[go: up one dir, main page]

JP2004075013A - Vehicle control device - Google Patents

Vehicle control device Download PDF

Info

Publication number
JP2004075013A
JP2004075013A JP2002241785A JP2002241785A JP2004075013A JP 2004075013 A JP2004075013 A JP 2004075013A JP 2002241785 A JP2002241785 A JP 2002241785A JP 2002241785 A JP2002241785 A JP 2002241785A JP 2004075013 A JP2004075013 A JP 2004075013A
Authority
JP
Japan
Prior art keywords
steering
vehicle
angle
control means
wheel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002241785A
Other languages
Japanese (ja)
Inventor
Kenichiro Hidaka
日▲高▼ 研一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2002241785A priority Critical patent/JP2004075013A/en
Priority to DE10338706A priority patent/DE10338706A1/en
Publication of JP2004075013A publication Critical patent/JP2004075013A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/008Changing the transfer ratio between the steering wheel and the steering gear by variable supply of energy, e.g. by using a superposition gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/016Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input
    • B60G17/0162Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input mainly during a motion involving steering operation, e.g. cornering, overtaking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/0195Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the regulation being combined with other vehicle control systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/1755Brake regulation specially adapted to control the stability of the vehicle, e.g. taking into account yaw rate or transverse acceleration in a curve
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/12Conjoint control of vehicle sub-units of different type or different function including control of differentials
    • B60W10/16Axle differentials, e.g. for dividing torque between left and right wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/20Conjoint control of vehicle sub-units of different type or different function including control of steering systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/22Conjoint control of vehicle sub-units of different type or different function including control of suspension systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/02Control of vehicle driving stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/02Control of vehicle driving stability
    • B60W30/045Improving turning performance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/1819Propulsion control with control means using analogue circuits, relays or mechanical links
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/002Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits computing target steering angles for front or rear wheels
    • B62D6/003Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits computing target steering angles for front or rear wheels in order to control vehicle yaw movement, i.e. around a vertical axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/05Attitude
    • B60G2400/052Angular rate
    • B60G2400/0523Yaw rate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/10Acceleration; Deceleration
    • B60G2400/104Acceleration; Deceleration lateral or transversal with regard to vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/40Steering conditions
    • B60G2400/41Steering angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/40Steering conditions
    • B60G2400/41Steering angle
    • B60G2400/412Steering angle of steering wheel or column
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/40Steering conditions
    • B60G2400/42Steering torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2500/00Indexing codes relating to the regulated action or device
    • B60G2500/10Damping action or damper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2600/00Indexing codes relating to particular elements, systems or processes used on suspension systems or suspension control systems
    • B60G2600/18Automatic control means
    • B60G2600/184Semi-Active control means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/01Attitude or posture control
    • B60G2800/016Yawing condition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/21Traction, slip, skid or slide control
    • B60G2800/212Transversal; Side-slip during cornering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/24Steering, cornering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/70Estimating or calculating vehicle parameters or state variables
    • B60G2800/702Improving accuracy of a sensor signal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/90System Controller type
    • B60G2800/91Suspension Control
    • B60G2800/912Attitude Control; levelling control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/90System Controller type
    • B60G2800/92ABS - Brake Control
    • B60G2800/922EBV - Electronic brake force distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/90System Controller type
    • B60G2800/95Automatic Traction or Slip Control [ATC]
    • B60G2800/952Electronic driving torque distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/90System Controller type
    • B60G2800/96ASC - Assisted or power Steering control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2260/00Interaction of vehicle brake system with other systems
    • B60T2260/02Active Steering, Steer-by-Wire
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2260/00Interaction of vehicle brake system with other systems
    • B60T2260/06Active Suspension System
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0043Signal treatments, identification of variables or parameters, parameter estimation or state estimation
    • B60W2050/0052Filtering, filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/12Lateral speed
    • B60W2520/125Lateral acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/18Steering angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/14Yaw

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Regulating Braking Force (AREA)
  • Vehicle Body Suspensions (AREA)
  • Arrangement And Driving Of Transmission Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To perform more excellent yawing control than that obtained only by the steering control of front wheels by considering the will of a driver based on a steering wheel operational angle. <P>SOLUTION: A vehicle control device 6 comprises a steering control means 61 to adequately control an actual steering angle δp based on the steering wheel operational angle δs of an automobile A and the actual steering angle δp of front wheels FW1 and FW2, and further comprises a drive torque control means 63, a brake control means 62 and a suspension control means 68. Since both the steering wheel operational angle δs and the actual steering angle δp are inputted in the drive torque control means 63, the brake control means 62 and the suspension control mean 68, respectively, the yawing moment caused by the right-to-left unbalance of a drive force or a braking force is generated considering the will of a driver based on the steering wheel operational angle δs, and the steering control of the front wheels is assisted. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、たとえば自動車のようにステアリングを行う車両の運動ないし旋回挙動を制御する車両運動制御技術の技術分野に属する。
【0002】
【従来の技術】
従来技術としては、特開2001−233230号公報に、操舵制御手段としての制御装置を有し、ハンドル操作角と実舵角との両方をこの制御装置に入力して車両の挙動を安定させる車両制御装置が開示されている。
【0003】
この従来技術では、ステア・バイ・ワイヤ技術を導入しているため、ハンドル操作角(ステアリング・ホイールの操作角度)と、舵輪(操舵される車輪)の実舵角とが、機械的に一対一対応しているわけではない。むしろ、ハンドル操作角および実舵角と各種の運動状態センサからの出力信号とに基づいて、適正な操舵制御を行うことが重要視されている。すなわち、この従来技術は、制御装置でハンドル操作角に適度な調整を加えて実舵角を適正に制御し、車両の挙動を安定化させようという点に特徴がある。
【0004】
【発明が解決しようとする課題】
しかしながら、前述の従来技術では、車両のヨーイング制御を行うに当たり、操舵制御(ステアリング)以外にはハンドル操作角と実舵角との両方を使ってはいない。それゆえ、実舵角に基づいて操舵状態を検知したうえで、ハンドル操作角に基づいて運転者の意図を酌みつつ、各駆動輪にかかる駆動トルクをそれぞれ制御したり、各車輪のブレーキをそれそれ制御したり、サスペンションの減衰特性を制御したりする技術は、開示されていない。
【0005】
そこで本発明は、実舵角に基づいて操舵状態を検知したうえで、ハンドル操作角に基づいて運転者の意図を酌量し、操舵制御だけで得られるよりも良好なヨーイング制御を行うことができる車両制御装置を提供することを解決すべき課題とする。
【0006】
【課題を解決するための手段】
前記課題を解決するために、発明者は以下の手段を発明した。
【0007】
(第1手段)
本発明の第1手段は、請求項1記載の車両制御装置である。
【0008】
すなわち、本手段の車両制御装置は、操舵可能な車輪の実舵角を制御する操舵制御手段に加えて、駆動トルク制御手段、ブレーキ制御手段およびサスペンション制御手段のうち少なくとも一つを有することを、第一の特徴とする。
【0009】
ここで、操舵制御手段は、車両のハンドル操作角および実舵角と各種の運動状態センサからの出力信号とに基づいて、操舵可能な車輪の実舵角を制御する手段である。一方、駆動トルク制御手段は、各駆動輪にかかる駆動トルクをそれぞれ制御する手段である。また、ブレーキ制御手段は、各車輪にかかる制動力をそれぞれ制御する手段である。さらに、サスペンション制御手段は、車両の振動を減衰させるサスペンションの減衰特性を制御する手段である。
【0010】
そして、本手段の車両制御装置は、ハンドル操作角と実舵角との両方が、駆動トルク制御手段、ブレーキ制御手段およびサスペンション制御手段のうち少なくともひとつに入力されることを、第二の特徴とする。もちろん、本手段の車両制御装置は、操舵制御手段に加えて、駆動トルク制御手段、ブレーキ制御手段およびサスペンション制御手段をもち、これらのいずれかにもハンドル操作角および実舵角の両方が入力される構成になっていても良い。また、こらの信号が車内LANを介して前記各手段に入力される構成になっていても良い。
【0011】
ここで、駆動トルク制御手段は、各駆動輪にかかる駆動トルク(すなわち駆動力)を制御し、逆にブレーキ制御手段は、各車輪にかかる制動力を制御する。駆動力と制動力とは、正負の符号ないし方向が異なるだけで、いずれも車輪を介して車両を前後方向に加速または減速する力である。それゆえ、車両運動力学上の取り扱いでは、駆動力および制動力は、互いに符号が異なるだけで同質な正負の推進力であるということができる。
【0012】
そして、四輪の自動車を例に取ると、ふつうは各車輪にブレーキ装置が付設されているので、それぞれのブレーキ装置を独立して制御するようにすれば、制動力に前後左右のアンバランスを意図的に作り出すこともできる。一方、たとえば四輪のそれぞれに駆動用モータが付設された電動自動車では、各駆動用モータを独立して制御するようにすれば、駆動力にも同様に左右のアンバランスを意図的に作り出すこともできる。このような駆動力の左右アンバランスは、電気自動車でなくエンジン駆動の自動車であっても、駆動系(パワー・トレイン)に所定の装置を付設することによって実現することができる。これらのことは、車両としての自動車が、二輪駆動車であっても四輪駆動車であってもよく、いずれの場合にも実現可能である。
【0013】
このように駆動力や制動力の左右差によって生じるアンバランスは、車両にヨーイング・モーメントを生じるので、このようなアンバランスを適正に利用すれば、操舵制御(ステアリング・コントロール)を補助することができる。
【0014】
さらに本手段の車両制御装置では、前述のように、ハンドル操作角と実舵角との両方が、駆動トルク制御手段、ブレーキ制御手段およびまたはサスペンションに入力される。もちろん、車両の運転状態によっては、舵輪(操舵可能な車輪)がもつ実舵角と、運転者の操作によるハンドル操作角(ステアリング・ホイールの回転操作角度)との間に、矛盾ないし不一致がある場合もあり得る。しかしながら、このような場合においても、ハンドル操作角と実舵角との両方を駆動トルク制御手段、ブレーキ制御手段およびまたはサスペンション制御手段に入力することにより、運転者の意志がより尊重されるようにできる。その結果、運転者の意志がより良く反映されたヨーイング制御が行われるようになり、車両の操舵応答性ないし旋回挙動を改善することが可能になる。
【0015】
すなわち、本手段の車両制御装置では、運転者の意志を示すハンドル操作角と実際の車両操舵状態を示す実舵角との両方が、駆動トルク制御手段、ブレーキ制御手段およびまたはサスペンション制御手段に入力される。それゆえ、実舵角に基づいて操舵状態を把握したうえで、ハンドル操作角に基づいて運転者の意図をも把握してそれを酌量し、操舵制御だけで得られるよりも良好なヨーイング制御を行うことができるようになる。
【0016】
なぜならば、駆動トルク制御手段、ブレーキ制御手段およびまたはサスペンション制御手段が、その入力信号を適正に処理するソフトウェアを備えていれば、前述のように、駆動力およびまたは制動力の前後左右アンバランスをヨーイング制御に援用することができるようになるからである。すなわち、駆動トルク制御手段およびまたはブレーキ制御手段により、車輪にかかる駆動力およびまたは制動力の左右アンバランスを適正に利用することができれば、操舵制御手段だけでは得られない車両のヨーイング制御を行うことが可能になる。具体的には、たとえばアンダーステアやオーバーステアの適正な制御や、スリップ限界近傍での適正なヨーイング制御などを行うことが可能になる。
【0017】
したがって本手段によれば、実舵角に基づいて操舵状態を把握したうえで、ハンドル操作角に基づいて運転者の意図を酌量し、単なる操舵制御だけで得られるよりも良好なヨーイング制御を行うことができるという効果がある。
【0018】
【発明の実施の形態】
本発明の「車両制御装置」がもつ好ましい実施形態については、当業者に実施可能な理解が得られるよう、以下の実施例で明確かつ十分に説明する。
【0019】
[実施例1]
(実施例1の構成)
先ず初めに、本実施例では車両として自動車Aを例示することとし、図1に示すように、この自動車Aには、車輪としてそれぞれ左右一対の前輪FW1,FW2および後輪(図略)が装備されている。そしてこの自動車Aは、四輪駆動車であり、前輪FW1,FW2に所望の実舵角を与えて操舵する操舵装置(ステアリング・メカニズム)をもっている。この自動車Aに装備されている四輪駆動装置には、両前輪FW1,FW2にも両後輪(図略)にも、前後左右で駆動トルクないし駆動力に差を付ける機能が付与されている。また、四輪のそれぞれにブレーキ(図略)が付設され、各ブレーキがそれぞれ制御されて、制動トルクないし制動力にも前後左右で差が付けられるようになっている。
【0020】
さて、本発明の実施例1としての車両制御装置6は、同じく図1に示すように、ハンドル(ステアリング・ホイール)10から操舵輪(操舵可能な左右の前輪)FW1,FW2に至るまでのステアリング機構1から、二つの角度信号δs,δmを取り込む構成になっている。ここで、δsは、運転者によって操作されるハンドル10の回転操作角度(ハンドル操作角δs)であり、一方、δmは、後述の操舵アクチュエータ3に内蔵されたモータ31の回転角度(モータ回転角δm)である。
【0021】
ステアリング機構1は、ハンドル10およびその入力軸(ステアリング・コラム)2と、操舵アクチュエータ3およびその出力軸(ピニオン軸)4と、左右の前輪FW1,FW2をラック軸51で操舵するラック&ピニオン式のギヤ装置5とを有する。ステアリング・コラムである入力軸2には、その回転角であるハンドル操作角δsを検出する回転角度センサである操舵角センサ21が付設されている。この操舵角センサ21からは、ハンドル操作角δsが、車両制御装置6に入力されるようになっている。
【0022】
そして、操舵アクチュエータ3は、モータ31を内蔵しており、モータ31には、その回転角(モータ回転角δm)を検知する回転角度センサである操舵角センサ32が付設されている。モータ31の出力軸4は、図略の自在継ぎ手などを介して、ラック&ピニオン式の操舵用ギヤ装置5のピニオン51に機械的に直結されており、ピニオン51を回転駆動する。
【0023】
このピニオン51の回転角度(ピニオン角δp)は、前輪FW1,FW2の実舵角と機械的に一対一対応しているので、ピニオン角δpをもって実舵角に代えることができる。すなわち、ピニオン角δpを検知することは、前輪FW1,FW2の実舵角を検知することと等価である。
【0024】
ここで、図2に示すように、ピニオン角δpは、ハンドル操作角δsとモータ回転角δmとの和である(δp=δs+δm)。
【0025】
それゆえ、モータ31はその回転角度(モータ回転角δm)によって実舵角を調整するだけではなく、運転者の操舵力を増大させるアシスト作用がある。なぜならば、仮にハンドル10を一回転させるとモータ31が二回転するものとすると、出力軸4は三回転するわけだから、運転者がハンドル10に加えた操作仕事量は、三倍に増大するからである。すなわち、モータ31は、ステアリング機構1の制御用アクチュエータであるばかりではなく、操舵力の倍力装置(ブースター)でもある。
【0026】
さて、本発明の実施例1としての車両制御装置6は、操舵可能な左右の前輪FW1,FW2の実舵角δpを制御する操舵制御手段(操舵制御部)61に加えて、駆動トルク制御手段(駆動制御部)63およびブレーキ制御手段(制動制御部)62の両者を有する。ここで、前述のように出力軸(ピニオン軸)4の回転角であるピニオン角δpは実舵角に一対一対応しているので、ピニオン角δpをもって実舵角に代えることとし、以後、本明細書中では実舵角をδpと表記することにする。
【0027】
(実施例1の作用)
本実施例の車両制御装置6は以上のように構成されており、その主要な構成要素61,62,63はそれぞれ次のように作用する。
【0028】
第一に、操舵制御手段61は、車両のハンドル操作角δsおよび実舵角δpと、各種の運動状態センサ(図略)からの出力信号とに基づいて、操舵可能な左右の前輪FW1,FW2の実舵角を制御する手段である。なお、図1は発明のポイントが簡明に分かるように至って簡略化して描かれているので、操舵制御手段61から操舵アクチュエータ3に出力される操舵制御信号の伝達経路などは、同図中には示されていない。
【0029】
第二に、ブレーキ制御手段62は、各車輪にかかる制動力をそれぞれ制御する手段である。すなわち、ブレーキ制御手段62は、各車輪に付設されたブレーキ(図略)のマスターシリンダ(図略)の油圧をそれぞれ適正に設定する制動制御信号を、制動アクチュエータ(図略)に出力する。こうして各車輪の制動力に左右で適正な差を付けて、制動力に所望の左右アンバランスを与えることができれば、それによって所望のヨーイング・モーメントを生じさせることができる。ここで、ブレーキ(図略)は四輪のそれぞれに付設されているから、この制動制御信号は四系統の信号である。
【0030】
第三に、駆動トルク制御手段63は、各駆動輪にかかる駆動トルクをそれぞれ制御する手段である。すなわち、本実施例では、前述のように車両は四輪駆動の自動車Aであるから、エンジンから四つの駆動輪に伝達される駆動トルクが所望の比率で左右に分配されるように、駆動トルク制御手段63は、適正な駆動トルク制御信号を駆動アクチュエータ(図略)に出力する。こうして、駆動トルクが所望の比率で左右に分配されれば、駆動力の左右アンバランスによって、やはり所望のヨーイング・モーメントを生じさせることができる。
【0031】
そして、本実施例の車両制御装置6では、ステアリング・ホイールのハンドル操作角δsと前輪FW1,FW2の実舵角δpとの両方が、駆動トルク制御手段63およびブレーキ制御手段62の両者に入力される。すなわち、本実施例の車両制御装置6は、前述のように、操舵制御手段61に加えて駆動トルク制御手段63とブレーキ制御手段62との両者をもち、これらの両者62,63にもハンドル操作角δsおよび実舵角δpの両方が入力される。
【0032】
ここで、前述のように、駆動トルク制御手段63は、四つの各駆動輪にかかる駆動トルク(すなわち駆動力)を制御し、逆にブレーキ制御手段62は、各車輪にかかる制動力を制御する。駆動力と制動力とは、正負の符号ないし作用する方向が異なるだけで、いずれも車輪を介して車両を前後方向に加速または減速する力である。それゆえ、車両運動力学上の取り扱いでは、駆動力および制動力は、互いに符号が異なるだけで同質な正負の推進力である。
【0033】
そして、本実施例のように四輪駆動の自動車Aでは、各車輪にブレーキが付設されているので、それぞれのブレーキを独立して制御することにより、制動力に左右のアンバランスを意図的に作り出すことができる。一方、この自動車Aは、四輪のそれぞれに分配される駆動トルクの比率を適正に調整する駆動アクチュエータ(図略)を装備しているので、駆動力にも同様に左右のアンバランスを意図的に作り出すことができる。
【0034】
(実施例1の効果)
本実施例の車両制御装置6は、前述のように構成されており、その主要な構成要素たる操舵制御手段61、ブレーキ制御手段62および駆動トルク制御手段63は、以上のように作用する。それゆえ、本実施例の車両制御装置6は、以下のような効果を発揮することができる。
【0035】
前述のように、駆動力(正の推進力)および制動力(負の推進力)の左右差によって生じるアンバランスは、自動車Aの車体にヨーイング・モーメントを生じる。それゆえ、このような推進力の左右アンバランスを適正に利用すれば、前輪FW1,FW2の実舵角δpを制御する操舵制御(ステアリング・コントロール)を効果的に補助することができるようになる。
【0036】
さらに、本実施例の車両制御装置6では、前述のように、ハンドル操作角δsと実舵角δpとの両方が、駆動トルク制御手段63およびブレーキ制御手段62の両者にも、それぞれ入力される。もちろん、自動車Aの運転状態によっては、前輪FW1,FW2がもつ実舵角δpと、運転者の操作によるハンドル操作角(ステアリング・ホイールの回転操作角度)δsとの間に、矛盾ないし不一致がある場合もあり得る。しかしながら、このような場合においても、ハンドル操作角δsと実舵角δpとの両方を、駆動トルク制御手段63およびブレーキ制御手段62にそれぞれ入力することにより、運転者の意志が最大限に尊重され、かつ、正確に車両状態が推定されたヨーイング制御を行うことが可能になる。
【0037】
すなわち、本実施例の車両制御装置6では、運転者の意志を示すハンドル操作角δsと実際の車両操舵状態を示す実舵角δpとの両方が、駆動トルク制御手段63、ブレーキ制御手段62およびサスペンション制御手段68に入力される。それゆえ、実舵角δpに基づいて操舵状態を把握したうえで、ハンドル操作角δsに基づいて運転者の意図をも把握してそれを酌量し、操舵制御手段61による操舵制御だけで得られるよりも良好なヨーイング制御を行うことができるようになる。
【0038】
なぜならば、駆動トルク制御手段63、ブレーキ制御手段62およびサスペンション制御手段68が、その入力信号(δs,δpなど)を適正に処理するソフトウェアを備えていれば、前述のように、駆動力および制動力の左右アンバランスをヨーイング制御に援用することができるようになるからである。すなわち、駆動トルク制御手段63、ブレーキ制御手段62およびサスペンション制御手段68により、各車輪にかかる駆動力および制動力の左右アンバランスを適正に利用して、操舵制御手段61だけでは得られない自動車Aのヨーイング制御を行うことが可能になる。具体的には、たとえばアンダーステアやオーバーステアの適正な補償制御や、スリップ限界近傍での適正なヨーイング制御などを行うことが可能になる。
【0039】
なお、操舵に関する運転者の意志を酌量するには、ハンドル操作角δsと、その微分値たるハンドル角速度dδs/dtと、その二回微分値たるハンドル各加速度d2 δs/dt2 とのうち、少なくとも前二者に基づいて、運転者が希望するヨーレート(ヨーイング角速度)を推定する方法がある。もちろん、微分にはノイズが付き物なので、適正な公知のフィルタリング・アルゴリズムを用いて、ハンドル角速度dδs/dtおよびハンドル各加速度d2 δs/dt2 から、ノイズをできるだけ取り除いておく。
【0040】
そして、ハンドル操作角δsの微分値に関して、ヨーレートの目標値をPID制御するようなアルゴリズムを用いる。具体的には、適度な重み付け係数をそれぞれにかけて、ハンドル操作角δs、ハンドル角速度dδs/dtおよびハンドル各加速度d2 δs/dt2 のうち少なくとも前二者の線形結合をとり、ヨーレートの目標値を規定するアルゴリズムを使用する。
【0041】
こうしてヨーレートの目標値が定まるので、このヨーレートの目標値と、実際のヨーレートをヨーレートセンサ(図略)で検出した値とを比較して、どの程度のヨーイング・モーメントを与えたら操舵制御を適度に補償することができるかが明らかになる。そして、与えるべきヨーイング・モーメントを割り出すことができれば、どの程度の左右アンバランスを与えるべきかが明らかになる。それゆえ、このヨーイング・モーメントの目標値に相当する駆動力および制動力の左右アンバランスを生じるように、駆動トルク制御手段63およびブレーキ制御手段62が作用する。その結果、駆動力および制動力の左右アンバランスをヨーイング制御に援用することによって、より運転者の意志に沿った自動車Aのヨーイング制御ができるようになる。
【0042】
以上詳述したように、本実施例の車両制御装置6によれば、実舵角δpに基づいて操舵状態を検知したうえで、ハンドル操作角δsに基づいて運転者の意図を酌量し、操舵制御だけで得られるよりも良好なヨーイング制御を行うことができるという効果がある。
【0043】
(実施例1の備考)
本実施例の車両制御装置6を設計するに当たり、参考になる文献があるので、ここに簡単に紹介しておく。
【0044】
先ず、従来技術として引用した特開2001−233230号公報には、ステアバイワイヤの実施例が開示されており、本実施例の車両制御装置6のうち特に操舵制御手段61の制御アルゴリズムを組むうえである程度は参考になる。
【0045】
一方、特開2002−37155号公報には、ステアバイワイヤではないステアリング制御系の技術が、その実施例に開示されている。
【0046】
次に、特開2001−233193号公報には、ブレーキ制御系の構成例およびその作用効果が開示されており、ブレーキ制御手段62の制御アルゴリズムを設計するうえである程度は参考になる。
【0047】
さらに、特開平9−86378号公報には、駆動トルク制御系の構成例およびその作用効果が開示されており、駆動トルク制御手段63の制御アルゴリズムを設計するうえである程度は参考になる。
【0048】
(実施例1の各種変形態様)
本実施例では、車両を前輪操舵の四輪駆動自動車A(2WS/4WD)として、本発明の一実施形態である車両制御装置6を例示したが、本発明の車両制御装置は、その他の形式の自動車や車両にも適用可能である。すなわち、オートバイのように前後に二輪しかない二輪自動車は別にしても、三つ以上の車輪が互いに離れて装備された自動車ないし車両には、本実施例とほぼ同様にして、本発明の車両制御装置を搭載することができる。たとえば、六輪以上をもつトレーラーやトラックの類の車両にも、本実施例の車両制御装置6は適用可能である。もちろん、駆動動力源がエンジンではなく電動機(電気モータ)である電気自動車ないしハイブリッドカーにも、本実施例の車両制御装置6は適用可能である。
【0049】
あるいは、車両を、前輪操舵・二輪駆動(2WS/2WD)の自動車Aとしても良い。二輪駆動の形式には、周知のように、FF,FR,RRあるいはミッドシップなどがある。また、フォークリフトのように、後輪操舵方式の車両であっても良い。あるいは、一部の高級車のように、四輪操舵(4WS)の可能な車両であっても良い。
【0050】
さらに、法令上の自動車でなくても、前述のように三輪以上の車輪がある車両には、本実施例の車両制御装置6を搭載することができ、本実施例とほぼ同様の作用効果を得ることができる。このような車両としては、前述のフォークリフトのような作業用車両ばかりではなく、たとえば八輪を装備した軍用車両などがある。
【0051】
[実施例2]
(実施例2の構成)
本発明の実施例2としての車両制御装置6は、図3に示すように、操舵制御手段(操舵制御ECU)61に加えて、ブレーキ制御手段(ブレーキ制御ECU)62を有することを特徴とする。本実施例の車両制御装置6は、前述の実施例1の車両制御装置6とは異なり、駆動トルク制御手段63を有しない。
【0052】
本実施例の車両制御装置6が搭載された車両は、前述の実施例1とは少し異なり、前輪操舵・二輪駆動の自動車A(2WS/2WD)である。この自走車の駆動輪は、左右の前輪FW1,FW2であってもよいし、あるいは左右の後輪RW1,RW2であってもよい。
【0053】
このような二輪駆動車では、前述の四輪駆動車に比べて加速に用いる駆動力は数割程度に半減するが、ディファレンシャルギヤが少なく、駆動機構がシンプル、軽量かつ安価であって、さらにその信頼性が高くなる。それゆえ、駆動トルク制御手段63の効果も、駆動力の最大値にほぼ比例して半減するので、駆動力の左右アンバランスによって生じさせうるヨーイング・モーメントの大きさも半減してしまう。さらに、適切なヨーイング制御は、自動車レース中でもない限り、安全性の面から加速時よりも減速時の方が大事だし、ドリフトしていたり横滑りのある場合には、安全性を重視する限り、加速する必要性は少ない。
【0054】
そこで、本実施例の車両制御装置6では、実効上も安全上も効果があまり期待できない駆動トルク制御手段63をいっそ廃してしまうことにした。そして、駆動トルク制御手段63(図1参照)がなくなる分だけ、車両制御装置6の構成を実施例1よりも簡略化することによって、車両本体だけではなく車両制御装置6でもコストダウンを計ることにした。
【0055】
本実施例では、同じく図3に示すように、自動車Aのステアリング機構1に、ハンドル操作角δsを検知する操舵角センサ21と、操舵アクチュエータ3のモータ31の回転角であるモータ回転角δmを検出するモータ回転角センサ32とが装備されている。ここで、前述の実施例1と同様に、前輪FW1,FW2の実舵角δpは、ハンドル操作角δsとモータ回転角δmとの和として算出される(δp=δs+δm)。ハンドル操作角δsおよび実舵角δp(=δs+δm)の両方は、本実施例の車両制御装置6のブレーキ制御手段62に入力される。
【0056】
ここで、本実施例では、自動車Aは、前輪FW1,FW2および後輪RW1,RW2のそれぞれに、各車輪の回転速度を検出する車輪速センサ71を装備している。また、左右の前輪FW1,FW2および後輪RW1,RW2のそれぞれに付設されたブレーキ(図略)を作動させるマスタシリンダ(図略)に適正な油圧を与えるブレーキアクチュエータ81にも、油圧センサ70が付設されている。この油圧センサ70からの出力信号も、ブレーキ制御手段62に入力される。さらに、自動車Aは、その車体に固定されたGセンサ72およびヨーレートセンサ73を装備している。これらの各センサ71,72,73からの出力信号は、本実施例の車両制御装置6のうち、ブレーキ制御手段62に入力される。なお、前輪FW1,FW2に付設された車輪速センサおよびその信号経路は、図面を簡素化するために、図3の中には描かれていない。
【0057】
(実施例2の作用効果)
本実施例の車両制御装置6は、以上のように構成されているので、以下のような作用効果を持つ。
【0058】
すなわち、本実施例の車両制御装置6のうち、ブレーキ制御手段62には、ハンドル操作角δsおよびモータ回転角δmだけではなく、ブレーキの油圧センサ70からの出力信号と、各種の車両運動センサ7(71,72,73)からの出力信号とが、並行して入力される。
【0059】
そして、ブレーキ制御手段62は、ブレーキアクチュエータ81に制御信号を送り、左右のブレーキで適正な制動力のアンバランスを生じるようにする。また、ブレーキ制御手段62は、両角度信号δs,δmおよび前記各種検知信号に基づき、車体の速度を計算に入れたうえで、操舵アクチュエータ3のモータ31が取るべきモータ回転角δmの目標値である目標モータ角δtを算出する。
【0060】
一方、操舵制御手段61は、前述の実舵角δp(=δs+δm)と、ブレーキ制御手段62によって算出された目標モータ角δtとに基づいて、制御信号を生成する。この制御信号は、操舵制御手段61から、実舵角δpを操舵する操舵アクチュエータ3に伝達される。その結果、操舵アクチュエータ3は、より適正な目標モータ角δtに近づけるように、前輪FW1,FW2を操舵して実舵角δpを調整する。
【0061】
さて、自動車においては一般的に、制動力の方が駆動力よりもずっと大きいのが普通であり、この傾向は、四輪駆動車よりも二輪駆動車においていっそう顕著である。それゆえ、本実施例での自動車Aのように、車両制御装置6に駆動トルク制御手段63がなく、ディファレンシャル制御装置がなくて駆動系の構成上も左右の車輪に同程度の駆動力をかけることしかできない二輪駆動車においても、本実施例の車両制御装置6は十分に有効である。すなわち、本実施例の車両制御装置6の作用により、四輪のブレーキがそれぞれ左右の差をもって作動し、十分に大きな制動力の左右差があれば、実施例1にはやや及ばないもののそれに準ずる大きさのヨーイング・モーメントが得られる。
【0062】
したがって、本実施例の車両制御装置6によれば、前述のように車両駆動系および車両制御装置6の構成が簡素で安価であり、そのうえ車両重量を軽量化することができながら、実施例1に準ずるヨーイング制御が可能になるという効果がある。
【0063】
(実施例2の変形態様1)
本実施例の変形態様1として、図4に示すように、操舵制御手段61およびブレーキ制御手段62を有し、より統合制御機能を高めた車両制御装置6の実施が可能である。
【0064】
本変形態様の車両制御装置6は、前述の実施例2でのブレーキ制御手段62に代えて、車両状態推定手段65および制動力制御手段66を備えたブレーキ制御手段としてのブレーキ制御装置64を有する点が、実施例2と異なっている。すなわち、基も特徴的なことは、ブレーキ制御手段62としてのブレーキ制御装置64が、車両状態推定手段65を備えていることである。
【0065】
車両状態推定手段65には、車輪速検出手段(車輪速センサ)71と、G検出手段(Gセンサ)72と、ヨーレート検出手段(ヨーレートセンサ)73と、ハンドル角検出手段(操舵角センサ)21とからの各信号が入力される。これらの信号に基づいて、車両状態推定手段65は、自動車Aがもつ速度や角速度、ならびに横滑り角などの車両状態を推定し、この車両状態に基づいて適正な制御信号を出力する。すなわち、車両状態推定手段65は、各種センサ71,72,73からの出力信号に基づいて車両状態を推定して把握したうえで、ハンドル操作角δsに基づいてヨーレートに関する運転者の意志を推定して酌量し、適正な制御信号を出力する。
【0066】
ここで、車両状態推定手段65から出力される制御信号としては、ブレーキ制御装置64の後段に当たる制動力制御手段66に伝達される目標車輪速と、操舵制御手段としての実舵角制御手段61に伝達される目標実舵角δtとがある。この目標車輪速が入力された制動力制御手段66は、適正な左右アンバランスをもつ制動信号を制動力付与手段(ブレーキアクチュエータ)81に伝達し、適正な制動を行ってヨーイング制御を補助する。一方、目標実舵角δtは、実舵角検出手段54からの実舵角δpと並行して、操舵制御手段としての実舵角制御手段67に入力される。そして実舵角制御手段67は、適正な制御信号を実舵角付与手段(操舵アクチュエータ)82に伝達して、前輪FW1,FW2(図3参照)を操舵し、実舵角δpを理想的な舵角に近い目標実舵角δtに近づけるように作用する。
【0067】
なお、実舵角制御手段67には、直接的にはハンドル操作角δsが入力されてはいないが、その代わりに、車両状態推定手段65から目標実舵角δtが入力されるので、実質的にはハンドル操作角δsが入力されているものと見なすこととする。
【0068】
したがって、本変形態様によっても、制動力に適正な左右アンバランスが付与されてヨーイング制御が補助されるので、前述の実施例2と同様な効果が得られる。そればかりではなく、車両状態推定手段65により車両状態が適正に推定されたうえで、制動力制御および操舵制御がなされるので、より高度なヨーイング制御が可能になるという効果がある。すなわち、本変形態様によれば、前述の実施例1および実施例2よりも高度に車両運動を統合制御する車両制御装置6を提供することができる。
【0069】
(実施例2のその他の変形態様)
本実施例およびその変形態様1の制御装置に対しても、前述の実施例1の各種変形態様に相当する各種の変形態様が実施可能であり、おおむね同様の作用効果が得られる。
【図面の簡単な説明】
【図1】実施例1としての車両制御装置の構成を示す模式図
【図2】実施例1での各回転角の定義および関係を示す模式図
【図3】実施例2としての車両制御装置の構成を示すブロック線図
【図4】その変形態様1の車両制御装置の構成を示すブロック線図
【符号の説明】
A:自動車(車両として)
1:ステアリング機構
10:操舵ハンドル(ステアリング・ホイール)
2:入力軸(ステアリング・コラム)
21:操舵角センサ(ハンドル操作角δsを検出)
3:操舵アクチュエータ(伝達比可変作用をもつ)
31:モータ(操舵操作を補助したり補正したりする電動機)
32:モータ回転角センサ(モータ回転角δmを検出)
4:出力軸(ピニオン軸)
5:ラック&ピニオン式の操舵用ギヤ装置
51:ピニオン  52:ラック
53:ラック軸  54:実舵角検出手段(実舵角を検出)
6:車両制御装置(本発明品)
61:操舵制御部、操舵制御ECU(操舵制御手段として)
62:制動制御部、ブレーキ制御ECU(ブレーキ制御手段として)
63:駆動制御部(駆動トルク制御手段として)
64:ブレーキ制御装置(ブレーキ制御手段として)
65:車両状態推定装置
66:制動力制御手段
67:実舵角制御手段(操舵制御手段として)
68:サスペンション制御手段
7:各種の運動状態センサ
70:ブレーキのマスターシリンダの油圧センサ
71:車輪速センサ(各車輪に一つずつ)
72:ヨーレートセンサ  73:Gセンサ
8:各種のアクチュエータ
81:ブレーキアクチュエータ/マスターシリンダ、制動力付与手段
82:操舵アクチュエータ、実舵角付与手段
FW1,FW2:左右の前輪  RW1,FW2:左右の後輪
δs:ハンドル操作角  δm:モータ回転角
δp:ピニオン角、実舵角(δp=δs+δm)
δt:目標実舵角(実舵角の目標値)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention belongs to the technical field of a vehicle motion control technique for controlling a motion or a turning behavior of a steering vehicle such as an automobile.
[0002]
[Prior art]
As a prior art, Japanese Patent Application Laid-Open No. 2001-233230 discloses a vehicle that has a control device as a steering control unit and that inputs both a steering wheel operation angle and an actual steering angle to this control device to stabilize the behavior of the vehicle. A control device is disclosed.
[0003]
In this prior art, since the steer-by-wire technology is introduced, the steering wheel operation angle (steering wheel operation angle) and the actual steering angle of the steering wheel (steered wheel) are mechanically one-to-one. Not necessarily. Rather, it is important to perform appropriate steering control based on the steering wheel operating angle and the actual steering angle and output signals from various motion state sensors. That is, this prior art is characterized in that the control device makes appropriate adjustments to the steering wheel operating angle to appropriately control the actual steering angle, thereby stabilizing the behavior of the vehicle.
[0004]
[Problems to be solved by the invention]
However, in the above-described conventional technique, when performing yawing control of the vehicle, both the steering wheel operation angle and the actual steering angle are not used except for the steering control (steering). Therefore, based on the steering state detected based on the actual steering angle, the driving torque applied to each driving wheel is controlled or the brake on each wheel is controlled while considering the driver's intention based on the steering wheel operation angle. There is no disclosure of a technique for controlling this or controlling the damping characteristics of the suspension.
[0005]
Therefore, the present invention can perform a better yawing control than can be obtained only by steering control, by detecting the steering state based on the actual steering angle, and taking into account the driver's intention based on the steering wheel operation angle. It is an object to provide a vehicle control device.
[0006]
[Means for Solving the Problems]
In order to solve the above problems, the inventor has invented the following means.
[0007]
(First means)
A first means of the present invention is a vehicle control device according to the first aspect.
[0008]
That is, the vehicle control device of the present means includes, in addition to the steering control means for controlling the actual steering angle of the steerable wheels, at least one of a driving torque control means, a brake control means, and a suspension control means. This is the first feature.
[0009]
Here, the steering control means is means for controlling the actual steering angle of the steerable wheel based on the steering wheel operating angle and the actual steering angle of the vehicle and the output signals from various motion state sensors. On the other hand, the driving torque control means is means for controlling the driving torque applied to each driving wheel. The brake control unit is a unit that controls the braking force applied to each wheel. Further, the suspension control means is means for controlling the damping characteristic of the suspension for damping the vibration of the vehicle.
[0010]
The vehicle control device according to the second aspect is characterized in that both the steering wheel operating angle and the actual steering angle are input to at least one of the driving torque control unit, the brake control unit, and the suspension control unit. I do. Needless to say, the vehicle control device of this means has, in addition to the steering control means, a driving torque control means, a brake control means, and a suspension control means, into which any of the steering wheel operating angle and the actual steering angle is input. The configuration may be as follows. Further, the configuration may be such that these signals are input to the above-described units via the in-vehicle LAN.
[0011]
Here, the drive torque control means controls the drive torque (ie, drive force) applied to each drive wheel, and conversely, the brake control means controls the brake force applied to each wheel. The driving force and the braking force are forces that accelerate or decelerate the vehicle in the front-rear direction via the wheels, except for the sign or direction of the sign. Therefore, in the vehicle kinematics handling, it can be said that the driving force and the braking force are the same positive and negative propulsive forces only with different signs.
[0012]
And, taking a four-wheeled car as an example, usually a brake device is attached to each wheel, so if each brake device is controlled independently, the imbalance in front and rear and left and right can be applied to the braking force. It can be created intentionally. On the other hand, for example, in an electric vehicle in which a driving motor is attached to each of the four wheels, if the driving motors are controlled independently, it is possible to intentionally create a left-right imbalance in the driving force as well. You can also. Such a left-right unbalance of the driving force can be realized by attaching a predetermined device to a drive system (power train) even in an engine-driven vehicle instead of an electric vehicle. These facts may be realized by a two-wheel drive vehicle or a four-wheel drive vehicle as the vehicle.
[0013]
Since the imbalance caused by the left and right difference between the driving force and the braking force causes a yawing moment in the vehicle, it is possible to assist the steering control by appropriately using such imbalance. it can.
[0014]
Further, in the vehicle control device of the present means, as described above, both the steering wheel operation angle and the actual steering angle are input to the driving torque control means, the brake control means and / or the suspension. Of course, depending on the driving state of the vehicle, there is a contradiction or inconsistency between the actual steering angle of the steering wheel (steerable wheel) and the steering wheel operation angle (rotation operation angle of the steering wheel) operated by the driver. It is possible in some cases. However, even in such a case, by inputting both the steering wheel operating angle and the actual steering angle to the driving torque control means, the brake control means and / or the suspension control means, the driver's will is more respected. it can. As a result, the yaw control in which the driver's intention is better reflected is performed, and the steering response or turning behavior of the vehicle can be improved.
[0015]
That is, in the vehicle control device of this means, both the steering wheel operation angle indicating the driver's intention and the actual steering angle indicating the actual vehicle steering state are input to the driving torque control means, the brake control means and / or the suspension control means. Is done. Therefore, after grasping the steering state based on the actual steering angle, the driver's intention is also grasped based on the steering wheel operation angle, and this is taken into account, and a better yawing control than can be obtained by steering control alone is provided. Will be able to do it.
[0016]
This is because if the driving torque control means, the brake control means and / or the suspension control means have software for properly processing the input signal, the drive force and / or the braking force can be unbalanced in the front-rear and left-right directions as described above. This is because it can be used for yawing control. That is, if the drive torque control means and / or the brake control means can properly utilize the left and right imbalance of the driving force and / or the braking force applied to the wheels, yaw control of the vehicle which cannot be obtained by the steering control means alone is performed. Becomes possible. Specifically, for example, it is possible to perform appropriate control of understeer and oversteer, and appropriate yaw control near the slip limit.
[0017]
Therefore, according to this means, after grasping the steering state based on the actual steering angle, the intention of the driver is taken into account based on the steering wheel operation angle, and yaw control better than that obtained by simple steering control is performed. There is an effect that can be.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Preferred embodiments of the "vehicle control device" of the present invention will be clearly and fully described in the following examples so that those skilled in the art can obtain a workable understanding.
[0019]
[Example 1]
(Configuration of Embodiment 1)
First, in this embodiment, a vehicle A is exemplified as a vehicle. As shown in FIG. 1, the vehicle A is equipped with a pair of left and right front wheels FW1, FW2 and rear wheels (not shown) as wheels. Have been. The vehicle A is a four-wheel drive vehicle, and has a steering device (steering mechanism) that gives a desired actual steering angle to the front wheels FW1 and FW2 to perform steering. The four-wheel drive device provided in the vehicle A is provided with a function of making a difference in driving torque or driving force between front, rear, left and right both front wheels FW1, FW2 and both rear wheels (not shown). . Also, brakes (not shown) are attached to each of the four wheels, and the respective brakes are individually controlled so that the braking torque or the braking force is also different between the front, rear, left and right.
[0020]
As shown in FIG. 1, the vehicle control device 6 according to the first embodiment of the present invention performs steering from a steering wheel (steering wheel) 10 to steered wheels (steerable left and right front wheels) FW1 and FW2. The configuration is such that two angle signals δs and δm are taken in from the mechanism 1. Here, δs is the rotation operation angle of the steering wheel 10 operated by the driver (the steering wheel operation angle δs), while δm is the rotation angle of the motor 31 (motor rotation angle) built in the steering actuator 3 described later. δm).
[0021]
The steering mechanism 1 is a rack and pinion type in which a steering wheel 10 and its input shaft (steering column) 2, a steering actuator 3 and its output shaft (pinion shaft) 4, and left and right front wheels FW1 and FW2 are steered by a rack shaft 51. Gear device 5. The input shaft 2 as a steering column is provided with a steering angle sensor 21 as a rotation angle sensor for detecting a steering angle δs as a rotation angle thereof. From the steering angle sensor 21, the steering wheel operation angle δs is input to the vehicle control device 6.
[0022]
The steering actuator 3 has a built-in motor 31, and the motor 31 is provided with a steering angle sensor 32 which is a rotation angle sensor for detecting the rotation angle (motor rotation angle δm). The output shaft 4 of the motor 31 is mechanically directly connected to a pinion 51 of a rack-and-pinion type steering gear device 5 via a universal joint (not shown) and drives the pinion 51 to rotate.
[0023]
Since the rotation angle (pinion angle δp) of the pinion 51 mechanically corresponds to the actual steering angle of the front wheels FW1 and FW2, the actual steering angle can be replaced by the pinion angle δp. That is, detecting the pinion angle δp is equivalent to detecting the actual steering angles of the front wheels FW1 and FW2.
[0024]
Here, as shown in FIG. 2, the pinion angle δp is the sum of the steering wheel operating angle δs and the motor rotation angle δm (δp = δs + δm).
[0025]
Therefore, the motor 31 not only adjusts the actual steering angle according to the rotation angle (motor rotation angle δm), but also has an assisting action to increase the steering force of the driver. This is because, if the motor 31 makes two rotations when the handle 10 makes one rotation, the output shaft 4 makes three rotations, so the amount of operation work applied to the handle 10 by the driver increases by three times. It is. That is, the motor 31 is not only an actuator for controlling the steering mechanism 1 but also a booster for the steering force.
[0026]
The vehicle control device 6 according to the first embodiment of the present invention includes a driving torque control unit in addition to a steering control unit (steering control unit) 61 that controls an actual steering angle δp of the left and right front wheels FW1 and FW2 that can be steered. It has both a (drive controller) 63 and a brake controller (brake controller) 62. Here, as described above, since the pinion angle δp, which is the rotation angle of the output shaft (pinion shaft) 4, corresponds to the actual steering angle one-to-one, the pinion angle δp is replaced with the actual steering angle. In the specification, the actual steering angle will be referred to as δp.
[0027]
(Operation of First Embodiment)
The vehicle control device 6 according to the present embodiment is configured as described above, and its main components 61, 62, and 63 operate as follows.
[0028]
First, the steering control means 61 performs steering on the left and right front wheels FW1, FW2 based on the steering wheel operating angle δs and the actual steering angle δp of the vehicle and output signals from various motion state sensors (not shown). Means for controlling the actual steering angle of the vehicle. In FIG. 1, since the points of the invention are illustrated in a simplified manner so as to be easily understood, a transmission path of a steering control signal output from the steering control means 61 to the steering actuator 3 is shown in FIG. Not shown.
[0029]
Second, the brake control means 62 is a means for controlling the braking force applied to each wheel. That is, the brake control means 62 outputs a brake control signal for appropriately setting the hydraulic pressure of the master cylinder (not shown) of the brake (not shown) attached to each wheel to the brake actuator (not shown). If a desired left-right imbalance can be imparted to the braking force by making an appropriate difference between the left and right braking forces of each wheel in this way, a desired yawing moment can be generated. Here, since a brake (not shown) is attached to each of the four wheels, the braking control signal is a signal of four systems.
[0030]
Third, the drive torque control means 63 is a means for controlling the drive torque applied to each drive wheel. That is, in this embodiment, since the vehicle is the four-wheel drive automobile A as described above, the drive torque transmitted from the engine to the four drive wheels is distributed so that the drive torque is distributed to the left and right at a desired ratio. The control means 63 outputs an appropriate drive torque control signal to a drive actuator (not shown). In this way, if the driving torque is distributed to the left and right at a desired ratio, a desired yawing moment can be generated by the left and right imbalance of the driving force.
[0031]
In the vehicle control device 6 of the present embodiment, both the steering wheel operation angle δs of the steering wheel and the actual steering angle δp of the front wheels FW1 and FW2 are input to both the drive torque control means 63 and the brake control means 62. You. That is, as described above, the vehicle control device 6 of the present embodiment has both the drive torque control means 63 and the brake control means 62 in addition to the steering control means 61. Both the angle δs and the actual steering angle δp are input.
[0032]
Here, as described above, the drive torque control means 63 controls the drive torque (ie, drive force) applied to each of the four drive wheels, and conversely, the brake control means 62 controls the brake force applied to each wheel. . The driving force and the braking force are forces for accelerating or decelerating the vehicle in the front-rear direction via the wheels, except for the sign of positive or negative or the direction of action. Therefore, in the vehicle kinematics handling, the driving force and the braking force are the same positive and negative propulsive forces only with different signs.
[0033]
And, in the four-wheel drive automobile A as in the present embodiment, since brakes are attached to each wheel, by independently controlling each brake, the left and right imbalance is intentionally applied to the braking force. Can produce. On the other hand, since the automobile A is equipped with a drive actuator (not shown) that appropriately adjusts the ratio of the drive torque distributed to each of the four wheels, the drive force is also intentionally imbalanced in the left and right. Can be produced.
[0034]
(Effect of Embodiment 1)
The vehicle control device 6 of the present embodiment is configured as described above, and the main components such as the steering control means 61, the brake control means 62, and the drive torque control means 63 operate as described above. Therefore, the vehicle control device 6 of the present embodiment can exert the following effects.
[0035]
As described above, the imbalance caused by the left-right difference between the driving force (positive propulsion force) and the braking force (negative propulsion force) generates a yawing moment in the body of the automobile A. Therefore, by properly utilizing such a left-right imbalance of propulsion, steering control (steering control) for controlling the actual steering angle δp of the front wheels FW1 and FW2 can be effectively assisted. .
[0036]
Further, in the vehicle control device 6 of the present embodiment, as described above, both the steering wheel operation angle δs and the actual steering angle δp are also input to both the drive torque control unit 63 and the brake control unit 62, respectively. . Of course, depending on the driving state of the automobile A, there is a contradiction or inconsistency between the actual steering angle δp of the front wheels FW1 and FW2 and the steering wheel operating angle (rotating operating angle of the steering wheel) δs by the driver. It is possible in some cases. However, even in such a case, by inputting both the steering wheel operation angle δs and the actual steering angle δp to the drive torque control means 63 and the brake control means 62, the driver's will is respected to the maximum. In addition, it is possible to perform yawing control in which the vehicle state is accurately estimated.
[0037]
That is, in the vehicle control device 6 of the present embodiment, both the steering wheel operation angle δs indicating the driver's intention and the actual steering angle δp indicating the actual vehicle steering state are determined by the drive torque control means 63, the brake control means 62, It is input to the suspension control means 68. Therefore, after grasping the steering state based on the actual steering angle δp, the driver's intention is also grasped based on the steering wheel operation angle δs, and this is taken into account, and can be obtained only by the steering control by the steering control means 61. This makes it possible to perform better yawing control.
[0038]
This is because if the driving torque control means 63, the brake control means 62, and the suspension control means 68 have software for appropriately processing the input signals (δs, δp, etc.), as described above, the driving force and the braking force are controlled. This is because the left and right imbalance of the power can be used for yawing control. That is, the driving torque control means 63, the brake control means 62, and the suspension control means 68 properly utilize the left and right imbalance of the driving force and the braking force applied to each wheel, and the vehicle A which cannot be obtained by the steering control means 61 alone. Can be controlled. Specifically, for example, it is possible to perform appropriate compensation control for understeer and oversteer, and appropriate yaw control near the slip limit.
[0039]
To take into account the driver's intention regarding steering, the steering wheel operating angle δs, the steering wheel angular velocity dδs / dt, which is a differential value thereof, and the steering wheel acceleration d, which is the second derivative thereof, are obtained. 2 δs / dt 2 There is a method of estimating a yaw rate (yawing angular velocity) desired by a driver based on at least the former two. Of course, the differentiation is noisy, so the steering wheel angular velocity dδs / dt and the steering wheel acceleration d 2 δs / dt 2 To remove as much noise as possible.
[0040]
Then, with respect to the differential value of the steering wheel operating angle δs, an algorithm is used that performs PID control of the target value of the yaw rate. More specifically, the steering wheel operating angle δs, the steering wheel angular velocity dδs / dt, and the steering wheel acceleration d 2 δs / dt 2 The algorithm which takes the linear combination of at least the former two and defines the target value of the yaw rate is used.
[0041]
Since the target value of the yaw rate is determined in this manner, the target value of the yaw rate is compared with the actual yaw rate detected by a yaw rate sensor (not shown). It becomes clear whether compensation can be made. Then, if the yawing moment to be given can be determined, it becomes clear how much left / right imbalance should be given. Therefore, the drive torque control means 63 and the brake control means 62 act so as to generate a left / right imbalance of the drive force and the brake force corresponding to the target value of the yawing moment. As a result, the yaw control of the vehicle A can be performed more in line with the driver's intention by using the left and right imbalance of the driving force and the braking force in the yawing control.
[0042]
As described in detail above, according to the vehicle control device 6 of the present embodiment, after detecting the steering state based on the actual steering angle δp, the driver's intention is taken into account based on the steering wheel operation angle δs, and the steering operation is performed. There is an effect that it is possible to perform better yawing control than can be obtained only by control.
[0043]
(Remarks of Example 1)
In designing the vehicle control device 6 according to the present embodiment, there are references that can be referred to, and will be briefly introduced here.
[0044]
First, Japanese Patent Application Laid-Open No. 2001-233230 cited as a prior art discloses an example of a steer-by-wire system, and is particularly useful in assembling a control algorithm of a steering control means 61 in a vehicle control device 6 of the present embodiment. Somewhat helpful.
[0045]
On the other hand, Japanese Unexamined Patent Application Publication No. 2002-37155 discloses a steering control system technology other than steer-by-wire in the embodiment.
[0046]
Next, Japanese Patent Application Laid-Open No. 2001-233193 discloses a configuration example of a brake control system and its operation and effect, which can be used to some extent in designing a control algorithm of the brake control means 62.
[0047]
Further, Japanese Patent Application Laid-Open No. 9-86378 discloses a configuration example of a drive torque control system and its operation and effect, which can be used to some extent in designing a control algorithm of the drive torque control means 63.
[0048]
(Various Modifications of Example 1)
In the present embodiment, the vehicle control device 6 according to an embodiment of the present invention is exemplified as a front-wheel steering four-wheel drive vehicle A (2WS / 4WD). It is also applicable to other automobiles and vehicles. That is, apart from a two-wheeled vehicle having only two front and rear wheels such as a motorcycle, a vehicle or vehicle equipped with three or more wheels separated from each other is provided with the vehicle of the present invention in substantially the same manner as in the present embodiment. A control device can be mounted. For example, the vehicle control device 6 of the present embodiment is applicable to a vehicle such as a trailer or a truck having six or more wheels. Of course, the vehicle control device 6 of the present embodiment is also applicable to an electric vehicle or a hybrid car in which the driving power source is not an engine but an electric motor (electric motor).
[0049]
Alternatively, the vehicle may be a front-wheel steering / two-wheel drive (2WS / 2WD) automobile A. As is well known, the two-wheel drive type includes FF, FR, RR and midship. Further, the vehicle may be a rear-wheel steering type vehicle such as a forklift. Alternatively, the vehicle may be capable of four-wheel steering (4WS), such as some luxury cars.
[0050]
Further, the vehicle control device 6 of the present embodiment can be mounted on a vehicle having three or more wheels as described above, even if the vehicle is not a legal vehicle, and has substantially the same operation and effect as the present embodiment. Obtainable. Such vehicles include not only work vehicles such as the aforementioned forklifts, but also military vehicles equipped with eight wheels, for example.
[0051]
[Example 2]
(Configuration of Second Embodiment)
As shown in FIG. 3, the vehicle control device 6 according to the second embodiment of the present invention includes a brake control means (brake control ECU) 62 in addition to a steering control means (steering control ECU) 61. . The vehicle control device 6 of the present embodiment differs from the vehicle control device 6 of the first embodiment described above in that the vehicle control device 6 does not include the driving torque control unit 63.
[0052]
The vehicle on which the vehicle control device 6 of the present embodiment is mounted is a vehicle A (2WS / 2WD) of front-wheel steering / two-wheel drive, which is slightly different from that of the first embodiment. The drive wheels of the self-propelled vehicle may be left and right front wheels FW1 and FW2, or may be left and right rear wheels RW1 and RW2.
[0053]
In such a two-wheel drive vehicle, the driving force used for acceleration is reduced to about a half of that of the four-wheel drive vehicle described above, but the number of differential gears is small, the drive mechanism is simple, lightweight and inexpensive. Increases reliability. Therefore, the effect of the driving torque control means 63 is also reduced by half in substantially proportion to the maximum value of the driving force, so that the magnitude of the yawing moment which can be generated by the right and left imbalance of the driving force is also reduced by half. In addition, proper yaw control is more important when decelerating than when accelerating from the aspect of safety, unless it is during a car race, and when drifting or skidding, as long as safety is important, acceleration The need to do so is small.
[0054]
Therefore, in the vehicle control device 6 of the present embodiment, the drive torque control means 63, which is not expected to have much effect in terms of effectiveness and safety, is further eliminated. By reducing the driving torque control means 63 (see FIG. 1), the configuration of the vehicle control device 6 is simplified as compared with the first embodiment, so that the cost can be reduced not only in the vehicle body but also in the vehicle control device 6. I made it.
[0055]
In the present embodiment, as shown in FIG. 3, the steering mechanism 1 of the automobile A is provided with a steering angle sensor 21 for detecting a steering wheel operating angle δs and a motor rotation angle δm which is the rotation angle of the motor 31 of the steering actuator 3. A motor rotation angle sensor 32 for detecting is provided. Here, as in the first embodiment, the actual steering angle δp of the front wheels FW1 and FW2 is calculated as the sum of the steering wheel operating angle δs and the motor rotation angle δm (δp = δs + δm). Both the steering wheel operating angle δs and the actual steering angle δp (= δs + δm) are input to the brake control means 62 of the vehicle control device 6 of the present embodiment.
[0056]
Here, in the present embodiment, the vehicle A is provided with a wheel speed sensor 71 for detecting the rotation speed of each wheel on each of the front wheels FW1, FW2 and the rear wheels RW1, RW2. The hydraulic pressure sensor 70 is also provided to a brake actuator 81 that applies an appropriate hydraulic pressure to a master cylinder (not shown) that operates a brake (not shown) attached to each of the left and right front wheels FW1, FW2 and the rear wheels RW1, RW2. It is attached. The output signal from the oil pressure sensor 70 is also input to the brake control means 62. Further, the vehicle A is equipped with a G sensor 72 and a yaw rate sensor 73 fixed to the vehicle body. Output signals from these sensors 71, 72, 73 are input to the brake control means 62 of the vehicle control device 6 of the present embodiment. Note that the wheel speed sensors attached to the front wheels FW1 and FW2 and their signal paths are not shown in FIG. 3 for simplification of the drawing.
[0057]
(Effects of Embodiment 2)
Since the vehicle control device 6 of the present embodiment is configured as described above, it has the following operational effects.
[0058]
That is, in the vehicle control device 6 of the present embodiment, the brake control means 62 includes not only the steering wheel operation angle δs and the motor rotation angle δm, but also the output signal from the brake oil pressure sensor 70 and various vehicle motion sensors 7. Output signals from (71, 72, 73) are input in parallel.
[0059]
Then, the brake control means 62 sends a control signal to the brake actuator 81 so as to cause an imbalance of an appropriate braking force between the left and right brakes. Further, the brake control means 62 calculates the speed of the vehicle body based on the two angle signals δs and δm and the various detection signals, and then calculates the target value of the motor rotation angle δm to be taken by the motor 31 of the steering actuator 3. A certain target motor angle δt is calculated.
[0060]
On the other hand, the steering control means 61 generates a control signal based on the actual steering angle δp (= δs + δm) and the target motor angle δt calculated by the brake control means 62. This control signal is transmitted from the steering control means 61 to the steering actuator 3 for steering the actual steering angle δp. As a result, the steering actuator 3 steers the front wheels FW1 and FW2 to adjust the actual steering angle δp so as to approach the more appropriate target motor angle δt.
[0061]
Now, in a car, generally, the braking force is much larger than the driving force, and this tendency is more remarkable in a two-wheel drive vehicle than in a four-wheel drive vehicle. Therefore, unlike the vehicle A in the present embodiment, the vehicle control device 6 does not have the drive torque control means 63, does not have the differential control device, and applies the same drive force to the left and right wheels even in the drive system configuration. The vehicle control device 6 of the present embodiment is sufficiently effective even in a two-wheel drive vehicle that can only perform the operation. That is, by the operation of the vehicle control device 6 according to the present embodiment, the four-wheel brakes operate with a difference between the left and right, and if there is a sufficiently large difference between the left and right braking forces, the braking force is slightly less than that of the first embodiment, but is equivalent to that. A large yawing moment is obtained.
[0062]
Therefore, according to the vehicle control device 6 of the present embodiment, as described above, the configurations of the vehicle drive system and the vehicle control device 6 are simple and inexpensive, and the weight of the vehicle can be reduced. There is an effect that the yawing control according to the above is enabled.
[0063]
(Modification 1 of Example 2)
As a first modified example of the present embodiment, as shown in FIG. 4, a vehicle control device 6 having a steering control means 61 and a brake control means 62 and having a more integrated control function can be implemented.
[0064]
The vehicle control device 6 according to the present modification includes a brake control device 64 as a brake control device including a vehicle state estimating device 65 and a braking force control device 66, instead of the brake control device 62 according to the second embodiment. This is different from the second embodiment. That is, the basic feature is that the brake control device 64 as the brake control means 62 includes the vehicle state estimation means 65.
[0065]
The vehicle state estimating means 65 includes a wheel speed detecting means (wheel speed sensor) 71, a G detecting means (G sensor) 72, a yaw rate detecting means (yaw rate sensor) 73, and a steering wheel angle detecting means (steering angle sensor) 21. And the respective signals are input. Based on these signals, the vehicle state estimating means 65 estimates the vehicle state such as the speed and angular velocity of the automobile A and the side slip angle, and outputs an appropriate control signal based on the vehicle state. That is, the vehicle state estimating means 65 estimates and grasps the vehicle state based on the output signals from the various sensors 71, 72, and 73, and then estimates the driver's intention regarding the yaw rate based on the steering wheel operation angle δs. And output an appropriate control signal.
[0066]
Here, the control signal output from the vehicle state estimating means 65 includes a target wheel speed transmitted to a braking force control means 66 corresponding to a subsequent stage of the brake control device 64 and an actual steering angle control means 61 as a steering control means. There is a transmitted target actual steering angle δt. The braking force control means 66 to which the target wheel speed has been input transmits a braking signal having an appropriate left and right imbalance to the braking force applying means (brake actuator) 81 to perform appropriate braking to assist yawing control. On the other hand, the target actual steering angle δt is input to the actual steering angle control means 67 as the steering control means in parallel with the actual steering angle δp from the actual steering angle detection means 54. Then, the actual steering angle control means 67 transmits an appropriate control signal to the actual steering angle applying means (steering actuator) 82 to steer the front wheels FW1 and FW2 (see FIG. 3), and adjusts the actual steering angle δp to an ideal value. It acts so as to approach the target actual steering angle δt close to the steering angle.
[0067]
Although the steering angle δs is not directly input to the actual steering angle control means 67, the actual steering angle δt is input from the vehicle state estimating means 65 instead. It is assumed that the steering wheel operation angle δs has been input to.
[0068]
Therefore, according to the present modification as well, an appropriate left / right imbalance is applied to the braking force to assist the yawing control, and the same effect as that of the second embodiment can be obtained. In addition, since the vehicle state estimating means 65 appropriately estimates the vehicle state and then performs the braking force control and the steering control, there is an effect that more advanced yawing control can be performed. That is, according to this modification, it is possible to provide the vehicle control device 6 that integrally controls the vehicle motion at a higher altitude than the first and second embodiments.
[0069]
(Other Modifications of Embodiment 2)
Various modifications corresponding to the above-described various modifications of the first embodiment can be performed on the control device of the present embodiment and the modification 1 thereof, and substantially the same operation and effect can be obtained.
[Brief description of the drawings]
FIG. 1 is a schematic diagram illustrating a configuration of a vehicle control device according to a first embodiment.
FIG. 2 is a schematic diagram showing the definition and relationship of each rotation angle in the first embodiment.
FIG. 3 is a block diagram showing a configuration of a vehicle control device as a second embodiment;
FIG. 4 is a block diagram showing a configuration of a vehicle control device according to a first modification;
[Explanation of symbols]
A: Car (as a vehicle)
1: Steering mechanism
10: Steering wheel (steering wheel)
2: Input shaft (steering column)
21: Steering angle sensor (detects steering wheel operation angle δs)
3: Steering actuator (with variable transmission ratio action)
31: Motor (motor for assisting or correcting steering operation)
32: Motor rotation angle sensor (detects motor rotation angle δm)
4: Output shaft (pinion shaft)
5: Rack & pinion type steering gear
51: Pinion 52: Rack
53: rack shaft 54: actual steering angle detecting means (detects actual steering angle)
6: Vehicle control device (product of the present invention)
61: Steering control unit, steering control ECU (as steering control means)
62: brake control unit, brake control ECU (as brake control means)
63: drive control unit (as drive torque control means)
64: brake control device (as brake control means)
65: Vehicle state estimation device
66: braking force control means
67: Actual steering angle control means (as steering control means)
68: Suspension control means
7: Various motion state sensors
70: Hydraulic sensor of brake master cylinder
71: Wheel speed sensor (one for each wheel)
72: Yaw rate sensor 73: G sensor
8: Various actuators
81: Brake actuator / master cylinder, braking force applying means
82: Steering actuator, actual steering angle applying means
FW1, FW2: left and right front wheels RW1, FW2: left and right rear wheels
δs: handle operation angle δm: motor rotation angle
δp: pinion angle, actual steering angle (δp = δs + δm)
δt: target actual steering angle (target value of actual steering angle)

Claims (1)

車両のハンドル操作角と、操舵可能な車輪の実舵角と、各種の運動状態センサからの出力信号とに基づいて、この実舵角を適正に制御する操舵制御手段を有する車両制御装置において、
各駆動輪にかかる駆動トルクをそれぞれ制御する駆動トルク制御手段と、
各車輪にかかる制動力をそれぞれ制御するブレーキ制御手段と、
前記車両を支持するサスペンションの減衰特性を制御するサスペンション制御手段と、
のうち少なくとも一つをさらに有し、
前記ハンドル操作角と前記実舵角との両方を、この駆動トルク制御手段、このブレーキ制御手段およびこのサスペンション制御手段のうち少なくとも一つに入力することを特徴とする、
車両制御装置。
In a vehicle control device having a steering operation angle of a vehicle, an actual steering angle of a steerable wheel, and steering control means for appropriately controlling the actual steering angle based on output signals from various motion state sensors,
Drive torque control means for controlling the drive torque applied to each drive wheel,
Brake control means for controlling the braking force applied to each wheel,
Suspension control means for controlling a damping characteristic of a suspension supporting the vehicle,
Further comprising at least one of
Both the steering wheel operating angle and the actual steering angle are input to at least one of the driving torque control unit, the brake control unit, and the suspension control unit,
Vehicle control device.
JP2002241785A 2002-08-22 2002-08-22 Vehicle control device Pending JP2004075013A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002241785A JP2004075013A (en) 2002-08-22 2002-08-22 Vehicle control device
DE10338706A DE10338706A1 (en) 2002-08-22 2003-08-22 Vehicle control apparatus for motor vehicle, inputs real steering angle and operation angle of steering wheel to driving torque controller, brake controller and suspension controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002241785A JP2004075013A (en) 2002-08-22 2002-08-22 Vehicle control device

Publications (1)

Publication Number Publication Date
JP2004075013A true JP2004075013A (en) 2004-03-11

Family

ID=31944001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002241785A Pending JP2004075013A (en) 2002-08-22 2002-08-22 Vehicle control device

Country Status (2)

Country Link
JP (1) JP2004075013A (en)
DE (1) DE10338706A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005255107A (en) * 2004-03-15 2005-09-22 Toyota Motor Corp Vehicle behavior control device
JP2005271844A (en) * 2004-03-26 2005-10-06 Toyota Motor Corp Vehicle travel control device
JP2007160998A (en) * 2005-12-12 2007-06-28 Toyota Motor Corp Vehicle steering control device
JP2007302120A (en) * 2006-05-11 2007-11-22 Toyota Motor Corp Vehicle and control method thereof
JP2008038966A (en) * 2006-08-02 2008-02-21 Toyota Motor Corp Traveling device
JP2008110750A (en) * 2007-10-05 2008-05-15 Toyota Motor Corp Vehicle behavior control device
US7604083B2 (en) 2005-06-07 2009-10-20 Nissan Motor Co., Ltd. Steering apparatus for a vehicle
US8200391B2 (en) 2005-05-18 2012-06-12 Toyota Jidosha Kabushiki Kaisha Running control apparatus for vehicle
CN104080671A (en) * 2012-01-25 2014-10-01 日产自动车株式会社 Vehicle control system and vehicle control method
JP2021117725A (en) * 2020-01-27 2021-08-10 三菱電機株式会社 Vehicle collision prevention device and vehicle collision prevention method
US12330727B2 (en) * 2022-05-13 2025-06-17 Hl Mando Corporation Reaction torque control device and method for SBW system

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004047860A1 (en) * 2004-10-01 2006-04-20 Daimlerchrysler Ag Method and device for influencing the lateral dynamics of a vehicle
JP4069921B2 (en) 2004-10-25 2008-04-02 三菱自動車工業株式会社 Vehicle turning behavior control device
DE102004053690A1 (en) * 2004-11-06 2006-05-11 Zf Lenksysteme Gmbh Method and device for determining a steering angle of a vehicle
DE102004055178A1 (en) * 2004-11-16 2006-05-18 Bayerische Motoren Werke Ag Driving dynamics control system for a two-lane two-axle motor vehicle
WO2006096729A2 (en) * 2005-03-07 2006-09-14 Crown Equipment Corporation Braking system for a lift truck
JP4445889B2 (en) * 2005-03-24 2010-04-07 株式会社豊田中央研究所 Vehicle control device
DE102005017735A1 (en) * 2005-04-15 2006-10-19 Zf Friedrichshafen Ag Method for operating the brake system of an electric motor driven vehicle, in particular an industrial truck
US7890239B2 (en) 2005-10-13 2011-02-15 Toyota Jidosha Kabushiki Kaisha Vehicle suppressing OS or US by stagedly different devices
JP4618105B2 (en) 2005-11-11 2011-01-26 三菱自動車工業株式会社 Vehicle turning behavior control device
JP4835189B2 (en) * 2006-02-16 2011-12-14 日産自動車株式会社 Turning behavior control device, automobile, and turning behavior control method
DE102006017823A1 (en) * 2006-04-13 2007-10-18 Daimlerchrysler Ag System for influencing the driving behavior of a vehicle
JP4179392B1 (en) * 2007-07-09 2008-11-12 三菱自動車工業株式会社 Vehicle turning behavior control device
DE102009026572A1 (en) * 2009-05-29 2010-12-02 Ford Global Technologies, LLC, Dearborn Motor vehicle movement controlling arrangement, has distribution unit determining respective contribution of electronic stability program actuators and active front steering actuator to production of vehicle yaw moment
DE102013011883A1 (en) * 2013-07-17 2015-01-22 Thyssenkrupp Presta Ag Method for operating the steering of a crane vehicle
DE102014200608B4 (en) * 2014-01-15 2020-12-03 Robert Bosch Automotive Steering Gmbh Method and device for operating a motor vehicle
CN108909705B (en) * 2018-08-22 2020-01-07 北京航空航天大学 A vehicle control method and device
US12134394B2 (en) 2020-08-10 2024-11-05 Toyota Research Institute, Inc. Vehicle dynamics emulation

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005255107A (en) * 2004-03-15 2005-09-22 Toyota Motor Corp Vehicle behavior control device
US7519464B2 (en) 2004-03-26 2009-04-14 Toyota Jidosha Kabushiki Kaisha Running stability control device for vehicle for turn running along curved road
JP2005271844A (en) * 2004-03-26 2005-10-06 Toyota Motor Corp Vehicle travel control device
US8200391B2 (en) 2005-05-18 2012-06-12 Toyota Jidosha Kabushiki Kaisha Running control apparatus for vehicle
US7604083B2 (en) 2005-06-07 2009-10-20 Nissan Motor Co., Ltd. Steering apparatus for a vehicle
JP2007160998A (en) * 2005-12-12 2007-06-28 Toyota Motor Corp Vehicle steering control device
JP2007302120A (en) * 2006-05-11 2007-11-22 Toyota Motor Corp Vehicle and control method thereof
JP2008038966A (en) * 2006-08-02 2008-02-21 Toyota Motor Corp Traveling device
JP2008110750A (en) * 2007-10-05 2008-05-15 Toyota Motor Corp Vehicle behavior control device
CN104080671A (en) * 2012-01-25 2014-10-01 日产自动车株式会社 Vehicle control system and vehicle control method
CN104080671B (en) * 2012-01-25 2016-08-24 日产自动车株式会社 The control device of vehicle and the control method of vehicle
JP2021117725A (en) * 2020-01-27 2021-08-10 三菱電機株式会社 Vehicle collision prevention device and vehicle collision prevention method
US12330727B2 (en) * 2022-05-13 2025-06-17 Hl Mando Corporation Reaction torque control device and method for SBW system

Also Published As

Publication number Publication date
DE10338706A1 (en) 2004-03-25

Similar Documents

Publication Publication Date Title
JP2004075013A (en) Vehicle control device
US7740102B2 (en) Steering control device for vehicle
US8781684B2 (en) Steering and control systems for a three-wheeled vehicle
CN106080753B (en) A kind of Electric Motor Wheel steering control system and its control method for merging active steering, power-assisted steering and direct yaw moment control function
US12240462B2 (en) Method for controlling a motor vehicle in emergency steering mode by means of front wheel brake-based torque vectoring
JP4930007B2 (en) Steering angle control device for vehicle
JP5423391B2 (en) Vehicle speed control device
CN109641620B (en) Vehicle and method for steering a vehicle
JP3853943B2 (en) Vehicle steering device
JP2014159269A (en) Control method of four wheel steering vehicle
JP2006347286A (en) Steering device for vehicle
JP2742696B2 (en) Car rear wheel steering system
JP4030203B2 (en) Rear wheel steering device for rear wheel drive vehicles
JP4300103B2 (en) Vehicle steering control device
JP2006321271A (en) Steering gear for vehicle
JP2010158963A (en) Device and method for controlling vehicle
JP2008044466A (en) Vehicular steering device
JP2005343256A (en) Vehicle behavior control device
JP5313714B2 (en) Electric power steering device
JP2021524417A (en) Gradual detection of the appearance of torque steer
JP2006182050A (en) Braking force control device for four-wheel independent drive vehicle
JP2006008120A (en) Device and method for adjusting steering behavior of automobile
JP4123955B2 (en) Steering angle control device for vehicle
JP4123956B2 (en) Steering angle control device for vehicle
JPH07108949A (en) Integrated control device for vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060428

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060616