Y 2 Represents a group selected from the structure represented by the formula (G). In the general formula (A), the arrangement of the repeating units may be blockwise or random. )
[0012]
Embedded image
Figure 2004087336
[0013]
Embedded image
Figure 2004087336
[0014]
Embedded image
Figure 2004087336
[0015]
Embedded image
Figure 2004087336
[0016]
Embedded image
Figure 2004087336
[0017]
Embedded image
Figure 2004087336
[0018]
(However, in the formulas (B) and (G), X 1 Represents a group selected from the structure represented by the formula (H). R in the formula (D) represents a naphthalene group, a phenyl group, or an alkyl group. In the structures represented by the formulas (B), (D), (E), (F), (G), and (H), a hydrogen atom on a benzene ring is a methyl group, It may be substituted with at least one group selected from the group consisting of ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, t-butyl group, fluorine atom, and trifluoromethyl group. )
[0019]
Embedded image
Figure 2004087336
[0020]
Further, the present invention provides a coating varnish capable of forming an insulating film, comprising the insulating film material and an organic solvent capable of uniformly dissolving the insulating film material. Yes, further comprises a resin layer having a main structure of polybenzoxazole obtained by subjecting the insulating film material or coating varnish to a heat treatment to effect a crosslinking reaction and a condensation reaction, and having fine pores. Insulating film.
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
In the present invention, at least one skeleton of ethynyl, phenylethynyl, alkylethynyl, biphenylene, and internal acetylene, which are crosslinked by heating, is introduced into the main chain of the polyamide which is an essential component, and polybenzoxazole is obtained by a ring-closing reaction of an amide group. Along with the conversion to ethynyl, phenylethynyl, alkylethynyl, biphenylene, and an internal acetylene skeleton, the resin structure is made three-dimensional, whereby a resin having high heat resistance can be obtained. Then, the thermally decomposable oligomer in the insulating film material is thermally decomposed at the time of heating the resin and volatilized to form micropores in the resin film having a polybenzoxazole resin as a main structure. It is the gist of the present invention to obtain a porous insulating film having both characteristics.
[0022]
In the present invention, the polyamide, which is an essential component, comprises at least one bisaminophenol compound having any of the tetravalent groups represented by the formula (B), and a compound represented by the formula (C) or (D). Or at least one dicarboxylic acid having any of the divalent groups represented by formulas (E) and (F), or as a dicarboxylic acid, the dicarboxylic acid and the formula (G) A dicarboxylic acid having any of the divalent groups represented is used in combination with a conventional acid chloride method, an activated ester method, a condensation reaction in the presence of a dehydrating condensing agent such as polyphosphoric acid and dicyclohexylcarbodiimide, and the like. Can be obtained by the following method. Further, a polyamide having at least one skeleton of ethynyl, phenylethynyl, alkylethynyl, biphenylene, and internal acetylene is combined with another polyamide of a type that does not undergo a cross-linking reaction, and is used to form an interpenetrating network structure. By doing so, it is also possible to obtain a resin having high heat resistance. In this case, ethynyl, phenylethynyl, alkylethynyl, biphenylene, and a polyamide having no internal acetylene skeleton are at least one of bisaminophenol compounds having any of the tetravalent groups represented by the formula (B). It can be obtained by a similar method using a species and at least one dicarboxylic acid having any of the divalent groups represented by the formula (G).
[0023]
As the bisaminophenol compound having a tetravalent group represented by the formula (B) used in the present invention, 2,4-diaminoresorcinol, 4,6-diaminoresorcinol, 2,2-bis (3-amino- 4-hydroxyphenyl) hexafluoropropane, 2,2-bis (4-amino-3-hydroxyphenyl) hexafluoropropane, 2,2-bis (3-amino-4-hydroxyphenyl) propane, 2,2-bis (4-amino-3-hydroxyphenyl) propane, 3,3'-diamino-4,4'-dihydroxydiphenylsulfone, 4,4'-diamino-3,3'-dihydroxydiphenylsulfone, 3,3'-diamino -4,4'-dihydroxybiphenyl, 4,4'-diamino-3,3'-dihydroxybiphenyl, 9,9-bis (4-((4- Mino-3-hydroxy) phenoxy) phenyl) fluorene, 9,9-bis (4-((3-amino-4-hydroxy) phenoxy) phenyl) fluorene, 9,9-bis ((4-amino-3-hydroxy )) Phenyl)) fluorene, 9,9-bis ((3-amino-4-hydroxy) phenyl)) fluorene, 3,3′-diamino-4,4′-dihydroxydiphenyl ether, 4,4′-diamino-3, 3'-dihydroxyphenyl ether, 2,2-bis (3-amino-4-hydroxy-2-trifluoromethylphenyl) propane, 2,2-bis (4-amino-3-hydroxy-2-trifluoromethylphenyl ) Propane, 2,2-bis (3-amino-4-hydroxy-5-trifluoromethylphenyl) propane, 2,2-bis (4-a No-3-hydroxy-5-trifluoromethylphenyl) propane, 2,2-bis (3-amino-4-hydroxy-6-trifluoromethylphenyl) propane, 2,2-bis (4-amino-3- Hydroxy-6-trifluoromethylphenyl) propane, 2,2-bis (3-amino-4-hydroxy-2-trifluoromethylphenyl) hexafluoropropane, 2,2-bis (4-amino-3-hydroxy- 2-trifluoromethylphenyl) hexafluoropropane, 2,2-bis (3-amino-4-hydroxy-5-trifluoromethylphenyl) hexafluoropropane, 2,2-bis (4-amino-3-hydroxy- 5-trifluoromethylphenyl) hexafluoropropane, 2,2-bis (3-amino-4-hydroxy- -Trifluoromethylphenyl) hexafluoropropane, 2,2-bis (4-amino-3-hydroxy-6-trifluoromethylphenyl) hexafluoropropane, 3,3'-diamino-4,4'-dihydroxy-2 , 2'-bis (trifluoromethyl) biphenyl, 4,4'-diamino-3,3'-dihydroxy-2,2'-bis (trifluoromethyl) biphenyl, 3,3'-diamino-4,4 '-Dihydroxy-5,5'-bis (trifluoromethyl) biphenyl, 4,4'-diamino-3,3'-dihydroxy-5,5'-bis (trifluoromethyl) biphenyl, 3,3'-diamino- 4,4'-dihydroxy-6,6'-bis (trifluoromethyl) biphenyl, 4,4'-diamino-3,3'-dihydroxy-6,6'-bis (trifluoromethyl ) Biphenyl and the like. These may be used alone or in combination of two or more.
[0024]
Examples of the dicarboxylic acid having an ethynyl skeleton having a divalent group represented by the formula (C) used in the present invention include 3-ethynylphthalic acid, 4-ethynylphthalic acid, 2-ethynylisophthalic acid, and 4-ethynylisophthalic acid. Ethynyl isophthalic acid, 5-ethynyl isophthalic acid, 2-ethynyl terephthalic acid, 3-ethynyl terephthalic acid, 2-ethynyl-1,5-naphthalenedicarboxylic acid, 3-ethynyl-1,5-naphthalenedicarboxylic acid, 4-ethynyl- 1,5-naphthalenedicarboxylic acid, 1-ethynyl-2,6-naphthalenedicarboxylic acid, 3-ethynyl-2,6-naphthalenedicarboxylic acid, 4-ethynyl-2,6-naphthalenedicarboxylic acid, 2-ethynyl-1, 6-naphthalenedicarboxylic acid, 3-ethynyl-1,6-naphthalenedicarboxylic acid, 4-ethynyl-1,6-naphthale Dicarboxylic acid, 5-ethynyl-1,6-naphthalenedicarboxylic acid, 7-ethynyl-1,6-naphthalenedicarboxylic acid, 8-ethynyl-1,6-naphthalenedicarboxylic acid, 3,3′-diethynyl-2,2 ′ -Biphenyldicarboxylic acid, 4,4'-diethynyl-2,2'-biphenyldicarboxylic acid, 5,5'-diethynyl-2,2'-biphenyldicarboxylic acid, 6,6'-diethynyl-2,2'-biphenyl Dicarboxylic acid, 2,2'-diethynyl-3,3'-biphenyldicarboxylic acid, 4,4'-diethynyl-3,3'-biphenyldicarboxylic acid, 5,5'-diethynyl-3,3'-biphenyldicarboxylic acid 6,6′-diethynyl-3,3′-biphenyldicarboxylic acid, 2,2′-diethynyl-4,4′-biphenyldicarboxylic acid, 3,3′-diethynyl-4,4′-biph Enyldicarboxylic acid, 2,2-bis (2-carboxy-3-ethynylphenyl) propane, 2,2-bis (2-carboxy-4-ethynylphenyl) propane, 2,2-bis (2-carboxy-5- Ethynylphenyl) propane, 2,2-bis (2-carboxy-6-ethynylphenyl) propane, 2,2-bis (3-carboxy-2-ethynylphenyl) propane, 2,2-bis (3-carboxy-4) -Ethynylphenyl) propane, 2,2-bis (3-carboxy-5-ethynylphenyl) propane, 2,2-bis (3-carboxy-6-ethynylphenyl) propane, 2,2-bis (4-carboxy- 2-ethynylphenyl) propane, 2,2-bis (4-carboxy-3-ethynylphenyl) propane, 2,2-bis (2-carboxy -4-ethynylphenyl) hexafluoropropane, 2,2-bis (3-carboxy-5-ethynylphenyl) hexafluoropropane, 2,2-bis (4-carboxy-2-ethynylphenyl) hexafluoropropane, 2-bis (4-carboxy-2-ethynylphenyl) hexafluoropropane, 4-ethynyl-1,3-dicarboxycyclopropane, 5-ethynyl-2,2-dicarboxycyclopropane, and the like. It is not limited. These may be used alone or in combination of two or more. It is also possible to use a combination of two or more bisaminophenol compounds.
[0025]
Examples of the dicarboxylic acid having a divalent group represented by formula (D) used in the present invention include 3-phenylethynylphthalic acid, 4-phenylethynylphthalic acid, 2-phenylethynylisophthalic acid, and 4-phenyl Ethynylisophthalic acid, 5-phenylethynylisophthalic acid, 2-phenylethynylterephthalic acid, 3-phenylethynylterephthalic acid, 2-phenylethynyl-1,5-naphthalenedicarboxylic acid, 3-phenylethynyl-1,5-naphthalenedicarboxylic acid 4-phenylethynyl-1,5-naphthalenedicarboxylic acid, 1-phenylethynyl-2,6-naphthalenedicarboxylic acid, 3-phenylethynyl-2,6-naphthalenedicarboxylic acid, 4-phenylethynyl-2,6-naphthalene Dicarboxylic acid, 2-phenylethynyl-1,6-naphtha Dicarboxylic acid, 3-phenylethynyl-1,6-naphthalenedicarboxylic acid, 4-phenylethynyl-1,6-naphthalenedicarboxylic acid, 5-phenylethynyl-1,6-naphthalenedicarboxylic acid, 7-phenylethynyl-1, 6-naphthalenedicarboxylic acid, 8-phenylethynyl-1,6-naphthalenedicarboxylic acid, 3,3'-diphenylethynyl-2,2'-biphenyldicarboxylic acid, 4,4'-diphenylethynyl-2,2'-biphenyl Dicarboxylic acid, 5,5'-diphenylethynyl-2,2'-biphenyldicarboxylic acid, 6,6'-diphenylethynyl-2,2'-biphenyldicarboxylic acid, 2,2'-diphenylethynyl-3,3'- Biphenyl dicarboxylic acid, 4,4'-diphenylethynyl-3,3'-biphenyl dicarboxylic acid, 5,5'-di Enylethynyl-3,3'-biphenyldicarboxylic acid, 6,6'-diphenylethynyl-3,3'-biphenyldicarboxylic acid, 2,2'-diphenylethynyl-4,4'-biphenyldicarboxylic acid, 3,3'- Diphenylethynyl-4,4'-biphenyldicarboxylic acid, 2,2-bis (2-carboxy-3-phenylethynylphenyl) propane, 2,2-bis (2-carboxy-4-phenylethynylphenyl) propane, 2, 2-bis (2-carboxy-5-phenylethynylphenyl) propane, 2,2-bis (2-carboxy-6-phenylethynylphenyl) propane, 2,2-bis (3-carboxy-2-phenylethynylphenyl) Propane, 2,2-bis (3-carboxy-4-phenylethynylphenyl) propane, 2,2-bis 3-carboxy-5-phenylethynylphenyl) propane, 2,2-bis (3-carboxy-6-phenylethynylphenyl) propane, 2,2-bis (4-carboxy-2-phenylethynylphenyl) propane, 2-bis (4-carboxy-3-phenylethynylphenyl) propane, 2,2-bis (2-carboxy-4-phenylethynylphenyl) hexafluoropropane, 2,2-bis (3-carboxy-5-phenylethynyl) Phenyl) hexafluoropropane, 2,2-bis (4-carboxy-2-phenylethynylphenyl) hexafluoropropane, 2,2-bis (4-carboxy-2-phenylethynylphenyl) hexafluoropropane, 4-phenylethynyl -1,3-dicarboxycyclopropane, 5- Eniruechiniru 2,2-carboxycyclobutyl propane. Examples where R is an alkyl group include 3-hexynylphthalic acid, 4-hexynylphthalic acid, 2-hexynylisophthalic acid, 4-hexynylisophthalic acid, 5-hexynylisophthalic acid, and 2-hexynyl Terephthalic acid, 3-hexynylterephthalic acid, 2-hexynyl-1,5-naphthalenedicarboxylic acid, 3-hexynyl-1,5-naphthalenedicarboxylic acid, 4-hexynyl-1,5-naphthalenedicarboxylic acid, 1-hexynyl-2,6-naphthalenedicarboxylic acid, 3-hexynyl-2,6-naphthalenedicarboxylic acid, 4-hexynyl-2,6-naphthalenedicarboxylic acid, 2-hexynyl-1,6-naphthalenedicarboxylic acid Acid, 3-hexynyl-1,6-naphthalenedicarboxylic acid, 4-hexynyl-1,6-naphthalenedicarboxylic acid, 5-hexynyl 1,6-naphthalenedicarboxylic acid, 7-hexynyl-1,6-naphthalenedicarboxylic acid, 8-hexynyl-1,6-naphthalenedicarboxylic acid, 3,3′-dihexynyl-2,2′-biphenyldicarboxylic acid Acid, 4,4'-dihexynyl-2,2'-biphenyldicarboxylic acid, 5,5'-dihexynyl-2,2'-biphenyldicarboxylic acid, 6,6'-dihexynyl-2,2'- Biphenyldicarboxylic acid, 2,2'-dihexynyl-3,3'-biphenyldicarboxylic acid, 4,4'-dihexynyl-3,3'-biphenyldicarboxylic acid, 5,5'-dihexynyl-3 , 3'-biphenyldicarboxylic acid, 6,6'-dihexynyl-3,3'-biphenyldicarboxylic acid, 2,2'-dihexynyl-4,4'-biphenyldicarboxylic acid, 3,3'-di Hexinyl-4,4'-biphenyl Rudicarboxylic acid, 2,2-bis (2-carboxy-3-hexynylphenyl) propane, 2,2-bis (2-carboxy-4-hexynylphenyl) propane, 2,2-bis (2- Carboxy-5-hexynylphenyl) propane, 2,2-bis (2-carboxy-6-hexynylphenyl) propane, 2,2-bis (3-carboxy-2-hexynylphenyl) propane, , 2-Bis (3-carboxy-4-hexynylphenyl) propane, 2,2-bis (3-carboxy-5-hexynylphenyl) propane, 2,2-bis (3-carboxy-6-hexane) Xynylphenyl) propane, 2,2-bis (4-carboxy-2-hexynylphenyl) propane, 2,2-bis (4-carboxy-3-hexynylphenyl) propane, 2,2-bi (2-carboxy-4-hexynylphenyl) hexafluoropropane, 2,2-bis (3-carboxy-5-hexynylphenyl) hexafluoropropane, 2,2-bis (4-carboxy-2- (Xynylphenyl) hexafluoropropane, 2,2-bis (4-carboxy-2-hexynylphenyl) hexafluoropropane, 4-hexynyl-1,3-dicarboxycyclopropane, 5-ethynyl-2,2 -Dicarboxycyclopropane and the like, but are not limited thereto. These may be used alone or in combination of two or more. It is also possible to use a combination of two or more bisaminophenol compounds.
[0026]
Examples of the dicarboxylic acid having a biphenylene skeleton having a divalent group represented by the formula (E) used in the present invention include 1,2-biphenylenedicarboxylic acid, 1,3-biphenylenedicarboxylic acid, and 1,4-biphenylenedicarboxylic acid. Biphenylenedicarboxylic acid, 1,5-biphenylenedicarboxylic acid, 1,6-biphenylenedicarboxylic acid, 1,7-biphenylenedicarboxylic acid, 1,8-biphenylenedicarboxylic acid, 2,3-biphenylenedicarboxylic acid, 2,6-biphenylenedicarboxylic acid Acids and 2,7-biphenylenedicarboxylic acid are listed, and from the performance of the obtained coating film, 2,6-biphenylenedicarboxylic acid and 2,7-biphenylenedicarboxylic acid are particularly preferred. These may be used alone or in combination of two or more.
[0027]
Examples of the dicarboxylic acid having a divalent group represented by the formula (F) used in the present invention include 4,4′-trandicarboxylic acid, 3,4′-trandicarboxylic acid, and 3,3′-trandicarboxylic acid. An acid, 2,4'-toldicarboxylic acid, 2,3'-toldicarboxylic acid, 2,2'-toldicarboxylic acid, etc. can be used alone or in combination of two or more.
[0028]
Examples of the dicarboxylic acid having a divalent group represented by the formula (G) used in the present invention include isophthalic acid, terephthalic acid, 4,4′-biphenyldicarboxylic acid, 3,4′-biphenyldicarboxylic acid, 3,3′-biphenyldicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 2,3-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 4,4′-sulfonylbisbenzoic acid, 3,4′-sulfonylbis Benzoic acid, 3,3'-sulfonylbisbenzoic acid, 4,4'-oxybisbenzoic acid, 3,4'-oxybisbenzoic acid, 3,3'-oxybisbenzoic acid, 2,2-bis (4-carboxyphenyl ) Propane, 2,2-bis (3-carboxyphenyl) propane, 2,2-bis (4-carboxyphenyl) hexafluoropropane, 2,2-bis (3-carboxy Phenyl) hexafluoropropane, 2,2′-dimethyl-4,4′-biphenyldicarboxylic acid, 3,3′-dimethyl-4,4′-biphenyldicarboxylic acid, 2,2′-dimethyl-3,3′- Biphenyldicarboxylic acid, 2,2'-bis (trifluoromethyl) -4,4'-biphenyldicarboxylic acid, 3,3'-bis (trifluoromethyl) -4,4'-biphenyldicarboxylic acid, 2,2 ' -Bis (trifluoromethyl) -3,3'-biphenyldicarboxylic acid, 9,9-bis (4- (4-carboxyphenoxy) phenyl) fluorene, 9,9-bis (4- (3-carboxyphenoxy) phenyl ) Fluorene, 4,4'-bis (4-carboxyphenoxy) biphenyl, 4,4'-bis (3-carboxyphenoxy) biphenyl, 3,4'-bis (4-carboxy) Phenoxy) biphenyl, 3,4′-bis (3-carboxyphenoxy) biphenyl, 3,3′-bis (4-carboxyphenoxy) biphenyl, 3,3′-bis (3-carboxyphenoxy) biphenyl, 4,4 ′ -Bis (4-carboxyphenoxy) -p-terphenyl, 4,4'-bis (4-carboxyphenoxy) -m-terphenyl, 3,4'-bis (4-carboxyphenoxy) -p-terphenyl, 3,3′-bis (4-carboxyphenoxy) -p-terphenyl, 3,4′-bis (4-carboxyphenoxy) -m-terphenyl, 3,3′-bis (4-carboxyphenoxy) -m -Terphenyl, 4,4'-bis (3-carboxyphenoxy) -p-terphenyl, 4,4'-bis (3-carboxyphenoxy) -m-terphenyl 3,4'-bis (3-carboxyphenoxy) -p-terphenyl, 3,3'-bis (3-carboxyphenoxy) -p-terphenyl, 3,4'-bis (3-carboxyphenoxy) -m -Terphenyl, 3,3'-bis (3-carboxyphenoxy) -m-terphenyl, 3-fluoroisophthalic acid, 2-fluoroisophthalic acid, 2-fluoroterephthalic acid, 2,4,5,6-tetrafluoro Examples include isophthalic acid, 2,3,5,6-tetrafluoroterephthalic acid, and 5-trifluoromethylisophthalic acid, which may be used alone or in combination of two or more.
[0029]
In the polyamide of the present invention, m and n in the formula (A), which is the number of repeating units having a cross-linking skeleton and the number of repeating units having no cross-linking skeleton, are as follows: m> 0, n ≧ 0 It is an integer satisfying 2 ≦ m + n ≦ 1000 and 0.05 ≦ m / (m + n) ≦ 1. The sum of m and n is preferably 5 or more and 100 or less. Here, when the sum of m and n is less than 2, the film-forming property is reduced, and the mechanical strength of the film becomes insufficient. On the other hand, if it exceeds 1,000, the molecular weight becomes too large, making it difficult to dissolve in a solvent, or even if dissolved, it becomes a viscous varnish, which is not suitable for practical use. It is essential that m and n are integers satisfying 0.05 ≦ m / (m + n) ≦ 1, and more preferably satisfying 0.5 ≦ m / (m + n) ≦ 1. When 0.05> m / (m + n), it means that the number of repeating units having a crosslinkable skeleton is small, and since the number of crosslinking reaction sites is small, heat resistance is not improved, and fine pores cannot be retained, Uneven micropores are not preferred.
[0030]
In the general formula (A), the arrangement of the repeating units may be block-like or random. For example, in the case of a block-like repeating unit, the molecular weight was increased by previously reacting a bisaminophenol compound with a dicarboxylic acid chloride having a divalent group selected from the groups represented by the formula (G). Thereafter, a bisaminophenol compound and a dicarboxylic acid having a divalent group contributing to crosslinking selected from the groups represented by formulas (C), (D), (E), and (F) It can be obtained by reacting with acid chloride. Conversely, a bisaminophenol compound and a divalent group contributing to crosslinking selected from the groups represented by formulas (C), (D), (E), and (F) And a dicarboxylic acid chloride having a divalent group selected from the groups represented by the formula (G). You may. In the case of a random repeating unit, a bisaminophenol compound and a dicarboxylic acid chloride having a divalent group selected from the groups represented by the formula (G) and the formula (C), the formula (D), and the formula (E) ) And a dicarboxylic acid chloride having a divalent group that contributes to crosslinking selected from the groups represented by the formula (F).
[0031]
The thermally decomposable oligomer used in the present invention must be an oligomer that thermally decomposes at a temperature lower than the thermal decomposition temperature of the polyamide and vaporizes a decomposed product. Specific examples include polyoxymethylene, polyoxyethylene, polyoxymethylene-oxyethylene copolymer, polyoxymethylene-oxypropylene copolymer, polyoxyalkylene such as polyoxyethylene-oxypropylene copolymer, Preferable examples include polymethyl methacrylate, polyurethane, poly α-methylstyrene, polystyrene, polyester, polyetherester, and polycaprolactone.
[0032]
The oligomer preferably has a number average molecular weight in the range of 100 to 40,000. More preferably, the number average molecular weight is 100 to 20,000, and still more preferably, the number average molecular weight is in the range of 100 to 10,000. If the molecular weight is less than 100, the voids after decomposition and vaporization are small and easily crushed, and the specific permittivity may not be reduced. On the other hand, when the molecular weight exceeds 40,000, the voids become too large, and the mechanical properties of the insulating film are extremely lowered, which may make the insulating film unusable.
[0033]
Regarding the blending amount of the oligomer in the insulating film material, it is preferable to blend 5 to 70 parts by weight of the oligomer with respect to 100 parts by weight of the polyamide. More preferably, it is 5 to 50 parts by weight, and still more preferably 5 to 40 parts by weight. Similarly, the amount of the oligomer component in the resin after the reaction preferably satisfies 5 to 70 parts by weight. If the amount is less than 5 parts by weight, the porosity in the insulating film may be small and the dielectric constant may be insufficiently reduced. If the amount is more than 70 parts by weight, the porosity in the film may increase and the porosity of the film may increase. There is a possibility that mechanical strength may be extremely reduced, voids may be continuous and non-uniform, and the dielectric constant may vary depending on the location.
[0034]
In the present invention, examples of the method for producing the polyamide include a conventional acid chloride method, an activated ester method, and a condensation reaction in the presence of a dehydrating condensing agent such as polyphosphoric acid or dicyclohexylcarbodiimide. For example, in the acid chloride method, an acid chloride to be used is prepared by first reacting a dicarboxylic acid with an excess amount of thionyl chloride at room temperature to 130 ° C. in the presence of a catalyst such as N, N-dimethylformamide to obtain an excess of chloride. After the thionyl is distilled off by heating and reduced pressure, the residue can be obtained by recrystallization with a solvent such as hexane. When the dicarboxylic acid chloride thus produced is used in combination with the other dicarboxylic acid, the acid chloride obtained in the same manner is usually combined with a bisaminophenol compound together with N-methyl-2-pyrrolidone, N, N- A polyamide is synthesized by dissolving in a polar solvent such as dimethylacetamide and dropping an acid acceptor such as pyridine and triethylamine at room temperature to -30 ° C. The reaction solution is dropped into a mixed solution of distilled water and isopropyl alcohol, and the precipitate is collected and dried to obtain a polyamide.
[0035]
In the insulating film material of the present invention, an additive is used depending on the purpose, in addition to the above polyamide and oligomer. Examples of the various additives include a surfactant, a coupling agent represented by a silane group, a radical initiator that generates an oxygen radical or a sulfur radical by heating, and a catalyst such as a disulfide.
[0036]
Further, the polyamide in the present invention is a compound represented by the formula (A): 1 And R 2 , And R 3 And R 4 When at least one of H is H, it is used together with a naphthoquinonediazide compound as a photosensitizing agent to obtain a positive photosensitive resin composition and R 1 And R 2 , And R 3 And R 4 When at least one of the groups is a group having a photocrosslinkable group such as a methacryloyl group, it can be used as a negative photosensitive resin composition by using a photoinitiator.
[0037]
As a method of using the insulating film material of the present invention, a polyamide and an oligomer can be uniformly dissolved in an appropriate organic solvent and used as a coating varnish. Specifically, the insulating film material is uniformly dissolved in an organic solvent, and applied to an appropriate support, for example, glass, fiber, metal, a silicon wafer, a ceramic substrate, or the like. Examples of the application method include dipping, screen printing, spraying, spin coating, roll coating, and the like. After application, the coating is heated and dried to volatilize the solvent, and a tack-free coating film can be obtained. After that, it is preferable to use a heat treatment to convert to a crosslinked polybenzoxazole resin. Further, by selecting a dicarboxylic acid component, a bisaminophenol component and a reactive oligomer component, it can be used as a polybenzoxazole resin soluble in a solvent.
[0038]
As the organic solvent for uniformly dissolving the insulating film material of the present invention, a solvent that completely dissolves the solid content is preferable. For example, N-methyl-2-pyrrolidone, γ-butyrolactone, N, N-dimethylacetamide, Dimethyl sulfoxide, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dibutyl ether, propylene glycol monomethyl ether, dipropylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, methyl lactate, ethyl lactate, butyl lactate, methyl-1,3-butylene glycol acetate, 1,3-butylene glycol-3-monomethyl ether, methyl pyruvate, ethyl pyruvate, methyl-3-methoxypropionate, methyl ethyl Ketone, methyl isobutyl ketone, cyclopentanone, cyclohexanone, and tetrahydrofuran, singly or may be used as a mixture of two or more. The amount used is not problematic as long as it can completely dissolve the insulating film material, and can be adjusted according to the intended use.
[0039]
The material for an insulating film of the present invention is obtained by evaporating the solvent in a temperature range of 80 ° C to 200 ° C and heating the coating film obtained as described above in a temperature range of 200 ° C to 500 ° C. The polyamide in the film material undergoes a cyclization condensation reaction and a cross-linking reaction to form a polybenzoxazole resin, and the oligomer in the insulating film material is thermally decomposed at this time, and the decomposition product is vaporized and volatilized, By forming micropores in a resin layer having a polybenzoxazole resin as a main structure, the insulating film of the present invention, which is a porous insulating film, can be obtained. The heat history at this time is also important for forming micropores.
[0040]
The size of the micropores in the insulating film having the micropores formed of the resin layer having the main structure of polybenzoxazole of the present invention depends on the use of the insulating film and the thickness of the film. Is preferably at least 1 μm or less, preferably 500 nm or less, more preferably 100 nm or less, and in applications such as interlayer insulating films for semiconductors, it is preferably 20 nm or less, more preferably 5 nm or less. In the interlayer insulating film for semiconductor, if the hole diameter is larger than 20 nm, the voids in the insulating film used between the wirings become non-uniform, and the electric characteristics are not constant. In addition, problems such as a decrease in mechanical strength of the film and an adverse effect on adhesiveness occur. However, 5 nm is not always necessary because there is an optimum film thickness and an optimum size of micropores depending on the use of the film.
[0041]
The porosity of the insulating film is preferably from 5% to 70%. It is more preferably from 5% to 50%, and still more preferably from 5% to 40%. If the porosity is less than 5%, there is a possibility that a sufficient decrease in the dielectric constant may not be achieved. If the porosity is larger than 70%, the mechanical strength of the film is reduced, and there is a possibility that problems such as adverse effects on the adhesiveness may occur.
[0042]
The insulating film material and the insulating film of the present invention can be used for forming an interlayer insulating film for a semiconductor, a protective film, an interlayer insulating film of a multilayer circuit, a cover coat of a flexible copper clad board, a solder resist film, a liquid crystal alignment film, and the like. I can do it.
[0043]
【Example】
Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited thereto.
[0044]
Using the films prepared in Examples and Comparative Examples, the dielectric constant, heat resistance, and glass transition temperature were measured by the following methods for property evaluation. Further, the cross section of the film was observed, and these results are summarized in Table 1.
[0045]
1. Relative permittivity
Based on JIS-K6911, the measurement was performed at a frequency of 100 KHz using a Hewlett-Packard HP-4284A Precision LCR meter.
[0046]
2. Heat-resistant
Using TG / DTA6200 manufactured by Seiko Instruments Inc., the temperature at a weight loss of 5% was measured under a flow rate of nitrogen gas of 200 mL / min and a heating rate of 10 ° C./min.
[0047]
3. Glass transition temperature (Tg)
Using a DMS6100 manufactured by Seiko Instruments Inc., measurement was performed in a tensile mode under a flow rate of nitrogen gas of 300 mL / min under a measurement frequency of 1 Hz and a temperature rising rate of 3 ° C./min. The glass transition temperature was taken.
[0048]
4. Water absorption
A 5 cm square, 10 μm thick test film was immersed in pure water at 23 ° C. for 24 hours, and the weight change rate was calculated.
[0049]
5. Film cross-section observation
With respect to the cross section of the film, the presence or absence of micropores and the pore size were observed using a transmission electron microscope (TEM).
[0050]
"Synthesis example 1"
10 g (96 mmol) of styrene was dissolved in 100 g of tetrahydrofuran dried under a dry nitrogen atmosphere, cooled to -78 ° C, and 0.77 ml of 1.3 M sec-butyllithium (solvent: cyclohexane) was added thereto as a reaction reagent. And stirred for 3 hours. Subsequently, 0.044 g (1.0 mmol) of ethylene epoxide was added thereto, and the mixture was stirred for 3 hours. Then, 3 g of methanol was added, and the solution was concentrated to remove the solvent, dissolved in 100 g of tetrahydrofuran, and filtered. The obtained filtrate was concentrated under reduced pressure and dried to obtain a styrene oligomer having a hydroxyl group at a terminal and a molecular weight of 9,600.
[0051]
"Synthesis example 3"
A styrene oligomer having a hydroxyl group at the terminal and a molecular weight of 50,000 was obtained in the same manner as in "Synthesis Example 1" except that 10 g (96 mmol) of styrene was replaced with 49.9 g (480 mmol) of styrene.
[0052]
(Example 1)
0.636 g (2.94 mmol) of 3,3′-diamino-4,4′-dihydroxybiphenyl was dissolved in 10 mL of dried N-methyl-2-pyrrolidone, and 4-ethynyl-2,6-naphthalene was added to this solution. 0.831 g (3.0 mmol) of dicarboxylic acid chloride was added at 10 ° C. under dry nitrogen. After the addition, the mixture was stirred at 10 ° C for 1 hour, and then at 20 ° C for 1 hour. After reaching 10 ° C., 0.668 g (6.6 mmol) of triethylamine was added. After the addition, the mixture was stirred at 10 ° C for 1 hour, and then at 20 ° C for 20 hours. After completion of the reaction, the reaction solution was filtered to remove triethylamine hydrochloride, and the filtered solution was added dropwise to a mixed solution of 200 mL of ion-exchanged water and 200 mL of isopropanol, and the precipitate was collected and dried to obtain 1.19 g of a polymer. Got. The molecular weight of the obtained polymer was determined in terms of polystyrene using GPC manufactured by Tosoh Corporation. The weight average molecular weight was 25,600 and the molecular weight distribution was 2.23.
[0053]
0.64 g of the obtained polymer and 0.36 g (0.038 mmol, number average molecular weight 9,600) of a styrene oligomer were dissolved in 10.00 g of γ-butyrolactone, and the solution was filtered through a Teflon (R) filter having a pore size of 0.2 μm. I got a varnish. The varnish was applied on a silicon wafer on which aluminum was deposited using a spin coater. At this time, the rotation speed and time of the spin coater were set so that the film thickness after the heat treatment was 1 to 10 μm. After application, the coating was dried on a hot plate at 120 ° C. for 240 seconds, and then heated at 300 ° C. for 60 minutes using an oven in which nitrogen was introduced and the oxygen concentration was controlled to 100 ppm or less, so that polybenzoxazole containing oligomers was obtained. A resin film was obtained. Further, the oligomer group was decomposed by heating at 400 ° C. for 60 minutes to obtain a polybenzoxazole resin film having pores. Aluminum was vapor-deposited on the film to perform patterning to form an electrode having a predetermined size. The aluminum on the silicon wafer side and the capacitance by this electrode are measured. After the measurement, the electrode adjacent part of the film is etched by oxygen plasma, and the film thickness is measured by a surface roughness meter. The calculated value was 2.10. When the cross section of this film was observed with a TEM, the obtained voids were discontinuous with an average pore diameter of 15 nm. Table 1 also shows the heat resistance, Tg, and water absorption.
[0054]
(Example 2)
0.584 g (2.70 mmol) of 3,3′-diamino-4,4′-dihydroxybiphenyl is dissolved in 10 mL of dried N-methyl-2-pyrrolidone, and 5-ethynyl-terephthalic acid chloride is added to the solution. 681 g (3.0 mmol) were added at 10 ° C. under dry nitrogen. After the addition, the mixture was stirred at 10 ° C for 1 hour, and then at 20 ° C for 1 hour. After reaching 10 ° C., 0.668 g (6.6 mmol) of triethylamine was added. After the addition, the mixture was stirred at 10 ° C for 1 hour, and then at 20 ° C for 20 hours. After completion of the reaction, the reaction solution was filtered to remove triethylamine hydrochloride, and the filtered solution was added dropwise to a mixed solution of 200 mL of ion-exchanged water and 200 mL of isopropanol, and the precipitate was collected and dried to obtain 1.01 g of a polymer. Got. When the molecular weight of the obtained polymer was determined in terms of polystyrene using GPC manufactured by Tosoh Corporation, the weight average molecular weight was 20,000 and the molecular weight distribution was 2.20.
0.52 g of the obtained polymer and 0.48 g (0.17 mmol, number average molecular weight 2,800) of poly (ethylene glycol) -block-poly (propylene glycol) -block-poly (ethylene glycol) manufactured by Aldrich Co. -Dissolved in 10 g of butyrolactone to prepare a varnish in the same manner as in Example 1 to obtain an evaluation sample. Table 1 summarizes the measurement results.
[0055]
(Example 3)
1.084 g (2.85 mmol) of 9,9-bis (4-hydroxy-3-aminophenyl) fluorene was dissolved in 10 mL of dried N-methyl-2-pyrrolidone, and 5-ethynylisophthalic chloride was added to the solution. 0.681 g (3.0 mmol) were added at 10 ° C. under dry nitrogen. After the addition, the mixture was stirred at 10 ° C for 1 hour, and then at 20 ° C for 1 hour. After reaching 10 ° C., 0.668 g (6.6 mmol) of triethylamine was added. After the addition, the mixture was stirred at 10 ° C for 1 hour, and then at 20 ° C for 20 hours. After completion of the reaction, the reaction solution was filtered to remove triethylamine hydrochloride, and the filtered solution was added dropwise to a mixed solution of 200 mL of ion-exchanged water and 200 mL of isopropanol, and the precipitate was collected and dried to obtain 1.48 g of a polymer. Got. When the molecular weight of the obtained polymer was determined in terms of polystyrene using GPC manufactured by Tosoh Corporation, the weight average molecular weight was 25,200 and the molecular weight distribution was 2.20.
A varnish was prepared in the same manner as in Example 1 by dissolving 0.66 g of the obtained polymer and 10 g of γ-butyrolactone, 0.34 g (0.085 mmol, number average molecular weight 4,000) of poly (propylene glycol) manufactured by Aldrich. An evaluation sample was obtained. Table 1 summarizes the measurement results.
[0056]
(Example 4)
0.616 g (2.85 mmol) of 4,4′-diamino-3,3′-dihydroxybiphenyl was dissolved in 10 mL of dried N-methyl-2-pyrrolidone, and 5-ethynyl-terephthalic acid chloride was added to the solution. 341 g (1.5 mmol) and 0.380 g (1.5 mmol) of 2,6-naphthalenedicarboxylic acid chloride were added at 10 ° C. under dry nitrogen. After the addition, the mixture was stirred at 10 ° C for 1 hour, and then at 20 ° C for 1 hour. After reaching 10 ° C., 0.668 g (6.6 mmol) of triethylamine was added. After the addition, the mixture was stirred at 10 ° C for 1 hour, and then at 20 ° C for 20 hours. After completion of the reaction, the reaction solution was filtered to remove triethylamine hydrochloride, and the filtered solution was dropped into a mixed solution of 200 mL of ion-exchanged water and 200 mL of isopropanol, and the precipitate was collected and dried to obtain copolymer 1. 07 g were obtained. The molecular weight of the obtained copolymer was determined in terms of polystyrene using GPC manufactured by Tosoh Corporation. The weight average molecular weight was 25,000 and the molecular weight distribution was 2.25.
0.73 g of the obtained polymer and 0.27 g (0.11 mmol, number average molecular weight 2,500) of γ-butyrolactone manufactured by Aldrich Co. were dissolved in 10 g of γ-butyrolactone to prepare a varnish in the same manner as in Example 1. An evaluation sample was obtained. Table 1 summarizes the measurement results.
[0057]
(Example 5)
0.662 g (2.85 mmol) of bis (3-amino-4-hydroxyphenyl) ether is dissolved in 10 mL of dry N-methyl-2-pyrrolidone, and 0.909 g of 5-phenylethynylisophthalic chloride is added to this solution. 3.0 mmol) was added at 10 ° C. under dry nitrogen. After the addition, the mixture was stirred at 10 ° C for 1 hour, and then at 20 ° C for 1 hour. After reaching 10 ° C., 0.668 g (6.6 mmol) of triethylamine was added. After the addition, the mixture was stirred at 10 ° C for 1 hour, and then at 20 ° C for 20 hours. After completion of the reaction, the reaction solution was filtered to remove triethylamine hydrochloride, and the filtered solution was added dropwise to a mixed solution of 200 mL of ion-exchanged water and 200 mL of isopropanol, and the precipitate was collected and dried to obtain 1.30 g of a polymer. Got. When the molecular weight of the obtained polymer was determined in terms of polystyrene using GPC manufactured by Tosoh Corporation, the weight average molecular weight was 25,000 and the molecular weight distribution was 2.20.
0.64 g of the obtained polymer and 0.36 g (0.09 mmol, number average molecular weight 4,000) of γ-butyrolactone manufactured by Aldrich Co. were dissolved in 10 g of γ-butyrolactone to prepare a varnish in the same manner as in Example 1. An evaluation sample was obtained. Table 1 summarizes the measurement results.
[0058]
(Example 6)
0.616 g (2.85 mmol) of 3,3′-diamino-4,4′-dihydroxybiphenyl was dissolved in 10 mL of dried N-methyl-2-pyrrolidone, and 2,7-biphenylenedicarboxylic acid chloride was added to this solution. 0.828 g (3.0 mmol) were added at 10 ° C. under dry nitrogen. After the addition, the mixture was stirred at 10 ° C for 1 hour, and then at 20 ° C for 1 hour. After reaching 10 ° C., 0.668 g (6.6 mmol) of triethylamine was added. After the addition, the mixture was stirred at 10 ° C for 1 hour, and then at 20 ° C for 20 hours. After completion of the reaction, the reaction solution was filtered to remove triethylamine hydrochloride, and the filtered solution was added dropwise to a mixed solution of 200 mL of ion-exchanged water and 200 mL of isopropanol, and the precipitate was collected and dried to obtain 1.17 g of a polymer. Got. The molecular weight of the obtained polymer was determined in terms of polystyrene using GPC manufactured by Tosoh Corporation. The weight-average molecular weight was 25,300 and the molecular weight distribution was 2.21.
A varnish was prepared in the same manner as in Example 1 by dissolving 0.62 g of the obtained polymer and 10 g of γ-butyrolactone 0.38 g (0.095 mmol, number average molecular weight 4,000) of poly (propylene glycol) manufactured by Aldrich. An evaluation sample was obtained. Table 1 summarizes the measurement results.
[0059]
(Example 7)
0.616 g (2.85 mmol) of 4,3′-diamino-3,3′-dihydroxybiphenyl is dissolved in 10 mL of dry N-methyl-2-pyrrolidone, and 4,4′-trandicarboxylic acid chloride is added to this solution. 0.906 g (3.0 mmol) was added at 10 ° C. under dry nitrogen. After the addition, the mixture was stirred at 10 ° C for 1 hour, and then at 20 ° C for 1 hour. After reaching 10 ° C., 0.668 g (6.6 mmol) of triethylamine was added. After the addition, the mixture was stirred at 10 ° C for 1 hour, and then at 20 ° C for 20 hours. After completion of the reaction, the reaction solution was filtered to remove triethylamine hydrochloride, and the filtered solution was added dropwise to a mixed solution of 200 mL of ion-exchanged water and 200 mL of isopropanol, and the precipitate was collected and dried to obtain 1.25 g of a polymer. Got. When the molecular weight of the obtained polymer was determined in terms of polystyrene using GPC manufactured by Tosoh Corporation, the weight average molecular weight was 25,100 and the molecular weight distribution was 2.21.
The varnish was prepared in the same manner as in Example 1 by dissolving 0.63 g of the obtained polymer and 10 g of γ-butyrolactone 0.33 g (0.0825 mmol, number average molecular weight 4,000) of poly (propylene glycol) manufactured by Aldrich. An evaluation sample was obtained. Table 1 summarizes the measurement results.
[0060]
(Comparative Example 1)
0.636 g (2.94 mmol) of 3,3′-diamino-4,4′-dihydroxybiphenyl was dissolved in 10 mL of dried N-methyl-2-pyrrolidone, and 4-ethynyl-2,6-naphthalene was added to this solution. 0.831 g (3.0 mmol) of dicarboxylic acid chloride was added at 10 ° C. under dry nitrogen. After the addition, the mixture was stirred at 10 ° C for 1 hour, and then at 20 ° C for 1 hour. After reaching 10 ° C., 0.668 g (6.6 mmol) of triethylamine was added. After the addition, the mixture was stirred at 10 ° C for 1 hour, and then at 20 ° C for 20 hours. After completion of the reaction, the reaction solution was filtered to remove triethylamine hydrochloride, and the filtered solution was dropped into a mixed solution of 200 mL of ion-exchanged water and 200 mL of isopropanol, and the precipitate was collected and dried to obtain 1.19 g of a polymer. Got. The molecular weight of the obtained polymer was determined in terms of polystyrene using GPC manufactured by Tosoh Corporation. The weight average molecular weight was 25,600 and the molecular weight distribution was 2.23. 1.00 g of the obtained polymer was dissolved in 10 g of γ-butyrolactone, and a varnish was prepared in the same manner as in Example 1 to obtain an evaluation sample. Table 1 summarizes the measurement results.
[0061]
(Comparative Example 2)
0.584 g (2.70 mmol) of 3,3′-diamino-4,4′-dihydroxybiphenyl is dissolved in 10 mL of dried N-methyl-2-pyrrolidone, and 0.609 g of terephthalic acid chloride (3. 0 mmol) was added at 10 ° C. under dry nitrogen. After the addition, the mixture was stirred at 10 ° C for 1 hour, and then at 20 ° C for 1 hour. After reaching 10 ° C., 0.668 g (6.6 mmol) of triethylamine was added. After the addition, the mixture was stirred at 10 ° C for 1 hour, and then at 20 ° C for 20 hours. After the completion of the reaction, the reaction solution was filtered to remove triethylamine hydrochloride, and the filtered solution was added dropwise to a mixed solution of 200 mL of ion-exchanged water and 200 mL of isopropanol, and the precipitate was collected and dried to obtain 0.94 g of a polymer. Got. When the molecular weight of the obtained polymer was determined in terms of polystyrene using GPC manufactured by Tosoh Corporation, the weight average molecular weight was 20,000 and the molecular weight distribution was 2.20.
0.52 g of the obtained polymer and 0.48 g (0.17 mmol, number average molecular weight 2,800) of poly (ethylene glycol) -block-poly (propylene glycol) -block-poly (ethylene glycol) manufactured by Aldrich Co. -Dissolved in 10 g of butyrolactone to prepare a varnish in the same manner as in Example 1 to obtain an evaluation sample. Table 1 summarizes the measurement results.
[0062]
(Comparative Example 3)
0.584 g (2.70 mmol) of 3,3′-diamino-4,4′-dihydroxybiphenyl is dissolved in 10 mL of dried N-methyl-2-pyrrolidone, and 5-ethynyl-terephthalic acid chloride is added to the solution. 681 g (3.0 mmol) were added at 10 ° C. under dry nitrogen. After the addition, the mixture was stirred at 10 ° C for 1 hour, and then at 20 ° C for 1 hour. After reaching 10 ° C., 0.668 g (6.6 mmol) of triethylamine was added. After the addition, the mixture was stirred at 10 ° C for 1 hour, and then at 20 ° C for 20 hours. After completion of the reaction, the reaction solution was filtered to remove triethylamine hydrochloride, and the filtered solution was added dropwise to a mixed solution of 200 mL of ion-exchanged water and 200 mL of isopropanol, and the precipitate was collected and dried to obtain 1.01 g of a polymer. Got. When the molecular weight of the obtained polymer was determined in terms of polystyrene using GPC manufactured by Tosoh Corporation, the weight average molecular weight was 20,000 and the molecular weight distribution was 2.20.
0.38 g of the obtained polymer and 0.72 g (0.257 mmol, number average molecular weight 2,800) of poly (ethylene glycol) -block-poly (propylene glycol) -block-poly (ethylene glycol) manufactured by Aldrich Co. -Dissolved in 10 g of butyrolactone to prepare a varnish in the same manner as in Example 1 to obtain an evaluation sample. Table 1 summarizes the measurement results.
[0063]
(Comparative Example 4)
0.584 g (2.70 mmol) of 3,3′-diamino-4,4′-dihydroxybiphenyl is dissolved in 10 mL of dried N-methyl-2-pyrrolidone, and 5-ethynyl-terephthalic acid chloride is added to the solution. 681 g (3.0 mmol) were added at 10 ° C. under dry nitrogen. After the addition, the mixture was stirred at 10 ° C for 1 hour, and then at 20 ° C for 1 hour. After reaching 10 ° C., 0.668 g (6.6 mmol) of triethylamine was added. After the addition, the mixture was stirred at 10 ° C for 1 hour, and then at 20 ° C for 20 hours. After completion of the reaction, the reaction solution was filtered to remove triethylamine hydrochloride, and the filtered solution was added dropwise to a mixed solution of 200 mL of ion-exchanged water and 200 mL of isopropanol, and the precipitate was collected and dried to obtain 1.01 g of a polymer. Got. When the molecular weight of the obtained polymer was determined in terms of polystyrene using GPC manufactured by Tosoh Corporation, the weight average molecular weight was 20,000 and the molecular weight distribution was 2.20.
0.58 g of the obtained polymer and 0.42 g (0.0084 mmol, number average molecular weight 50,000) of polystyrene were dissolved in 10 g of γ-butyrolactone, and a varnish was prepared in the same manner as in Example 1 to obtain an evaluation sample. . Table 1 summarizes the measurement results.
[0064]
[Table 1]
Figure 2004087336
[0065]
From the evaluation results of Examples and Comparative Examples summarized in Table 1, the insulating film (coating) obtained from the insulating film material of the present invention has a low dielectric constant while maintaining excellent heat resistance and low water absorption. It can be seen that the conversion can be realized. In addition, the porosity calculated from the logarithmic mixing equation using the measured dielectric constant almost coincided with the oligomer introduction rate.
[0066]
【The invention's effect】
The insulating film obtained from the insulating film material and the coating varnish of the present invention can achieve excellent thermal characteristics, electrical characteristics, and water absorption, particularly, having an extremely low dielectric constant, and an interlayer insulating film for semiconductors. It can be suitably used for applications such as a protective film, an interlayer insulating film of a multilayer circuit, a cover coat of a flexible copper clad board, a solder resist film, and a liquid crystal alignment film.

Claims (21)

一般式(A)で表わされる繰り返し単位を有するポリアミドと、熱分解性オリゴマーとを含む組成物からなる絶縁膜用材料。
Figure 2004087336
(但し、式中のm及びnは、m>0、n≧0、2≦m+n≦1000、及び0.05≦m/(m+n)≦1を満たす整数である。
また、R〜Rは、水素原子又は一価の有機基を示し、Xは、式(B)で表される基の中から選ばれる2価の基を示し、Yは、式(C),式(D),式(E),及び式(F)で表される基の中から選ばれる2価の基を示す。Yは、式(G)で表される基の中から選ばれる2価の基を示す。一般式(A)において繰り返し単位の配列は、ブロック的であってもランダム的であっても構わない。 )
Figure 2004087336
Figure 2004087336
Figure 2004087336
Figure 2004087336
Figure 2004087336
Figure 2004087336
(但し、式(B)及び式(G)中、Xは式(H)で表される基の中から選ばれる2価の基を示す。式(D)中のRは、ナフタレン基、フェニル基、又はアルキル基を示す。また、式(B),式(C),式(D),式(E),式(F),式(G),及び式(H)で表される構造中、ベンゼン環上の水素原子は、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、t−ブチル基、フッ素原子、及びトリフルオロメチル基の中から選ばれる、少なくとも1個の基で置換されていても良い。)
Figure 2004087336
An insulating film material comprising a composition comprising a polyamide having a repeating unit represented by the general formula (A) and a thermally decomposable oligomer.
Figure 2004087336
(However, m and n in the formula are integers satisfying m> 0, n ≧ 0, 2 ≦ m + n ≦ 1000, and 0.05 ≦ m / (m + n) ≦ 1.
R 1 to R 4 each represent a hydrogen atom or a monovalent organic group; X represents a divalent group selected from the groups represented by the formula (B); and Y 1 represents a group represented by the formula ( C), a divalent group selected from the groups represented by the formulas (D), (E) and (F). Y 2 represents a divalent group selected from the groups represented by the formula (G). In the general formula (A), the arrangement of the repeating units may be blockwise or random. )
Figure 2004087336
Figure 2004087336
Figure 2004087336
Figure 2004087336
Figure 2004087336
Figure 2004087336
(However, in the formulas (B) and (G), X 1 represents a divalent group selected from the groups represented by the formula (H). In the formula (D), R represents a naphthalene group, Represents a phenyl group or an alkyl group, and is represented by the formulas (B), (C), (D), (E), (F), (G), and (H). In the structure, at least one hydrogen atom on the benzene ring is selected from a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a t-butyl group, a fluorine atom, and a trifluoromethyl group. ).
Figure 2004087336
ポリアミドが、一般式(A)におけるYとして、式(C)の中から選ばれる2価の基を有するものである請求項1記載の絶縁膜用材料。Polyamide, as Y 1 in general formula (A), an insulating film material of a is claim 1, wherein those having a divalent group selected from the formula (C). ポリアミドが、一般式(A)におけるYとして、式(D)の中から選ばれる2価の基を有するものである請求項1記載の絶縁膜用材料。The insulating film material according to claim 1, wherein the polyamide has a divalent group selected from formula (D) as Y 1 in formula (A). ポリアミドが、一般式(A)におけるYとして、式(E)の中から選ばれる2価の基を有するものである請求項1記載の絶縁膜用材料。Polyamide, as Y 1 in general formula (A), an insulating film material of a is claim 1, wherein those having a divalent group selected from the formula (E). ポリアミドが、一般式(A)におけるYとして、式(F)の中から選ばれる2価の基を有するものである請求項1記載の絶縁膜用材料。The insulating film material according to claim 1, wherein the polyamide has a divalent group selected from the formula (F) as Y 1 in the general formula (A). 熱分解性オリゴマーが、ポリオキシアルキレン、ポリメチルメタクリレート、ポリα−メチルスチレン、ポリスチレン、ポリエステル、ポリエーテルエステル、ポリカプロラクトン及びポリウレタンの中から選ばれるものである請求項1ないし請求項5記載の絶縁膜用材料。6. The insulation according to claim 1, wherein the thermally decomposable oligomer is selected from polyoxyalkylene, polymethyl methacrylate, poly-α-methylstyrene, polystyrene, polyester, polyetherester, polycaprolactone and polyurethane. Materials for membranes. 熱分解性オリゴマーが、100〜40,000の数平均分子量を有するものである請求項1ないし6記載の絶縁膜用材料。7. The insulating film material according to claim 1, wherein the thermally decomposable oligomer has a number average molecular weight of 100 to 40,000. 熱分解性オリゴマーが、100〜20,000の数平均分子量を有するものである請求項1ないし6記載の絶縁膜用材料。7. The insulating film material according to claim 1, wherein the thermally decomposable oligomer has a number average molecular weight of 100 to 20,000. 熱分解性オリゴマーが、100〜10,000の数平均分子量を有するものである請求項1ないし6記載の絶縁膜用材料。7. The insulating film material according to claim 1, wherein the thermally decomposable oligomer has a number average molecular weight of 100 to 10,000. 熱分解性オリゴマーが、ポリアミド100重量部に対し、5〜70重量部配合してなる請求項1ないし9記載の絶縁膜用材料。The insulating film material according to any one of claims 1 to 9, wherein the thermally decomposable oligomer is compounded in an amount of 5 to 70 parts by weight based on 100 parts by weight of the polyamide. 熱分解性オリゴマーが、ポリアミド100重量部に対し、5〜50重量部配合してなる請求項1ないし9記載の絶縁膜用材料。The insulating film material according to any one of claims 1 to 9, wherein the thermally decomposable oligomer is compounded in an amount of 5 to 50 parts by weight based on 100 parts by weight of the polyamide. 熱分解性オリゴマーが、ポリアミド100重量部に対し、5〜40重量部配合してなる請求項1ないし9記載の絶縁膜用材料。The insulating film material according to any one of claims 1 to 9, wherein the thermally decomposable oligomer is compounded in an amount of 5 to 40 parts by weight based on 100 parts by weight of the polyamide. 請求項1ないし請求項12のいずれかに記載された絶縁膜用材料と、該絶縁膜用材料を均一に溶解することが可能な有機溶媒からなることを特徴とする、絶縁膜を作製することが可能なコーティング用ワニス。13. An insulating film, comprising the insulating film material according to claim 1 and an organic solvent capable of uniformly dissolving the insulating film material. Varnish for coating. 請求項1ないし請求項12のいずれかに記載された絶縁膜用材料、又は、請求項13に記載されたコーティング用ワニスを、加熱処理して縮合反応及び架橋反応せしめて得られるポリベンゾオキサゾールを主構造とする樹脂の層からなり、且つ、微細孔を有してなることを特徴とする絶縁膜。Polybenzoxazole obtained by subjecting the insulating film material according to any one of claims 1 to 12 or the coating varnish described in claim 13 to a heat treatment to cause a condensation reaction and a cross-linking reaction. An insulating film comprising a resin layer having a main structure and having fine holes. 絶縁膜の微細孔の大きさが、1μ以下である請求項14記載の絶縁膜。The insulating film according to claim 14, wherein the size of the micropores in the insulating film is 1 µm or less. 絶縁膜の微細孔の大きさが、500nm以下である請求項14記載の絶縁膜。The insulating film according to claim 14, wherein the size of the micropores of the insulating film is 500 nm or less. 絶縁膜の微細孔の大きさが、100nm以下である請求項14記載の絶縁膜。The insulating film according to claim 14, wherein the size of the micropores of the insulating film is 100 nm or less. 絶縁膜の微細孔の大きさが、20nm以下である請求項14記載の絶縁膜。The insulating film according to claim 14, wherein the size of the micropores in the insulating film is 20 nm or less. 絶縁膜の空隙率が、5%から70%である請求項14ないし18のいずれかに記載の絶縁膜。19. The insulating film according to claim 14, wherein the porosity of the insulating film is 5% to 70%. 絶縁膜の空隙率が、5%から50%である請求項14ないし18のいずれかに記載の絶縁膜。19. The insulating film according to claim 14, wherein the porosity of the insulating film is 5% to 50%. 絶縁膜の空隙率が、5%から40%である請求項14ないし18のいずれかに記載の絶縁膜。19. The insulating film according to claim 14, wherein the porosity of the insulating film is 5% to 40%.
JP2002247625A 2002-08-27 2002-08-27 Insulating film material, coating varnish for insulating film and insulating film using this Pending JP2004087336A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002247625A JP2004087336A (en) 2002-08-27 2002-08-27 Insulating film material, coating varnish for insulating film and insulating film using this

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002247625A JP2004087336A (en) 2002-08-27 2002-08-27 Insulating film material, coating varnish for insulating film and insulating film using this

Publications (1)

Publication Number Publication Date
JP2004087336A true JP2004087336A (en) 2004-03-18

Family

ID=32055223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002247625A Pending JP2004087336A (en) 2002-08-27 2002-08-27 Insulating film material, coating varnish for insulating film and insulating film using this

Country Status (1)

Country Link
JP (1) JP2004087336A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007063202A (en) * 2005-08-31 2007-03-15 Sumitomo Bakelite Co Ltd Bisaminophenol compound
JP2016050311A (en) * 2014-08-28 2016-04-11 ゼロックス コーポレイションXerox Corporation Solder mask ink composition
CN106609103A (en) * 2015-10-27 2017-05-03 丹阳市海信涂料化工厂 Sound absorption sunscreen thermal insulation paint for buildings
CN106609101A (en) * 2015-10-27 2017-05-03 丹阳市海信涂料化工厂 Sound absorbing, sunscreen and heat insulation coating for building and preparation method thereof
CN106609104A (en) * 2015-10-27 2017-05-03 丹阳市海信涂料化工厂 Waterborne sun protection and heat insulation coating
CN106609102A (en) * 2015-10-27 2017-05-03 丹阳市海信涂料化工厂 Aqueous sunscreen thermal insulation coating and preparation method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007063202A (en) * 2005-08-31 2007-03-15 Sumitomo Bakelite Co Ltd Bisaminophenol compound
JP2016050311A (en) * 2014-08-28 2016-04-11 ゼロックス コーポレイションXerox Corporation Solder mask ink composition
CN106609103A (en) * 2015-10-27 2017-05-03 丹阳市海信涂料化工厂 Sound absorption sunscreen thermal insulation paint for buildings
CN106609101A (en) * 2015-10-27 2017-05-03 丹阳市海信涂料化工厂 Sound absorbing, sunscreen and heat insulation coating for building and preparation method thereof
CN106609104A (en) * 2015-10-27 2017-05-03 丹阳市海信涂料化工厂 Waterborne sun protection and heat insulation coating
CN106609102A (en) * 2015-10-27 2017-05-03 丹阳市海信涂料化工厂 Aqueous sunscreen thermal insulation coating and preparation method thereof

Similar Documents

Publication Publication Date Title
JP3492316B2 (en) Material for insulating film, coating varnish for insulating film, insulating film using the same, and semiconductor device
JP2004087336A (en) Insulating film material, coating varnish for insulating film and insulating film using this
JP4765143B2 (en) Resin composition for insulating film and insulating film using the same
JP2002220564A (en) Coating varnish for insulation film and insulation film by using the same
JP4128380B2 (en) Insulating film material, insulating film coating varnish, insulating film, and semiconductor device using the same
JP4449285B2 (en) Insulating film material, insulating film coating varnish, and insulating film and semiconductor device using the same
JP4128371B2 (en) Insulating film material, insulating film coating varnish, and insulating film using them
JP4360076B2 (en) Coating varnish for insulating film, and insulating film and semiconductor device using the same
JP3844121B2 (en) Insulating film material, insulating film coating varnish, insulating film using these, and semiconductor device
JP4547814B2 (en) Insulating film material, insulating film coating varnish, insulating film, and semiconductor using the same
JP2002356577A (en) Resin for porous insulating film, porous insulating film and production method thereof
JP4433683B2 (en) Resin composition for insulating film, coating varnish, insulating film, and semiconductor device using them
JP3724785B2 (en) Resin composition for insulating film and insulating film using the same
JP4951831B2 (en) Resin composition for insulating film and insulating film using the same
JP4281384B2 (en) Insulating film material, insulating film coating varnish, insulating film using these, and semiconductor device
JP4067850B2 (en) Insulating film material, insulating film coating varnish, insulating film, and semiconductor device using the same
JP4148686B2 (en) Insulating film material, insulating film coating varnish, insulating film, and semiconductor device using the same
JP3879984B2 (en) Method for forming organic insulating film for semiconductor
JP2003277508A (en) Material for insulating film, coating varnish for insulating film, and insulating film and semiconductor unit therewith
JP2002241503A (en) Material for insulating film, coating varnish for insulating film and insulating film using thereof
JP2004281148A (en) Material for insulating film, coating varnish for insulating film, and insulating film using these, and semiconductor device
JP2003238724A (en) Method for producing porous membrane, porous membrane, and semiconductor device using the same
JP4244669B2 (en) Insulating film material, insulating film coating varnish, and insulating film and semiconductor device using the same
JP2004128055A (en) Insulating film and semiconductor device
JP4300807B2 (en) Resin composition for insulating film, coating varnish, insulating film, and semiconductor device using them

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090127

A02 Decision of refusal

Effective date: 20090602

Free format text: JAPANESE INTERMEDIATE CODE: A02