JP2004071000A - 半導体記憶装置 - Google Patents
半導体記憶装置 Download PDFInfo
- Publication number
- JP2004071000A JP2004071000A JP2002225705A JP2002225705A JP2004071000A JP 2004071000 A JP2004071000 A JP 2004071000A JP 2002225705 A JP2002225705 A JP 2002225705A JP 2002225705 A JP2002225705 A JP 2002225705A JP 2004071000 A JP2004071000 A JP 2004071000A
- Authority
- JP
- Japan
- Prior art keywords
- voltage
- circuit
- channel mos
- mos transistor
- level
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/21—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
- G11C11/34—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
- G11C11/40—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
- G11C11/401—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
- G11C11/4063—Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
- G11C11/407—Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
- G11C11/4074—Power supply or voltage generation circuits, e.g. bias voltage generators, substrate voltage generators, back-up power, power control circuits
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C5/00—Details of stores covered by group G11C11/00
- G11C5/14—Power supply arrangements, e.g. power down, chip selection or deselection, layout of wirings or power grids, or multiple supply levels
- G11C5/145—Applications of charge pumps; Boosted voltage circuits; Clamp circuits therefor
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C5/00—Details of stores covered by group G11C11/00
- G11C5/14—Power supply arrangements, e.g. power down, chip selection or deselection, layout of wirings or power grids, or multiple supply levels
- G11C5/147—Voltage reference generators, voltage or current regulators; Internally lowered supply levels; Compensation for voltage drops
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C2207/00—Indexing scheme relating to arrangements for writing information into, or reading information out from, a digital store
- G11C2207/10—Aspects relating to interfaces of memory device to external buses
- G11C2207/104—Embedded memory devices, e.g. memories with a processing device on the same die or ASIC memory designs
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Dram (AREA)
- Semiconductor Integrated Circuits (AREA)
- Semiconductor Memories (AREA)
- Dc-Dc Converters (AREA)
Abstract
【課題】メモリセルアレイの容量の変化に対して面積ロスの小さい電源回路を備える半導体記憶装置を提供する。
【解決手段】半導体記憶装置100Aは、メモリセルアレイ10A,10Bと、データバス40と、基準電圧発生回路72と、電圧降圧回路73と、VPP発生回路76と、回路群77と、テスト回路80とを備える。基準電圧発生回路72、電圧降圧回路73およびVPP発生回路76は、3.3Vの電源電圧に適したゲート酸化膜厚を有する厚膜MOSトランジスタを用いて構成される。回路群77に含まれる回路は1.5Vの電源電圧に適したゲート酸化膜厚を有する薄膜MOSトランジスタを用いて構成される。厚膜MOSトランジスタを含む基準電圧発生回路72、電圧降圧回路73およびVPP発生回路76は、メモリセルアレイ10A,10Bの配置位置に対応してユニット配置される。
【選択図】 図15
【解決手段】半導体記憶装置100Aは、メモリセルアレイ10A,10Bと、データバス40と、基準電圧発生回路72と、電圧降圧回路73と、VPP発生回路76と、回路群77と、テスト回路80とを備える。基準電圧発生回路72、電圧降圧回路73およびVPP発生回路76は、3.3Vの電源電圧に適したゲート酸化膜厚を有する厚膜MOSトランジスタを用いて構成される。回路群77に含まれる回路は1.5Vの電源電圧に適したゲート酸化膜厚を有する薄膜MOSトランジスタを用いて構成される。厚膜MOSトランジスタを含む基準電圧発生回路72、電圧降圧回路73およびVPP発生回路76は、メモリセルアレイ10A,10Bの配置位置に対応してユニット配置される。
【選択図】 図15
Description
【0001】
【発明の属する技術分野】
この発明は、半導体記憶装置に関し、特に、半導体記憶装置の内部で内部電圧を発生する電源回路における面積ロスを低減する半導体記憶装置に関するものである。
【0002】
【従来の技術】
半導体技術の進歩により、ロジック回路とDRAM(Dynamic Random Access Memory)とを同一チップ内に含むロジック混載メモリが形成されるようになった。そして、ロジック回路とDRAMとの間のデータ転送レートは、大きく向上している。
【0003】
図34を参照して、ロジック混載メモリ700は、DRAM800と、SRAM(Static Random Access Memory)810,820と、ロジック回路830と、パッド840とを備える。
【0004】
DRAM800およびSRAM810,820は、データを記憶するためのメモリである。ロジック回路830は、DRAM800およびSRAM810,820へのデータの入出力を制御する。パッド840は、周辺部に設けられ、ロジック混載メモリ700に電源電圧、制御信号、およびデータを入力および/または出力するための端子である。
【0005】
ロジック混載メモリ700においては、ロジック回路830と、メモリであるDRAM800およびSRAM810,820との間でデータ等が高速でやり取りされる。
【0006】
図35を参照して、DRAM800は、メモリセルアレイ801,802と、ロウコラムデコーダ803と、データバス804,805と、制御回路806と、電源回路807と、テスト回路808とを含む。
【0007】
メモリセルアレイ801,802は、複数のメモリセル、複数のワード線、複数のビット線対、複数のビット線対に対応して設けられた複数のセンスアンプ、および複数のビット線対に対応して設けられた複数のイコライズ回路等を含む。複数のメモリセルは、行列状に配置される。複数のワード線は、行列状に配置された複数のメモリセルの行方向に設けられる。複数のビット線対は、行列状に配置された複数のメモリセルの列方向に設けられる。
【0008】
ロウコラムデコーダ803は、メモリセルアレイ801とメモリセルアレイ802との間に配置される。そして、ロウコラムデコーダ803は、外部から入力されたアドレスをデコードし、そのデコーダしたアドレスによって指定されたワード線またはビット線対を活性化する。
【0009】
データバス804,805は、メモリセルアレイ801,802に含まれる複数のメモリセルにデータを入出力するための線である。制御回路806は、複数のメモリセルへのデータの入出力等の動作を制御する。
【0010】
電源回路807は、外部から供給された外部電源電圧に基づいて内部電圧を発生し、その発生した内部電圧をメモリセルアレイ801,802および制御回路806等の周辺回路に供給する。
【0011】
テスト回路808は、DRAM800におけるテストを行なう。
図36を参照して、電源回路807は、Vbb発生回路850と、基準電圧発生回路860と、電圧降圧回路870と、1/2Vcc発生回路880,890と、VPP発生回路900とを含む。
【0012】
Vbb発生回路850は、レベル変換器851と、制御回路852と、検出回路853と、発振器854と、ポンプ回路855とから成る。レベル変換器851は、ノードN1,N2から電源電圧を受ける。ノードN1は、たとえば、1.5Vの電源電圧が供給される。ノードN2は、たとえば、3.3Vの電源電圧が供給される。レベル変換器851は、テストモード信号TM等の制御信号を受け、その受けたテストモード信号TMを構成する電圧レベルを1.5Vから3.3Vに変換する。そして、レベル変換器851は、レベル変換したテストモード信号TMを制御回路852へ出力する。
【0013】
制御回路852は、ノードN2から3.3Vの電源電圧を受ける。そして、制御回路852は、レベル変換器851から受けたテストモード信号TMに基づいて、検出回路853を制御する。より具体的には、制御回路852は、テストモードTMがH(論理ハイ)レベルであるとき、各種のテストを行なうために検出回路853を活性化または不活性化する。また、制御回路852は、テストモード信号TMがL(論理ロー)レベルであるとき、検出回路853を活性化する。
【0014】
検出回路853は、ノードN2から3.3Vの電源電圧を受ける。そして、検出回路853は、基準電圧発生回路860の電流源861から受けた信号BIASLがHレベルであるとき負電圧Vbbを検出し、その検出信号を発振器854へ出力する。
【0015】
発振器854は、ノードN2から3.3Vの電源電圧を受ける。そして、発振器854は、検出回路853から受けた検出信号の論理レベルに応じた位相を有するクロックCLKを発生し、その発生したクロックCLKをポンプ回路855へ出力する。
【0016】
ポンプ回路855は、ノードN2から3.3Vの電源電圧を受ける。そして、ポンプ回路855は、発振器854から受けたクロックCLKに同期してキャリアをポンピングし、−0.7Vの負電圧Vbbを発生する。
【0017】
このように、Vbb発生回路850は、ノードN2から受けた3.3Vの電源電圧によって駆動され、−0.7Vの負電圧Vbbを発生してメモリセルアレイ801,802に供給する。
【0018】
基準電圧発生回路860は、電流源861と、電圧発生回路862とを含む。電流源861は、ノードN2から3.3Vの電源電圧を受ける。そして、電流源861は、ノードN2から受けた3.3Vの電源電圧に基づいて、電圧VIIと、MOSトランジスタの線形動作領域における電圧から成る信号BIASL,ICONSTとを発生し、その発生した電圧VIIおよび信号ICONSTを電圧発生回路862へ出力し、信号BIASLをVbb発生回路850の検出回路853、電圧降圧回路870およびVPP発生回路900へ出力する。なお、信号ICONSTは、MOSトランジスタの線形動作領域における最大電圧から成り、信号BIASLは、MOSトランジスタの線形動作領域における最小電圧から成る。
【0019】
電圧発生回路862は、電圧VIIおよび信号ICONSTを電流源861から受け、その受けた電圧VIIおよび信号ICONSTに基づいて1.5Vの基準電圧VrefSを発生し、その発生した1.5Vの基準電圧VrefSを電圧降圧回路870およびVPP発生回路900へ出力する。
【0020】
このように、基準電圧発生回路860は、ノードN2から受けた3.3Vの電源電圧によって駆動され、電源電圧よりも低い1.5Vの基準電圧VrefSを発生する。
【0021】
電圧降圧回路870は、レベル変換器871と、制御回路872と、差動増幅回路873,876と、PチャネルMOSトランジスタ874,877と、NチャネルMOSトランジスタ875,878とを含む。レベル変換器871は、1.5の電源電圧をノードN1から受け、3.3Vの電源電圧をノードN2から受ける。そして、レベル変換器871は、テストモード信号TMまたはセンスアンプイネーブル信号SAE等の制御信号を受け、その受けたテストモード信号TMまたはセンスアンプイネーブル信号SAEの電圧レベルを1.5Vから3.3Vに変換する。レベル変換器871は、電圧レベルを変換したテストモード信号TMまたはセンスアンプイネーブル信号SAEを制御回路872へ出力する。
【0022】
制御回路872は、ノードN2から3.3Vの電源電圧を受ける。そして、制御回路872は、テストモード信号TMまたはセンスアンプイネーブル信号SAEをレベル変換器871から受け、その受けたテストモード信号TMまたはセンスアンプイネーブル信号SAEをNチャネルMOSトランジスタ875のゲート端子へ出力する。DRAM800のテストモード時、制御回路872は、テスト内容に応じてHレベルまたはLレベルのテストモード信号TMを受け、その受けたHレベルまたはLレベルのテストモード信号TMをNチャネルMOSトランジスタ875のゲート端子へ出力する。また、DRAM800の通常動作時、制御回路872は、Hレベルのセンスアンプイネーブル信号SAEを受け、その受けたHレベルのセンスアンプイネーブル信号SAEをNチャネルMOSトランジスタ875のゲート端子へ出力する。さらに、DRAM800のスタンバイ時、制御回路872は、Lレベルのセンスアンプイネーブル信号SAEを受け、その受けたLレベルのセンスアンプイネーブル信号SAEをNチャネルMOSトランジスタ875のゲート端子へ出力する。
【0023】
差動増幅回路873は、ノードN2とNチャネルMOSトランジスタ875との間に接続され、その非反転入力端子に基準電圧発生回路860からの基準電圧VrefSを受け、その反転入力端子に出力ノードNOUT上のアレイ電圧VccSを受ける。そして、NチャネルMOSトランジスタ875がHレベルのテストモード信号TMまたはHレベルのセンスアンプイネーブル信号SAEをゲート端子に受けたとき、差動増幅回路873は活性化される。また、NチャネルMOSトランジスタ875がLレベルのテストモード信号TMまたはLレベルのセンスアンプイネーブル信号SAEをゲート端子に受けたとき、差動増幅回路873は不活性化される。
【0024】
差動増幅回路873は、活性化されると、アレイ電圧VccSの電圧レベルが基準電圧VrefSの電圧レベルになるようにアレイ電圧VccSを差動増幅し、その差動増幅した1.5Vの電圧をPチャネルMOSトランジスタ874のゲート端子へ出力する。また、差動増幅回路873は、不活性化されると、ノードN2から受けた3.3Vの電源電圧に近い電圧をPチャネルMOSトランジスタ874のゲート端子へ出力する。
【0025】
PチャネルMOSトランジスタ874は、ノードN2と出力ノードNOUTとの間に接続される。そして、PチャネルMOSトランジスタ874は、差動増幅回路873から受けた電圧に応じてキャリアをノードN2から出力ノードNOUTへ供給する。
【0026】
NチャネルMOSトランジスタ875は、差動増幅回路873と接地ノードNS1との間に接続され、テストモード信号TMまたはセンスアンプイネーブル信号SAEを制御回路872からゲート端子に受ける。
【0027】
差動増幅回路876は、ノードN2とNチャネルMOSトランジスタ878との間に接続され、その非反転入力端子に基準電圧発生回路860からの基準電圧VrefSを受け、反転入力端子に出力ノードNOUT上のアレイ電圧VccSを受ける。そして、差動増幅回路876は、NチャネルMOSトランジスタ878が基準電圧発生回路860の電流源861からHレベルの信号BIASLを受けたとき活性化され、NチャネルMOSトランジスタ878がLレベルの信号BIASLを受けたとき不活性化される。差動増幅回路876は、活性化されると、アレイ電圧VccSの電圧レベルが基準電圧VrefSの電圧レベルになるようにアレイ電圧VccSを差動増幅し、その差動増幅した1.5Vの電圧をPチャネルMOSトランジスタ877のゲート端子へ出力する。
【0028】
PチャネルMOSトランジスタ877は、ノードN2と出力ノードNOUTとの間に接続される。そして、PチャネルMOSトランジスタ877は、差動増幅回路876から受けた電圧に応じてキャリアをノードN2から出力ノードNOUTへ供給する。
【0029】
NチャネルMOSトランジスタ878は、差動増幅回路876と接地ノードNS1との間に接続され、基準電圧発生回路860の電流源861から信号BIASLをゲート端子に受ける。
【0030】
NチャネルMOSトランジスタ875がHレベルのテストモード信号TMまたはHレベルのセンスアンプイネーブル信号SAEをゲート端子に受けると、差動増幅回路873は、活性化され、アレイ電圧VccSの電圧レベルが基準電圧VrefSの電圧レベルになるようにアレイ電圧VccSを差動増幅し、その差動増幅した1.5Vの電圧をPチャネルMOSトランジスタ874のゲート端子へ出力する。そして、PチャネルMOSトランジスタ874は、差動増幅回路873から受けた1.5Vの電圧に応じてキャリアをノードN2から出力ノードNOUTへ供給し、出力ノードNOUT上の電圧VccSを1.5Vに設定する。なお、差動増幅回路873が不活性化されたとき、PチャネルMOSトランジスタ874は、3.3Vに近い電圧をゲート端子に受けるので、殆どオフされ、出力ノードNOUT上のアレイ電圧VccSの電圧レベルは低下する。
【0031】
NチャネルMOSトランジスタ878がHレベルの信号BIASLをゲート端子に受けたとき、差動増幅回路876およびPチャネルMOSトランジスタ877は、それぞれ、差動増幅回路873およびPチャネルMOSトランジスタ874と同じ動作を行ない、出力ノードNOUT上のアレイ電圧VccSは1.5Vに設定される。NチャネルMOSトランジスタ878がLレベルの信号BIASLを受け、差動増幅回路876が不活性化されたとき、差動増幅回路873が不活性化されたときと同様に、出力ノードNOUT上のアレイ電圧VccSの電圧レベルは低下する。
【0032】
DRAM800のスタンバイ時、NチャネルMOSトランジスタ875は、Lレベルのセンスアンプイネーブル信号SAEをゲート端子に受け、NチャネルMOSトランジスタ878は、0.7Vの電圧レベルから成る信号BIASLをゲート端子に受ける。その結果、差動増幅回路873は不活性化され、差動増幅回路876は活性化される。
【0033】
そうすると、差動増幅回路876は、出力ノードNOUT上のアレイ電圧VccSの電圧レベルが基準電圧VrefSの電圧レベルになるようにアレイ電圧VccSを差動増幅し、その差動増幅した電圧をPチャネルMOSトランジスタ877のゲート端子へ出力する。そして、PチャネルMOSトランジスタ877は、差動増幅回路876から受けた電圧に応じてキャリアをノードN2から出力ノードNOUTへ供給する。
【0034】
したがって、差動増幅回路876、PチャネルMOSトランジスタ877およびNチャネルMOSトランジスタ878は、DRAM800のスタンバイ時に3.3Vの電源電圧を降圧して1.5Vのアレイ電圧VccSを発生する。この場合、NチャネルMOSトランジスタ878は、0.7Vの電圧レベルから成る信号BIASLをゲート端子に受けるので、通常動作時よりもチャネル幅が狭い。したがって、差動増幅回路876に流れる電流は通常動作時よりも少なく、差動増幅回路876は通常動作時よりも高いレベルの電圧をPチャネルMOSトランジスタ877へ出力する。そうすると、PチャネルMOSトランジスタ877は、通常動作時よりも少ないキャリアをノードN2から出力ノードNOUTへ供給するので、アレイ電圧VccSが1.5Vの電圧レベルになる速度は通常動作時よりも遅い。
【0035】
DRAM800の通常動作時、NチャネルMOSトランジスタ875は、Hレベルのセンスアンプイネーブル信号SAEをゲート端子に受け、NチャネルMOSトランジスタ878は、0.7Vの電圧レベルから成る信号BIASLをゲート端子に受ける。その結果、差動増幅回路873,876は活性化される。この場合、Hレベルのセンスアンプイネーブル信号SAEは3.3Vの電圧レベルから成るので、NチャネルMOSトランジスタ875のチャネル幅は、NチャネルMOSトランジスタ878のチャネル幅よりも広い。そうすると、差動増幅回路873に流れる電流は差動増幅回路876に流れる電流よりも大きく、差動増幅回路873は、差動増幅回路876よりも低い電圧をPチャネルMOSトランジスタ874へ出力する。その結果、PチャネルMOSトランジスタ874は、PチャネルMOSトランジスタ877よりも多くのキャリアをノードN2から出力ノードNOUTへ供給する。
【0036】
したがって、DRAM800の通常動作時、差動増幅回路873、PチャネルMOSトランジスタ874およびNチャネルMOSトランジスタ875は、差動増幅回路876、PチャネルMOSトランジスタ877およびNチャネルMOSトランジスタ878よりも速くアレイ電圧VccSの電圧レベルを1.5Vに設定する。
【0037】
このように、差動増幅回路873、PチャネルMOSトランジスタ874およびNチャネルMOSトランジスタ875は、DRAM800の通常動作時、3.3Vの電源電圧を降圧してアレイ電圧VccSを1.5Vの電圧レベルに速く設定し、差動増幅回路876、PチャネルMOSトランジスタ877およびNチャネルMOSトランジスタ878は、DRAM800のスタンバイ時、3.3Vの電源電圧を降圧してアレイ電圧VccSを1.5Vの電圧レベルにゆっくり設定する。
【0038】
なお、差動増幅回路873、PチャネルMOSトランジスタ874およびNチャネルMOSトランジスタ875から成る回路の数、および差動増幅回路876、PチャネルMOSトランジスタ877およびNチャネルMOSトランジスタ878から成る回路の数は、メモリセルアレイ801,802を構成するブロックの数に応じて変えられる。
【0039】
上述したように、電圧降圧回路870は、3.3Vの電源電圧によって駆動され、DRAM800の通常動作時、3.3Vの電源電圧を降圧して1.5Vのアレイ電圧VccSを速く出力ノードNOUTに供給し、DRAM800のスタンバイ時、3.3Vの電源電圧を降圧して1.5Vのアレイ電圧VccSをゆっくり出力ノードNOUTに供給する。
【0040】
1/2Vcc発生回路880は、ノードN2から受けた3.3Vの電源電圧によって駆動される。そして、1/2Vcc発生回路880は、出力ノードNOUT上のアレイ電圧VccSを受け、アレイ電圧VccSを2分の1に分圧してプリチャージ電圧VBLを発生する。また、1/2Vcc発生回路890は、ノードN2から受けた3.3Vの電源電圧によって駆動される。そして、1/2Vcc発生回路890は、出力ノードNOUT上のアレイ電圧VccSを受け、アレイ電圧VccSを2分の1に分圧してセルプレート電圧VCPを発生する。
【0041】
VPP発生回路900は、レベル変換器901と、制御回路902と、分割回路903と、検出回路904,905と、発振器906と、ポンプ回路907〜910とを含む。
【0042】
レベル変換器901は、1.5Vの電源電圧をノードN1から受け、3.3Vの電源電圧をノードN2から受ける。そして、レベル変換器901は、テストモード信号TMまたはロウアドレスストローブ信号RASを受け、その受けたテストモード信号TMまたはロウアドレスストローブ信号RASの電圧レベルを1.5Vから3.3Vに変換して制御回路902へ出力する。
【0043】
制御回路902は、ノードN2から3.3Vの電源電圧を受ける。そして、制御回路902は、レベル変換器901から受けたテストモード信号TMまたはロウアドレスストローブ信号RASを検出回路904,905へ出力する。DRAM800のテストモード時、制御回路902は、テスト内容に応じてHレベルまたはLレベルのテストモード信号TMを受け、その受けたHレベルまたはLレベルのテストモード信号を検出回路904,905へ出力する。また、DRAM800の通常動作時、制御回路902は、Hレベルのロウアドレスストローブ信号RASを受け、その受けたHレベルのロウアドレスストローブ信号RASを検出回路904へ出力する。さらに、DRAM800のスタンバイ時、制御回路902は、Lレベルのロウアドレスストローブ信号RASを受け、その受けたLレベルのロウアドレスストローブ信号RASを検出回路904へ出力する。
【0044】
分割回路903は、3.3Vの昇圧電圧VPPを分圧し、1.5Vの分圧電圧VDIVを検出回路904,905へ出力する。検出回路904は、ノードN2から3.3Vの電源電圧を受ける。検出回路904は、制御回路902から受けたHレベルのロウアドレスストローブ信号RASによって活性化され、分割回路903から受けた分圧電圧VDIVが基準電圧発生回路860から受けた基準電圧VrefSになるように、分圧電圧VDIVを差動増幅する。すなわち、検出回路904は、分圧電圧VDIVを検出し、その検出した分圧電圧VDIVを発振器906へ出力する。
【0045】
検出回路905は、ノードN2から3.3Vの電源電圧を受ける。検出回路905は、基準電圧発生回路860の電流源861からの信号BIASLによって活性化され、分割回路903から受けた分圧電圧VDIVが基準電圧発生回路860から受けた基準電圧VrefSになるように、分圧電圧VDIVを差動増幅する。すなわち、検出回路905は、分圧電圧VDIVを検出し、その検出した分圧電圧VDIVを発振器906へ出力する。
【0046】
Hレベルのロウアドレスストローブ信号RASは3.3Vの電圧レベルから成り、信号BIASLは0.7Vの電圧レベルから成るので、検出回路904は、検出回路905よりも速く分圧電圧VDIVを検出して発振器906へ出力する。
【0047】
そうすると、DRAM800の通常動作時、検出回路904は、Hレベルのロウアドレスストローブ信号RASを受け、検出回路905は、信号BIASLを受けるので、検出回路904は検出回路905よりも分圧電圧VDIVを速く検出して発振器906へ出力する。また、DRAM800のスタンバイ時、検出回路904は、Lレベルのロウアドレスストローブ信号RASを受け、検出回路905は、0.7Vの電圧レベルから成る信号BIASLを受ける。そして、検出回路904は不活性化され、検出回路905は、通常動作時よりもゆっくりと分圧電圧VDIVを検出して発振器906へ出力する。したがって、検出回路904は、通常動作時、分圧電圧VDIVを検出し、検出回路905は、スタンバイ時、分圧電圧VDIVを検出する。
【0048】
発振器906は、ノードN2から3.3Vの電源電圧を受ける。そして、発振器906は、検出回路904または905から受けた分圧電圧VDIVの電圧レベルに応じた位相を有するクロックCLKを発生し、その発生したクロックCLKをポンプ回路907〜910の各々へ出力する。
【0049】
ポンプ回路907〜910の各々は、ノードN2から3.3Vの電源電圧を受ける。そして、ポンプ回路907〜910の各々は、発振器906から受けたクロックCLKに同期してキャリアをポンピングして昇圧電圧VPPを発生する。なお、ポンプ回路907〜910の数は、メモリセルアレイ801,802を構成するブロックの数に応じて変えられる。
【0050】
このように、VPP発生回路900は、3.3Vの電源電圧によって駆動され、3.3Vの電源電圧を昇圧して昇圧電圧VPPを発生する。
【0051】
上述したように、電源回路807は、3.3Vの電源電圧によって駆動され、Vbb発生回路850、基準電圧発生回路860、電圧降圧回路870、1/2Vcc発生回路880、1/2Vcc発生回路890およびVPP発生回路900を構成するMOSトランジスタは、3.3Vの駆動電圧に適する厚膜のゲート酸化膜によって作製される。
【0052】
【発明が解決しようとする課題】
しかし、Vbb発生回路850、基準電圧発生回路860、電圧降圧回路870、1/2Vcc発生回路880、1/2Vcc発生回路890およびVPP発生回路900に含まれる制御回路852,872,902および検出回路853,904,905等は、メモリセルアレイ801,802を構成するアレイ回路の繰返しパターンに従って配置されないにも拘わらず、メモリセルアレイ801,802に隣接して配置される(図35参照)。その結果、メモリセルアレイ801,802の構成が変化した場合、その変化に柔軟に対応できない。特に、制御回路は、まとまった機能を1つのまとまりにして、メモリセルアレイ801,802の分割数の整数倍の単位でレイアウトを予め作成している。
【0053】
したがって、メモリセルアレイ801,802が小容量であるとき、電源回路807における各回路の配置に面積ロスが生じるという問題がある。
【0054】
すなわち、図37〜図40に示すように、メモリセルアレイが16メガバイト(Mb)の容量であるとき、電源回路における各回路は、面積ロスを生じることなく配置されるが(図37参照)、メモリセルアレイの容量が4Mb、2Mb、および1Mbと小さくなるに従って、空き領域が大きくなり、面積ロスが大きくなる(図38〜図40参照)。
【0055】
また、電源回路における各回路の配置を小容量のメモリセルアレイに合わせて決定した場合、メモリセルアレイの容量が大きくなると面積ロスが生じる。
【0056】
そこで、この発明は、かかる問題を解決するためになされたものであり、その目的は、メモリセルアレイの容量の変化に対して面積ロスの小さい電源回路を備える半導体記憶装置を提供することである。
【0057】
【課題を解決するための手段および発明の効果】
この発明によれば、半導体記憶装置は、データを記憶するメモリセルアレイと、メモリセルアレイにデータを入出力する周辺回路と、メモリセルアレイおよび周辺回路に電源電圧を供給する電源回路とを備え、電源回路は、第1のゲート酸化膜厚を有する厚膜トランジスタにより構成され、かつ、メモリセルアレイにデータを入出力するための内部電圧を各々が発生するm(mは自然数)個の電圧発生回路を含む第1の電源回路群と、第1のゲート酸化膜厚よりも薄い第2のゲート酸化膜厚を有する薄膜トランジスタにより構成され、各々が内部電圧を発生するn(nは自然数)個の電圧発生回路を含む第2の電源回路群とから成り、第1の電源回路群は、メモリセルアレイに対応してメモリセルアレイに隣接した第1の領域に配置され、かつ、m個の電圧発生回路は第1の領域にm個にユニット化して配置され、第2の電源回路群は、第1の領域と異なる第2の領域に配置され、かつ、n個の電圧発生回路は、第2の領域内でシャッフル配置される。
【0058】
好ましくは、第1の電源回路群は、メモリセルアレイに含まれる複数のワード線を活性化するための昇圧電圧を発生する第1の電圧発生回路と、メモリセルアレイに供給されるアレイ電圧を発生する第2の電圧発生回路と、第2の電圧発生回路において用いられる基準電圧を発生する第3の電圧発生回路とから成り、第1および第2の電圧発生回路は、メモリセルアレイに接する位置にユニット化して配置される。
【0059】
好ましくは、第2の電源回路群は、メモリセルアレイに含まれる複数のメモリセルに供給されるセルプレート電圧を発生する第4の電圧発生回路と、メモリセルアレイに含まれるビット線対をプリチャージするためのプリチャージ電圧を発生する第5の電圧発生回路と、メモリセルアレイに供給される負電圧を発生する第6の電圧発生回路とから成る。
【0060】
好ましくは、メモリセルアレイは、当該半導体記憶装置の記憶容量に応じて決定される複数のブロックを含み、第1の電圧発生回路は、第2の電圧発生回路が接するブロックと異なるブロックに接する位置に配置される。
【0061】
好ましくは、メモリセルアレイは、当該半導体記憶装置の記憶容量に応じて決定される複数のブロックを含み、第2の領域は、複数のブロックに共通に設けられる。
【0062】
好ましくは、ユニット化して配置されるm個の電圧発生回路は、昇圧電圧を発生する昇圧電圧発生回路を含み、昇圧電圧発生回路は、厚膜トランジスタにより構成され、データの入出力時にメモリセルアレイに供給される昇圧電圧を発生する第1のポンプ回路と、昇圧電圧の電圧レベルを検出し、その検出した電圧レベルに応じた信号を、昇圧電圧の発生を制御する制御信号を生成するために出力する第1の電圧検出回路とからなり、シャッフル配置されるn個の電圧発生回路は、負電圧を発生する負電圧発生回路を含み、負電圧発生回路は、薄膜トランジスタにより構成され、メモリセルアレイに供給される負電圧を発生する第2のポンプ回路と、負電圧の電圧レベルを検出し、その検出した電圧レベルに応じた信号を、負電圧の発生を制御する制御信号を生成するために出力する第2の電圧検出回路とからなり、第1および第2の電圧検出回路は、厚膜トランジスタを用いて構成される。
【0063】
好ましくは、第1の電圧検出回路は、昇圧電圧を分圧した分圧電圧を出力する分圧回路と、分圧電圧を第1の基準電圧と比較し、その比較結果に応じた電圧レベルから成る信号を出力するカレントミラー型の第1の差動増幅回路とを含み、第1の差動増幅回路は、厚膜トランジスタにより構成され、分圧電圧は、第1の差動増幅回路のコモンソースの電位に厚膜トランジスタのしきい値電圧を加えた電圧レベルを有し、第2の電圧検出回路は、負電圧の電圧レベルに対応した正電圧を出力するカレントミラー型の第2の差動増幅回路と、正電圧を第2の基準電圧と比較し、その比較結果に応じた電圧レベルから成る信号を出力するカレントミラー型の第3の差動増幅回路とを含み、第3の差動増幅回路は、厚膜トランジスタにより構成され、正電圧は、第3の差動増幅回路のコモンソースの電位に厚膜トランジスタのしきい値電圧を加えた電圧レベルを有する。
【0064】
好ましくは、ユニット化して配置されるm個の電圧発生回路は、昇圧電圧を発生する昇圧電圧発生回路を含み、昇圧電圧発生回路は、厚膜トランジスタにより構成され、データの入出力時にメモリセルアレイに供給される昇圧電圧を発生するポンプ回路と、昇圧電圧の電圧レベルを検出し、その検出した電圧レベルに応じた信号を、昇圧電圧の発生を制御する制御信号を生成するために出力する電圧検出回路とを含み、電圧検出回路は、昇圧電圧をp(pは3以上の自然数)分の1に分圧した分圧電圧を出力する分圧回路と、分圧電圧を基準電圧と比較し、その比較結果に応じた電圧レベルから成る信号を出力するカレントミラー型の差動増幅回路とを含み、差動増幅回路は、薄膜トランジスタにより構成され、分圧電圧は、差動増幅回路のコモンソースの電位に前記薄膜トランジスタのしきい値電圧を加えた電圧レベルを有する。
【0065】
好ましくは、ユニット化して配置されるm個の電圧発生回路は、電圧発生回路を含み、電圧発生回路は、第1の電圧レベルを有する第1の電源電圧により駆動され、第1の電源電圧が供給されるまで不活性化信号を出力する信号出力回路と、第1の電圧レベルよりも高い第2の電圧レベルを有する第2の電源電圧により駆動され、メモリセルアレイを動作させるための内部電圧を発生するポンプ回路とを含み、ポンプ回路は、不活性化信号に応じてメモリセルアレイを不活性化するための電圧レベルから成る内部電圧を発生する。
【0066】
好ましくは、ユニット化して配置されるm個の電圧発生回路は、データの入出力時にメモリセルアレイに供給される内部電圧を発生するための基準電圧を発生する基準電圧発生回路を含み、基準電圧発生回路は、一定電流を発生し、その発生した一定電流に応じた電圧レベルを有する第1の電圧を出力する電流発生回路と、第1の電圧を受けて一定電流と同じ電流を発生し、その発生した電流に応じた電圧レベルを有する第2の電圧を出力する電流ミラー回路と、第2の電圧を受け、その受けた第2の電圧に応じて基準電圧を発生する電圧発生回路とを含み、電流発生回路は、薄膜トランジスタにより構成され、電圧発生回路は、厚膜トランジスタを含み、電流ミラー回路は、第1の電圧を受ける薄膜トランジスタを含む。
【0067】
好ましくは、半導体記憶装置は、第1の電源電圧により駆動される厚膜トランジスタを含むm個の電圧発生回路に第1の接地電圧を供給する第1の接地線と、第1の電源電圧よりも低い電圧レベルを有する第2の電源電圧により駆動される薄膜トランジスタを含むn個の電圧発生回路に第2の接地電圧を供給する第2の接地線とをさらに備え、第1の接地線は、第2の接地線と切離される。
【0068】
この発明による半導体記憶装置においては、第1のゲート酸化膜厚を有する厚膜トランジスタを用いて構成される回路は、メモリセルアレイの配置位置に対応してユニット配置され、第2のゲート酸化膜厚を有する薄膜トランジスタを用いて構成される回路は、シャッフル配置される。
【0069】
なお、この発明においては、厚膜トランジスタとは、電圧レベルが異なる2つの電源電圧が供給される場合に、電圧レベルが高い電源電圧に適したゲート酸化膜厚を有するMOSトランジスタを言い、薄膜トランジスタとは、電圧レベルが低い電源電圧に適したゲート酸化膜厚を有するMOSトランジスタを言う。
【0070】
したがって、この発明によれば、メモリセルアレイの容量が変化しても厚膜トランジスタを用いて構成される回路と、薄膜トランジスタを用いて構成される回路とを面積ロスを低減して配置できる。
【0071】
【発明の実施の形態】
本発明の実施の形態について図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰返さない。
【0072】
[実施の形態1]
図1を参照して、この発明の実施の形態1による半導体記憶装置100は、メモリセルアレイ10,20と、ロウコラムデコーダ30と、データバス40,50と、制御回路60と、電源回路70と、テスト回路80とを備える。
【0073】
なお、半導体記憶装置100は、具体的には、ロジック回路とメモリとが混載されたロジック混載メモリに用いられるDRAMである。
【0074】
メモリセルアレイ10,20は、複数のメモリセル、複数のワード線、複数のビット線対、複数のセンスアンプ、および複数のイコライズ回路を含む。複数のメモリセルは、行列状に配列される。複数のワード線は、行列状に配列された複数のメモリセルの行方向に設けられる。複数のビット線対は、行列状に配列された複数のメモリセルの列方向に設けられる。複数のセンスアンプは、複数のビット線対に対応して設けられる。複数のイコライズ回路は、複数のビット線対に対応して設けられる。
【0075】
ロウコラムデコーダ30は、外部から入力されたアドレスをデコードし、そのデコードしたアドレスによって指定されたワード線またはビット線対を選択的に活性化する。より具体的には、ロウコラムデコーダ30は、制御回路60から受けたロウアドレスストローブ信号RASがLレベルからHレベルに切換わるタイミングでアドレスを受けたとき、その受けたアドレスをロウアドレスと見なしてデコードし、そのデコードしたロウアドレスによって指定されたワード線を活性化する。また、ロウコラムデコーダ30は、制御回路60から受けたコラムアドレスストローブ信号CASがLレベルからHレベルに切換わるタイミングでアドレスを受けたとき、その受けたアドレスをコラムアドレスと見なしてデコードし、そのデコードしたコラムアドレスによって指定されたビット線対を活性化する。
【0076】
データバス40,50は、メモリセルアレイ10,20と入出力回路(図示せず)との間でデータをやり取りする。
【0077】
制御回路60は、ロウアドレスストローブ信号RAS、コラムアドレスストローブ信号CAS、ライトイネーブル信号WE、出力イネーブル信号OEおよびテストモード信号TM等の制御信号を外部から受ける。そして、制御回路60は、ロウアドレスストローブ信号RASおよびコラムアドレスストローブ信号CASをロウコラムデコーダ30へ出力し、ロウアドレスストローブ信号RASを電源回路70へ出力する。また、制御回路60は、テストモード信号TMを電源回路70およびテスト回路80へ出力する。さらに、制御回路60は、ライトイネーブル信号WEおよび出力イネーブル信号OWを入出力回路(図示せず)へ出力する。
【0078】
電源回路70は、後述するように、半導体記憶装置100において用いられる各種の内部電圧を発生し、その発生した内部電圧をメモリセルアレイ10,20等に供給する。
【0079】
テスト回路80は、制御回路60からのテストモード信号TMに基づいて各種のテストを行なう。
【0080】
半導体記憶装置100においては、ロウコラムデコーダ30は、メモリセルアレイ10とメモリセルアレイ20との間に配置される。また、電源回路70は、メモリセルアレイ10に隣接して配置される。さらに、データバス40,50、制御回路60およびテスト回路80は、半導体記憶装置100の周辺部に配置される。
【0081】
図2を参照して、電源回路70は、Vbb発生回路71と、基準電圧発生回路72と、電圧降圧回路73と、1/2Vcc発生回路74と、1/2Vcc発生回路75と、VPP発生回路76とを含む。
【0082】
Vbb発生回路71は、制御回路710と、検出回路711と、発振器712と、ポンプ回路713とを含む。ノードN1は、外部から1.5Vの電源電圧を受ける。制御回路710は、ノードN1から1.5Vの電源電圧を受ける。したがって、制御回路710は、1.5Vの電源電圧によって駆動され、ゲート酸化膜厚が薄いMOSトランジスタにより構成される。なお、この発明において、ゲート酸化膜厚が薄いMOSトランジスタとは、1.5Vの電源電圧に適したゲート酸化膜厚を有するMOSトランジスタを言う。
【0083】
制御回路710は、テストモード信号TMを受け、テスト内容に応じて検出回路711を活性化または不活性化する。
【0084】
検出回路711は、ノードN1から受ける1.5Vの電源電圧によって駆動される。検出回路711は、基準電圧発生回路72の電流源720から信号BIASLを受ける。そして、検出回路711は、制御回路710からの信号によって活性化されると、負電圧Vbbを検出し、その検出信号を発振器712へ出力する。
【0085】
発振器712は、ノードN1から受ける1.5Vの電源電圧によって駆動される。発振器712は、検出回路711から検出信号を受け、その受けた検出信号の電圧レベルに応じた位相を有するクロックCLKを発生する。
【0086】
ポンプ回路713は、ノードN1から受ける1.5Vの電源電圧によって駆動される。ポンプ回路713は、発振器712からクロックCLKを受け、その受けたクロックCLKに同期してキャリアをポンピングし、負電圧Vbbを発生する。
【0087】
図3を参照して、検出回路711は、PチャネルMOSトランジスタ7111,7112,7122,7124,7126,7127と、NチャネルMOSトランジスタ7113,7114,7115〜7118,7123,7125,7128,7129と、インバータ7130とを含む。なお、PチャネルMOSトランジスタ7111,7112,7122,7124,7126,7127、NチャネルMOSトランジスタ7113,7114,7115〜7118,7123,7125,7128,7129、およびインバータ7130を構成するMOSトランジスタ(図示せず)は、ゲート酸化膜厚が薄いMOSトランジスタである。
【0088】
PチャネルMOSトランジスタ7111およびNチャネルMOSトランジスタ7113は、ノードN1とノード7120との間に直列に接続される。PチャネルMOSトランジスタ7112およびNチャネルMOSトランジスタ7114は、ノードN1と接地ノードNS1との間に直列に接続される。PチャネルMOSトランジスタ7111およびNチャネルMOSトランジスタ7113は、PチャネルMOSトランジスタ7112およびNチャネルMOSトランジスタ7114と並列に接続される。
【0089】
PチャネルMOSトランジスタ7111および7112は、そのゲート端子にノード7119上の電圧を受ける。NチャネルMOSトランジスタ7113および7114は、そのゲート端子に電流源720からの信号BIASLを受ける。
【0090】
NチャネルMOSトランジスタ7115〜7118は、ノード7120と接地ノードNS2との間に直列に接続される。接地ノードNS2は、−0.7Vの負電圧Vbbを受ける。NチャネルMOSトランジスタ7115〜7118の各々は、接地ノードNS2の負電圧Vbb(−0.7V)を基板電圧として受け、接地ノードNS1の電圧(0V)をゲート端子に受ける。したがって、NチャネルMOSトランジスタ7115〜7118の各々は、ゲート端子に実質的に正の電圧が印加され、オンされる。
【0091】
NチャネルMOSトランジスタ7115〜7118は、ノード7120における電位を接地電位、すなわち、0Vに調整するためのMOSトランジスタである。したがって、実際の使用においては、フューズ(図示せず)を選択的に溶断し、ノード7120における電位が0Vになるように直列に接続されるNチャネルMOSトランジスタ7115〜7118の個数が調整される。なお、0Vに設定されたノード7120をバーチャルグランドという。
【0092】
ノード7120上の電位が0Vになるとき、PチャネルMOSトランジスタ7111およびNチャネルMOSトランジスタ7113の両端に印加される電圧は、PチャネルMOSトランジスタ7112およびNチャネルMOSトランジスタ7114の両端に印加される電圧と等しい。また、NチャネルMOSトランジスタ7113および7114は、0.7Vの電圧レベルからなる信号BIASLを共にゲート端子に受ける。したがって、PチャネルMOSトランジスタ7111およびNチャネルMOSトランジスタ7113に流れる電流は、PチャネルMOSトランジスタ7112およびNチャネルMOSトランジスタ7114に流れる電流と等しく、ノード7121上の電位は、ノード7119上の電位と等しい。
【0093】
このように、−0.7Vの負電圧Vbbが接地ノードNS2に供給され、ノード7120がバーチャルグランドになるとき、ノード7121は、接地ノードNS1上の電位(0V)よりもNチャネルMOSトランジスタ7114のチャネル抵抗による電圧降下分だけ高い電圧を出力する。
【0094】
つまり、PチャネルMOSトランジスタ7111,7112およびNチャネルMOSトランジスタ7113,7114,7115〜7118からなるカレントミラー回路CMCは、−0.7Vの負電圧Vbbを検出し、その検出した負電圧Vbbを正の電圧に変換して出力する。
【0095】
PチャネルMOSトランジスタ7122およびNチャネルMOSトランジスタ7123は、ノードN1と接地ノードNS1との間に直列に接続される。PチャネルMOSトランジスタ7124およびNチャネルMOSトランジスタ7125は、ノードN1と接地ノードNS1との間に直列に接続される。PチャネルMOSトランジスタ7122およびNチャネルMOSトランジスタ7123は、PチャネルMOSトランジスタ7124およびNチャネルMOSトランジスタ7125に対して並列に接続される。
【0096】
PチャネルMOSトランジスタ7122,7124は、PチャネルMOSトランジスタ7122とNチャネルMOSトランジスタ7123との間の電圧をゲート端子に受ける。NチャネルMOSトランジスタ7123は、そのゲート端子に0.7Vの電圧レベルから成る信号BIASLを受ける。また、NチャネルMOSトランジスタ7125は、ノード7121から出力される正の電圧をゲート端子に受ける。
【0097】
PチャネルMOSトランジスタ7122,7124およびNチャネルMOSトランジスタ7123,7125から成る差動増幅回路DFA1は、カレントミラー型の差動増幅回路であり、NチャネルMOSトランジスタ7125のゲート端子に受ける電圧をNチャネルMOSトランジスタ7123のゲート端子に受ける電圧と比較し、その比較結果に応じた電圧をPチャネルMOSトランジスタ7126およびNチャネルMOSトランジスタ7129のゲート端子へ出力する。
【0098】
この場合、NチャネルMOSトランジスタ7125のゲート端子に受ける電圧がNチャネルMOSトランジスタ7123のゲート端子に受ける電圧よりも高いとき、差動増幅回路DFA1は、PチャネルMOSトランジスタ7126,7127とNチャネルMOSトランジスタ7128,7129とから成るインバータIV1においてPチャネルMOSトランジスタ7126をオンし、NチャネルMOSトランジスタ7129をオフするためのLレベルの信号を出力する。また、NチャネルMOSトランジスタ7125のゲート端子に受ける電圧がNチャネルMOSトランジスタ7123のゲート端子に受ける電圧よりも低いとき、差動増幅回路DFA1は、インバータIV1においてPチャネルMOSトランジスタ7126をオフし、NチャネルMOSトランジスタ7129をオンするためのHレベルの信号を出力する。
【0099】
PチャネルMOSトランジスタ7126,7127およびNチャネルMOSトランジスタ7128,7129はノードN1と接地ノードNS1との間に直列に接続される。PチャネルMOSトランジスタ7127は、接地ノードNS1から0Vの接地電圧をゲート端子に受ける。また、NチャネルMOSトランジスタ7128は、ノードN1から1.5Vの電源電圧をゲート端子に受ける。したがって、PチャネルMOSトランジスタ7127およびNチャネルMOSトランジスタ7128は、それぞれ、0Vの接地電圧および1.5Vの電源電圧が供給されているとき常時オンされている。
【0100】
PチャネルMOSトランジスタ7126およびNチャネルMOSトランジスタ7129は、差動増幅回路DFA1からの信号をゲート端子に受ける。そして、PチャネルMOSトランジスタ7126,7127とNチャネルMOSトランジスタ7128,7129とから成るインバータIV1は、差動増幅回路DFA1がLレベルの信号を出力するとき、Hレベルの信号をインバータ7130へ出力し、差動増幅回路DFA1がHレベルの信号を出力するとき、Lレベルの信号をインバータ7130へ出力する。
【0101】
インバータ7130は、入力信号を反転して検出信号VBBDETを接地ノードNS2および発振器712へ出力する。
【0102】
このように、検出回路711は、1.5Vの電源電圧により駆動され、−0.7Vの負電圧Vbbを検出し、その検出信号VBBDETを発振器712へ出力する。
【0103】
図4を参照して、発振器712は、PチャネルMOSトランジスタ7131,7133,7137,7141,7145,7149,7134,7138,7142,7146,7150と、NチャネルMOSトランジスタ7132,7135,7139,7143,7147,7151,7136,7140,7144,7148,7152と、インバータ7153と、ANDゲート7154とを含む。
【0104】
PチャネルMOSトランジスタ7131およびNチャネルMOSトランジスタ7132は、ノードN1と接地ノードNS1との間に直列に接続される。
【0105】
PチャネルMOSトランジスタ7133,7134およびNチャネルMOSトランジスタ7135,7136は、ノードN1と接地ノードNS1との間に直列に接続される。
【0106】
PチャネルMOSトランジスタ7137,7138およびNチャネルMOSトランジスタ7139,7140は、ノードN1と接地ノードNS1との間に直列に接続される。
【0107】
PチャネルMOSトランジスタ7141,7142およびNチャネルMOSトランジスタ7143,7144は、ノードN1と接地ノードNS1との間に直列に接続される。
【0108】
PチャネルMOSトランジスタ7145,7146およびNチャネルMOSトランジスタ7147,7148は、ノードN1と接地ノードNS1との間に直列に接続される。
【0109】
PチャネルMOSトランジスタ7149,7150およびNチャネルMOSトランジスタ7151,7152は、ノードN1と接地ノードNS1との間に直列に接続される。
【0110】
PチャネルMOSトランジスタ7131,7133,7137,7141,7145,7149は、PチャネルMOSトランジスタ7131とNチャネルMOSトランジスタ7132との間の電圧をゲート端子に受ける。また、NチャネルMOSトランジスタ7132,7136,7140,7144,7148,7152は、0.7Vの電圧レベルから成る信号BIASLをゲート端子に受ける。
【0111】
PチャネルMOSトランジスタ7133およびNチャネルMOSトランジスタ7136がオンされると、PチャネルMOSトランジスタ7134およびNチャネルMOSトランジスタ7135は、入力信号を反転して出力信号をPチャネルMOSトランジスタ7138およびNチャネルMOSトランジスタ7139のゲート端子へ出力する。
【0112】
PチャネルMOSトランジスタ7137およびNチャネルMOSトランジスタ7140がオンされると、PチャネルMOSトランジスタ7138およびNチャネルMOSトランジスタ7139は、入力信号を反転して出力信号をPチャネルMOSトランジスタ7142およびNチャネルMOSトランジスタ7143のゲート端子へ出力する。
【0113】
PチャネルMOSトランジスタ7141およびNチャネルMOSトランジスタ7144がオンされると、PチャネルMOSトランジスタ7142およびNチャネルMOSトランジスタ7143は、入力信号を反転して出力信号をPチャネルMOSトランジスタ7146およびNチャネルMOSトランジスタ7147のゲート端子へ出力する。
【0114】
PチャネルMOSトランジスタ7145およびNチャネルMOSトランジスタ7148がオンされると、PチャネルMOSトランジスタ7146およびNチャネルMOSトランジスタ7147は、入力信号を反転して出力信号をPチャネルMOSトランジスタ7150およびNチャネルMOSトランジスタ7151のゲート端子へ出力する。
【0115】
PチャネルMOSトランジスタ7149およびNチャネルMOSトランジスタ7152がオンされると、PチャネルMOSトランジスタ7150およびNチャネルMOSトランジスタ7151は、入力信号を反転して出力信号をインバータ7153およびANDゲート7154へ出力する。
【0116】
インバータ7153は、ノードN1から受けた1.5Vの電源電圧によって駆動され、入力信号を反転してクロックCLKを出力する。
【0117】
ANDゲート7154は、ノードN1から受けた1.5Vの電源電圧によって駆動され、PチャネルMOSトランジスタ7150およびNチャネルMOSトランジスタ7151からなるインバータの出力信号を一方端子に受け、検出回路711からの信号VBBDETを他方端子に受ける。そして、ANDゲート7154は、2つの信号の論理積を演算し、その演算結果をPチャネルMOSトランジスタ7134およびNチャネルMOSトランジスタ7135のゲート端子へ出力する。
【0118】
このように、発振器712は、5段のインバータをリング状に接続したリングオシレータである。
【0119】
ANDゲート7154は、Lレベルの信号VBBDETを受けたときLレベルの信号を出力するので、発振器712は、LレベルのクロックCLKを出力する。また、ANDゲート7154は、Hレベルの信号VBBDETを受けたとき、PチャネルMOSトランジスタ7150およびNチャネルMOSトランジスタ7151からなるインバータの出力信号の論理レベルと同じ論理レベルの信号を出力するので、発振器712は、PチャネルMOSトランジスタ7150およびNチャネルMOSトランジスタ7151からなるインバータの出力信号の論理レベルを反転したクロックCLKを出力する。
【0120】
したがって、発振器712は、信号VBBDETの論理レベルによって位相の異なるクロックCLKを出力する。
【0121】
図5を参照して、ポンプ回路713は、インバータ7155〜7157と、PチャネルMOSトランジスタ7158〜7163とを含む。インバータ7155〜7157は、ノードN1から受けた1.5Vの電源電圧によって駆動される。インバータ7155は、発振器712からのクロックCLKを受け、その受けたクロックCLKを反転してインバータ7156へ出力する。インバータ7156は、インバータ7155の出力信号を反転してPチャネルMOSトランジスタ7158のソース端子およびドレイン端子へ出力する。
【0122】
インバータ7157は、発振器712からクロックCLKを受け、その受けクロックCLKを反転してPチャネルMOSトランジスタ7160のソース端子およびドレイン端子へ出力する。
【0123】
PチャネルMOSトランジスタ7161,7162は、ノードNL1と接地ノードNS1との間に並列に接続される。PチャネルMOSトランジスタ7161は、接地ノードNS1から接地電圧(0V)をゲート端子に受ける。PチャネルMOSトランジスタ7162は、ノードNL1上の電圧をゲート端子に受ける。
【0124】
PチャネルMOSトランジスタ7163は、PチャネルMOSトランジスタ7159のゲート端子と接地ノードNS1との間に接続される。PチャネルMOSトランジスタ7160,7163は、そのゲート端子にノードNL1上の電圧を受ける。
【0125】
PチャネルMOSトランジスタ7159は、ノードNL2とノードNL3との間に接続される。PチャネルMOSトランジスタ7158,7159は、ノードNL2上の電圧をゲート端子に受ける。
【0126】
インバータ7156が出力する信号は、インバータ7157が出力する信号を反転した信号であるので、PチャネルMOSトランジスタ7158のゲート端子、すなわちノードNL2にキャリアが誘起されるタイミングは、PチャネルMOSトランジスタ7160のゲート端子、すなわちノードNL1にキャリアが誘起されるタイミングと180度の位相差を有する。
【0127】
インバータ7157がHレベルの信号をPチャネルMOSトランジスタ7160のソース端子およびドレイン端子へ出力すると、電子がPチャネルMOSトランジスタ7161を介して接地ノードNS1からノードNL1に流れる。そうすると、ノードNL1上の電位はさらに低下し、電子がPチャネルMOSトランジスタ7162を介して接地ノードNS1からノードNL1にさらに流れる。したがって、ノードNL1上の電位は、インバータ7157から出力される信号がHレベルを保持する期間、すなわち、クロックCLKがHレベルを保持する期間に比例して低下する。
【0128】
そうすると、PチャネルMOSトランジスタ7163は、ノードNL1上の電位の低下に応じてチャネル幅は広くなり、接地ノードNS1からノードNL2へ供給される電子の量は多くなる。この場合、インバータ7156は、Lレベルの信号をPチャネルMOSトランジスタ7158のソース端子およびドレイン端子へ出力するので、ノードNL2の電子は、オンされたPチャネルMOSトランジスタ7159を介してノードNL3へ供給される。そして、ノードNL3は、−0.7Vの負電圧Vbbを出力する。
【0129】
インバータ7157がLレベルの信号をPチャネルMOSトランジスタ7160のソース端子およびドレイン端子へ出力し、インバータ7156がHレベルの信号をPチャネルMOSトランジスタ7158のソース端子およびドレイン端子へ出力すると、ノードNL1上の電子は、PチャネルMOSトランジスタ7161を介して接地ノードNS1へ流れ、ノードNL1上の電位は上昇する。
【0130】
そうすると、PチャネルMOSトランジスタ7163を介して接地ノードNS1からノードNL2へ流れる電子は減少し、ノードNL2上の電位は上昇する。そして、PチャネルMOSトランジスタ7159を介してノードNL2からノードNL3へ流れる電子も減少し、ノードNL3上の電位も上昇する。
【0131】
その後、インバータ7157がHレベルの信号をPチャネルMOSトランジスタ7160のソース端子およびドレイン端子へ出力し、インバータ7156がLレベルの信号をPチャネルMOSトランジスタ7158のソース端子およびドレイン端子へ出力すると、上述したようにノードNL3は、−0.7Vの負電圧Vbbを出力する。
【0132】
このように、ポンプ回路713は、ノードNL3上の電位を大きく負電位に設定する周期と、ノードNL3上の電位を若干上昇させる周期とを繰返しながら−0.7Vの負電圧Vbbを出力する。そして、このノードNL3上の電位を大きく負電位に設定する周期と、ノードNL3上の電位を若干上昇させる周期とを繰返す動作がポンピングに相当する。
【0133】
再び、図2を参照して、基準電圧発生回路72は、電流源720と、カレントミラー回路721と、電圧発生回路722とを含む。電流源720は、ノードN1から供給される1.5Vの電源電圧により駆動される。そして、電流源720は、一定の電流を発生し、その発生した一定の電流に基づいて一定の電圧から成る信号ICONST,BIASLを生成する。電流源720は、その生成した信号ICONSTをカレントミラー回路721へ出力し、信号BIASLをVbb発生回路71の検出回路711、発振器712、電圧降圧回路73およびVPP発生回路76へ出力する。
【0134】
カレントミラー回路721は、ノードN1から供給される1.5Vの電源電圧によって駆動される。そして、カレントミラー回路721は、信号ICONSTに基づいて、電流源720が発生した電流と同じ一定の電流を発生し、その発生した一定の電流に基づいて生成される電圧を電圧発生回路722へ出力する。
【0135】
電圧発生回路722は、ノードN1から供給される1.5Vの電源電圧によって駆動される。そして、電圧発生回路722は、カレントミラー回路721からの電圧に基づいて基準電圧VrefSを発生し、その発生した基準電圧VrefSを電圧降圧回路73およびVPP発生回路76へ出力する。
【0136】
図6を参照して、電流源720は、PチャネルMOSトランジスタ157,159と、抵抗158と、NチャネルMOSトランジスタ160,161とを含む。カレントミラー回路721は、PチャネルMOSトランジスタ164,168と、NチャネルMOSトランジスタ165,166とを含む。電圧発生回路722は、PチャネルMOSトランジスタ170〜175を含む。
【0137】
PチャネルMOSトランジスタ157,159,164,171〜175およびNチャネルMOSトランジスタ160,161は薄膜MOSトランジスタであり、NチャネルMOSトランジスタ165,166およびPチャネルMOSトランジスタ168,170は、ゲート酸化膜厚が厚い厚膜MOSトランジスタである。
【0138】
この発明においては、ゲート酸化膜厚が厚い厚膜MOSトランジスタとは、3.3Vの電源電圧に適したゲート酸化膜厚を有するMOSトランジスタを言う。
【0139】
PチャネルMOSトランジスタ157およびNチャネルMOSトランジスタ160は、ノードN1と接地ノードNS1との間に直列に接続される。抵抗158、PチャネルMOSトランジスタ159およびNチャネルMOSトランジスタ161は、ノードN1と接地ノードNS1との間に直列に接続される。
【0140】
PチャネルMOSトランジスタ157およびNチャネルMOSトランジスタ160は、抵抗158、PチャネルMOSトランジスタ159およびNチャネルMOSトランジスタ161に対して並列に接続される。
【0141】
PチャネルMOSトランジスタ159のサイズは、PチャネルMOSトランジスタ157のサイズよりも大きい。したがった、PチャネルMOSトランジスタ159における電圧降下は、PチャネルMOSトランジスタ157における電圧降下よりも小さい。
【0142】
そして、抵抗158の抵抗値は、抵抗158およびPチャネルMOSトランジスタ159における電圧降下がPチャネルMOSトランジスタ157における電圧降下に等しくなるように決定される。
【0143】
PチャネルMOSトランジスタ157,159は、ノード162上の電圧をゲート端子に受ける。
【0144】
NチャネルMOSトランジスタ160のサイズは、NチャネルMOSトランジスタ161のサイズと同じである。そして、NチャネルMOSトランジスタ160,161は、ノード163上の電圧をゲート端子に受ける。
【0145】
抵抗158およびPチャネルMOSトランジスタ159における電圧降下は、PチャネルMOSトランジスタ157における電圧降下と同じであり、NチャネルMOSトランジスタ160,161は同じサイズであり、同じ電圧をゲート端子に受けるので、PチャネルMOSトランジスタ157およびNチャネルMOSトランジスタ160を介してノードN1から接地ノードNS1へ流れる電流は、抵抗158、PチャネルMOSトランジスタ159およびNチャネルMOSトランジスタ161を介してノードN1から接地ノードNS1へ流れる電流iと等しい。
【0146】
そして、電流源720は、ノード162上の電圧から成る信号ICONSTをカレントミラー回路721へ出力し、ノード163上の電圧から成る信号BIASLをVbb発生回路71の検出回路711、発振器712、電圧降圧回路73およびVPP発生回路76へ出力する。
【0147】
この場合、信号ICONSTを構成する電圧は、ノードN1に供給される電源電圧VddL(1.5V)よりもPチャネルMOSトランジスタ157のしきい値電圧Vthだけ低いVddL−Vthである。この電圧VddL−Vthは、MOSトランジスタのドレイン電流がドレイン電圧の増加に対して一定となる直線動作領域における最大のドレイン電圧に相当する。
【0148】
また、信号BIASLを構成する電圧は、MOSトランジスタの直線動作領域における最小のドレイン電圧に相当する。
【0149】
このように、電流源720は、一定の電流iを発生し、その発生した一定の電流iに基づいて生成される電圧から成る信号ICONST,BIASLを生成する。そして、電流源720は、生成した信号ICONSTをカレントミラー回路721へ出力し、生成した信号BIASLをVbb発生回路71の検出回路711、発振器712、電圧降圧回路73およびVPP発生回路76へ出力する。
【0150】
PチャネルMOSトランジスタ164およびNチャネルMOSトランジスタ165は、ノードN1と接地ノードNS1との間に直列に接続される。PチャネルMOSトランジスタ168およびNチャネルMOSトランジスタ166は、ノードN2と接地ノードNS1との間に直列に接続される。
【0151】
ノードN2は、3.3Vの電源電圧が供給される。PチャネルMOSトランジスタ164は、PチャネルMOSトランジスタ157,159がゲート端子に受ける電圧と同じ電圧から成る信号ICONSTをゲート端子に受ける。そして、PチャネルMOSトランジスタ164のサイズは、PチャネルMOSトランジスタ157のサイズと同じである。したがって、PチャネルMOSトランジスタ164およびNチャネルMOSトランジスタ165を介してノードN1から接地ノードNS1へ流れる電流は、電流源720において発生した電流iに等しい。
【0152】
NチャネルMOSトランジスタ165,166は、同じサイズを有し、ノード167上の電圧をゲート端子に受ける。したがって、PチャネルMOSトランジスタ168およびNチャネルMOSトランジスタ166を介してノードN2から接地ノードNS1へ流れる電流は、PチャネルMOSトランジスタ164およびNチャネルMOSトランジスタ165を介してノードN1から接地ノードNS1へ流れる電流iと等しい。
【0153】
このように、カレントミラー回路721は、ノードN1、PチャネルMOSトランジスタ164、NチャネルMOSトランジスタ165および接地ノードNS1に流れる電流iをノードN2、PチャネルMOSトランジスタ168、NチャネルMOSトランジスタ166および接地ノードNS1から成る回路に写し換える。そして、カレントミラー回路721は、この電流iの写し換えを厚膜MOSトランジスタであるNチャネルMOSトランジスタ165,166を用いて行なう。
【0154】
カレントミラー回路721は、PチャネルMOSトランジスタ168およびNチャネルMOSトランジスタ166を介してノードN2から接地ノードNS1へ電流iが流れることにより発生したノード169上の電圧をPチャネルMOSトランジスタ170のゲート端子へ出力する。
【0155】
PチャネルMOSトランジスタ170〜175は、ノードN2と接地ノードNS1との間に直列に接続される。PチャネルMOSトランジスタ171〜175の各々は、接地ノードNS1上の接地電圧(0V)をゲート端子に受ける。
【0156】
PチャネルMOSトランジスタ168,170は、ノード169上の電圧をゲート端子に受ける。したがって、PチャネルMOSトランジスタ170に流れる電流は、PチャネルMOSトランジスタ168に流れる電流iと等しい。
【0157】
そうすると、基準電圧VrefSは、PチャネルMOSトランジスタ171〜175の全体のチャネル抵抗RcとPチャネルMOSトランジスタ171〜175の全体のしきい値Vth3とによりVrefS=iRc+Vth3と表わされる。
【0158】
したがって、PチャネルMOSトランジスタ171〜175の個数を変化させることにより、チャネル抵抗Rcおよびしきい値電圧Vth3が変化し、基準電圧VrefSの電圧レベルが変化する。
【0159】
電圧発生回路722においては、直列に接続されるPチャネルMOSトランジスタ171〜175の個数は、フューズを溶断することにより基準電圧VrefSが1.5Vになるように決定される。
【0160】
このように、電圧発生回路722は、3.3Vの電源電圧を降圧した1.5Vの基準電圧VrefSを発生し、その発生した基準電圧VrefSを電圧降圧回路73およびVPP発生回路76へ出力する。
【0161】
そして、実施の形態1においては、カレントミラー回路721のNチャネルMOSトランジスタ165,166およびPチャネルMOSトランジスタ168と、電圧発生回路722のPチャネルMOSトランジスタ170とを厚膜MOSトランジスタにより構成したことを特徴とする。
【0162】
NチャネルMOSトランジスタ165,166を厚膜MOSトランジスタにより構成することにしたのは、次の理由による。3.3Vの電源電圧がPチャネルMOSトランジスタ168に印加されるので、NチャネルMOSトランジスタ166は、3.3Vの電源電圧からPチャネルMOSトランジスタ168のしきい値(0.8V)を差し引いた2.5Vの電圧が印加される。
【0163】
そうすると、NチャネルMOSトランジスタ166を薄膜MOSトランジスタにより構成した場合、2.5Vの電圧がNチャネルMOSトランジスタ166のソース端子とドレイン端子との間に印加され、NチャネルMOSトランジスタ166の信頼性が低下するからである。
【0164】
そして、NチャネルMOSトランジスタ166を厚膜MOSトランジスタにより構成すると、一定の電流iを写し換えるNチャネルMOSトランジスタ165,166の役割によりNチャネルMOSトランジスタ165も厚膜MOSトランジスタにより構成する必要がある。
【0165】
再び、図2を参照して、電圧降圧回路73は、制御回路731と、レベル変換器732と、差動増幅回路733,736と、NチャネルMOSトランジスタ734,737と、PチャネルMOSトランジスタ735,738とを含む。
【0166】
なお、レベル変換器732および差動増幅回路733,736は、厚膜MOSトランジスタにより構成され、NチャネルMOSトランジスタ734,737およびPチャネルMOSトランジスタ735,738は厚膜MOSトランジスタである。
【0167】
制御回路731は、ノードN1から供給された1.5Vの電源電圧により駆動される。そして、制御回路731は、テストモード信号TMまたはセンスアンプイネーブル信号SAEを受け、その受けたテストモード信号TMまたはセンスアンプイネーブル信号SAEをレベル変換器732へ出力する。
【0168】
より具体的には、制御回路731は、半導体記憶装置100のテストモード時、テスト内容に応じてHレベルまたはLレベルのテストモード信号TMを受け、その受けたHレベルまたはLレベルのテストモード信号TMをレベル変換器732へ出力する。
【0169】
また、制御回路731は、半導体記憶装置100の通常動作時、Hレベルのセンスアンプイネーブル信号SAEを受け、その受けたHレベルのセンスアンプイネーブル信号SAEをレベル変換器732へ出力する。
【0170】
さらに、制御回路731は、半導体記憶装置100のスタンバイ時、Lレベルのセンスアンプイネーブル信号SAEを受け、その受けたLレベルのセンスアンプイネーブル信号SAEをレベル変換器732へ出力する。
【0171】
レベル変換器732は、ノードN1から1.5Vの電源電圧を受け、ノードN2から3.3Vの電源電圧を受ける。そして、レベル変換器732は、制御回路731から受けたHレベルのテストモード信号またはHレベルのセンスアンプイネーブル信号SAEを構成する電圧レベルを1.5Vから3.3Vへ変換し、その変換したHレベルのテストモード信号TMまたはHレベルのセンスアンプイネーブル信号SAEをNチャネルMOSトランジスタ734のゲート端子へ出力する。
【0172】
なお、レベル変換器732は、Lレベルのテストモード信号TMまたはLレベルのセンスアンプイネーブル信号SAEを制御回路731から受けたとき、これらの信号を構成する電圧レベルを変換せずに、Lレベルのテストモード信号TMまたはLレベルのセンスアンプイネーブル信号SAEをNチャネルMOSトランジスタ734のゲート端子へ出力する。
【0173】
差動増幅回路733およびNチャネルMOSトランジスタ734は、ノードN2と接地ノードNS1との間に直列に接続される。そして、差動増幅回路733は、3.3Vの電源電圧により駆動される。差動増幅回路733は、NチャネルMOSトランジスタ734がオンされると活性化され、NチャネルMOSトランジスタ734がオフされると不活性化される。
【0174】
そして、差動増幅回路733は、非反転入力端子に基準電圧発生回路72からの基準電圧VrefSを受け、反転入力端子に出力ノードNOUT上のアレイ電圧VccSを受ける。差動増幅回路733は、活性化されると、アレイ電圧VccSの電圧レベルが基準電圧VrefSの電圧レベルになるようにアレイ電圧VccSを差動増幅し、その差動増幅した1.5Vの電圧をPチャネルMOSトランジスタ735のゲート端子へ出力する。また、差動増幅回路733は、不活性化されると、ノードN2から受けた3.3Vの電源電圧に近い電圧をPチャネルMOSトランジスタ735のゲート端子へ出力する。
【0175】
PチャネルMOSトランジスタ735は、ノードN2と出力ノードNOUTとの間に接続される。そして、PチャネルMOSトランジスタ735は、差動増幅回路733から受けた電圧に応じてキャリアをノードN2から出力ノードNOUTへ供給する。
【0176】
NチャネルMOSトランジスタ734は、テストモード信号TMまたはセンスアンプイネーブル信号SAEをレベル変換器732からゲート端子に受ける。
【0177】
差動増幅回路736およびNチャネルMOSトランジスタ737は、ノードN2と接地ノードNS1との間に直列に接続される。そして、差動増幅回路736は、ノードN2から供給される3.3Vの電源電圧によって駆動される。また、差動増幅回路736は、NチャネルMOSトランジスタ737がオンされると活性化され、NチャネルMOSトランジスタ737がオフされると不活性化される。
【0178】
差動増幅回路736は、非反転入力端子に基準電圧発生回路72からの基準電圧VrefSを受け、反転入力端子に出力ノードNOUT上のアレイ電圧VccSを受ける。NチャネルMOSトランジスタ737は、基準電圧発生回路72の電流源720から信号BIASLをゲート端子に受ける。
【0179】
差動増幅回路736は、活性化されると、アレイ電圧VccSの電圧レベルが基準電圧VrefSの電圧レベルになるようにアレイ電圧VccSを差動増幅し、その差動増幅した1.5Vの電圧をPチャネルMOSトランジスタ738のゲート端子へ出力する。
【0180】
PチャネルMOSトランジスタ738は、ノードN2と出力ノードNOUTとの間に接続される。そして、PチャネルMOSトランジスタ738は、差動増幅回路736から受けた電圧に応じてキャリアをノードN2から出力ノードNOUTへ供給する。
【0181】
NチャネルMOSトランジスタ737は、基準電圧発生回路72の電流源720から信号BIASLをゲート端子に受ける。
【0182】
NチャネルMOSトランジスタ734がHレベルのテストモード信号TMまたはHレベルのセンスアンプイネーブル信号SAEをゲート端子に受けると、差動増幅回路733は、活性化され、アレイ電圧VccSの電圧レベルが基準電圧VrefSの電圧レベルになるようにアレイ電圧VccSを差動増幅し、その差動増幅した1.5Vの電圧をPチャネルMOSトランジスタ735のゲート端子へ出力する。そして、PチャネルMOSトランジスタ735は、差動増幅回路73から受けた1.5Vの電圧に応じてキャリアをノードN2から出力ノードNOUTへ供給し、出力ノードNOUT上のアレイ電圧VccSを1.5Vに設定する。なお、差動増幅回路733が不活性化されたとき、PチャネルMOSトランジスタ735は、3.3Vに近い電圧をゲート端子に受けるので、殆どオフされ出力ノードNOUT上のアレイ電圧VccSの電圧レベルは低下する。
【0183】
NチャネルMOSトランジスタ737がHレベルの信号BIASLをゲート端子に受けたとき、差動増幅回路736およびPチャネルMOSトランジスタ738は、それぞれ、差動増幅回路733およびPチャネルMOSトランジスタ735と同じ動作を行ない、出力ノードNOUT上のアレイ電圧VccSは1.5Vに設定される。NチャネルMOSトランジスタ737がLレベルの信号BIASLを受け、差動増幅回路736が不活性化されたとき、差動増幅回路733が不活性化されたときと同様に、出力ノードNOUT上のアレイ電圧VccSの電圧レベルは低下する。
【0184】
半導体記憶装置100のスタンバイ時、NチャネルMOSトランジスタ734は、Lレベルのセンスアンプイネーブル信号SAEをゲート端子に受け、NチャネルMOSトランジスタ737は、0.7Vの電圧レベルから成る信号BIASLをゲート端子に受ける。その結果、差動増幅回路733は不活性化され、差動増幅回路736は活性化される。
【0185】
そうすると、差動増幅回路736は、出力ノードNOUT上のアレイ電圧VccSの電圧レベルが基準電圧VrefSの電圧レベルになるようにアレイ電圧VccSを差動増幅し、その差動増幅した電圧をPチャネルMOSトランジスタ738のゲート端子へ出力する。そして、PチャネルMOSトランジスタ738は、差動増幅回路736から受けた電圧に応じてキャリアをノードN2から出力ノードNOUTへ供給する。
【0186】
したがって、差動増幅回路736、PチャネルMOSトランジスタ738およびNチャネルMOSトランジスタ737は、半導体記憶装置100のスタンバイ時に3.3Vの電源電圧を降圧して1.5Vのアレイ電圧VccSを発生する。この場合、NチャネルMOSトランジスタ737は、0.7Vの電圧レベルから成る信号BIASLをゲート端子に受けるので、3.3Vの電圧からなるテストモード信号TMまたはセンスアンプイネーブル信号SAEをゲート端子に受けるNチャネルMOSトランジスタ734のチャネル幅よりも狭いチャネル幅を有する。したがって、差動増幅回路736に流れる電流は通常動作時に差動増幅回路733に流れる電流よりも少なく、差動増幅回路736は通常動作時よりも高いレベルの電圧をPチャネルMOSトランジスタ738のゲート端子へ出力する。そうすると、PチャネルMOSトランジスタ738は、通常動作時よりも少ないキャリアをノードN2から出力ノードNOUTへ供給するので、アレイ電圧VccSが1.5Vの電圧レベルになる速度は通常動作時よりも遅い。
【0187】
半導体記憶装置100の通常動作時、NチャネルMOSトランジスタ734は、Hレベルのセンスアンプイネーブル信号SAEをゲート端子に受け、NチャネルMOSトランジスタ737は、0.7Vの電圧レベルから成る信号BIASLをゲート端子に受ける。その結果、差動増幅回路733,736は活性化される。この場合、Hレベルのセンスアンプイネーブル信号SAEは3.3Vの電圧レベルから成るので、NチャネルMOSトランジスタ734のチャネル幅はNチャネルMOSトランジスタ737のチャネル幅よりも広い。そうすると、差動増幅回路733に流れる電流は差動増幅回路736に流れる電流よりも大きく、差増幅回路733は、差動増幅回路736よりも低い電圧をPチャネルMOSトランジスタ735へ出力する。その結果、PチャネルMOSトランジスタ735は、PチャネルMOSトランジスタ738よりも多くのキャリアをノードN2から出力ノードNOUTへ供給する。
【0188】
したがって、半導体記憶装置100の通常動作時、差動増幅回路733、PチャネルMOSトランジスタ735およびNチャネルMOSトランジスタ734は、差動増幅回路736、PチャネルMOSトランジスタ738およびNチャネルMOSトランジスタ737よりも速くアレイ電圧VccSの電圧レベルを1.5Vに設定する。
【0189】
このように、差動増幅回路733、PチャネルMOSトランジスタ735およびNチャネルMOSトランジスタ734は、半導体記憶装置100の通常動作時、3.3Vの電源電圧を降圧してアレイ電圧VccSを1.5Vの電圧レベルに速く設定し、差動増幅回路736、PチャネルMOSトランジスタ738およびNチャネルMOSトランジスタ737は、半導体記憶装置100のスタンバイ時、3.3Vの電源電圧を降圧してアレイ電圧VccSを1.5Vの電圧レベルにゆっくり設定する。
【0190】
なお、差動増幅回路733、PチャネルMOSトランジスタ735およびNチャネルMOSトランジスタ734から成る回路の数、および差動増幅回路736、PチャネルMOSトランジスタ738およびNチャネルMOSトランジスタ737から成る回路の数は、メモリセルアレイ10,20を構成するブロックの数に応じて変えられる。
【0191】
上述したように、電圧降圧回路73は、3.3Vの電源電圧によって駆動され、半導体記憶装置100の通常動作時、3.3Vの電源電圧を降圧して1.5Vのアレイ電圧VccSを速く出力ノードNOUTに供給し、半導体記憶装置100のスタンバイ時、3.3Vの電源電圧を降圧して1.5Vのアレイ電圧VccSをゆっくり出力ノードNOUTに供給する。
【0192】
図7を参照して、差動増幅回路733は、PチャネルMOSトランジスタ153,155と、NチャネルMOSトランジスタ154,156とを含む。PチャネルMOSトランジスタ153,155およびNチャネルMOSトランジスタ154,156は、厚膜MOSトランジスタである。
【0193】
PチャネルMOSトランジスタ153およびNチャネルMOSトランジスタ154は、ノードN2とNチャネルMOSトランジスタ734との間に直列に接続される。PチャネルMOSトランジスタ155およびNチャネルMOSトランジスタ156は、ノードN2とNチャネルMOSトランジスタ734との間に直列に接続される。
【0194】
PチャネルMOSトランジスタ153およびNチャネルMOSトランジスタ154は、PチャネルMOSトランジスタ155およびNチャネルMOSトランジスタ156に対して並列に接続される。
【0195】
PチャネルMOSトランジスタ153,155は、ノードN3上の電圧をゲート端子に受ける。NチャネルMOSトランジスタ154は、出力ノードNOUT上のアレイ電圧VccSをゲート端子に受ける。NチャネルMOSトランジスタ156は、基準電圧発生回路72からの基準電圧VrefSをゲート端子に受ける。
【0196】
そして、差動増幅回路733は、アレイ電圧VccSの電圧レベルが基準電圧VrefSの電圧レベルになるようにアレイ電圧VccSを差動増幅し、その差動増幅した電圧をノードN3からPチャネルMOSトランジスタ735のゲート端子へ出力する。
【0197】
差動増幅回路736は、差動増幅回路733と同じ回路構成から成る。
図8を参照して、レベル変換器732は、PチャネルMOSトランジスタ182,183,185,186と、NチャネルMOSトランジスタ184,187と、インバータ188〜190とを含む。
【0198】
PチャネルMOSトランジスタ182,183,185,186、NチャネルMOSトランジスタ184,187、およびインバータ189,190を構成するMOSトランジスタは、厚膜MOSトランジスタであり、インバータ188を構成するMOSトランジスタは、薄膜MOSトランジスタである。
【0199】
PチャネルMOSトランジスタ182,183およびNチャネルMOSトランジスタ184は、ノードN2と接地ノードNS1との間に直列に接続される。PチャネルMOSトランジスタ185,186およびNチャネルMOSトランジスタ187は、ノードN2と接地ノードNS1との間に直列に接続される。
【0200】
PチャネルMOSトランジスタ182,183およびNチャネルMOSトランジスタ184は、PチャネルMOSトランジスタ185,186およびNチャネルMOSトランジスタ187に対して並列に接続される。
【0201】
インバータ188は、NチャネルMOSトランジスタ184のゲート端子と、PチャネルMOSトランジスタ186およびNチャネルMOSトランジスタ187のゲート端子との間に接続される。そして、インバータ188は、NチャネルMOSトランジスタ184のゲート端子に入力される信号の論理レベルを反転し、その反転した信号をPチャネルMOSトランジスタ186およびNチャネルMOSトランジスタ187のゲート端子へ出力する。なお、インバータ188は、ノードN1から供給される1.5Vの電源電圧により駆動される。
【0202】
インバータ189は、ノード192から入力される信号の論理レベルを反転してインバータ190へ出力し、インバータ190は、インバータ189の出力信号を反転して出力する。なお、インバータ189,190は、ノードN2から供給される3.3Vの電源電圧により駆動される。
【0203】
PチャネルMOSトランジスタ182は、ノード192上の電圧をゲート端子に受ける。PチャネルMOSトランジスタ183およびNチャネルMOSトランジスタ184は、レベル変換器732への入力信号INを構成する電圧をゲート端子に受ける。
【0204】
PチャネルMOSトランジスタ185は、ノード191上の電圧をゲート端子に受ける。PチャネルMOSトランジスタ186およびNチャネルMOSトランジスタ187は、インバータ188の出力信号を構成する電圧をゲート端子に受ける。
【0205】
レベル変換器732へ入力される入力信号INは、HレベルまたはLレベルのテストモード信号TM、またはHレベルまたはLレベルのセンスアンプイネーブル信号SAEである。そして、Hレベルのテストモード信号TMおよびセンスアンプイネーブル信号SAEは1.5Vの電圧から成り、Lレベルのテストモード信号TMおよびセンスアンプイネーブル信号SAEは0Vの電圧から成る。
【0206】
Hレベルの入力信号INがレベル変換器732に入力されると、NチャネルMOSトランジスタ184は、Hレベルの入力信号INを構成する1.5Vの電圧をゲート端子に受けてオンされ、ノード191上の電圧は接地電圧(0V)になる。そうすると、PチャネルMOSトランジスタ185は、ノード191上の接地電圧を受けてオンされる。また、PチャネルMOSトランジスタ183は、Hレベルの入力信号INを構成する1.5Vの電圧をゲート端子に受けてオフされる。
【0207】
インバータ188は、Hレベルの入力信号INを反転して接地電圧から成るLレベルの信号をPチャネルMOSトランジスタ186およびNチャネルMOSトランジスタ187のゲート端子へ出力する。そして、PチャネルMOSトランジスタ186はオンされ、NチャネルMOSトランジスタ187はオフされる。
【0208】
そうすると、ノード192の電圧は3.3Vになり、PチャネルMOSトランジスタ182はオフされる。そして、インバータ189は、3.3Vの電圧から成るHレベルの信号を反転して接地電圧(0V)から成るLレベルの信号を出力し、インバータ190は、接地電圧から成るLレベルの信号を反転した3.3Vの電圧から成るHレベルの出力信号OUTを出力する。
【0209】
このように、レベル変換器732は、1.5Vの電圧から成るHレベルの信号を3.3Vの電圧から成るHレベルの信号に変換して出力する。
【0210】
接地電圧から成るLレベルの入力信号INがレベル変換器732に入力されると、PチャネルMOSトランジスタ183はオンされ、NチャネルMOSトランジスタ184はオフされる。そして、インバータ188は、接地電圧から成るLレベルの入力信号INを1.5Vの電圧から成るHレベルの信号に変換してPチャネルMOSトランジスタ186およびNチャネルMOSトランジスタ187のゲート端子へ出力する。
【0211】
そうすると、PチャネルMOSトランジスタ186はオフされ、NチャネルMOSトランジスタ187はオンされる。そして、ノード192上の電圧は接地電圧(0V)になり、PチャネルMOSトランジスタ182はオンされ、ノード191上の電圧は3.3Vになる。その結果、PチャネルMOSトランジスタ185はオフされる。
【0212】
インバータ189は、ノード192上の接地電圧から成るLレベルの信号を反転して3.3Vの電圧から成るHレベルの信号を出力し、インバータ190は、3.3Vの電圧から成るHレベルの信号を反転して接地電圧から成るLレベルの出力信号OUTを出力する。
【0213】
このように、レベル変換器732は、接地電圧から成るLレベルの信号を電圧レベルを変えずに接地電圧から成るLレベルの信号として出力する。
【0214】
再び、図2を参照して、1/2Vcc発生回路74は、ノードN1から受けた1.5Vの電源電圧によって駆動される。そして、1/2Vcc発生回路74は、出力ノードNOUT上のアレイ電圧VccSを受け、アレイ電圧VccSを2分の1に分圧してプリチャージ電圧VBLを発生する。また、1/2Vcc発生回路75は、ノードN1から受けた1.5Vの電源電圧によって駆動される。そして、1/2Vcc発生回路75は、出力ノードNOUT上のアレイ電圧VccSを受け、アレイ電圧VccSを2分の1に分圧してセルプレート電圧VCPを発生する。
【0215】
図9を参照して、1/2Vcc発生回路74,75は、抵抗176,179と、NチャネルMOSトランジスタ177,180と、PチャネルMOSトランジスタ178,181とを含む。
【0216】
NチャネルMOSトランジスタ177,180およびPチャネルMOSトランジスタ178,181は薄膜MOSトランジスタである。
【0217】
抵抗176、NチャネルMOSトランジスタ177、PチャネルMOSトランジスタ178および抵抗179は、ノードN1と接地ノードNS1との間に直列に接続される。NチャネルMOSトランジスタ180およびPチャネルMOSトランジスタ181は、ノードN1と接地ノードNS1との間に直列に接続される。
【0218】
抵抗176、NチャネルMOSトランジスタ177、PチャネルMOSトランジスタ178および抵抗179は、NチャネルMOSトランジスタ180およびPチャネルMOSトランジスタ181に対して並列に接続される。
【0219】
NチャネルMOSトランジスタ177,180は、ノードN4上の電圧をゲート端子に受ける。NチャネルMOSトランジスタ177はダイオード接続される。PチャネルMOSトランジスタ178,181は、ノードN5上の電圧をゲート端子に受ける。PチャネルMOSトランジスタ178はダイオード接続される。
【0220】
ノードN1は、電圧降圧回路73から出力された1.5Vの電圧からなるアレイ電圧VccSが供給される。抵抗176,179の抵抗値は、NチャネルMOSトランジスタ177とPチャネルMOSトランジスタ178との間の電圧が0.75Vになるように決定される。
【0221】
そうすると、ノードN4上の電圧は、0.75VにNチャネルMOSトランジスタ177のしきい値電圧Vth4を加えた0.75+Vth4(V)となり、ノードN5上の電圧は、0.75VからPチャネルMOSトランジスタ178のしきい値電圧Vth4を差引いた0.75−Vth4(V)となる。
【0222】
そして、NチャネルMOSトランジスタ180およびPチャネルMOSトランジスタ181における電圧降下は0.75Vとなり、1/2Vcc発生回路74,75は、それぞれ、0.75Vのプリチャージ電圧VBLまたは0.75Vのセルプレート電圧VCPを出力する。
【0223】
再び、図2を参照して、VPP発生回路76は、制御回路761と、分割回路762と、検出回路763,764と、発振器765と、レベル変換器766と、ポンプ回路767とを含む。
【0224】
制御回路761は、ノードN1から供給される1.5Vの電源電圧により駆動される。そして、制御回路761は、テストモード信号TMまたはロウアドレスストローブ信号RASを受け、その受けたテストモード信号TMを検出回路763,764へ出力し、ロウアドレスストローブ信号RASを検出回路763へ出力する。
【0225】
より具体的には、制御回路761は、半導体記憶装置100のテストモード時、テスト内容に応じてHレベルまたはLレベルのテストモード信号TMを受け、その受けたHレベルまたはLレベルのテストモード信号TMを検出回路763,764へ出力する。
【0226】
また、制御回路761は、半導体記憶装置100の通常動作時、Hレベルのロウアドレスストローブ信号RASを受け、その受けたHレベルのロウアドレスストローブ信号RASを検出回路763へ出力する。
【0227】
さらに、制御回路761は、半導体記憶装置100のスタンバイ時、Lレベルのロウアドレスストローブ信号RASを受け、その受けたLレベルのロウアドレスストローブ信号RASを検出回路763へ出力する。
【0228】
分割回路762は、昇圧電圧VPPを2分の1に分圧し、その分圧した分圧電圧VPDIVを検出回路763,764へ出力する。
【0229】
検出回路763は、ノードN1から供給される1.5Vの電源電圧により駆動される。そして、検出回路763は、制御回路761から受けたHレベルのロウアドレスストローブ信号RASによって活性化され、分割回路762から受けた分圧電圧VPDIVが基準電圧発生回路72から受けた基準電圧VrefSになるように、分圧電圧VPDIVを差動増幅する。すなわち、検出回路763は、分圧電圧VPDIVを検出し、その検出した分圧電圧VPDIVを発振器765へ出力する。
【0230】
検出回路764は、ノードN1から供給される1.5Vの電源電圧により駆動される。そして、検出回路764は、基準電圧発生回路72の電流源720からの信号BIASLによって活性化され、分割回路762から受けた分圧電圧VPDIVが基準電圧発生回路72から受けた基準電圧VrefSになるように、分圧電圧VPDIVを差動増幅する。すなわち、検出回路764は、分圧電圧VPDIVを検出し、その検出した分圧電圧VPDIVを発振器765へ出力する。
【0231】
Hレベルのロウアドレスストローブ信号RASは1.5Vの電圧レベルから成り、信号BIASLは0.7Vの電圧レベルから成るので、検出回路763は、検出回路764よりも速く分圧電圧VPDIVを検出して発振器765へ出力する。
【0232】
そうすると、半導体記憶装置100の通常動作時、検出回路763は、Hレベルのロウアドレスストローブ信号RASを受け、検出回路764は、信号BIASLを受けるので、検出回路763は検出回路764よりも分圧電圧VPDIVを速く検出して発振器765へ出力する。また、半導体記憶装置100のスタンバイ時、検出回路763は、Lレベルのロウアドレスストローブ信号RASを受け、検出回路764は、0.7Vの電圧から成る信号BIASLを受ける。そして、検出回路763は不活性化され、検出回路764は、通常動作時よりもゆっくりと分圧電圧VPDIVを検出して発振器765へ出力する。したがって、検出回路763は、通常動作時、分圧電圧VPDIVを検出し、検出回路764は、スタンバイ時、分圧電圧VPDIVを検出する。
【0233】
発振器765は、ノードN1から供給される1.5Vの電源電圧により駆動される。そして、発振器765は、検出回路763または764から受けた分圧電圧VPDIVの電圧レベルに応じた位相を有するクロックCLKを発生し、その発生したクロックCLKをレベル変換器766へ出力する。
【0234】
レベル変換器766は、ノードN1から1.5Vの電源電圧を受け、ノードN2から3.3Vの電源電圧を受ける。そして、レベル変換器766は、発振器765から受けたクロックCLKのHレベルを構成する電圧を1.5Vから3.3Vに変換し、その変換したクロックCLKをポンプ回路767へ出力する。
【0235】
ポンプ回路767は、ノードN2から供給される3.3Vの電源電圧により駆動される。そして、ポンプ回路767は、レベル変換器766から受けたクロックCLKに同期してキャリアをポンピングして昇圧電圧VPPを発生する。なお、ポンプ回路767の数は、メモリセルアレイ10,20を構成するブロックの数に応じて変えられる。
【0236】
このように、VPP発生回路76は、1.5Vの電源電圧と3.3Vの電源電圧とによって駆動され、3.3Vの電源電圧を昇圧して昇圧電圧VPPを発生する。
【0237】
図10を参照して、分割回路762は、PチャネルMOSトランジスタ110,111を含む。PチャネルMOSトランジスタ110,111は、ノードN1と接地ノードNS1との間に直列に接続される。PチャネルMOSトランジスタ110のサイズは、PチャネルMOSトランジスタ111のサイズと等しい。PチャネルMOSトランジスタ110は、ノード109上の電圧をゲート端子に受け、PチャネルMOSトランジスタ111は、接地ノードNS1上の接地電圧をゲート端子に受ける。ノードN1は、3.3Vの昇圧電圧VPPが供給される。
【0238】
PチャネルMOSトランジスタ110,111は、同じ抵抗値の抵抗として機能し、ノード109上の電圧は、3.3Vの昇圧電圧VPPを2分の1に分圧した1.65Vになる。
【0239】
したがって、分割回路762は、3.3Vの昇圧電圧VPPを2分の1に分圧した1.65Vの分圧電圧VPDIVをノード109から出力する。
【0240】
検出回路763,764は、PチャネルMOSトランジスタ112,114,117と、NチャネルMOSトランジスタ113,115,116,118,119と、インバータ120,121とを含む。
【0241】
PチャネルMOSトランジスタ112,114,117、およびNチャネルMOSトランジスタ113,115,116,118,119は、薄膜MOSトランジスタである。また、インバータ120,121は、薄膜MOSトランジスタにより構成される。
【0242】
PチャネルMOSトランジスタ112およびNチャネルMOSトランジスタ113は、ノードN1とコモンソースCMSとの間に直列に接続される。PチャネルMOSトランジスタ114およびNチャネルMOSトランジスタ115は、ノードN1とコモンソースCMSとの間に直列に接続される。
【0243】
PチャネルMOSトランジスタ112およびNチャネルMOSトランジスタ113は、PチャネルMOSトランジスタ114およびNチャネルMOSトランジスタ115に対して並列に接続される。
【0244】
PチャネルMOSトランジスタ112,114は、ノード108上の電圧をゲート端子に受ける。NチャネルMOSトランジスタ113は、分割回路762からの分圧電圧VPDIVをゲート端子に受ける。NチャネルMOSトランジスタ115は、基準電圧発生回路762からの基準電圧VrefSをゲート端子に受ける。
【0245】
NチャネルMOSトランジスタ116は、コモンソースCMSと接地ノードNS1との間に接続される。NチャネルMOSトランジスタ116は、検出回路763の場合、信号ACTとしてロウアドレスストローブ信号RASをゲート端子に受け、検出回路764の場合、基準電圧発生回路72からの信号BIASLをゲート端子に受ける。
【0246】
PチャネルMOSトランジスタ117およびNチャネルMOSトランジスタ118,119は、ノードN1と接地ノードNS1との間に直列に接続される。PチャネルMOSトランジスタ117およびNチャネルMOSトランジスタ118は、ノード107上の電圧をゲート端子に受ける。NチャネルMOSトランジスタ119は、検出回路763の場合、信号ACTとしてロウアドレスストローブ信号RASをゲート端子に受け、検出回路764の場合、基準電圧発生回路72からの信号BIASLをゲート端子に受ける。
【0247】
インバータ120は、ノード106上の信号を反転して出力し、インバータ121は、インバータ120の出力信号を反転して検出信号VPPDETを出力する。なお、インバータ120,121は、ノードN1から供給される1.5Vの電源電圧により駆動される。
【0248】
PチャネルMOSトランジスタ112,114およびNチャネルMOSトランジスタ113,115,116から成る差動増幅回路DFA2は、NチャネルMOSトランジスタ116がHレベルのロウアドレスストローブ信号RAS(すなわち、信号ACT)または0.7Vの電圧から成る信号BIASLをゲート端子に受けると活性化され、分圧電圧VPDIVを基準電圧VrefSと比較する。そして、差動増幅回路DFA2は、分圧電圧VPDIVが基準電圧VrefSよりも高いとき、PチャネルMOSトランジスタ117をオフし、かつ、NチャネルMOSトランジスタ118をオンする電圧から成るHレベルの信号をノード107から出力し、分圧電圧VPDIVが基準電圧VrefSよりも低いとき、PチャネルMOSトランジスタ117をオンし、かつ、NチャネルMOSトランジスタ118をオフする電圧から成るLレベルの信号をノード107から出力する。
【0249】
通常、分圧電圧VPDIVは1.65Vであり、基準電圧VrefSは1.5Vであるので、差動増幅回路DFA2は、Hレベルの信号をノード107から出力する。
【0250】
PチャネルMOSトランジスタ117およびNチャネルMOSトランジスタ118から成るインバータIV2は、NチャネルMOSトランジスタ119がHレベルのロウアドレスストローブ信号RAS(すなわち、信号ACT)または0.7Vの電圧から成る信号BIASLをゲート端子に受けると活性化され、ノード107から出力されたHレベルの信号を反転してLレベルの信号をノード106から出力する。
【0251】
インバータ120は、ノード106から出力されたLレベルの信号を反転してHレベルの信号を出力し、インバータ121は、インバータ120から出力されたHレベルの信号を反転してLレベルの検出信号VPPDETを発振器765へ出力する。
【0252】
図11を参照して、発振器765は、PチャネルMOSトランジスタ122,125,126,129,130,133,134,137,138,141,142と、NチャネルMOSトランジスタ123,127,128,131,132,135,136,139,140,143,144と、ANDゲート124と、インバータ105とを含む。
【0253】
PチャネルMOSトランジスタ122,125,126,129,130,133,134,137,138,141,142、およびNチャネルMOSトランジスタ123,127,128,131,132,135,136,139,140,143,144は、薄膜MOSトランジスタであり、インバータ105およびANDゲート124は、薄膜MOSトランジスタにより構成され、ノードN1から供給される1.5Vの電源電圧により駆動される。
【0254】
PチャネルMOSトランジスタ122,125,126,129,130,133,134,137,138,141,142、NチャネルMOSトランジスタ123,127,128,131,132,135,136,139,140,143,144、ANDゲート124、インバータ105は、それぞれ、図4に示す発振器712のPチャネルMOSトランジスタ7131,7133,7134,7137,7138,7141,7142,7145,7146,7149,7150、NチャネルMOSトランジスタ7132,7135,7136,7139,7140,7143,7144,7147,7148,7151,7152、NADゲート7154およびインバータ7153に相当する。
【0255】
したがって、発振器765は、図4において説明した動作により検出信号VPPDETの論理レベルに応じた位相を有するクロックCLKを発生する。
【0256】
レベル変換器766は、図8に示すレベル変換器732と同じ構成から成る。図12を参照して、ポンプ回路767は、インバータ145〜147と、PチャネルMOSトランジスタ148,152と、NチャネルMOSトランジスタ104,149〜151とを含む。
【0257】
インバータ145〜147は、厚膜MOSトランジスタにより構成され、ノードN2から供給される3.3Vの電源電圧により駆動される。また、PチャネルMOSトランジスタ148,152、およびNチャネルMOSトランジスタ104,149〜151は、厚膜MOSトランジスタである。
【0258】
インバータ145は、レベル変換器766からのクロックCLKを反転してインバータ146へ出力し、インバータ146は、インバータ145の出力信号を反転してPチャネルMOSトランジスタ152のソース端子およびドレイン端子へ出力する。インバータ147は、レベル変換器766からのクロックCLKを反転してPチャネルMOSトランジスタ148のソース端子およびドレイン端子へ出力する。
【0259】
したがって、インバータ146が出力する信号の論理レベルは、インバータ147が出力する信号の論理レベルを反転した論理レベルである。
【0260】
NチャネルMOSトランジスタ149,150は、ノードN2とノードNL4との間に並列に接続される。NチャネルMOSトランジスタ149は、ノードN2に供給される3.3Vの電源電圧をゲート端子に受ける。NチャネルMOSトランジスタ150は、ノードNL4上の電圧をゲート端子に受ける。
【0261】
NチャネルMOSトランジスタ151は、ノードN2とNチャネルMOSトランジスタ104のゲート端子との間に接続される。そして、NチャネルMOSトランジスタ151は、ノードNL4上の電圧をゲート端子に受ける。NチャネルMOSトランジスタ104は、ノードNL5とノードNL6との間に接続される。そして、NチャネルMOSトランジスタ104は、ノードNL5上の電圧をゲート端子に受ける。
【0262】
インバータ147がLレベルの信号をPチャネルMOSトランジスタ148のソース端子およびドレイン端子へ出力すると、正孔がNチャネルMOSトランジスタ149を介してノードN2からノードNL4へ流れる。そして、ノードNL4上の電圧は高くなる。そうすると、NチャネルMOSトランジスタ150のチャネル幅は、ノードNL4上の電圧が高くなるのに比例して広くなり、NチャネルMOSトランジスタ150を介してノードN2からノードNL4へ流れる正孔は増加する。そして、ノードNL4上の電圧はさらに高くなる。
【0263】
このように、ノードNL4上の電圧は、インバータ147が出力する信号のLレベルの期間に比例して高くなる。
【0264】
ノードNL4上の電圧が高くなると、NチャネルMOSトランジスタ151のチャネル幅も広くなり、NチャネルMOSトランジスタ151を介してノードN2からノードNL5へ流れる正孔は増加し、ノードNL5上の電圧も高くなる。
【0265】
インバータ147がLレベルの信号を出力する期間、インバータ146はHレベルの信号をPチャネルMOSトランジスタ152のソース端子およびドレイン端子へ出力するので、PチャネルMOSトランジスタ152のチャネル領域にはソース端子およびドレイン端子から正孔が注入され、ノードNL5上の正孔は、PチャネルMOSトランジスタ152のゲート端子から遠ざかる方向にクーロン力を受ける。
【0266】
したがって、ノードNL5上の正孔は、NチャネルMOSトランジスタ104を介してノードNL6へ供給され、ノードNL6上の電圧は高くなる。そして、ノードNL6は、3.3Vの電源電圧を昇圧した3.3Vの昇圧電圧VPPを出力する。なお、昇圧電圧VPPの電圧レベルは、ノードN2に供給される電源電圧と同じ電圧レベルであるが、ノードN2に供給される電源電圧は、±0.3V程度の誤差が許容されているので、昇圧電圧VPPの電圧レベルが3.3Vであっても、ノードN2に供給された電源電圧を昇圧したことになる。
【0267】
インバータ147がHレベルの信号をPチャネルMOSトランジスタ148のソース端子およびドレイン端子へ出力し、インバータ146がLレベルの信号をPチャネルMOSトランジスタ152のソース端子およびドレイン端子へ出力する期間においては、電子がNチャネルMOSトランジスタ149,150を介してノードN2からノードNL4へ流れる。
【0268】
そうすると、ノードNL4上の電圧は若干低くなり、NチャネルMOSトランジスタ150のチャネル幅も狭くなる。そして、NチャネルMOSトランジスタ151を介してノードN2からノードNL5へ流れる正孔は減少し、ノードNL5に供給された正孔は、PチャネルMOSトランジスタ152のゲート端子に引き寄せられる。
【0269】
したがって、この期間、ノードNL6上の昇圧電圧VPPは若干低くなる。
そして、インバータ147がLレベルの信号をPチャネルMOSトランジスタ148のソース端子およびドレイン端子へ出力し、インバータ146がHレベルの信号をPチャネルMOSトランジスタ152のソース端子およびドレイン端子へ出力すると、上述した動作と同じ動作によりノードNL6上の電圧は昇圧される。
【0270】
このように、ポンプ回路767は、ノードNL6上の電位を大きく正電位に設定する周期と、ノードNL6上の電位を若干低下させる周期とを繰返しながら3.3Vの昇圧電圧VPPを出力する。そして、このノードNL6上の電位を大きく正電位に設定する周期と、ノードNL6上の電位を若干低下させる周期とを繰返す動作がポンピングに相当する。
【0271】
図13および図14を参照して、レベル変換器766の好ましい実施の形態について説明する。図13を参照して、インバータ188を駆動するための1.5Vの電源電圧がノードN1に供給されておらず、インバータ189,190を駆動するための3.3Vの電源電圧がノードN2に供給されているとき、レベル変換器766が誤動作する可能性がある。
【0272】
すなわち、発振器765から出力されるクロックCLKがLレベルであるとき、PチャネルMOSトランジスタ183はオンされ、NチャネルMOSトランジスタ184はオフされる。そして、インバータ188は、駆動電源が供給されていないので、接地電圧から成るLレベルの信号をPチャネルMOSトランジスタ186およびNチャネルMOSトランジスタ187のゲート端子へ出力する。
【0273】
そうすると、PチャネルMOSトランジスタ186はオンされ、NチャネルMOSトランジスタ187はオフされる。そして、ノード191,192上の電圧は、ノードN2に供給される3.3Vの電源電圧に引っ張られて上昇する。その結果、インバータ189は、常時、Hレベルの信号を受け、そのHレベルの信号を反転して接地電圧から成るLレベルの信号をインバータ190へ出力し、インバータ190は、Lレベルの信号を反転して3.3Vの電源電圧から成るHレベルの信号をポンプ回路767へ出力する。これは、HレベルのクロックCLKが入力された場合も生じる。
【0274】
したがって、3.3Vの電源電圧が供給され、1.5Vの電源電圧が供給されていないとき、レベル変換器766は誤動作する可能性がある。
【0275】
そこで、図14に示すようにレベル変換器は、好ましくは、リセット信号RESETによりリセットする機能を備える。図14を参照して、レベル変換器766Aは、レベル変換器766(図8に示すレベル変換器732と同じ回路構成)にNチャネルMOSトランジスタ193と、リセット回路CKTREとを追加したものであり、その他はレベル変換器766と同じである。
【0276】
リセット回路CKTREは、PチャネルMOSトランジスタ194と、NチャネルMOSトランジスタ195と、インバータ196,197とを含む。
【0277】
NチャネルMOSトランジスタ193,195およびPチャネルMOSトランジスタ194は厚膜MOSトランジスタであり、インバータ196,197は厚膜MOSトランジスタにより構成される。
【0278】
NチャネルMOSトランジスタ193は、ノード192と接地ノードNS1との間に接続され、ソース端子およびドレイン端子は、それぞれ、NチャネルMOSトランジスタ187のソース端子およびドレイン端子に接続される。そして、NチャネルMOSトランジスタ193は、リセット信号RESETをゲート端子に受ける。
【0279】
PチャネルMOSトランジスタ194およびNチャネルMOSトランジスタ195は、ノードN2と接地ノードNS1との間に直列に接続される。PチャネルMOSトランジスタ194は、接地ノードNS1から接地電圧をゲート端子に受ける。NチャネルMOSトランジスタ195は、ノードN1に供給される電源電圧をゲート端子に受ける。
【0280】
インバータ196は、ノードN2に供給される3.3Vの電源電圧により駆動され、入力信号を反転してインバータ197へ出力する。インバータ197は、入力信号を反転してリセット信号RESETをNチャネルMOSトランジスタ193のゲート端子へ出力する。
【0281】
1.5Vの電源電圧および3.3Vの電源電圧が供給されているとき、PチャネルMOSトランジスタ194およびNチャネルMOSトランジスタ195はオンされ、インバータ196は、Lレベルの信号を受け、その受けたLレベルの信号を反転してHレベルの信号をインバータ197へ出力する。そして、インバータ197は、Hレベルの信号を反転してLレベルのリセット信号RESETをNチャネルMOSトランジスタ193のゲート端子へ出力する。
【0282】
そうすると、NチャネルMOSトランジスタ193はオフされ、レベル変換器766Aは、上述した動作により、クロックCLKのHレベルを構成する電圧レベルを1.5Vから3.3Vへ変換する。
【0283】
一方、1.5Vの電源電圧が供給されておらず、3.3Vの電源電圧が供給されているとき、PチャネルMOSトランジスタ194はオンされ、NチャネルMOSトランジスタ195はオフされる。そうすると、インバータ196は、Hレベルの信号を受け、その受けたHレベルの信号を反転してLレベルの信号をインバータ197へ出力する。そして、インバータ197は、Lレベルの信号を反転してHレベルのリセット信号RESETをNチャネルMOSトランジスタ193のゲート端子へ出力する。
【0284】
NチャネルMOSトランジスタ193は、Hレベルのリセット信号RESETによりオンされ、ノード192上の電圧は接地電圧になる。したがって、この場合、レベル変換器766Aは、Lレベルの信号を出力するので、誤動作を防止できる。
【0285】
このように、レベル変換器766Aを用いれば、1.5Vの電源電圧が供給されず、3.3Vの電源電圧が供給された場合も、レベル変換器における誤動作を防止できる。
【0286】
レベル変換器732にも、好ましくは、レベル変換器766Aを用いる。
1.5Vの電源電圧が供給されないとき、発振器765は、Lレベルが連続したクロックCLKを出力し、レベル変換器766Aは、Lレベルが連続したクロックCLKに応じてLレベルが連続する信号を出力する。そして、レベル変換器766Aは、1.5Vの電源電圧が供給されるまでLレベルが連続する信号を出力する。
【0287】
そうすると、ポンプ回路767は、Lレベルが連続する信号に応じて、上述したポンプ動作を行なわず、電圧レベルの低い電圧VPPを出力し、メモリセルアレイ10,20は不活性化される。
【0288】
この場合、1.5Vの電源電圧が供給されないときにレベル変換回路766Aが出力するLレベルの信号は、不活性化信号を構成する。また、レベル変換器766Aは、1.5Vの電源電圧が供給するまで不活性化信号を出力する「信号出力回路」を構成する。さらに、ポンプ回路767は、レベル変換器766A(信号出力回路)からのLレベルの信号(不活性化信号)に応じてメモリセルアレイを不活性化するための電圧レベルからなる電圧VPP(内部電圧)を発生する回路を構成する。
【0289】
再び、図2を参照して、上述したように、電源回路70に含まれるVbb発生回路71、基準電圧発生回路72、電圧降圧回路73、1/2Vcc発生回路74,75およびVPP発生回路76のうち、基準電圧発生回路72、電圧降圧回路73およびVPP発生回路76の一部の回路を厚膜MOSトランジスタにより構成し、それ以外の回路は薄膜MOSトランジスタにより構成した。
【0290】
これらの厚膜MOSトランジスタが必要な部分、すなわち、アレイ電圧VccSを出力する電圧降圧回路73および昇圧電圧VPPを出力するVPP発生回路76の一部の回路の数は、一度に活性化されるワード線の数と、ワード線の活性化に伴って活性化されるセンスアンプの個数とにより消費電流が決定されるので、アレイ容量の変化、バンク構成、I/O構成、ページサイズ(一度のロウ系の活性化でセンスアンプにラッチされるメモリセルデータの数)およびリフレッシュサイクルなどの構成に依存する。そして、これらの一部の回路の数は、最小構成のアレイに必要な電流のほぼ整数倍である。
【0291】
したがって、厚膜MOSトランジスタにより構成された回路は、メモリセルアレイに対応してユニット配置され、薄膜MOSトランジスタにより構成された回路は、シャッフル配置される。
【0292】
この発明の実施の形態1による電源回路70における各回路の配置例を図15〜図17に示す。図15および図16は、容量が4Mbの場合であり、図17は、容量が1Mbの場合である。
【0293】
図15を参照して、半導体記憶装置100Aは、メモリセルアレイ10A,10Bと、データバス40と、基準電圧発生回路72と、電圧降圧回路73と、VPP発生回路76と、テスト回路80と、回路群77とを含む。回路群77は、Vbb発生回路71および1/2Vcc発生回路74,75の電源電圧を生成する電源系と、薄膜MOSトランジスタにより構成される制御回路とを含む。
【0294】
電圧降圧回路73は、メモリセルアレイ10Aに隣接して配置される。また、VPP発生回路76は、メモリセルアレイ10Bに隣接して配置される。さらに、基準電圧発生回路72は、電圧降圧回路73に隣接して配置される。つまり、厚膜MOSトランジスタを含む基準電圧発生回路72、電圧降圧回路73およびVPP発生回路76は、メモリセルアレイ10A,10Bの配置位置に対応して配置される。
【0295】
電圧降圧回路73は、メモリセルアレイ10Aの幅W1にわたって配置され、VPP発生回路76は、メモリセルアレイ10Bの幅W1にわたって配置される。
【0296】
テスト回路80は、データバス40に隣接してデータバス40の幅W2にわたって配置される。
【0297】
基準電圧発生回路72、電圧降圧回路73、VPP発生回路76およびテスト回路80は、各回路の占有面積を考慮して配置位置が決定される。すなわち、基準電圧発生回路72、電圧降圧回路73、VPP発生回路76およびテスト回路80は、各々、一定の面積を占有する一定の大きさを有する。そして、基準電圧発生回路72、電圧降圧回路73、VPP発生回路76およびテスト回路80を配置するとき、各回路の境界を考慮して各回路は一定の大きさを有するものとして各回路を配置する。したがって、基準電圧発生回路72、電圧降圧回路73、VPP発生回路76およびテスト回路80は、ユニット化されて配置される。そして、基準電圧発生回路72を構成する素子と電圧降圧回路73を構成する素子とが入り乱れて配置されることはなく、電圧降圧回路73を構成する素子とVPP発生回路76を構成する素子とが入り乱れて配置されることもない。
【0298】
厚膜MOSトランジスタを含む回路は、メモリセルアレイ10A,10Bに対応して配置位置が決定されるとともに、メモリセルアレイ10A,10Bに隣接して配置される。これは、基準電圧発生回路72、電圧降圧回路73、およびVPP発生回路76は、メモリセルアレイ10A,10Bに含まれるメモリセルにデータを入出力するときに必要なアレイ電圧VccSおよび昇圧電圧VPPをメモリセルアレイ10A,10Bに供給するため、アレイ電圧VccSおよび昇圧電圧VPPの電圧レベルが低下するのを防止するためである。
【0299】
したがって、基準電圧発生回路72、電圧発生回路73およびVPP発生回路76は、メモリセルアレイ10A,10Bに隣接した領域に配置され、その領域内で3個にユニット化されて配置される。つまり、厚膜MOSトランジスタを含む複数の回路は、メモリセルアレイ10A,10Bに隣接した領域に配置され、厚膜MOSトランジスタを含む回路の数にユニット化されてその領域内に配置される。そして、厚膜MOSトランジスタを含む複数の回路は、メモリセルアレイ10A,10Bに隣接した領域内で、各回路を1つのユニットとして配置位置が調整され、かつ、決定される。
【0300】
回路群77に含まれる各回路は、基準電圧発生回路72、電圧降圧回路73、VPP発生回路76およびテスト回路80が配置される領域以外の領域にシャッフル配置される。回路群77に含まれる各回路については、一定の面積を占有する回路とは考えず、各回路を構成する複数の素子は、一定の範囲に存在するように配置される。つまり、各回路を構成する複数の素子は、1つの回路を構成するように1つの「かたまり」として配置される。したがって、回路群77に含まれる1つの回路を構成する素子と、もう1つの回路を構成する素子とが入り乱れて配置されることもある。回路群77に含まれる各回路は、メモリセルアレイ10A,10Bに対して共通に設けられる。
【0301】
図15に示すような配置を行なうことにより、厚膜MOSトランジスタを含む回路を基準電圧発生回路72、電圧降圧回路73およびVPP発生回路76が配置される領域に集め、薄膜MOSトランジスタを含む回路を回路群77が配置される領域に集めることができる。その結果、半導体記憶装置100Aにおけるノイズを低減できるとともに、従来の半導体記憶装置で生じていた面積ロスを少なくすることができる。
【0302】
なお、メモリセルアレイ10A,10Bの幅W1が狭くなってレイアウト条件が厳しくなった場合等には、図2および図15に示される電圧降圧回路73およびVPP発生回路76内の制御回路731,761については、これらの回路が薄膜トランジスタで構成される制御回路であるため、電圧降圧回路73またはVPP発生回路76等のユニットから除外して回路群77の中にシャッフル配置されてもよい。
【0303】
なお、回路群77における各回路の配置は、EDA(Electronic Design Automation)という自動配置装置を用いて配置してもよい。基準電圧発生回路72、電圧降圧回路73、VPP発生回路76およびテスト回路80の回路配置は、メモリセルアレイ10A,10Bの配置位置に対応させて手動で行なう。
【0304】
図16を参照して、半導体記憶装置100Bは、半導体記憶装置100Aにおいてテスト回路80を回路群77に含めるように配置した半導体記憶装置であり、その他は、半導体記憶装置100Aと同じである。
【0305】
図17を参照して、半導体記憶装置100Cは、メモリセルアレイ10Cと、データバス40と、VPP発生回路76と、電圧降圧回路73と、基準電圧発生回路72と、回路群77とを含む。
【0306】
半導体記憶装置100Cは、1Mbの容量を有する半導体記憶装置である。そして、半導体記憶装置100Cにおいては、VPP発生回路76がメモリセルアレイ10Cおよびデータバス40に接して配置され、VPP発生回路76に隣接して電圧降圧回路73が配置され、電圧降圧回路73に隣接して基準電圧発生回路72が配置される。そして、これらの基準電圧発生回路72、電圧降圧回路73およびVPP発生回路76は、各回路の占有面積に従って配置位置が調整される。
【0307】
回路群77に含まれる各回路は、基準電圧発生回路72、電圧降圧回路73およびVPP発生回路76が配置される領域以外の領域にシャッフル配置される。
【0308】
このように、この発明においては、厚膜MOSトランジスタを含む回路は、メモリセルアレイの配置位置に対応して一箇所にユニット化して配置され、薄膜MOSトランジスタを含む回路は、シャッフル配置される。そして、厚膜MOSトランジスタを含む回路の配置位置は、メモリセルアレイの容量に応じて変えられる。
【0309】
図18を参照して、この発明における「シャッフル配置」について説明する。上述したように、回路群77は、Vbb発生回路71を含む。そして、Vbb発生回路71を構成する制御回路710、検出器711、発振器712およびポンプ回路713は、それぞれ、点線で示される1つの領域内に配置される。この場合、たとえば、検出器711を構成するNチャネルMOSトランジスタ7118が発振器712を構成するNチャネルMOSトランジスタ7132に近接して配置される。したがって、検出器711を構成する複数の素子が発振器712を構成する複数の素子と入り乱れることもある。
【0310】
また、Vbb発生回路71を構成する回路のみならず、薄膜MOSトランジスタで構成される1/2Vcc発生回路74,75も点線で示される1つの領域内に配置される。
【0311】
つまり、この発明において、「シャッフル配置」とは、各回路を構成する複数の素子をランダムに配置するのではなく、各回路を構成する複数の素子を1つの回路を構成するように1つの「かたまり」として把握し、各回路をランダムに配置することを言う。そして、各回路の配置を決定する場合、各回路の境界は考慮されない。したがって、図18に示す点線は、各回路の境界を示すものではなく、各回路を構成する複数の素子が配置される領域の目安を示すものである。
【0312】
なお、半導体記憶装置100のメモリセルアレイ10,20に含まれる複数のメモリセルへデータを入出力する動作は、通常の入出力動作と同じであるので、ここでの説明は省略する。
【0313】
また、ロウコラムデコーダ30、データバス40,50、センスアンプ、およびイコライズ回路は、メモリセルアレイ10,20に含まれる複数のメモリセルにデータを入出力する「周辺回路」を構成する。
【0314】
さらに、図15および図16においては、メモリセルアレイ10A,10Bの全体を1つのメモリセルアレイと考えれば、メモリセルアレイ10A,10Bは、その1つのメモリセルアレイに含まれる複数のブロックを構成する。したがって、電圧降圧回路73は、VPP発生回路76が接するブロック10Bと異なるブロック10Aに接して配置される。
【0315】
実施の形態1によれば、半導体記憶装置は、メモリセルアレイの配置位置に対応して配置された基準電圧発生回路、電圧降圧回路およびVPP発生回路と、シャッフル配置されたVbb発生回路等を含む回路群とを備えるので、メモリセルアレイの容量が変化しても面積ロスを低減して各電源回路を配置できる。
【0316】
[実施の形態2]
図19を参照して、実施の形態2による半導体記憶装置200は、半導体記憶装置100の電源回路70を電源回路70Aに代えたものであり、その他は半導体記憶装置100と同じである。
【0317】
図20を参照して、電源回路70Aは、電源回路70のVbb発生回路71をVbb発生回路71Aに代え、VPP発生回路76をVPP発生回路76Aに代えたものであり、その他は、電源回路70と同じである。
【0318】
Vbb発生回路71Aは、Vbb発生回路71の検出回路711を検出回路711Aに代え、レベル変換器770,771を追加したものであり、その他は、Vbb発生回路71と同じである。
【0319】
レベル変換器770は、制御回路710と検出回路711Aとの間に接続される。また、レベル変換器771は、検出回路711Aと発振器712との間に接続される。
【0320】
レベル変換器770は、ノードN1から1.5Vの電源電圧を受け、ノードN2から3.3Vの電源電圧を受ける。そして、レベル変換器770は、制御回路710から受けたHレベルのテストモード信号TMを構成する電圧レベルを1.5Vから3.3Vに変換して検出回路711Aへ出力する。レベル変換器770は、より具体的には、図8または図14に示す回路構成から成る。
【0321】
検出回路711Aは、ノードN2から供給される3.3Vの電源電圧により駆動される。そして、検出回路711Aは、活性化されると、負電圧Vbbを検出し、検出信号をレベル変換器771へ出力する。
【0322】
レベル変換器771は、ノードN1から供給される1.5Vの電源電圧により駆動される。そして、レベル変換器771は、検出回路711Aから受けた検出信号を構成する電圧レベルを3.3Vから1.5Vに変換して発振器712へ出力する。
【0323】
図21を参照して、検出回路711Aは、PチャネルMOSトランジスタ7111A,7112A,7122A,7124A,7126A,7127Aと、NチャネルMOSトランジスタ7113A,7114A,7115A〜7118A,7123A,7125A,7128A,7129Aと、インバータ7130Aとを含む。なお、PチャネルMOSトランジスタ7111A,7112A,7122A,7124A,7126A,7127A、およびNチャネルMOSトランジスタ7113A,7114A,7115A〜7118A,7123A,7125A,7128A,7129Aは、厚膜MOSトランジスタであり、インバータ7130は厚膜MOSトランジスタにより構成される。
【0324】
検出回路711AのPチャネルMOSトランジスタ7111A,7112A,7122A,7124A,7126A,7127A、NチャネルMOSトランジスタ7113A,7114A,7115A〜7118A,7123A,7125A,7128A,7129A、およびインバータ7130Aは、それぞれ、検出回路711のPチャネルMOSトランジスタ7111,7112,7122,7124,7126,7127、NチャネルMOSトランジスタ7113,7114,7115〜7118,7123,7125,7128,7129、およびインバータ7130に相当する。
【0325】
検出回路711Aにおいては、ノードN2から3.3Vの電源電圧が供給される。つまり、検出回路711Aにおいては、1.5Vの電源電圧に代えて3.3Vの電源電圧が駆動電源である。
【0326】
PチャネルMOSトランジスタ7122A,7124AおよびNチャネルMOSトランジスタ7123A,7125Aから成る差動増幅回路DFA3は、NチャネルMOSトランジスタ7125Aのゲート端子に受ける電圧を、NチャネルMOSトランジスタ7123Aのゲート端子に受ける信号BIASLを構成する0.7Vの電圧と比較する。
【0327】
差動増幅回路DFA3は、カレントミラー型の差動増幅回路であり、参照電圧である信号BIASLを構成する0.7Vの電圧が、コモンソースの電位にNチャネルMOSトランジスタ7125Aのしきい値電圧を加えた電圧になるように設定されることが望ましい。
【0328】
厚膜MOSトランジスタのしきい値電圧は0.8Vであり、差動増幅回路DFA3におけるコモンソースは、接地ノードNS1であるので、NチャネルMOSトランジスタ7125Aを厚膜MOSトランジスタで構成することにより、参照電圧である信号BIASLを構成する0.7Vの電圧が、コモンソースの電位にNチャネルMOSトランジスタ7125Aのしきい値電圧を加えた電圧にほぼ等しくなる。
【0329】
したがって、実施の形態2においては、検出回路711Aを厚膜MOSトランジスタにより構成したものである。そして、検出回路711Aは、−0.7Vの負電圧Vbbを検出し、その検出信号VBBDETを3.3Vの電圧により構成して出力する。
【0330】
このように、検出回路711Aを厚膜MOSトランジスタにより構成することにより、比較用のMOSトランジスタであるNチャネルMOSトランジスタ7123Aが線形動作領域に陥るのを防止し、差動増幅回路DFA3における電圧の比較動作を、応答性およびゲインの良い領域で行なうことができる。
【0331】
図22を参照して、レベル変換器771は、インバータ198,199を含む。インバータ189,190は、直列に接続される。インバータ198,199は、ノードN1から供給される1.5Vの電源電圧により駆動される。インバータ198は、3.3Vの電源電圧から成るHレベルの検出信号VBBDETを反転した接地電圧から成るLレベルの検出信号VBBDETをインバータ199へ出力する。
【0332】
インバータ199は、接地電圧から成るLレベルの検出信号VBBDETを反転して1.5Vの電源電圧から成るHレベルの検出信号VBBDETを出力する。これにより、検出信号VBBDETを構成する電圧レベルが3.3Vから1.5Vへ変換される。
【0333】
再び、図20を参照して、VPP発生回路76Aは、VPP発生回路76の検出回路763,764をそれぞれ検出回路763A,764Aに代え、レベル変換器772,773を追加したものであり、その他はVPP発生回路76と同じである。
【0334】
レベル変換器772は、制御回路761と検出回路763A,764Aとの間に接続される。レベル変換器773は、検出回路763A,764Aと発振器765との間に接続される。
【0335】
レベル変換器772,773は、ノードN1から1.5Vの電源電圧を受け、レベル変換器772は、ノードN2から3.3Vの電源電圧を受ける。そして、レベル変換器772は、図8または図14に示す回路構成から成り、制御回路761から受けたHレベルのテストモード信号TMまたはHレベルのロウアドレスストローブ信号RASを構成する電圧レベルを1.5Vから3.3Vに変換し、その変換したHレベルのテストモード信号TMまたはHレベルのロウアドレスストローブ信号RASを検出回路763A,764Aへ出力する。
【0336】
検出回路763A,764Aは、ノードN2から供給される3.3Vの電源電圧により駆動される。検出回路763A,764Aは、それぞれ、検出回路763,764と同じ機能を果たし、検出信号VPPDETをレベル変換器773へ出力する。
【0337】
レベル変換器773は、検出回路763Aまたは764Aから受けた検出信号VPPDETを構成する電圧レベルを3.3Vから1.5Vに変換し、その変換した検出信号VPPDETを発振器765へ出力する。なお、レベル変換器773は、図21に示すレベル変換器771と同じ回路構成から成る。
【0338】
図23を参照して、検出回路763A,764Aは、PチャネルMOSトランジスタ112A,114A,117Aと、NチャネルMOSトランジスタ113A,115A,116A,118A,119Aと、インバータ120A,121Aとを含む。
【0339】
PチャネルMOSトランジスタ112A,114A,117A、およびNチャネルMOSトランジスタ113A,115A,116A,118A,119Aは、厚膜MOSトランジスタである。また、インバータ120A,121Aは、厚膜MOSトランジスタにより構成される。
【0340】
検出回路763A,764AのPチャネルMOSトランジスタ112A,114A,117A、NチャネルMOSトランジスタ113A,115A,116A,118A,119A、およびインバータ120A,121Aは、それぞれ、検出回路763,764のPチャネルMOSトランジスタ112,114,117、NチャネルMOSトランジスタ113,115,116,118,119、およびインバータ120,121に相当する。したがって、検出回路763A,764Aにおける各MOSトランジスタの動作は、上述した動作と同じである。
【0341】
検出回路763A,764Aにおいては、差動増幅回路DFA4は、1.65Vの電圧から成る分圧電圧VPDIVを1.5Vの電圧から成る基準電圧VrefSと比較する。したがって、NチャネルMOSトランジスタ113Aが線形動作領域に陥らずに、ゲインおよび応答性のよい領域で分圧電圧VPDIVが基準電圧VrefSと比較されるためには、1.65Vの電圧がコモンソースCSの電位にNチャネルMOSトランジスタ113A,115Aのしきい値電圧を加えた電圧になるようにする必要がある。
【0342】
そこで、NチャネルMOSトランジスタ113A,115A,116Aを厚膜MOSトランジスタにより構成することにより、コモンソースCSの電位(0.8V)にNチャネルMOSトランジスタ113A,115Aのしきい値電圧(0.8V)を加えた電圧(1.6V)が比較用の電圧(分圧電圧VPDIV=1.65V)にほぼ等しくなるようにした。
【0343】
これにより、差動増幅回路DFA4における比較動作を、応答性およびゲインの良い領域で行なうことができ、検出回路763A,764Aにおける分圧電圧VPDIVの検出動作を向上させることができる。
【0344】
その他は、実施の形態1と同じである。
実施の形態2によれば、2つの電圧を比較して差動増幅を行なうカレントミラー型の差動増幅回路は、厚膜MOSトランジスタにより構成され、入力される比較用の電圧は、コモンソースの電位にMOSトランジスタのしきい値電圧を加えた値にほぼ等しいので、応答性およびゲインが良い領域で2つの電圧を比較できる。その結果、検出回路における検出動作をより正確に行なうことができる。
【0345】
[実施の形態3]
図24を参照して、実施の形態3による半導体記憶装置300は、半導体記憶装置100の電源回路70を電源回路70Bに代えたものであり、その他は半導体記憶装置100と同じである。
【0346】
図25を参照して、電源回路70Bは、電源回路70のVPP発生回路76をVPP発生回路76Bに代えたものであり、その他は、電源回路70と同じである。VPP発生回路76Bは、VPP発生回路76にレベル変換器774を追加し、分割回路762を分割回路762Aに代えたものであり、その他はVPP発生回路76と同じである。
【0347】
図26を参照して、レベル変換器774は、PチャネルMOSトランジスタ201,202と、NチャネルMOSトランジスタ203〜205とを含む。PチャネルMOSトランジスタ201およびNチャネルMOSトランジスタ203は、ノードN2とノードN7との間に直列に接続される。PチャネルMOSトランジスタ202およびNチャネルMOSトランジスタ204は、ノードN2とノードN7との間に直列に接続される。PチャネルMOSトランジスタ201およびNチャネルMOSトランジスタ203は、PチャネルMOSトランジスタ202およびNチャネルMOSトランジスタ204に対して並列に接続される。
【0348】
NチャネルMOSトランジスタ205は、ノードN7と接地ノードNS1との間に接続される。PチャネルMOSトランジスタ201,202は、ノード206上の電圧をゲート端子に受ける。PチャネルMOSトランジスタ202のサイズは、PチャネルMOSトランジスタ201のサイズよりも小さい。
【0349】
NチャネルMOSトランジスタ203は、基準電圧発生回路72からの基準電圧VrefSをゲート端子に受ける。NチャネルMOSトランジスタ204は、ノード207上の電圧VrefDをゲート端子に受ける。NチャネルMOSトランジスタ205は、基準電圧発生回路72の電流源720からの信号BIASLをゲート端子に受ける。
【0350】
レベル変換器774は、NチャネルMOSトランジスタ205が信号BIASLをゲート端子に受けると活性化され、1.5Vの基準電圧VrefSを1.1Vの基準電圧VrefDに変換して出力する。PチャネルMOSトランジスタ202のサイズは、PチャネルMOSトランジスタ201のサイズよりも小さいので、ノードN2からノード207へ供給される電荷は、ノードN2からノード206へ供給される電荷よりも少ない。したがって、ノード207上の電位は、ノード206上の電位よりも低下し、1.5Vの基準電圧VrefSは、1.1Vの基準電圧VrefDに変換される。
【0351】
図27を参照して、分割回路762Aは、PチャネルMOSトランジスタ208〜210を含む。PチャネルMOSトランジスタ208〜210は、ノードN1と接地ノードNS1との間に直列にダイオード接続される。
【0352】
したがって、分割回路762Aは、ノードN1に供給された昇圧電圧VPPを3分の1に分圧し、その分圧した分圧電圧VPDIVをノード211から検出回路763,764へ出力する。
【0353】
昇圧電圧VPPは、3.3Vの電圧からなるので、分圧電圧VPDIVは1.1Vの電圧から成る。
【0354】
したがって、差動増幅回路DFA2のNチャネルMOSトランジスタ113のゲート端子に印加される電圧は、1.1Vの分圧電圧VPDIVであり、NチャネルMOSトランジスタ115のゲート端子に印加される電圧は、レベル変換器774から受ける1.1の基準電圧VrefDである。
【0355】
そうすると、NチャネルMOSトランジスタ113,115のゲート端子に印加される電圧は、差動増幅回路DFA2のコモンソースCMSの電位(0.4V=NチャネルMOSトランジスタ116のしきい値電圧)にNチャネルMOSトランジスタ113,115のしきい値電圧(0.4V)を加えた電圧(=0.4+0.4=0.8V)にほぼ等しい。
【0356】
したがって、分割回路762Aにおいて昇圧電圧VPPを3分の1に分圧することにより、差動増幅回路DFA2を薄膜MOSトランジスタにより構成しても、差動増幅回路DFA2における2つの電圧VPDIV,VrefDの比較動作を応答性およびゲインの良い領域で行なうことができる。
【0357】
上記においては、分割回路762Aは、昇圧電圧VPPを3分の1に分圧すると説明したが、この発明においては、分割回路762Aは、3分の1に限らず、一般的に、昇圧電圧VPPをn(nは自然数)分の1に分圧する回路であればよい。
【0358】
その他は、実施の形態1と同じである。
実施の形態3によれば、半導体記憶装置は、ワード線を活性化するための昇圧電圧をn分の1に分圧する分割回路を備えるので、カレントミラー型の差動増幅回路において応答性およびゲインが良い領域で2つの電圧を差動増幅することができる。その結果、昇圧電圧を正確に検出することができる。
【0359】
[実施の形態4]
図28を参照して、実施の形態4による半導体記憶装置400は、半導体記憶装置100の電源回路70を電源回路70Cに代えたものであり、その他は、半導体記憶装置100と同じである。
【0360】
図29を参照して、電源回路70Cは、電源回路70の基準電圧発生回路72を基準電圧発生回路72Aに代えたものであり、その他は、電源回路70と同じである。
【0361】
基準電圧発生回路72Aは、基準電圧発生回路72のカレントミラー回路721をカレントミラー回路721Aに代えたものであり、その他は基準電圧発生回路72と同じである。
【0362】
図30を参照して、カレントミラー回路721Aは、カレントミラー回路721のPチャネルMOSトランジスタ164およびNチャネルMOSトランジスタ165を削除し、NチャネルMOSトランジスタ166をNチャネルMOSトランジスタ213に代え、NチャネルMOSトランジスタ212を追加したものであり、その他はカレントミラー回路721と同じである。
【0363】
PチャネルMOSトランジスタ168およびNチャネルMOSトランジスタ212,213は、ノードN2と接地ノードNS1との間に直列に接続される。
【0364】
NチャネルMOSトランジスタ213は、薄膜MOSトランジスタであり、電流源720からの信号BIASLをゲート端子に受ける。また、NチャネルMOSトランジスタ212は厚膜MOSトランジスタであり、ダイオード接続される。
【0365】
NチャネルMOSトランジスタ213は、NチャネルMOSトランジスタ160,161がゲート端子に受ける電圧と同じ電圧から成る信号BIASLをゲート端子に受けるので、ノード214から接地ノードNS1へ一定の電流iを流す。
【0366】
また、3.3Vの電源電圧がノードN2に供給され、ノード169における電圧は2.5Vである。そして、ノード214における電圧は、ノード169における2.5Vの電圧をNチャネルMOSトランジスタ212のしきい値(0.8V)だけ低下させた1.7Vの電圧である。
【0367】
したがって、薄膜MOSトランジスタであるNチャネルMOSトランジスタ213のソース端子とドレイン端子との間には1.7V程度の電圧しか印加されず、NチャネルMOSトランジスタ213は、電流源720が発生した一定の電流iを信頼性よく、写し換えることができる。
【0368】
NチャネルMOSトランジスタ212は、ノード169における電圧を薄膜MOSトランジスタに印加可能な電圧まで低下し、その低下した電圧をNチャネルMOSトランジスタ213に供給するので、NチャネルMOSトランジスタ212は、薄膜MOSトランジスタであるNチャネルMOSトランジスタ213を保護する回路である。
【0369】
カレントミラー回路721Aは、カレントミラー回路721に比べ、ノードN1、PチャネルMOSトランジスタ164、NチャネルMOSトランジスタ165および接地ノードNS1が存在しないので、貫通電流がカレントミラー回路721よりも少なく、消費電流を低減することができる。
【0370】
なお、電流源720は、電流発生回路を構成する。
その他は、実施の形態1と同じである。
【0371】
実施の形態4によれば、半導体記憶装置は、貫通電流を低減して基準電圧VrefSを発生する基準電圧発生回路を備えるので、通常動作時における消費電力をさらに低減できる。
【0372】
[実施の形態5]
図31を参照して、実施の形態5による半導体記憶装置500は、接地配線520と、接地配線540とを備える。接地配線520は、3.3Vの電源電圧用の接地配線であり、接地配線540は、1.5Vの電源電圧用の接地配線である。
【0373】
接地配線520は、領域510に配置される。領域510には、厚膜MOSトランジスタを含む基準電圧発生回路72、電圧降圧回路73およびVPP発生回路76が配置される。そして、これらの基準電圧発生回路72、電圧降圧回路73およびVPP発生回路76は、接地配線510に接続される。
【0374】
また、接地配線540は、領域530に配置される。領域530には薄膜MOSトランジスタを含む1/2Vcc発生回路74,75および制御回路等が配置される。そして、これらの回路は、接地配線540に接続される。
【0375】
このように、実施の形態5による半導体記憶装置500においては、電圧レベルの高い電源電圧用の接地配線520は、電圧レベルの低い電源電圧用の接地配線540と分離される。接地配線520を接地配線540と接続すると、2つの接地配線520,540に主に別々の要因でピーク電流が生じ、それにより、接地配線520,540間で相互に電位上昇の干渉が生じる。したがって、この電位上昇の干渉を防止するために、接地配線520は、接地配線540から電気的に切離される。
【0376】
接地配線520にピーク電流が生じる例としては、アレイ電圧VccSが消費されるDRAMのセンスアンプ動作などがあり、接地配線540にピーク電流が生じる例としては、メモリセルのリード/ライト動作などがある。
【0377】
たとえば、複数のバンクを持つ半導体記憶装置では、あるバンクでリード動作中に接地配線540の電位が上昇し、その影響を受けた接地配線520の電位も上昇してしまうと、この状態で別のバンクがセンスアンプ動作を行なうと、接地配線520の電位がさらに上昇し、誤動作を引き起こすことが想定される。
【0378】
そこで、この実施の形態5による半導体記憶装置500においては、接地配線520は接地配線540から電気的に切り離される。
【0379】
なお、半導体装置に一般的に用いられているP型基板の場合、基板自体が接地電位となるため完全に絶縁することが困難であるが、基板の電気抵抗をメタル配線の抵抗と比べると、メタル配線の方が、抵抗は十分に小さいので、接地配線520を接地配線540とメタル配線で接続した場合、接地配線520と接地配線540との間でノイズが相互に干渉するが、接地配線520を接地配線540から分離したときは、接地配線520と接地配線540との間でのノイズの干渉が低減される。
【0380】
すなわち、図32を参照して、P型基板1に2つのMOSトランジスタ8,9が形成されている。MOSトランジスタ8は、厚膜MOSトランジスタであり、MOSトランジスタ9は、薄膜MOSトランジスタである。MOSトランジスタ8は、ソース端子2と、ドレイン端子3と、ゲート端子4とを含む。MOSトランジスタ9は、ソース端子5と、ドレイン端子6と、ゲート端子7とを含む。
【0381】
接地配線520は、MOSトランジスタ8のドレイン端子3に接続される。接地配線540は、MOSトランジスタ9のドレイン端子6に接続される。そして、接地配線520は、メタル配線550により接地配線540と接続される。
【0382】
そうすると、P型基板1を介したMOSトランジスタ8のドレイン端子3とMOSトランジスタ9のドレイン端子6との間の抵抗は大きく、接地配線520に発生したノイズは、メタル配線550を介して接地配線540に伝達され、接地配線540に発生したノイズは、メタル配線550を介して接地配線520に伝達される。その結果、接地配線に発生したノイズは、接地配線520,540間で相互に干渉し合う。
【0383】
一方、図33に示すように、接地配線520が接地配線540から電気的に切離されると、MOSトランジスタ8とMOSトランジスタ9との間には、P型基板1の大きな抵抗が存在するため、接地配線520に発生したノイズは、接地配線540に伝達されにくく、接地配線540に発生したノイズは、接地配線520に伝達されにくい。その結果、接地配線に発生したノイズは、接地配線520,540間で干渉しにくい。
【0384】
その他は、実施の形態1と同じである。
実施の形態5によれば、2つの異なる電源電圧用の2つの接地配線を相互に分離するので、一方の接地配線に生じたノイズが他方の接地配線へ伝達するのを防止できる。その結果、半導体記憶装置における誤動作を防止できる。
【0385】
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
【図面の簡単な説明】
【図1】実施の形態1による半導体記憶装置の概略ブロック図である。
【図2】図1に示す電源回路の回路およびブロック図である。
【図3】図2に示すVbb発生回路に含まれる検出回路の回路図である。
【図4】図2に示すVbb発生回路に含まれる発振器の回路図である。
【図5】図2に示すVbb発生回路に含まれるポンプ回路の回路図である。
【図6】図2に示す基準電圧発生回路の回路図である。
【図7】図2に示す電圧降圧回路に含まれる差動増幅回路の回路図である。
【図8】図2に示す電圧降圧回路に含まれるレベル変換器の回路図である。
【図9】図2に示す1/2Vcc発生回路の回路図である。
【図10】図2に示すVPP発生回路に含まれる分割回路および検出回路の回路図である。
【図11】図2に示すVPP発生回路に含まれる発振器の回路図である。
【図12】図2に示すVPP発生回路に含まれるポンプ回路の回路図である。
【図13】図2に示すVPP発生回路に含まれるレベル変換器の回路図およびポンプ回路のブロック図である。
【図14】図2に示すVPP発生回路に含まれるレベル変換器の他の回路図およびポンプ回路のブロック図である。
【図15】実施の形態1における4Mbの容量を有する半導体記憶装置の概略ブロック図である。
【図16】実施の形態1における4Mbの容量を有する半導体記憶装置の他の概略ブロック図である。
【図17】実施の形態1における1Mbの容量を有する半導体記憶装置の概略ブロック図である。
【図18】シャッフル配置を説明するための回路配置図である。
【図19】実施の形態2による半導体記憶装置の概略ブロック図である。
【図20】図19に示す電源回路の回路図およびブロック図である。
【図21】図20に示すVbb発生回路に含まれる検出回路の回路図である。
【図22】図20に示すVbb発生回路に含まれるレベル変換器の回路図である。
【図23】図20に示すVPP発生回路に含まれる分割回路および検出回路の回路図である。
【図24】実施の形態3による半導体記憶装置の概略ブロック図である。
【図25】図24に示す電源回路の回路図およびブロック図である。
【図26】図25に示すVPP発生回路に含まれるレベル変換器の回路図である。
【図27】図25に示すVPP発生回路に含まれる分割回路および検出回路の回路図である。
【図28】実施の形態4による半導体記憶装置の概略ブロック図である。
【図29】図28に示す電源回路の回路図およびブロック図である。
【図30】図29に示す基準電圧発生回路の回路図である。
【図31】実施の形態5による半導体記憶装置の接地配線を示す平面図である。
【図32】半導体記憶装置における断面図である。
【図33】半導体記憶装置における他の断面図である。
【図34】ロジック混載メモリの概略ブロック図である。
【図35】図34に示すDRAMの概略ブロック図である。
【図36】図35に示す電源回路の回路図およびブロック図である。
【図37】16Mbの容量を有する従来の半導体記憶装置の概略ブロック図である。
【図38】4Mbの容量を有する従来の半導体記憶装置の概略ブロック図である。
【図39】2Mbの容量を有する従来の半導体記憶装置の概略ブロック図である。
【図40】1Mbの容量を有する従来の半導体記憶装置の概略ブロック図である。
【符号の説明】
1 P型基板、2,5 ソース端子、3,6 ドレイン端子、4,7 ゲート端子、8,9 MOSトランジスタ、10,10A,10B,10C,20,801,802 メモリセルアレイ、30,803 ロウコラムデコーダ、40,50,804,805 データバス、60,710,731,761,806,852,872,902 制御回路、70,70A,70B,70C,807 電源回路、71,850 Vbb発生回路、72,72A,860 基準電圧発生回路、73,870 電圧降圧回路、74,75,880,890 1/2Vcc発生回路、76,76A,76B,900 VPP発生回路、77 回路群、80,808 テスト回路、100,100A,100B,100C,200,300,400,500 半導体記憶装置、104,113,113A,115,115A,116,116A,118,118A,119,119A,123,126,127,131,132,135,136,139,140,143,144,150,151,154,156,160,161,165,166,177,180,184,187,193,195,203〜205,212,213,734,737,875,878,7113,7113A,7114,7114A,7115〜7118,7115A〜7118A,7123,7123A,7125,7125A,7128,7128A,7129,7129A,7132,7135,7136,7139,7140,7143,7144,7147,7148,7151,7152 NチャネルMOSトランジスタ、105,120,120A,121,121A,145〜147,188〜190,196,197〜199,7130,7130A,7153,7155〜7157,IV1,IV2 インバータ、110〜112,112A,114,114A,117,117A,122,125,126,129,130,133,134,137,138,141,142,148,152,153,155,157,159,164,168,170〜175,178,181〜183,185,186,194,201,202,208〜210,735,738,874,877,7111,7111A,7112,7112A,7122,7122A,7124,7124A,7126,7126A,7127,7127A,7131,7133,7134,7137,7138,7141,7142,7145,7146,7149,7150,7158〜7163 PチャネルMOSトランジスタ、124,7154 ANDゲート、158,176,179 抵抗、162,163,169,191,192,206,207,214,7119,7119A,7121,7121A,N1〜N7,NL1〜NL6 ノード、510,530 領域、520,540 接地配線、550 メタル配線、700 ロジック混載メモリ、711,711A,763,763A,764,764A,853,904,905 検出回路、712,765,854,906 発振器、713,767,855,907〜910 ポンプ回路、720,861 電流源、721,721A,CMC カレントミラー回路、722,862 電圧発生回路、732,766,770〜774,851,871,901 レベル変換器、733,736,873,876,DFA1〜DFA4 差動増幅回路、762,762A,903 分割回路、800 DRAM、810,820 SRAM、830 ロジック回路、CMS コモンソース、CKTRE リセット回路、NOUT 出力ノード、NS1,NS2 接地ノード。
【発明の属する技術分野】
この発明は、半導体記憶装置に関し、特に、半導体記憶装置の内部で内部電圧を発生する電源回路における面積ロスを低減する半導体記憶装置に関するものである。
【0002】
【従来の技術】
半導体技術の進歩により、ロジック回路とDRAM(Dynamic Random Access Memory)とを同一チップ内に含むロジック混載メモリが形成されるようになった。そして、ロジック回路とDRAMとの間のデータ転送レートは、大きく向上している。
【0003】
図34を参照して、ロジック混載メモリ700は、DRAM800と、SRAM(Static Random Access Memory)810,820と、ロジック回路830と、パッド840とを備える。
【0004】
DRAM800およびSRAM810,820は、データを記憶するためのメモリである。ロジック回路830は、DRAM800およびSRAM810,820へのデータの入出力を制御する。パッド840は、周辺部に設けられ、ロジック混載メモリ700に電源電圧、制御信号、およびデータを入力および/または出力するための端子である。
【0005】
ロジック混載メモリ700においては、ロジック回路830と、メモリであるDRAM800およびSRAM810,820との間でデータ等が高速でやり取りされる。
【0006】
図35を参照して、DRAM800は、メモリセルアレイ801,802と、ロウコラムデコーダ803と、データバス804,805と、制御回路806と、電源回路807と、テスト回路808とを含む。
【0007】
メモリセルアレイ801,802は、複数のメモリセル、複数のワード線、複数のビット線対、複数のビット線対に対応して設けられた複数のセンスアンプ、および複数のビット線対に対応して設けられた複数のイコライズ回路等を含む。複数のメモリセルは、行列状に配置される。複数のワード線は、行列状に配置された複数のメモリセルの行方向に設けられる。複数のビット線対は、行列状に配置された複数のメモリセルの列方向に設けられる。
【0008】
ロウコラムデコーダ803は、メモリセルアレイ801とメモリセルアレイ802との間に配置される。そして、ロウコラムデコーダ803は、外部から入力されたアドレスをデコードし、そのデコーダしたアドレスによって指定されたワード線またはビット線対を活性化する。
【0009】
データバス804,805は、メモリセルアレイ801,802に含まれる複数のメモリセルにデータを入出力するための線である。制御回路806は、複数のメモリセルへのデータの入出力等の動作を制御する。
【0010】
電源回路807は、外部から供給された外部電源電圧に基づいて内部電圧を発生し、その発生した内部電圧をメモリセルアレイ801,802および制御回路806等の周辺回路に供給する。
【0011】
テスト回路808は、DRAM800におけるテストを行なう。
図36を参照して、電源回路807は、Vbb発生回路850と、基準電圧発生回路860と、電圧降圧回路870と、1/2Vcc発生回路880,890と、VPP発生回路900とを含む。
【0012】
Vbb発生回路850は、レベル変換器851と、制御回路852と、検出回路853と、発振器854と、ポンプ回路855とから成る。レベル変換器851は、ノードN1,N2から電源電圧を受ける。ノードN1は、たとえば、1.5Vの電源電圧が供給される。ノードN2は、たとえば、3.3Vの電源電圧が供給される。レベル変換器851は、テストモード信号TM等の制御信号を受け、その受けたテストモード信号TMを構成する電圧レベルを1.5Vから3.3Vに変換する。そして、レベル変換器851は、レベル変換したテストモード信号TMを制御回路852へ出力する。
【0013】
制御回路852は、ノードN2から3.3Vの電源電圧を受ける。そして、制御回路852は、レベル変換器851から受けたテストモード信号TMに基づいて、検出回路853を制御する。より具体的には、制御回路852は、テストモードTMがH(論理ハイ)レベルであるとき、各種のテストを行なうために検出回路853を活性化または不活性化する。また、制御回路852は、テストモード信号TMがL(論理ロー)レベルであるとき、検出回路853を活性化する。
【0014】
検出回路853は、ノードN2から3.3Vの電源電圧を受ける。そして、検出回路853は、基準電圧発生回路860の電流源861から受けた信号BIASLがHレベルであるとき負電圧Vbbを検出し、その検出信号を発振器854へ出力する。
【0015】
発振器854は、ノードN2から3.3Vの電源電圧を受ける。そして、発振器854は、検出回路853から受けた検出信号の論理レベルに応じた位相を有するクロックCLKを発生し、その発生したクロックCLKをポンプ回路855へ出力する。
【0016】
ポンプ回路855は、ノードN2から3.3Vの電源電圧を受ける。そして、ポンプ回路855は、発振器854から受けたクロックCLKに同期してキャリアをポンピングし、−0.7Vの負電圧Vbbを発生する。
【0017】
このように、Vbb発生回路850は、ノードN2から受けた3.3Vの電源電圧によって駆動され、−0.7Vの負電圧Vbbを発生してメモリセルアレイ801,802に供給する。
【0018】
基準電圧発生回路860は、電流源861と、電圧発生回路862とを含む。電流源861は、ノードN2から3.3Vの電源電圧を受ける。そして、電流源861は、ノードN2から受けた3.3Vの電源電圧に基づいて、電圧VIIと、MOSトランジスタの線形動作領域における電圧から成る信号BIASL,ICONSTとを発生し、その発生した電圧VIIおよび信号ICONSTを電圧発生回路862へ出力し、信号BIASLをVbb発生回路850の検出回路853、電圧降圧回路870およびVPP発生回路900へ出力する。なお、信号ICONSTは、MOSトランジスタの線形動作領域における最大電圧から成り、信号BIASLは、MOSトランジスタの線形動作領域における最小電圧から成る。
【0019】
電圧発生回路862は、電圧VIIおよび信号ICONSTを電流源861から受け、その受けた電圧VIIおよび信号ICONSTに基づいて1.5Vの基準電圧VrefSを発生し、その発生した1.5Vの基準電圧VrefSを電圧降圧回路870およびVPP発生回路900へ出力する。
【0020】
このように、基準電圧発生回路860は、ノードN2から受けた3.3Vの電源電圧によって駆動され、電源電圧よりも低い1.5Vの基準電圧VrefSを発生する。
【0021】
電圧降圧回路870は、レベル変換器871と、制御回路872と、差動増幅回路873,876と、PチャネルMOSトランジスタ874,877と、NチャネルMOSトランジスタ875,878とを含む。レベル変換器871は、1.5の電源電圧をノードN1から受け、3.3Vの電源電圧をノードN2から受ける。そして、レベル変換器871は、テストモード信号TMまたはセンスアンプイネーブル信号SAE等の制御信号を受け、その受けたテストモード信号TMまたはセンスアンプイネーブル信号SAEの電圧レベルを1.5Vから3.3Vに変換する。レベル変換器871は、電圧レベルを変換したテストモード信号TMまたはセンスアンプイネーブル信号SAEを制御回路872へ出力する。
【0022】
制御回路872は、ノードN2から3.3Vの電源電圧を受ける。そして、制御回路872は、テストモード信号TMまたはセンスアンプイネーブル信号SAEをレベル変換器871から受け、その受けたテストモード信号TMまたはセンスアンプイネーブル信号SAEをNチャネルMOSトランジスタ875のゲート端子へ出力する。DRAM800のテストモード時、制御回路872は、テスト内容に応じてHレベルまたはLレベルのテストモード信号TMを受け、その受けたHレベルまたはLレベルのテストモード信号TMをNチャネルMOSトランジスタ875のゲート端子へ出力する。また、DRAM800の通常動作時、制御回路872は、Hレベルのセンスアンプイネーブル信号SAEを受け、その受けたHレベルのセンスアンプイネーブル信号SAEをNチャネルMOSトランジスタ875のゲート端子へ出力する。さらに、DRAM800のスタンバイ時、制御回路872は、Lレベルのセンスアンプイネーブル信号SAEを受け、その受けたLレベルのセンスアンプイネーブル信号SAEをNチャネルMOSトランジスタ875のゲート端子へ出力する。
【0023】
差動増幅回路873は、ノードN2とNチャネルMOSトランジスタ875との間に接続され、その非反転入力端子に基準電圧発生回路860からの基準電圧VrefSを受け、その反転入力端子に出力ノードNOUT上のアレイ電圧VccSを受ける。そして、NチャネルMOSトランジスタ875がHレベルのテストモード信号TMまたはHレベルのセンスアンプイネーブル信号SAEをゲート端子に受けたとき、差動増幅回路873は活性化される。また、NチャネルMOSトランジスタ875がLレベルのテストモード信号TMまたはLレベルのセンスアンプイネーブル信号SAEをゲート端子に受けたとき、差動増幅回路873は不活性化される。
【0024】
差動増幅回路873は、活性化されると、アレイ電圧VccSの電圧レベルが基準電圧VrefSの電圧レベルになるようにアレイ電圧VccSを差動増幅し、その差動増幅した1.5Vの電圧をPチャネルMOSトランジスタ874のゲート端子へ出力する。また、差動増幅回路873は、不活性化されると、ノードN2から受けた3.3Vの電源電圧に近い電圧をPチャネルMOSトランジスタ874のゲート端子へ出力する。
【0025】
PチャネルMOSトランジスタ874は、ノードN2と出力ノードNOUTとの間に接続される。そして、PチャネルMOSトランジスタ874は、差動増幅回路873から受けた電圧に応じてキャリアをノードN2から出力ノードNOUTへ供給する。
【0026】
NチャネルMOSトランジスタ875は、差動増幅回路873と接地ノードNS1との間に接続され、テストモード信号TMまたはセンスアンプイネーブル信号SAEを制御回路872からゲート端子に受ける。
【0027】
差動増幅回路876は、ノードN2とNチャネルMOSトランジスタ878との間に接続され、その非反転入力端子に基準電圧発生回路860からの基準電圧VrefSを受け、反転入力端子に出力ノードNOUT上のアレイ電圧VccSを受ける。そして、差動増幅回路876は、NチャネルMOSトランジスタ878が基準電圧発生回路860の電流源861からHレベルの信号BIASLを受けたとき活性化され、NチャネルMOSトランジスタ878がLレベルの信号BIASLを受けたとき不活性化される。差動増幅回路876は、活性化されると、アレイ電圧VccSの電圧レベルが基準電圧VrefSの電圧レベルになるようにアレイ電圧VccSを差動増幅し、その差動増幅した1.5Vの電圧をPチャネルMOSトランジスタ877のゲート端子へ出力する。
【0028】
PチャネルMOSトランジスタ877は、ノードN2と出力ノードNOUTとの間に接続される。そして、PチャネルMOSトランジスタ877は、差動増幅回路876から受けた電圧に応じてキャリアをノードN2から出力ノードNOUTへ供給する。
【0029】
NチャネルMOSトランジスタ878は、差動増幅回路876と接地ノードNS1との間に接続され、基準電圧発生回路860の電流源861から信号BIASLをゲート端子に受ける。
【0030】
NチャネルMOSトランジスタ875がHレベルのテストモード信号TMまたはHレベルのセンスアンプイネーブル信号SAEをゲート端子に受けると、差動増幅回路873は、活性化され、アレイ電圧VccSの電圧レベルが基準電圧VrefSの電圧レベルになるようにアレイ電圧VccSを差動増幅し、その差動増幅した1.5Vの電圧をPチャネルMOSトランジスタ874のゲート端子へ出力する。そして、PチャネルMOSトランジスタ874は、差動増幅回路873から受けた1.5Vの電圧に応じてキャリアをノードN2から出力ノードNOUTへ供給し、出力ノードNOUT上の電圧VccSを1.5Vに設定する。なお、差動増幅回路873が不活性化されたとき、PチャネルMOSトランジスタ874は、3.3Vに近い電圧をゲート端子に受けるので、殆どオフされ、出力ノードNOUT上のアレイ電圧VccSの電圧レベルは低下する。
【0031】
NチャネルMOSトランジスタ878がHレベルの信号BIASLをゲート端子に受けたとき、差動増幅回路876およびPチャネルMOSトランジスタ877は、それぞれ、差動増幅回路873およびPチャネルMOSトランジスタ874と同じ動作を行ない、出力ノードNOUT上のアレイ電圧VccSは1.5Vに設定される。NチャネルMOSトランジスタ878がLレベルの信号BIASLを受け、差動増幅回路876が不活性化されたとき、差動増幅回路873が不活性化されたときと同様に、出力ノードNOUT上のアレイ電圧VccSの電圧レベルは低下する。
【0032】
DRAM800のスタンバイ時、NチャネルMOSトランジスタ875は、Lレベルのセンスアンプイネーブル信号SAEをゲート端子に受け、NチャネルMOSトランジスタ878は、0.7Vの電圧レベルから成る信号BIASLをゲート端子に受ける。その結果、差動増幅回路873は不活性化され、差動増幅回路876は活性化される。
【0033】
そうすると、差動増幅回路876は、出力ノードNOUT上のアレイ電圧VccSの電圧レベルが基準電圧VrefSの電圧レベルになるようにアレイ電圧VccSを差動増幅し、その差動増幅した電圧をPチャネルMOSトランジスタ877のゲート端子へ出力する。そして、PチャネルMOSトランジスタ877は、差動増幅回路876から受けた電圧に応じてキャリアをノードN2から出力ノードNOUTへ供給する。
【0034】
したがって、差動増幅回路876、PチャネルMOSトランジスタ877およびNチャネルMOSトランジスタ878は、DRAM800のスタンバイ時に3.3Vの電源電圧を降圧して1.5Vのアレイ電圧VccSを発生する。この場合、NチャネルMOSトランジスタ878は、0.7Vの電圧レベルから成る信号BIASLをゲート端子に受けるので、通常動作時よりもチャネル幅が狭い。したがって、差動増幅回路876に流れる電流は通常動作時よりも少なく、差動増幅回路876は通常動作時よりも高いレベルの電圧をPチャネルMOSトランジスタ877へ出力する。そうすると、PチャネルMOSトランジスタ877は、通常動作時よりも少ないキャリアをノードN2から出力ノードNOUTへ供給するので、アレイ電圧VccSが1.5Vの電圧レベルになる速度は通常動作時よりも遅い。
【0035】
DRAM800の通常動作時、NチャネルMOSトランジスタ875は、Hレベルのセンスアンプイネーブル信号SAEをゲート端子に受け、NチャネルMOSトランジスタ878は、0.7Vの電圧レベルから成る信号BIASLをゲート端子に受ける。その結果、差動増幅回路873,876は活性化される。この場合、Hレベルのセンスアンプイネーブル信号SAEは3.3Vの電圧レベルから成るので、NチャネルMOSトランジスタ875のチャネル幅は、NチャネルMOSトランジスタ878のチャネル幅よりも広い。そうすると、差動増幅回路873に流れる電流は差動増幅回路876に流れる電流よりも大きく、差動増幅回路873は、差動増幅回路876よりも低い電圧をPチャネルMOSトランジスタ874へ出力する。その結果、PチャネルMOSトランジスタ874は、PチャネルMOSトランジスタ877よりも多くのキャリアをノードN2から出力ノードNOUTへ供給する。
【0036】
したがって、DRAM800の通常動作時、差動増幅回路873、PチャネルMOSトランジスタ874およびNチャネルMOSトランジスタ875は、差動増幅回路876、PチャネルMOSトランジスタ877およびNチャネルMOSトランジスタ878よりも速くアレイ電圧VccSの電圧レベルを1.5Vに設定する。
【0037】
このように、差動増幅回路873、PチャネルMOSトランジスタ874およびNチャネルMOSトランジスタ875は、DRAM800の通常動作時、3.3Vの電源電圧を降圧してアレイ電圧VccSを1.5Vの電圧レベルに速く設定し、差動増幅回路876、PチャネルMOSトランジスタ877およびNチャネルMOSトランジスタ878は、DRAM800のスタンバイ時、3.3Vの電源電圧を降圧してアレイ電圧VccSを1.5Vの電圧レベルにゆっくり設定する。
【0038】
なお、差動増幅回路873、PチャネルMOSトランジスタ874およびNチャネルMOSトランジスタ875から成る回路の数、および差動増幅回路876、PチャネルMOSトランジスタ877およびNチャネルMOSトランジスタ878から成る回路の数は、メモリセルアレイ801,802を構成するブロックの数に応じて変えられる。
【0039】
上述したように、電圧降圧回路870は、3.3Vの電源電圧によって駆動され、DRAM800の通常動作時、3.3Vの電源電圧を降圧して1.5Vのアレイ電圧VccSを速く出力ノードNOUTに供給し、DRAM800のスタンバイ時、3.3Vの電源電圧を降圧して1.5Vのアレイ電圧VccSをゆっくり出力ノードNOUTに供給する。
【0040】
1/2Vcc発生回路880は、ノードN2から受けた3.3Vの電源電圧によって駆動される。そして、1/2Vcc発生回路880は、出力ノードNOUT上のアレイ電圧VccSを受け、アレイ電圧VccSを2分の1に分圧してプリチャージ電圧VBLを発生する。また、1/2Vcc発生回路890は、ノードN2から受けた3.3Vの電源電圧によって駆動される。そして、1/2Vcc発生回路890は、出力ノードNOUT上のアレイ電圧VccSを受け、アレイ電圧VccSを2分の1に分圧してセルプレート電圧VCPを発生する。
【0041】
VPP発生回路900は、レベル変換器901と、制御回路902と、分割回路903と、検出回路904,905と、発振器906と、ポンプ回路907〜910とを含む。
【0042】
レベル変換器901は、1.5Vの電源電圧をノードN1から受け、3.3Vの電源電圧をノードN2から受ける。そして、レベル変換器901は、テストモード信号TMまたはロウアドレスストローブ信号RASを受け、その受けたテストモード信号TMまたはロウアドレスストローブ信号RASの電圧レベルを1.5Vから3.3Vに変換して制御回路902へ出力する。
【0043】
制御回路902は、ノードN2から3.3Vの電源電圧を受ける。そして、制御回路902は、レベル変換器901から受けたテストモード信号TMまたはロウアドレスストローブ信号RASを検出回路904,905へ出力する。DRAM800のテストモード時、制御回路902は、テスト内容に応じてHレベルまたはLレベルのテストモード信号TMを受け、その受けたHレベルまたはLレベルのテストモード信号を検出回路904,905へ出力する。また、DRAM800の通常動作時、制御回路902は、Hレベルのロウアドレスストローブ信号RASを受け、その受けたHレベルのロウアドレスストローブ信号RASを検出回路904へ出力する。さらに、DRAM800のスタンバイ時、制御回路902は、Lレベルのロウアドレスストローブ信号RASを受け、その受けたLレベルのロウアドレスストローブ信号RASを検出回路904へ出力する。
【0044】
分割回路903は、3.3Vの昇圧電圧VPPを分圧し、1.5Vの分圧電圧VDIVを検出回路904,905へ出力する。検出回路904は、ノードN2から3.3Vの電源電圧を受ける。検出回路904は、制御回路902から受けたHレベルのロウアドレスストローブ信号RASによって活性化され、分割回路903から受けた分圧電圧VDIVが基準電圧発生回路860から受けた基準電圧VrefSになるように、分圧電圧VDIVを差動増幅する。すなわち、検出回路904は、分圧電圧VDIVを検出し、その検出した分圧電圧VDIVを発振器906へ出力する。
【0045】
検出回路905は、ノードN2から3.3Vの電源電圧を受ける。検出回路905は、基準電圧発生回路860の電流源861からの信号BIASLによって活性化され、分割回路903から受けた分圧電圧VDIVが基準電圧発生回路860から受けた基準電圧VrefSになるように、分圧電圧VDIVを差動増幅する。すなわち、検出回路905は、分圧電圧VDIVを検出し、その検出した分圧電圧VDIVを発振器906へ出力する。
【0046】
Hレベルのロウアドレスストローブ信号RASは3.3Vの電圧レベルから成り、信号BIASLは0.7Vの電圧レベルから成るので、検出回路904は、検出回路905よりも速く分圧電圧VDIVを検出して発振器906へ出力する。
【0047】
そうすると、DRAM800の通常動作時、検出回路904は、Hレベルのロウアドレスストローブ信号RASを受け、検出回路905は、信号BIASLを受けるので、検出回路904は検出回路905よりも分圧電圧VDIVを速く検出して発振器906へ出力する。また、DRAM800のスタンバイ時、検出回路904は、Lレベルのロウアドレスストローブ信号RASを受け、検出回路905は、0.7Vの電圧レベルから成る信号BIASLを受ける。そして、検出回路904は不活性化され、検出回路905は、通常動作時よりもゆっくりと分圧電圧VDIVを検出して発振器906へ出力する。したがって、検出回路904は、通常動作時、分圧電圧VDIVを検出し、検出回路905は、スタンバイ時、分圧電圧VDIVを検出する。
【0048】
発振器906は、ノードN2から3.3Vの電源電圧を受ける。そして、発振器906は、検出回路904または905から受けた分圧電圧VDIVの電圧レベルに応じた位相を有するクロックCLKを発生し、その発生したクロックCLKをポンプ回路907〜910の各々へ出力する。
【0049】
ポンプ回路907〜910の各々は、ノードN2から3.3Vの電源電圧を受ける。そして、ポンプ回路907〜910の各々は、発振器906から受けたクロックCLKに同期してキャリアをポンピングして昇圧電圧VPPを発生する。なお、ポンプ回路907〜910の数は、メモリセルアレイ801,802を構成するブロックの数に応じて変えられる。
【0050】
このように、VPP発生回路900は、3.3Vの電源電圧によって駆動され、3.3Vの電源電圧を昇圧して昇圧電圧VPPを発生する。
【0051】
上述したように、電源回路807は、3.3Vの電源電圧によって駆動され、Vbb発生回路850、基準電圧発生回路860、電圧降圧回路870、1/2Vcc発生回路880、1/2Vcc発生回路890およびVPP発生回路900を構成するMOSトランジスタは、3.3Vの駆動電圧に適する厚膜のゲート酸化膜によって作製される。
【0052】
【発明が解決しようとする課題】
しかし、Vbb発生回路850、基準電圧発生回路860、電圧降圧回路870、1/2Vcc発生回路880、1/2Vcc発生回路890およびVPP発生回路900に含まれる制御回路852,872,902および検出回路853,904,905等は、メモリセルアレイ801,802を構成するアレイ回路の繰返しパターンに従って配置されないにも拘わらず、メモリセルアレイ801,802に隣接して配置される(図35参照)。その結果、メモリセルアレイ801,802の構成が変化した場合、その変化に柔軟に対応できない。特に、制御回路は、まとまった機能を1つのまとまりにして、メモリセルアレイ801,802の分割数の整数倍の単位でレイアウトを予め作成している。
【0053】
したがって、メモリセルアレイ801,802が小容量であるとき、電源回路807における各回路の配置に面積ロスが生じるという問題がある。
【0054】
すなわち、図37〜図40に示すように、メモリセルアレイが16メガバイト(Mb)の容量であるとき、電源回路における各回路は、面積ロスを生じることなく配置されるが(図37参照)、メモリセルアレイの容量が4Mb、2Mb、および1Mbと小さくなるに従って、空き領域が大きくなり、面積ロスが大きくなる(図38〜図40参照)。
【0055】
また、電源回路における各回路の配置を小容量のメモリセルアレイに合わせて決定した場合、メモリセルアレイの容量が大きくなると面積ロスが生じる。
【0056】
そこで、この発明は、かかる問題を解決するためになされたものであり、その目的は、メモリセルアレイの容量の変化に対して面積ロスの小さい電源回路を備える半導体記憶装置を提供することである。
【0057】
【課題を解決するための手段および発明の効果】
この発明によれば、半導体記憶装置は、データを記憶するメモリセルアレイと、メモリセルアレイにデータを入出力する周辺回路と、メモリセルアレイおよび周辺回路に電源電圧を供給する電源回路とを備え、電源回路は、第1のゲート酸化膜厚を有する厚膜トランジスタにより構成され、かつ、メモリセルアレイにデータを入出力するための内部電圧を各々が発生するm(mは自然数)個の電圧発生回路を含む第1の電源回路群と、第1のゲート酸化膜厚よりも薄い第2のゲート酸化膜厚を有する薄膜トランジスタにより構成され、各々が内部電圧を発生するn(nは自然数)個の電圧発生回路を含む第2の電源回路群とから成り、第1の電源回路群は、メモリセルアレイに対応してメモリセルアレイに隣接した第1の領域に配置され、かつ、m個の電圧発生回路は第1の領域にm個にユニット化して配置され、第2の電源回路群は、第1の領域と異なる第2の領域に配置され、かつ、n個の電圧発生回路は、第2の領域内でシャッフル配置される。
【0058】
好ましくは、第1の電源回路群は、メモリセルアレイに含まれる複数のワード線を活性化するための昇圧電圧を発生する第1の電圧発生回路と、メモリセルアレイに供給されるアレイ電圧を発生する第2の電圧発生回路と、第2の電圧発生回路において用いられる基準電圧を発生する第3の電圧発生回路とから成り、第1および第2の電圧発生回路は、メモリセルアレイに接する位置にユニット化して配置される。
【0059】
好ましくは、第2の電源回路群は、メモリセルアレイに含まれる複数のメモリセルに供給されるセルプレート電圧を発生する第4の電圧発生回路と、メモリセルアレイに含まれるビット線対をプリチャージするためのプリチャージ電圧を発生する第5の電圧発生回路と、メモリセルアレイに供給される負電圧を発生する第6の電圧発生回路とから成る。
【0060】
好ましくは、メモリセルアレイは、当該半導体記憶装置の記憶容量に応じて決定される複数のブロックを含み、第1の電圧発生回路は、第2の電圧発生回路が接するブロックと異なるブロックに接する位置に配置される。
【0061】
好ましくは、メモリセルアレイは、当該半導体記憶装置の記憶容量に応じて決定される複数のブロックを含み、第2の領域は、複数のブロックに共通に設けられる。
【0062】
好ましくは、ユニット化して配置されるm個の電圧発生回路は、昇圧電圧を発生する昇圧電圧発生回路を含み、昇圧電圧発生回路は、厚膜トランジスタにより構成され、データの入出力時にメモリセルアレイに供給される昇圧電圧を発生する第1のポンプ回路と、昇圧電圧の電圧レベルを検出し、その検出した電圧レベルに応じた信号を、昇圧電圧の発生を制御する制御信号を生成するために出力する第1の電圧検出回路とからなり、シャッフル配置されるn個の電圧発生回路は、負電圧を発生する負電圧発生回路を含み、負電圧発生回路は、薄膜トランジスタにより構成され、メモリセルアレイに供給される負電圧を発生する第2のポンプ回路と、負電圧の電圧レベルを検出し、その検出した電圧レベルに応じた信号を、負電圧の発生を制御する制御信号を生成するために出力する第2の電圧検出回路とからなり、第1および第2の電圧検出回路は、厚膜トランジスタを用いて構成される。
【0063】
好ましくは、第1の電圧検出回路は、昇圧電圧を分圧した分圧電圧を出力する分圧回路と、分圧電圧を第1の基準電圧と比較し、その比較結果に応じた電圧レベルから成る信号を出力するカレントミラー型の第1の差動増幅回路とを含み、第1の差動増幅回路は、厚膜トランジスタにより構成され、分圧電圧は、第1の差動増幅回路のコモンソースの電位に厚膜トランジスタのしきい値電圧を加えた電圧レベルを有し、第2の電圧検出回路は、負電圧の電圧レベルに対応した正電圧を出力するカレントミラー型の第2の差動増幅回路と、正電圧を第2の基準電圧と比較し、その比較結果に応じた電圧レベルから成る信号を出力するカレントミラー型の第3の差動増幅回路とを含み、第3の差動増幅回路は、厚膜トランジスタにより構成され、正電圧は、第3の差動増幅回路のコモンソースの電位に厚膜トランジスタのしきい値電圧を加えた電圧レベルを有する。
【0064】
好ましくは、ユニット化して配置されるm個の電圧発生回路は、昇圧電圧を発生する昇圧電圧発生回路を含み、昇圧電圧発生回路は、厚膜トランジスタにより構成され、データの入出力時にメモリセルアレイに供給される昇圧電圧を発生するポンプ回路と、昇圧電圧の電圧レベルを検出し、その検出した電圧レベルに応じた信号を、昇圧電圧の発生を制御する制御信号を生成するために出力する電圧検出回路とを含み、電圧検出回路は、昇圧電圧をp(pは3以上の自然数)分の1に分圧した分圧電圧を出力する分圧回路と、分圧電圧を基準電圧と比較し、その比較結果に応じた電圧レベルから成る信号を出力するカレントミラー型の差動増幅回路とを含み、差動増幅回路は、薄膜トランジスタにより構成され、分圧電圧は、差動増幅回路のコモンソースの電位に前記薄膜トランジスタのしきい値電圧を加えた電圧レベルを有する。
【0065】
好ましくは、ユニット化して配置されるm個の電圧発生回路は、電圧発生回路を含み、電圧発生回路は、第1の電圧レベルを有する第1の電源電圧により駆動され、第1の電源電圧が供給されるまで不活性化信号を出力する信号出力回路と、第1の電圧レベルよりも高い第2の電圧レベルを有する第2の電源電圧により駆動され、メモリセルアレイを動作させるための内部電圧を発生するポンプ回路とを含み、ポンプ回路は、不活性化信号に応じてメモリセルアレイを不活性化するための電圧レベルから成る内部電圧を発生する。
【0066】
好ましくは、ユニット化して配置されるm個の電圧発生回路は、データの入出力時にメモリセルアレイに供給される内部電圧を発生するための基準電圧を発生する基準電圧発生回路を含み、基準電圧発生回路は、一定電流を発生し、その発生した一定電流に応じた電圧レベルを有する第1の電圧を出力する電流発生回路と、第1の電圧を受けて一定電流と同じ電流を発生し、その発生した電流に応じた電圧レベルを有する第2の電圧を出力する電流ミラー回路と、第2の電圧を受け、その受けた第2の電圧に応じて基準電圧を発生する電圧発生回路とを含み、電流発生回路は、薄膜トランジスタにより構成され、電圧発生回路は、厚膜トランジスタを含み、電流ミラー回路は、第1の電圧を受ける薄膜トランジスタを含む。
【0067】
好ましくは、半導体記憶装置は、第1の電源電圧により駆動される厚膜トランジスタを含むm個の電圧発生回路に第1の接地電圧を供給する第1の接地線と、第1の電源電圧よりも低い電圧レベルを有する第2の電源電圧により駆動される薄膜トランジスタを含むn個の電圧発生回路に第2の接地電圧を供給する第2の接地線とをさらに備え、第1の接地線は、第2の接地線と切離される。
【0068】
この発明による半導体記憶装置においては、第1のゲート酸化膜厚を有する厚膜トランジスタを用いて構成される回路は、メモリセルアレイの配置位置に対応してユニット配置され、第2のゲート酸化膜厚を有する薄膜トランジスタを用いて構成される回路は、シャッフル配置される。
【0069】
なお、この発明においては、厚膜トランジスタとは、電圧レベルが異なる2つの電源電圧が供給される場合に、電圧レベルが高い電源電圧に適したゲート酸化膜厚を有するMOSトランジスタを言い、薄膜トランジスタとは、電圧レベルが低い電源電圧に適したゲート酸化膜厚を有するMOSトランジスタを言う。
【0070】
したがって、この発明によれば、メモリセルアレイの容量が変化しても厚膜トランジスタを用いて構成される回路と、薄膜トランジスタを用いて構成される回路とを面積ロスを低減して配置できる。
【0071】
【発明の実施の形態】
本発明の実施の形態について図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰返さない。
【0072】
[実施の形態1]
図1を参照して、この発明の実施の形態1による半導体記憶装置100は、メモリセルアレイ10,20と、ロウコラムデコーダ30と、データバス40,50と、制御回路60と、電源回路70と、テスト回路80とを備える。
【0073】
なお、半導体記憶装置100は、具体的には、ロジック回路とメモリとが混載されたロジック混載メモリに用いられるDRAMである。
【0074】
メモリセルアレイ10,20は、複数のメモリセル、複数のワード線、複数のビット線対、複数のセンスアンプ、および複数のイコライズ回路を含む。複数のメモリセルは、行列状に配列される。複数のワード線は、行列状に配列された複数のメモリセルの行方向に設けられる。複数のビット線対は、行列状に配列された複数のメモリセルの列方向に設けられる。複数のセンスアンプは、複数のビット線対に対応して設けられる。複数のイコライズ回路は、複数のビット線対に対応して設けられる。
【0075】
ロウコラムデコーダ30は、外部から入力されたアドレスをデコードし、そのデコードしたアドレスによって指定されたワード線またはビット線対を選択的に活性化する。より具体的には、ロウコラムデコーダ30は、制御回路60から受けたロウアドレスストローブ信号RASがLレベルからHレベルに切換わるタイミングでアドレスを受けたとき、その受けたアドレスをロウアドレスと見なしてデコードし、そのデコードしたロウアドレスによって指定されたワード線を活性化する。また、ロウコラムデコーダ30は、制御回路60から受けたコラムアドレスストローブ信号CASがLレベルからHレベルに切換わるタイミングでアドレスを受けたとき、その受けたアドレスをコラムアドレスと見なしてデコードし、そのデコードしたコラムアドレスによって指定されたビット線対を活性化する。
【0076】
データバス40,50は、メモリセルアレイ10,20と入出力回路(図示せず)との間でデータをやり取りする。
【0077】
制御回路60は、ロウアドレスストローブ信号RAS、コラムアドレスストローブ信号CAS、ライトイネーブル信号WE、出力イネーブル信号OEおよびテストモード信号TM等の制御信号を外部から受ける。そして、制御回路60は、ロウアドレスストローブ信号RASおよびコラムアドレスストローブ信号CASをロウコラムデコーダ30へ出力し、ロウアドレスストローブ信号RASを電源回路70へ出力する。また、制御回路60は、テストモード信号TMを電源回路70およびテスト回路80へ出力する。さらに、制御回路60は、ライトイネーブル信号WEおよび出力イネーブル信号OWを入出力回路(図示せず)へ出力する。
【0078】
電源回路70は、後述するように、半導体記憶装置100において用いられる各種の内部電圧を発生し、その発生した内部電圧をメモリセルアレイ10,20等に供給する。
【0079】
テスト回路80は、制御回路60からのテストモード信号TMに基づいて各種のテストを行なう。
【0080】
半導体記憶装置100においては、ロウコラムデコーダ30は、メモリセルアレイ10とメモリセルアレイ20との間に配置される。また、電源回路70は、メモリセルアレイ10に隣接して配置される。さらに、データバス40,50、制御回路60およびテスト回路80は、半導体記憶装置100の周辺部に配置される。
【0081】
図2を参照して、電源回路70は、Vbb発生回路71と、基準電圧発生回路72と、電圧降圧回路73と、1/2Vcc発生回路74と、1/2Vcc発生回路75と、VPP発生回路76とを含む。
【0082】
Vbb発生回路71は、制御回路710と、検出回路711と、発振器712と、ポンプ回路713とを含む。ノードN1は、外部から1.5Vの電源電圧を受ける。制御回路710は、ノードN1から1.5Vの電源電圧を受ける。したがって、制御回路710は、1.5Vの電源電圧によって駆動され、ゲート酸化膜厚が薄いMOSトランジスタにより構成される。なお、この発明において、ゲート酸化膜厚が薄いMOSトランジスタとは、1.5Vの電源電圧に適したゲート酸化膜厚を有するMOSトランジスタを言う。
【0083】
制御回路710は、テストモード信号TMを受け、テスト内容に応じて検出回路711を活性化または不活性化する。
【0084】
検出回路711は、ノードN1から受ける1.5Vの電源電圧によって駆動される。検出回路711は、基準電圧発生回路72の電流源720から信号BIASLを受ける。そして、検出回路711は、制御回路710からの信号によって活性化されると、負電圧Vbbを検出し、その検出信号を発振器712へ出力する。
【0085】
発振器712は、ノードN1から受ける1.5Vの電源電圧によって駆動される。発振器712は、検出回路711から検出信号を受け、その受けた検出信号の電圧レベルに応じた位相を有するクロックCLKを発生する。
【0086】
ポンプ回路713は、ノードN1から受ける1.5Vの電源電圧によって駆動される。ポンプ回路713は、発振器712からクロックCLKを受け、その受けたクロックCLKに同期してキャリアをポンピングし、負電圧Vbbを発生する。
【0087】
図3を参照して、検出回路711は、PチャネルMOSトランジスタ7111,7112,7122,7124,7126,7127と、NチャネルMOSトランジスタ7113,7114,7115〜7118,7123,7125,7128,7129と、インバータ7130とを含む。なお、PチャネルMOSトランジスタ7111,7112,7122,7124,7126,7127、NチャネルMOSトランジスタ7113,7114,7115〜7118,7123,7125,7128,7129、およびインバータ7130を構成するMOSトランジスタ(図示せず)は、ゲート酸化膜厚が薄いMOSトランジスタである。
【0088】
PチャネルMOSトランジスタ7111およびNチャネルMOSトランジスタ7113は、ノードN1とノード7120との間に直列に接続される。PチャネルMOSトランジスタ7112およびNチャネルMOSトランジスタ7114は、ノードN1と接地ノードNS1との間に直列に接続される。PチャネルMOSトランジスタ7111およびNチャネルMOSトランジスタ7113は、PチャネルMOSトランジスタ7112およびNチャネルMOSトランジスタ7114と並列に接続される。
【0089】
PチャネルMOSトランジスタ7111および7112は、そのゲート端子にノード7119上の電圧を受ける。NチャネルMOSトランジスタ7113および7114は、そのゲート端子に電流源720からの信号BIASLを受ける。
【0090】
NチャネルMOSトランジスタ7115〜7118は、ノード7120と接地ノードNS2との間に直列に接続される。接地ノードNS2は、−0.7Vの負電圧Vbbを受ける。NチャネルMOSトランジスタ7115〜7118の各々は、接地ノードNS2の負電圧Vbb(−0.7V)を基板電圧として受け、接地ノードNS1の電圧(0V)をゲート端子に受ける。したがって、NチャネルMOSトランジスタ7115〜7118の各々は、ゲート端子に実質的に正の電圧が印加され、オンされる。
【0091】
NチャネルMOSトランジスタ7115〜7118は、ノード7120における電位を接地電位、すなわち、0Vに調整するためのMOSトランジスタである。したがって、実際の使用においては、フューズ(図示せず)を選択的に溶断し、ノード7120における電位が0Vになるように直列に接続されるNチャネルMOSトランジスタ7115〜7118の個数が調整される。なお、0Vに設定されたノード7120をバーチャルグランドという。
【0092】
ノード7120上の電位が0Vになるとき、PチャネルMOSトランジスタ7111およびNチャネルMOSトランジスタ7113の両端に印加される電圧は、PチャネルMOSトランジスタ7112およびNチャネルMOSトランジスタ7114の両端に印加される電圧と等しい。また、NチャネルMOSトランジスタ7113および7114は、0.7Vの電圧レベルからなる信号BIASLを共にゲート端子に受ける。したがって、PチャネルMOSトランジスタ7111およびNチャネルMOSトランジスタ7113に流れる電流は、PチャネルMOSトランジスタ7112およびNチャネルMOSトランジスタ7114に流れる電流と等しく、ノード7121上の電位は、ノード7119上の電位と等しい。
【0093】
このように、−0.7Vの負電圧Vbbが接地ノードNS2に供給され、ノード7120がバーチャルグランドになるとき、ノード7121は、接地ノードNS1上の電位(0V)よりもNチャネルMOSトランジスタ7114のチャネル抵抗による電圧降下分だけ高い電圧を出力する。
【0094】
つまり、PチャネルMOSトランジスタ7111,7112およびNチャネルMOSトランジスタ7113,7114,7115〜7118からなるカレントミラー回路CMCは、−0.7Vの負電圧Vbbを検出し、その検出した負電圧Vbbを正の電圧に変換して出力する。
【0095】
PチャネルMOSトランジスタ7122およびNチャネルMOSトランジスタ7123は、ノードN1と接地ノードNS1との間に直列に接続される。PチャネルMOSトランジスタ7124およびNチャネルMOSトランジスタ7125は、ノードN1と接地ノードNS1との間に直列に接続される。PチャネルMOSトランジスタ7122およびNチャネルMOSトランジスタ7123は、PチャネルMOSトランジスタ7124およびNチャネルMOSトランジスタ7125に対して並列に接続される。
【0096】
PチャネルMOSトランジスタ7122,7124は、PチャネルMOSトランジスタ7122とNチャネルMOSトランジスタ7123との間の電圧をゲート端子に受ける。NチャネルMOSトランジスタ7123は、そのゲート端子に0.7Vの電圧レベルから成る信号BIASLを受ける。また、NチャネルMOSトランジスタ7125は、ノード7121から出力される正の電圧をゲート端子に受ける。
【0097】
PチャネルMOSトランジスタ7122,7124およびNチャネルMOSトランジスタ7123,7125から成る差動増幅回路DFA1は、カレントミラー型の差動増幅回路であり、NチャネルMOSトランジスタ7125のゲート端子に受ける電圧をNチャネルMOSトランジスタ7123のゲート端子に受ける電圧と比較し、その比較結果に応じた電圧をPチャネルMOSトランジスタ7126およびNチャネルMOSトランジスタ7129のゲート端子へ出力する。
【0098】
この場合、NチャネルMOSトランジスタ7125のゲート端子に受ける電圧がNチャネルMOSトランジスタ7123のゲート端子に受ける電圧よりも高いとき、差動増幅回路DFA1は、PチャネルMOSトランジスタ7126,7127とNチャネルMOSトランジスタ7128,7129とから成るインバータIV1においてPチャネルMOSトランジスタ7126をオンし、NチャネルMOSトランジスタ7129をオフするためのLレベルの信号を出力する。また、NチャネルMOSトランジスタ7125のゲート端子に受ける電圧がNチャネルMOSトランジスタ7123のゲート端子に受ける電圧よりも低いとき、差動増幅回路DFA1は、インバータIV1においてPチャネルMOSトランジスタ7126をオフし、NチャネルMOSトランジスタ7129をオンするためのHレベルの信号を出力する。
【0099】
PチャネルMOSトランジスタ7126,7127およびNチャネルMOSトランジスタ7128,7129はノードN1と接地ノードNS1との間に直列に接続される。PチャネルMOSトランジスタ7127は、接地ノードNS1から0Vの接地電圧をゲート端子に受ける。また、NチャネルMOSトランジスタ7128は、ノードN1から1.5Vの電源電圧をゲート端子に受ける。したがって、PチャネルMOSトランジスタ7127およびNチャネルMOSトランジスタ7128は、それぞれ、0Vの接地電圧および1.5Vの電源電圧が供給されているとき常時オンされている。
【0100】
PチャネルMOSトランジスタ7126およびNチャネルMOSトランジスタ7129は、差動増幅回路DFA1からの信号をゲート端子に受ける。そして、PチャネルMOSトランジスタ7126,7127とNチャネルMOSトランジスタ7128,7129とから成るインバータIV1は、差動増幅回路DFA1がLレベルの信号を出力するとき、Hレベルの信号をインバータ7130へ出力し、差動増幅回路DFA1がHレベルの信号を出力するとき、Lレベルの信号をインバータ7130へ出力する。
【0101】
インバータ7130は、入力信号を反転して検出信号VBBDETを接地ノードNS2および発振器712へ出力する。
【0102】
このように、検出回路711は、1.5Vの電源電圧により駆動され、−0.7Vの負電圧Vbbを検出し、その検出信号VBBDETを発振器712へ出力する。
【0103】
図4を参照して、発振器712は、PチャネルMOSトランジスタ7131,7133,7137,7141,7145,7149,7134,7138,7142,7146,7150と、NチャネルMOSトランジスタ7132,7135,7139,7143,7147,7151,7136,7140,7144,7148,7152と、インバータ7153と、ANDゲート7154とを含む。
【0104】
PチャネルMOSトランジスタ7131およびNチャネルMOSトランジスタ7132は、ノードN1と接地ノードNS1との間に直列に接続される。
【0105】
PチャネルMOSトランジスタ7133,7134およびNチャネルMOSトランジスタ7135,7136は、ノードN1と接地ノードNS1との間に直列に接続される。
【0106】
PチャネルMOSトランジスタ7137,7138およびNチャネルMOSトランジスタ7139,7140は、ノードN1と接地ノードNS1との間に直列に接続される。
【0107】
PチャネルMOSトランジスタ7141,7142およびNチャネルMOSトランジスタ7143,7144は、ノードN1と接地ノードNS1との間に直列に接続される。
【0108】
PチャネルMOSトランジスタ7145,7146およびNチャネルMOSトランジスタ7147,7148は、ノードN1と接地ノードNS1との間に直列に接続される。
【0109】
PチャネルMOSトランジスタ7149,7150およびNチャネルMOSトランジスタ7151,7152は、ノードN1と接地ノードNS1との間に直列に接続される。
【0110】
PチャネルMOSトランジスタ7131,7133,7137,7141,7145,7149は、PチャネルMOSトランジスタ7131とNチャネルMOSトランジスタ7132との間の電圧をゲート端子に受ける。また、NチャネルMOSトランジスタ7132,7136,7140,7144,7148,7152は、0.7Vの電圧レベルから成る信号BIASLをゲート端子に受ける。
【0111】
PチャネルMOSトランジスタ7133およびNチャネルMOSトランジスタ7136がオンされると、PチャネルMOSトランジスタ7134およびNチャネルMOSトランジスタ7135は、入力信号を反転して出力信号をPチャネルMOSトランジスタ7138およびNチャネルMOSトランジスタ7139のゲート端子へ出力する。
【0112】
PチャネルMOSトランジスタ7137およびNチャネルMOSトランジスタ7140がオンされると、PチャネルMOSトランジスタ7138およびNチャネルMOSトランジスタ7139は、入力信号を反転して出力信号をPチャネルMOSトランジスタ7142およびNチャネルMOSトランジスタ7143のゲート端子へ出力する。
【0113】
PチャネルMOSトランジスタ7141およびNチャネルMOSトランジスタ7144がオンされると、PチャネルMOSトランジスタ7142およびNチャネルMOSトランジスタ7143は、入力信号を反転して出力信号をPチャネルMOSトランジスタ7146およびNチャネルMOSトランジスタ7147のゲート端子へ出力する。
【0114】
PチャネルMOSトランジスタ7145およびNチャネルMOSトランジスタ7148がオンされると、PチャネルMOSトランジスタ7146およびNチャネルMOSトランジスタ7147は、入力信号を反転して出力信号をPチャネルMOSトランジスタ7150およびNチャネルMOSトランジスタ7151のゲート端子へ出力する。
【0115】
PチャネルMOSトランジスタ7149およびNチャネルMOSトランジスタ7152がオンされると、PチャネルMOSトランジスタ7150およびNチャネルMOSトランジスタ7151は、入力信号を反転して出力信号をインバータ7153およびANDゲート7154へ出力する。
【0116】
インバータ7153は、ノードN1から受けた1.5Vの電源電圧によって駆動され、入力信号を反転してクロックCLKを出力する。
【0117】
ANDゲート7154は、ノードN1から受けた1.5Vの電源電圧によって駆動され、PチャネルMOSトランジスタ7150およびNチャネルMOSトランジスタ7151からなるインバータの出力信号を一方端子に受け、検出回路711からの信号VBBDETを他方端子に受ける。そして、ANDゲート7154は、2つの信号の論理積を演算し、その演算結果をPチャネルMOSトランジスタ7134およびNチャネルMOSトランジスタ7135のゲート端子へ出力する。
【0118】
このように、発振器712は、5段のインバータをリング状に接続したリングオシレータである。
【0119】
ANDゲート7154は、Lレベルの信号VBBDETを受けたときLレベルの信号を出力するので、発振器712は、LレベルのクロックCLKを出力する。また、ANDゲート7154は、Hレベルの信号VBBDETを受けたとき、PチャネルMOSトランジスタ7150およびNチャネルMOSトランジスタ7151からなるインバータの出力信号の論理レベルと同じ論理レベルの信号を出力するので、発振器712は、PチャネルMOSトランジスタ7150およびNチャネルMOSトランジスタ7151からなるインバータの出力信号の論理レベルを反転したクロックCLKを出力する。
【0120】
したがって、発振器712は、信号VBBDETの論理レベルによって位相の異なるクロックCLKを出力する。
【0121】
図5を参照して、ポンプ回路713は、インバータ7155〜7157と、PチャネルMOSトランジスタ7158〜7163とを含む。インバータ7155〜7157は、ノードN1から受けた1.5Vの電源電圧によって駆動される。インバータ7155は、発振器712からのクロックCLKを受け、その受けたクロックCLKを反転してインバータ7156へ出力する。インバータ7156は、インバータ7155の出力信号を反転してPチャネルMOSトランジスタ7158のソース端子およびドレイン端子へ出力する。
【0122】
インバータ7157は、発振器712からクロックCLKを受け、その受けクロックCLKを反転してPチャネルMOSトランジスタ7160のソース端子およびドレイン端子へ出力する。
【0123】
PチャネルMOSトランジスタ7161,7162は、ノードNL1と接地ノードNS1との間に並列に接続される。PチャネルMOSトランジスタ7161は、接地ノードNS1から接地電圧(0V)をゲート端子に受ける。PチャネルMOSトランジスタ7162は、ノードNL1上の電圧をゲート端子に受ける。
【0124】
PチャネルMOSトランジスタ7163は、PチャネルMOSトランジスタ7159のゲート端子と接地ノードNS1との間に接続される。PチャネルMOSトランジスタ7160,7163は、そのゲート端子にノードNL1上の電圧を受ける。
【0125】
PチャネルMOSトランジスタ7159は、ノードNL2とノードNL3との間に接続される。PチャネルMOSトランジスタ7158,7159は、ノードNL2上の電圧をゲート端子に受ける。
【0126】
インバータ7156が出力する信号は、インバータ7157が出力する信号を反転した信号であるので、PチャネルMOSトランジスタ7158のゲート端子、すなわちノードNL2にキャリアが誘起されるタイミングは、PチャネルMOSトランジスタ7160のゲート端子、すなわちノードNL1にキャリアが誘起されるタイミングと180度の位相差を有する。
【0127】
インバータ7157がHレベルの信号をPチャネルMOSトランジスタ7160のソース端子およびドレイン端子へ出力すると、電子がPチャネルMOSトランジスタ7161を介して接地ノードNS1からノードNL1に流れる。そうすると、ノードNL1上の電位はさらに低下し、電子がPチャネルMOSトランジスタ7162を介して接地ノードNS1からノードNL1にさらに流れる。したがって、ノードNL1上の電位は、インバータ7157から出力される信号がHレベルを保持する期間、すなわち、クロックCLKがHレベルを保持する期間に比例して低下する。
【0128】
そうすると、PチャネルMOSトランジスタ7163は、ノードNL1上の電位の低下に応じてチャネル幅は広くなり、接地ノードNS1からノードNL2へ供給される電子の量は多くなる。この場合、インバータ7156は、Lレベルの信号をPチャネルMOSトランジスタ7158のソース端子およびドレイン端子へ出力するので、ノードNL2の電子は、オンされたPチャネルMOSトランジスタ7159を介してノードNL3へ供給される。そして、ノードNL3は、−0.7Vの負電圧Vbbを出力する。
【0129】
インバータ7157がLレベルの信号をPチャネルMOSトランジスタ7160のソース端子およびドレイン端子へ出力し、インバータ7156がHレベルの信号をPチャネルMOSトランジスタ7158のソース端子およびドレイン端子へ出力すると、ノードNL1上の電子は、PチャネルMOSトランジスタ7161を介して接地ノードNS1へ流れ、ノードNL1上の電位は上昇する。
【0130】
そうすると、PチャネルMOSトランジスタ7163を介して接地ノードNS1からノードNL2へ流れる電子は減少し、ノードNL2上の電位は上昇する。そして、PチャネルMOSトランジスタ7159を介してノードNL2からノードNL3へ流れる電子も減少し、ノードNL3上の電位も上昇する。
【0131】
その後、インバータ7157がHレベルの信号をPチャネルMOSトランジスタ7160のソース端子およびドレイン端子へ出力し、インバータ7156がLレベルの信号をPチャネルMOSトランジスタ7158のソース端子およびドレイン端子へ出力すると、上述したようにノードNL3は、−0.7Vの負電圧Vbbを出力する。
【0132】
このように、ポンプ回路713は、ノードNL3上の電位を大きく負電位に設定する周期と、ノードNL3上の電位を若干上昇させる周期とを繰返しながら−0.7Vの負電圧Vbbを出力する。そして、このノードNL3上の電位を大きく負電位に設定する周期と、ノードNL3上の電位を若干上昇させる周期とを繰返す動作がポンピングに相当する。
【0133】
再び、図2を参照して、基準電圧発生回路72は、電流源720と、カレントミラー回路721と、電圧発生回路722とを含む。電流源720は、ノードN1から供給される1.5Vの電源電圧により駆動される。そして、電流源720は、一定の電流を発生し、その発生した一定の電流に基づいて一定の電圧から成る信号ICONST,BIASLを生成する。電流源720は、その生成した信号ICONSTをカレントミラー回路721へ出力し、信号BIASLをVbb発生回路71の検出回路711、発振器712、電圧降圧回路73およびVPP発生回路76へ出力する。
【0134】
カレントミラー回路721は、ノードN1から供給される1.5Vの電源電圧によって駆動される。そして、カレントミラー回路721は、信号ICONSTに基づいて、電流源720が発生した電流と同じ一定の電流を発生し、その発生した一定の電流に基づいて生成される電圧を電圧発生回路722へ出力する。
【0135】
電圧発生回路722は、ノードN1から供給される1.5Vの電源電圧によって駆動される。そして、電圧発生回路722は、カレントミラー回路721からの電圧に基づいて基準電圧VrefSを発生し、その発生した基準電圧VrefSを電圧降圧回路73およびVPP発生回路76へ出力する。
【0136】
図6を参照して、電流源720は、PチャネルMOSトランジスタ157,159と、抵抗158と、NチャネルMOSトランジスタ160,161とを含む。カレントミラー回路721は、PチャネルMOSトランジスタ164,168と、NチャネルMOSトランジスタ165,166とを含む。電圧発生回路722は、PチャネルMOSトランジスタ170〜175を含む。
【0137】
PチャネルMOSトランジスタ157,159,164,171〜175およびNチャネルMOSトランジスタ160,161は薄膜MOSトランジスタであり、NチャネルMOSトランジスタ165,166およびPチャネルMOSトランジスタ168,170は、ゲート酸化膜厚が厚い厚膜MOSトランジスタである。
【0138】
この発明においては、ゲート酸化膜厚が厚い厚膜MOSトランジスタとは、3.3Vの電源電圧に適したゲート酸化膜厚を有するMOSトランジスタを言う。
【0139】
PチャネルMOSトランジスタ157およびNチャネルMOSトランジスタ160は、ノードN1と接地ノードNS1との間に直列に接続される。抵抗158、PチャネルMOSトランジスタ159およびNチャネルMOSトランジスタ161は、ノードN1と接地ノードNS1との間に直列に接続される。
【0140】
PチャネルMOSトランジスタ157およびNチャネルMOSトランジスタ160は、抵抗158、PチャネルMOSトランジスタ159およびNチャネルMOSトランジスタ161に対して並列に接続される。
【0141】
PチャネルMOSトランジスタ159のサイズは、PチャネルMOSトランジスタ157のサイズよりも大きい。したがった、PチャネルMOSトランジスタ159における電圧降下は、PチャネルMOSトランジスタ157における電圧降下よりも小さい。
【0142】
そして、抵抗158の抵抗値は、抵抗158およびPチャネルMOSトランジスタ159における電圧降下がPチャネルMOSトランジスタ157における電圧降下に等しくなるように決定される。
【0143】
PチャネルMOSトランジスタ157,159は、ノード162上の電圧をゲート端子に受ける。
【0144】
NチャネルMOSトランジスタ160のサイズは、NチャネルMOSトランジスタ161のサイズと同じである。そして、NチャネルMOSトランジスタ160,161は、ノード163上の電圧をゲート端子に受ける。
【0145】
抵抗158およびPチャネルMOSトランジスタ159における電圧降下は、PチャネルMOSトランジスタ157における電圧降下と同じであり、NチャネルMOSトランジスタ160,161は同じサイズであり、同じ電圧をゲート端子に受けるので、PチャネルMOSトランジスタ157およびNチャネルMOSトランジスタ160を介してノードN1から接地ノードNS1へ流れる電流は、抵抗158、PチャネルMOSトランジスタ159およびNチャネルMOSトランジスタ161を介してノードN1から接地ノードNS1へ流れる電流iと等しい。
【0146】
そして、電流源720は、ノード162上の電圧から成る信号ICONSTをカレントミラー回路721へ出力し、ノード163上の電圧から成る信号BIASLをVbb発生回路71の検出回路711、発振器712、電圧降圧回路73およびVPP発生回路76へ出力する。
【0147】
この場合、信号ICONSTを構成する電圧は、ノードN1に供給される電源電圧VddL(1.5V)よりもPチャネルMOSトランジスタ157のしきい値電圧Vthだけ低いVddL−Vthである。この電圧VddL−Vthは、MOSトランジスタのドレイン電流がドレイン電圧の増加に対して一定となる直線動作領域における最大のドレイン電圧に相当する。
【0148】
また、信号BIASLを構成する電圧は、MOSトランジスタの直線動作領域における最小のドレイン電圧に相当する。
【0149】
このように、電流源720は、一定の電流iを発生し、その発生した一定の電流iに基づいて生成される電圧から成る信号ICONST,BIASLを生成する。そして、電流源720は、生成した信号ICONSTをカレントミラー回路721へ出力し、生成した信号BIASLをVbb発生回路71の検出回路711、発振器712、電圧降圧回路73およびVPP発生回路76へ出力する。
【0150】
PチャネルMOSトランジスタ164およびNチャネルMOSトランジスタ165は、ノードN1と接地ノードNS1との間に直列に接続される。PチャネルMOSトランジスタ168およびNチャネルMOSトランジスタ166は、ノードN2と接地ノードNS1との間に直列に接続される。
【0151】
ノードN2は、3.3Vの電源電圧が供給される。PチャネルMOSトランジスタ164は、PチャネルMOSトランジスタ157,159がゲート端子に受ける電圧と同じ電圧から成る信号ICONSTをゲート端子に受ける。そして、PチャネルMOSトランジスタ164のサイズは、PチャネルMOSトランジスタ157のサイズと同じである。したがって、PチャネルMOSトランジスタ164およびNチャネルMOSトランジスタ165を介してノードN1から接地ノードNS1へ流れる電流は、電流源720において発生した電流iに等しい。
【0152】
NチャネルMOSトランジスタ165,166は、同じサイズを有し、ノード167上の電圧をゲート端子に受ける。したがって、PチャネルMOSトランジスタ168およびNチャネルMOSトランジスタ166を介してノードN2から接地ノードNS1へ流れる電流は、PチャネルMOSトランジスタ164およびNチャネルMOSトランジスタ165を介してノードN1から接地ノードNS1へ流れる電流iと等しい。
【0153】
このように、カレントミラー回路721は、ノードN1、PチャネルMOSトランジスタ164、NチャネルMOSトランジスタ165および接地ノードNS1に流れる電流iをノードN2、PチャネルMOSトランジスタ168、NチャネルMOSトランジスタ166および接地ノードNS1から成る回路に写し換える。そして、カレントミラー回路721は、この電流iの写し換えを厚膜MOSトランジスタであるNチャネルMOSトランジスタ165,166を用いて行なう。
【0154】
カレントミラー回路721は、PチャネルMOSトランジスタ168およびNチャネルMOSトランジスタ166を介してノードN2から接地ノードNS1へ電流iが流れることにより発生したノード169上の電圧をPチャネルMOSトランジスタ170のゲート端子へ出力する。
【0155】
PチャネルMOSトランジスタ170〜175は、ノードN2と接地ノードNS1との間に直列に接続される。PチャネルMOSトランジスタ171〜175の各々は、接地ノードNS1上の接地電圧(0V)をゲート端子に受ける。
【0156】
PチャネルMOSトランジスタ168,170は、ノード169上の電圧をゲート端子に受ける。したがって、PチャネルMOSトランジスタ170に流れる電流は、PチャネルMOSトランジスタ168に流れる電流iと等しい。
【0157】
そうすると、基準電圧VrefSは、PチャネルMOSトランジスタ171〜175の全体のチャネル抵抗RcとPチャネルMOSトランジスタ171〜175の全体のしきい値Vth3とによりVrefS=iRc+Vth3と表わされる。
【0158】
したがって、PチャネルMOSトランジスタ171〜175の個数を変化させることにより、チャネル抵抗Rcおよびしきい値電圧Vth3が変化し、基準電圧VrefSの電圧レベルが変化する。
【0159】
電圧発生回路722においては、直列に接続されるPチャネルMOSトランジスタ171〜175の個数は、フューズを溶断することにより基準電圧VrefSが1.5Vになるように決定される。
【0160】
このように、電圧発生回路722は、3.3Vの電源電圧を降圧した1.5Vの基準電圧VrefSを発生し、その発生した基準電圧VrefSを電圧降圧回路73およびVPP発生回路76へ出力する。
【0161】
そして、実施の形態1においては、カレントミラー回路721のNチャネルMOSトランジスタ165,166およびPチャネルMOSトランジスタ168と、電圧発生回路722のPチャネルMOSトランジスタ170とを厚膜MOSトランジスタにより構成したことを特徴とする。
【0162】
NチャネルMOSトランジスタ165,166を厚膜MOSトランジスタにより構成することにしたのは、次の理由による。3.3Vの電源電圧がPチャネルMOSトランジスタ168に印加されるので、NチャネルMOSトランジスタ166は、3.3Vの電源電圧からPチャネルMOSトランジスタ168のしきい値(0.8V)を差し引いた2.5Vの電圧が印加される。
【0163】
そうすると、NチャネルMOSトランジスタ166を薄膜MOSトランジスタにより構成した場合、2.5Vの電圧がNチャネルMOSトランジスタ166のソース端子とドレイン端子との間に印加され、NチャネルMOSトランジスタ166の信頼性が低下するからである。
【0164】
そして、NチャネルMOSトランジスタ166を厚膜MOSトランジスタにより構成すると、一定の電流iを写し換えるNチャネルMOSトランジスタ165,166の役割によりNチャネルMOSトランジスタ165も厚膜MOSトランジスタにより構成する必要がある。
【0165】
再び、図2を参照して、電圧降圧回路73は、制御回路731と、レベル変換器732と、差動増幅回路733,736と、NチャネルMOSトランジスタ734,737と、PチャネルMOSトランジスタ735,738とを含む。
【0166】
なお、レベル変換器732および差動増幅回路733,736は、厚膜MOSトランジスタにより構成され、NチャネルMOSトランジスタ734,737およびPチャネルMOSトランジスタ735,738は厚膜MOSトランジスタである。
【0167】
制御回路731は、ノードN1から供給された1.5Vの電源電圧により駆動される。そして、制御回路731は、テストモード信号TMまたはセンスアンプイネーブル信号SAEを受け、その受けたテストモード信号TMまたはセンスアンプイネーブル信号SAEをレベル変換器732へ出力する。
【0168】
より具体的には、制御回路731は、半導体記憶装置100のテストモード時、テスト内容に応じてHレベルまたはLレベルのテストモード信号TMを受け、その受けたHレベルまたはLレベルのテストモード信号TMをレベル変換器732へ出力する。
【0169】
また、制御回路731は、半導体記憶装置100の通常動作時、Hレベルのセンスアンプイネーブル信号SAEを受け、その受けたHレベルのセンスアンプイネーブル信号SAEをレベル変換器732へ出力する。
【0170】
さらに、制御回路731は、半導体記憶装置100のスタンバイ時、Lレベルのセンスアンプイネーブル信号SAEを受け、その受けたLレベルのセンスアンプイネーブル信号SAEをレベル変換器732へ出力する。
【0171】
レベル変換器732は、ノードN1から1.5Vの電源電圧を受け、ノードN2から3.3Vの電源電圧を受ける。そして、レベル変換器732は、制御回路731から受けたHレベルのテストモード信号またはHレベルのセンスアンプイネーブル信号SAEを構成する電圧レベルを1.5Vから3.3Vへ変換し、その変換したHレベルのテストモード信号TMまたはHレベルのセンスアンプイネーブル信号SAEをNチャネルMOSトランジスタ734のゲート端子へ出力する。
【0172】
なお、レベル変換器732は、Lレベルのテストモード信号TMまたはLレベルのセンスアンプイネーブル信号SAEを制御回路731から受けたとき、これらの信号を構成する電圧レベルを変換せずに、Lレベルのテストモード信号TMまたはLレベルのセンスアンプイネーブル信号SAEをNチャネルMOSトランジスタ734のゲート端子へ出力する。
【0173】
差動増幅回路733およびNチャネルMOSトランジスタ734は、ノードN2と接地ノードNS1との間に直列に接続される。そして、差動増幅回路733は、3.3Vの電源電圧により駆動される。差動増幅回路733は、NチャネルMOSトランジスタ734がオンされると活性化され、NチャネルMOSトランジスタ734がオフされると不活性化される。
【0174】
そして、差動増幅回路733は、非反転入力端子に基準電圧発生回路72からの基準電圧VrefSを受け、反転入力端子に出力ノードNOUT上のアレイ電圧VccSを受ける。差動増幅回路733は、活性化されると、アレイ電圧VccSの電圧レベルが基準電圧VrefSの電圧レベルになるようにアレイ電圧VccSを差動増幅し、その差動増幅した1.5Vの電圧をPチャネルMOSトランジスタ735のゲート端子へ出力する。また、差動増幅回路733は、不活性化されると、ノードN2から受けた3.3Vの電源電圧に近い電圧をPチャネルMOSトランジスタ735のゲート端子へ出力する。
【0175】
PチャネルMOSトランジスタ735は、ノードN2と出力ノードNOUTとの間に接続される。そして、PチャネルMOSトランジスタ735は、差動増幅回路733から受けた電圧に応じてキャリアをノードN2から出力ノードNOUTへ供給する。
【0176】
NチャネルMOSトランジスタ734は、テストモード信号TMまたはセンスアンプイネーブル信号SAEをレベル変換器732からゲート端子に受ける。
【0177】
差動増幅回路736およびNチャネルMOSトランジスタ737は、ノードN2と接地ノードNS1との間に直列に接続される。そして、差動増幅回路736は、ノードN2から供給される3.3Vの電源電圧によって駆動される。また、差動増幅回路736は、NチャネルMOSトランジスタ737がオンされると活性化され、NチャネルMOSトランジスタ737がオフされると不活性化される。
【0178】
差動増幅回路736は、非反転入力端子に基準電圧発生回路72からの基準電圧VrefSを受け、反転入力端子に出力ノードNOUT上のアレイ電圧VccSを受ける。NチャネルMOSトランジスタ737は、基準電圧発生回路72の電流源720から信号BIASLをゲート端子に受ける。
【0179】
差動増幅回路736は、活性化されると、アレイ電圧VccSの電圧レベルが基準電圧VrefSの電圧レベルになるようにアレイ電圧VccSを差動増幅し、その差動増幅した1.5Vの電圧をPチャネルMOSトランジスタ738のゲート端子へ出力する。
【0180】
PチャネルMOSトランジスタ738は、ノードN2と出力ノードNOUTとの間に接続される。そして、PチャネルMOSトランジスタ738は、差動増幅回路736から受けた電圧に応じてキャリアをノードN2から出力ノードNOUTへ供給する。
【0181】
NチャネルMOSトランジスタ737は、基準電圧発生回路72の電流源720から信号BIASLをゲート端子に受ける。
【0182】
NチャネルMOSトランジスタ734がHレベルのテストモード信号TMまたはHレベルのセンスアンプイネーブル信号SAEをゲート端子に受けると、差動増幅回路733は、活性化され、アレイ電圧VccSの電圧レベルが基準電圧VrefSの電圧レベルになるようにアレイ電圧VccSを差動増幅し、その差動増幅した1.5Vの電圧をPチャネルMOSトランジスタ735のゲート端子へ出力する。そして、PチャネルMOSトランジスタ735は、差動増幅回路73から受けた1.5Vの電圧に応じてキャリアをノードN2から出力ノードNOUTへ供給し、出力ノードNOUT上のアレイ電圧VccSを1.5Vに設定する。なお、差動増幅回路733が不活性化されたとき、PチャネルMOSトランジスタ735は、3.3Vに近い電圧をゲート端子に受けるので、殆どオフされ出力ノードNOUT上のアレイ電圧VccSの電圧レベルは低下する。
【0183】
NチャネルMOSトランジスタ737がHレベルの信号BIASLをゲート端子に受けたとき、差動増幅回路736およびPチャネルMOSトランジスタ738は、それぞれ、差動増幅回路733およびPチャネルMOSトランジスタ735と同じ動作を行ない、出力ノードNOUT上のアレイ電圧VccSは1.5Vに設定される。NチャネルMOSトランジスタ737がLレベルの信号BIASLを受け、差動増幅回路736が不活性化されたとき、差動増幅回路733が不活性化されたときと同様に、出力ノードNOUT上のアレイ電圧VccSの電圧レベルは低下する。
【0184】
半導体記憶装置100のスタンバイ時、NチャネルMOSトランジスタ734は、Lレベルのセンスアンプイネーブル信号SAEをゲート端子に受け、NチャネルMOSトランジスタ737は、0.7Vの電圧レベルから成る信号BIASLをゲート端子に受ける。その結果、差動増幅回路733は不活性化され、差動増幅回路736は活性化される。
【0185】
そうすると、差動増幅回路736は、出力ノードNOUT上のアレイ電圧VccSの電圧レベルが基準電圧VrefSの電圧レベルになるようにアレイ電圧VccSを差動増幅し、その差動増幅した電圧をPチャネルMOSトランジスタ738のゲート端子へ出力する。そして、PチャネルMOSトランジスタ738は、差動増幅回路736から受けた電圧に応じてキャリアをノードN2から出力ノードNOUTへ供給する。
【0186】
したがって、差動増幅回路736、PチャネルMOSトランジスタ738およびNチャネルMOSトランジスタ737は、半導体記憶装置100のスタンバイ時に3.3Vの電源電圧を降圧して1.5Vのアレイ電圧VccSを発生する。この場合、NチャネルMOSトランジスタ737は、0.7Vの電圧レベルから成る信号BIASLをゲート端子に受けるので、3.3Vの電圧からなるテストモード信号TMまたはセンスアンプイネーブル信号SAEをゲート端子に受けるNチャネルMOSトランジスタ734のチャネル幅よりも狭いチャネル幅を有する。したがって、差動増幅回路736に流れる電流は通常動作時に差動増幅回路733に流れる電流よりも少なく、差動増幅回路736は通常動作時よりも高いレベルの電圧をPチャネルMOSトランジスタ738のゲート端子へ出力する。そうすると、PチャネルMOSトランジスタ738は、通常動作時よりも少ないキャリアをノードN2から出力ノードNOUTへ供給するので、アレイ電圧VccSが1.5Vの電圧レベルになる速度は通常動作時よりも遅い。
【0187】
半導体記憶装置100の通常動作時、NチャネルMOSトランジスタ734は、Hレベルのセンスアンプイネーブル信号SAEをゲート端子に受け、NチャネルMOSトランジスタ737は、0.7Vの電圧レベルから成る信号BIASLをゲート端子に受ける。その結果、差動増幅回路733,736は活性化される。この場合、Hレベルのセンスアンプイネーブル信号SAEは3.3Vの電圧レベルから成るので、NチャネルMOSトランジスタ734のチャネル幅はNチャネルMOSトランジスタ737のチャネル幅よりも広い。そうすると、差動増幅回路733に流れる電流は差動増幅回路736に流れる電流よりも大きく、差増幅回路733は、差動増幅回路736よりも低い電圧をPチャネルMOSトランジスタ735へ出力する。その結果、PチャネルMOSトランジスタ735は、PチャネルMOSトランジスタ738よりも多くのキャリアをノードN2から出力ノードNOUTへ供給する。
【0188】
したがって、半導体記憶装置100の通常動作時、差動増幅回路733、PチャネルMOSトランジスタ735およびNチャネルMOSトランジスタ734は、差動増幅回路736、PチャネルMOSトランジスタ738およびNチャネルMOSトランジスタ737よりも速くアレイ電圧VccSの電圧レベルを1.5Vに設定する。
【0189】
このように、差動増幅回路733、PチャネルMOSトランジスタ735およびNチャネルMOSトランジスタ734は、半導体記憶装置100の通常動作時、3.3Vの電源電圧を降圧してアレイ電圧VccSを1.5Vの電圧レベルに速く設定し、差動増幅回路736、PチャネルMOSトランジスタ738およびNチャネルMOSトランジスタ737は、半導体記憶装置100のスタンバイ時、3.3Vの電源電圧を降圧してアレイ電圧VccSを1.5Vの電圧レベルにゆっくり設定する。
【0190】
なお、差動増幅回路733、PチャネルMOSトランジスタ735およびNチャネルMOSトランジスタ734から成る回路の数、および差動増幅回路736、PチャネルMOSトランジスタ738およびNチャネルMOSトランジスタ737から成る回路の数は、メモリセルアレイ10,20を構成するブロックの数に応じて変えられる。
【0191】
上述したように、電圧降圧回路73は、3.3Vの電源電圧によって駆動され、半導体記憶装置100の通常動作時、3.3Vの電源電圧を降圧して1.5Vのアレイ電圧VccSを速く出力ノードNOUTに供給し、半導体記憶装置100のスタンバイ時、3.3Vの電源電圧を降圧して1.5Vのアレイ電圧VccSをゆっくり出力ノードNOUTに供給する。
【0192】
図7を参照して、差動増幅回路733は、PチャネルMOSトランジスタ153,155と、NチャネルMOSトランジスタ154,156とを含む。PチャネルMOSトランジスタ153,155およびNチャネルMOSトランジスタ154,156は、厚膜MOSトランジスタである。
【0193】
PチャネルMOSトランジスタ153およびNチャネルMOSトランジスタ154は、ノードN2とNチャネルMOSトランジスタ734との間に直列に接続される。PチャネルMOSトランジスタ155およびNチャネルMOSトランジスタ156は、ノードN2とNチャネルMOSトランジスタ734との間に直列に接続される。
【0194】
PチャネルMOSトランジスタ153およびNチャネルMOSトランジスタ154は、PチャネルMOSトランジスタ155およびNチャネルMOSトランジスタ156に対して並列に接続される。
【0195】
PチャネルMOSトランジスタ153,155は、ノードN3上の電圧をゲート端子に受ける。NチャネルMOSトランジスタ154は、出力ノードNOUT上のアレイ電圧VccSをゲート端子に受ける。NチャネルMOSトランジスタ156は、基準電圧発生回路72からの基準電圧VrefSをゲート端子に受ける。
【0196】
そして、差動増幅回路733は、アレイ電圧VccSの電圧レベルが基準電圧VrefSの電圧レベルになるようにアレイ電圧VccSを差動増幅し、その差動増幅した電圧をノードN3からPチャネルMOSトランジスタ735のゲート端子へ出力する。
【0197】
差動増幅回路736は、差動増幅回路733と同じ回路構成から成る。
図8を参照して、レベル変換器732は、PチャネルMOSトランジスタ182,183,185,186と、NチャネルMOSトランジスタ184,187と、インバータ188〜190とを含む。
【0198】
PチャネルMOSトランジスタ182,183,185,186、NチャネルMOSトランジスタ184,187、およびインバータ189,190を構成するMOSトランジスタは、厚膜MOSトランジスタであり、インバータ188を構成するMOSトランジスタは、薄膜MOSトランジスタである。
【0199】
PチャネルMOSトランジスタ182,183およびNチャネルMOSトランジスタ184は、ノードN2と接地ノードNS1との間に直列に接続される。PチャネルMOSトランジスタ185,186およびNチャネルMOSトランジスタ187は、ノードN2と接地ノードNS1との間に直列に接続される。
【0200】
PチャネルMOSトランジスタ182,183およびNチャネルMOSトランジスタ184は、PチャネルMOSトランジスタ185,186およびNチャネルMOSトランジスタ187に対して並列に接続される。
【0201】
インバータ188は、NチャネルMOSトランジスタ184のゲート端子と、PチャネルMOSトランジスタ186およびNチャネルMOSトランジスタ187のゲート端子との間に接続される。そして、インバータ188は、NチャネルMOSトランジスタ184のゲート端子に入力される信号の論理レベルを反転し、その反転した信号をPチャネルMOSトランジスタ186およびNチャネルMOSトランジスタ187のゲート端子へ出力する。なお、インバータ188は、ノードN1から供給される1.5Vの電源電圧により駆動される。
【0202】
インバータ189は、ノード192から入力される信号の論理レベルを反転してインバータ190へ出力し、インバータ190は、インバータ189の出力信号を反転して出力する。なお、インバータ189,190は、ノードN2から供給される3.3Vの電源電圧により駆動される。
【0203】
PチャネルMOSトランジスタ182は、ノード192上の電圧をゲート端子に受ける。PチャネルMOSトランジスタ183およびNチャネルMOSトランジスタ184は、レベル変換器732への入力信号INを構成する電圧をゲート端子に受ける。
【0204】
PチャネルMOSトランジスタ185は、ノード191上の電圧をゲート端子に受ける。PチャネルMOSトランジスタ186およびNチャネルMOSトランジスタ187は、インバータ188の出力信号を構成する電圧をゲート端子に受ける。
【0205】
レベル変換器732へ入力される入力信号INは、HレベルまたはLレベルのテストモード信号TM、またはHレベルまたはLレベルのセンスアンプイネーブル信号SAEである。そして、Hレベルのテストモード信号TMおよびセンスアンプイネーブル信号SAEは1.5Vの電圧から成り、Lレベルのテストモード信号TMおよびセンスアンプイネーブル信号SAEは0Vの電圧から成る。
【0206】
Hレベルの入力信号INがレベル変換器732に入力されると、NチャネルMOSトランジスタ184は、Hレベルの入力信号INを構成する1.5Vの電圧をゲート端子に受けてオンされ、ノード191上の電圧は接地電圧(0V)になる。そうすると、PチャネルMOSトランジスタ185は、ノード191上の接地電圧を受けてオンされる。また、PチャネルMOSトランジスタ183は、Hレベルの入力信号INを構成する1.5Vの電圧をゲート端子に受けてオフされる。
【0207】
インバータ188は、Hレベルの入力信号INを反転して接地電圧から成るLレベルの信号をPチャネルMOSトランジスタ186およびNチャネルMOSトランジスタ187のゲート端子へ出力する。そして、PチャネルMOSトランジスタ186はオンされ、NチャネルMOSトランジスタ187はオフされる。
【0208】
そうすると、ノード192の電圧は3.3Vになり、PチャネルMOSトランジスタ182はオフされる。そして、インバータ189は、3.3Vの電圧から成るHレベルの信号を反転して接地電圧(0V)から成るLレベルの信号を出力し、インバータ190は、接地電圧から成るLレベルの信号を反転した3.3Vの電圧から成るHレベルの出力信号OUTを出力する。
【0209】
このように、レベル変換器732は、1.5Vの電圧から成るHレベルの信号を3.3Vの電圧から成るHレベルの信号に変換して出力する。
【0210】
接地電圧から成るLレベルの入力信号INがレベル変換器732に入力されると、PチャネルMOSトランジスタ183はオンされ、NチャネルMOSトランジスタ184はオフされる。そして、インバータ188は、接地電圧から成るLレベルの入力信号INを1.5Vの電圧から成るHレベルの信号に変換してPチャネルMOSトランジスタ186およびNチャネルMOSトランジスタ187のゲート端子へ出力する。
【0211】
そうすると、PチャネルMOSトランジスタ186はオフされ、NチャネルMOSトランジスタ187はオンされる。そして、ノード192上の電圧は接地電圧(0V)になり、PチャネルMOSトランジスタ182はオンされ、ノード191上の電圧は3.3Vになる。その結果、PチャネルMOSトランジスタ185はオフされる。
【0212】
インバータ189は、ノード192上の接地電圧から成るLレベルの信号を反転して3.3Vの電圧から成るHレベルの信号を出力し、インバータ190は、3.3Vの電圧から成るHレベルの信号を反転して接地電圧から成るLレベルの出力信号OUTを出力する。
【0213】
このように、レベル変換器732は、接地電圧から成るLレベルの信号を電圧レベルを変えずに接地電圧から成るLレベルの信号として出力する。
【0214】
再び、図2を参照して、1/2Vcc発生回路74は、ノードN1から受けた1.5Vの電源電圧によって駆動される。そして、1/2Vcc発生回路74は、出力ノードNOUT上のアレイ電圧VccSを受け、アレイ電圧VccSを2分の1に分圧してプリチャージ電圧VBLを発生する。また、1/2Vcc発生回路75は、ノードN1から受けた1.5Vの電源電圧によって駆動される。そして、1/2Vcc発生回路75は、出力ノードNOUT上のアレイ電圧VccSを受け、アレイ電圧VccSを2分の1に分圧してセルプレート電圧VCPを発生する。
【0215】
図9を参照して、1/2Vcc発生回路74,75は、抵抗176,179と、NチャネルMOSトランジスタ177,180と、PチャネルMOSトランジスタ178,181とを含む。
【0216】
NチャネルMOSトランジスタ177,180およびPチャネルMOSトランジスタ178,181は薄膜MOSトランジスタである。
【0217】
抵抗176、NチャネルMOSトランジスタ177、PチャネルMOSトランジスタ178および抵抗179は、ノードN1と接地ノードNS1との間に直列に接続される。NチャネルMOSトランジスタ180およびPチャネルMOSトランジスタ181は、ノードN1と接地ノードNS1との間に直列に接続される。
【0218】
抵抗176、NチャネルMOSトランジスタ177、PチャネルMOSトランジスタ178および抵抗179は、NチャネルMOSトランジスタ180およびPチャネルMOSトランジスタ181に対して並列に接続される。
【0219】
NチャネルMOSトランジスタ177,180は、ノードN4上の電圧をゲート端子に受ける。NチャネルMOSトランジスタ177はダイオード接続される。PチャネルMOSトランジスタ178,181は、ノードN5上の電圧をゲート端子に受ける。PチャネルMOSトランジスタ178はダイオード接続される。
【0220】
ノードN1は、電圧降圧回路73から出力された1.5Vの電圧からなるアレイ電圧VccSが供給される。抵抗176,179の抵抗値は、NチャネルMOSトランジスタ177とPチャネルMOSトランジスタ178との間の電圧が0.75Vになるように決定される。
【0221】
そうすると、ノードN4上の電圧は、0.75VにNチャネルMOSトランジスタ177のしきい値電圧Vth4を加えた0.75+Vth4(V)となり、ノードN5上の電圧は、0.75VからPチャネルMOSトランジスタ178のしきい値電圧Vth4を差引いた0.75−Vth4(V)となる。
【0222】
そして、NチャネルMOSトランジスタ180およびPチャネルMOSトランジスタ181における電圧降下は0.75Vとなり、1/2Vcc発生回路74,75は、それぞれ、0.75Vのプリチャージ電圧VBLまたは0.75Vのセルプレート電圧VCPを出力する。
【0223】
再び、図2を参照して、VPP発生回路76は、制御回路761と、分割回路762と、検出回路763,764と、発振器765と、レベル変換器766と、ポンプ回路767とを含む。
【0224】
制御回路761は、ノードN1から供給される1.5Vの電源電圧により駆動される。そして、制御回路761は、テストモード信号TMまたはロウアドレスストローブ信号RASを受け、その受けたテストモード信号TMを検出回路763,764へ出力し、ロウアドレスストローブ信号RASを検出回路763へ出力する。
【0225】
より具体的には、制御回路761は、半導体記憶装置100のテストモード時、テスト内容に応じてHレベルまたはLレベルのテストモード信号TMを受け、その受けたHレベルまたはLレベルのテストモード信号TMを検出回路763,764へ出力する。
【0226】
また、制御回路761は、半導体記憶装置100の通常動作時、Hレベルのロウアドレスストローブ信号RASを受け、その受けたHレベルのロウアドレスストローブ信号RASを検出回路763へ出力する。
【0227】
さらに、制御回路761は、半導体記憶装置100のスタンバイ時、Lレベルのロウアドレスストローブ信号RASを受け、その受けたLレベルのロウアドレスストローブ信号RASを検出回路763へ出力する。
【0228】
分割回路762は、昇圧電圧VPPを2分の1に分圧し、その分圧した分圧電圧VPDIVを検出回路763,764へ出力する。
【0229】
検出回路763は、ノードN1から供給される1.5Vの電源電圧により駆動される。そして、検出回路763は、制御回路761から受けたHレベルのロウアドレスストローブ信号RASによって活性化され、分割回路762から受けた分圧電圧VPDIVが基準電圧発生回路72から受けた基準電圧VrefSになるように、分圧電圧VPDIVを差動増幅する。すなわち、検出回路763は、分圧電圧VPDIVを検出し、その検出した分圧電圧VPDIVを発振器765へ出力する。
【0230】
検出回路764は、ノードN1から供給される1.5Vの電源電圧により駆動される。そして、検出回路764は、基準電圧発生回路72の電流源720からの信号BIASLによって活性化され、分割回路762から受けた分圧電圧VPDIVが基準電圧発生回路72から受けた基準電圧VrefSになるように、分圧電圧VPDIVを差動増幅する。すなわち、検出回路764は、分圧電圧VPDIVを検出し、その検出した分圧電圧VPDIVを発振器765へ出力する。
【0231】
Hレベルのロウアドレスストローブ信号RASは1.5Vの電圧レベルから成り、信号BIASLは0.7Vの電圧レベルから成るので、検出回路763は、検出回路764よりも速く分圧電圧VPDIVを検出して発振器765へ出力する。
【0232】
そうすると、半導体記憶装置100の通常動作時、検出回路763は、Hレベルのロウアドレスストローブ信号RASを受け、検出回路764は、信号BIASLを受けるので、検出回路763は検出回路764よりも分圧電圧VPDIVを速く検出して発振器765へ出力する。また、半導体記憶装置100のスタンバイ時、検出回路763は、Lレベルのロウアドレスストローブ信号RASを受け、検出回路764は、0.7Vの電圧から成る信号BIASLを受ける。そして、検出回路763は不活性化され、検出回路764は、通常動作時よりもゆっくりと分圧電圧VPDIVを検出して発振器765へ出力する。したがって、検出回路763は、通常動作時、分圧電圧VPDIVを検出し、検出回路764は、スタンバイ時、分圧電圧VPDIVを検出する。
【0233】
発振器765は、ノードN1から供給される1.5Vの電源電圧により駆動される。そして、発振器765は、検出回路763または764から受けた分圧電圧VPDIVの電圧レベルに応じた位相を有するクロックCLKを発生し、その発生したクロックCLKをレベル変換器766へ出力する。
【0234】
レベル変換器766は、ノードN1から1.5Vの電源電圧を受け、ノードN2から3.3Vの電源電圧を受ける。そして、レベル変換器766は、発振器765から受けたクロックCLKのHレベルを構成する電圧を1.5Vから3.3Vに変換し、その変換したクロックCLKをポンプ回路767へ出力する。
【0235】
ポンプ回路767は、ノードN2から供給される3.3Vの電源電圧により駆動される。そして、ポンプ回路767は、レベル変換器766から受けたクロックCLKに同期してキャリアをポンピングして昇圧電圧VPPを発生する。なお、ポンプ回路767の数は、メモリセルアレイ10,20を構成するブロックの数に応じて変えられる。
【0236】
このように、VPP発生回路76は、1.5Vの電源電圧と3.3Vの電源電圧とによって駆動され、3.3Vの電源電圧を昇圧して昇圧電圧VPPを発生する。
【0237】
図10を参照して、分割回路762は、PチャネルMOSトランジスタ110,111を含む。PチャネルMOSトランジスタ110,111は、ノードN1と接地ノードNS1との間に直列に接続される。PチャネルMOSトランジスタ110のサイズは、PチャネルMOSトランジスタ111のサイズと等しい。PチャネルMOSトランジスタ110は、ノード109上の電圧をゲート端子に受け、PチャネルMOSトランジスタ111は、接地ノードNS1上の接地電圧をゲート端子に受ける。ノードN1は、3.3Vの昇圧電圧VPPが供給される。
【0238】
PチャネルMOSトランジスタ110,111は、同じ抵抗値の抵抗として機能し、ノード109上の電圧は、3.3Vの昇圧電圧VPPを2分の1に分圧した1.65Vになる。
【0239】
したがって、分割回路762は、3.3Vの昇圧電圧VPPを2分の1に分圧した1.65Vの分圧電圧VPDIVをノード109から出力する。
【0240】
検出回路763,764は、PチャネルMOSトランジスタ112,114,117と、NチャネルMOSトランジスタ113,115,116,118,119と、インバータ120,121とを含む。
【0241】
PチャネルMOSトランジスタ112,114,117、およびNチャネルMOSトランジスタ113,115,116,118,119は、薄膜MOSトランジスタである。また、インバータ120,121は、薄膜MOSトランジスタにより構成される。
【0242】
PチャネルMOSトランジスタ112およびNチャネルMOSトランジスタ113は、ノードN1とコモンソースCMSとの間に直列に接続される。PチャネルMOSトランジスタ114およびNチャネルMOSトランジスタ115は、ノードN1とコモンソースCMSとの間に直列に接続される。
【0243】
PチャネルMOSトランジスタ112およびNチャネルMOSトランジスタ113は、PチャネルMOSトランジスタ114およびNチャネルMOSトランジスタ115に対して並列に接続される。
【0244】
PチャネルMOSトランジスタ112,114は、ノード108上の電圧をゲート端子に受ける。NチャネルMOSトランジスタ113は、分割回路762からの分圧電圧VPDIVをゲート端子に受ける。NチャネルMOSトランジスタ115は、基準電圧発生回路762からの基準電圧VrefSをゲート端子に受ける。
【0245】
NチャネルMOSトランジスタ116は、コモンソースCMSと接地ノードNS1との間に接続される。NチャネルMOSトランジスタ116は、検出回路763の場合、信号ACTとしてロウアドレスストローブ信号RASをゲート端子に受け、検出回路764の場合、基準電圧発生回路72からの信号BIASLをゲート端子に受ける。
【0246】
PチャネルMOSトランジスタ117およびNチャネルMOSトランジスタ118,119は、ノードN1と接地ノードNS1との間に直列に接続される。PチャネルMOSトランジスタ117およびNチャネルMOSトランジスタ118は、ノード107上の電圧をゲート端子に受ける。NチャネルMOSトランジスタ119は、検出回路763の場合、信号ACTとしてロウアドレスストローブ信号RASをゲート端子に受け、検出回路764の場合、基準電圧発生回路72からの信号BIASLをゲート端子に受ける。
【0247】
インバータ120は、ノード106上の信号を反転して出力し、インバータ121は、インバータ120の出力信号を反転して検出信号VPPDETを出力する。なお、インバータ120,121は、ノードN1から供給される1.5Vの電源電圧により駆動される。
【0248】
PチャネルMOSトランジスタ112,114およびNチャネルMOSトランジスタ113,115,116から成る差動増幅回路DFA2は、NチャネルMOSトランジスタ116がHレベルのロウアドレスストローブ信号RAS(すなわち、信号ACT)または0.7Vの電圧から成る信号BIASLをゲート端子に受けると活性化され、分圧電圧VPDIVを基準電圧VrefSと比較する。そして、差動増幅回路DFA2は、分圧電圧VPDIVが基準電圧VrefSよりも高いとき、PチャネルMOSトランジスタ117をオフし、かつ、NチャネルMOSトランジスタ118をオンする電圧から成るHレベルの信号をノード107から出力し、分圧電圧VPDIVが基準電圧VrefSよりも低いとき、PチャネルMOSトランジスタ117をオンし、かつ、NチャネルMOSトランジスタ118をオフする電圧から成るLレベルの信号をノード107から出力する。
【0249】
通常、分圧電圧VPDIVは1.65Vであり、基準電圧VrefSは1.5Vであるので、差動増幅回路DFA2は、Hレベルの信号をノード107から出力する。
【0250】
PチャネルMOSトランジスタ117およびNチャネルMOSトランジスタ118から成るインバータIV2は、NチャネルMOSトランジスタ119がHレベルのロウアドレスストローブ信号RAS(すなわち、信号ACT)または0.7Vの電圧から成る信号BIASLをゲート端子に受けると活性化され、ノード107から出力されたHレベルの信号を反転してLレベルの信号をノード106から出力する。
【0251】
インバータ120は、ノード106から出力されたLレベルの信号を反転してHレベルの信号を出力し、インバータ121は、インバータ120から出力されたHレベルの信号を反転してLレベルの検出信号VPPDETを発振器765へ出力する。
【0252】
図11を参照して、発振器765は、PチャネルMOSトランジスタ122,125,126,129,130,133,134,137,138,141,142と、NチャネルMOSトランジスタ123,127,128,131,132,135,136,139,140,143,144と、ANDゲート124と、インバータ105とを含む。
【0253】
PチャネルMOSトランジスタ122,125,126,129,130,133,134,137,138,141,142、およびNチャネルMOSトランジスタ123,127,128,131,132,135,136,139,140,143,144は、薄膜MOSトランジスタであり、インバータ105およびANDゲート124は、薄膜MOSトランジスタにより構成され、ノードN1から供給される1.5Vの電源電圧により駆動される。
【0254】
PチャネルMOSトランジスタ122,125,126,129,130,133,134,137,138,141,142、NチャネルMOSトランジスタ123,127,128,131,132,135,136,139,140,143,144、ANDゲート124、インバータ105は、それぞれ、図4に示す発振器712のPチャネルMOSトランジスタ7131,7133,7134,7137,7138,7141,7142,7145,7146,7149,7150、NチャネルMOSトランジスタ7132,7135,7136,7139,7140,7143,7144,7147,7148,7151,7152、NADゲート7154およびインバータ7153に相当する。
【0255】
したがって、発振器765は、図4において説明した動作により検出信号VPPDETの論理レベルに応じた位相を有するクロックCLKを発生する。
【0256】
レベル変換器766は、図8に示すレベル変換器732と同じ構成から成る。図12を参照して、ポンプ回路767は、インバータ145〜147と、PチャネルMOSトランジスタ148,152と、NチャネルMOSトランジスタ104,149〜151とを含む。
【0257】
インバータ145〜147は、厚膜MOSトランジスタにより構成され、ノードN2から供給される3.3Vの電源電圧により駆動される。また、PチャネルMOSトランジスタ148,152、およびNチャネルMOSトランジスタ104,149〜151は、厚膜MOSトランジスタである。
【0258】
インバータ145は、レベル変換器766からのクロックCLKを反転してインバータ146へ出力し、インバータ146は、インバータ145の出力信号を反転してPチャネルMOSトランジスタ152のソース端子およびドレイン端子へ出力する。インバータ147は、レベル変換器766からのクロックCLKを反転してPチャネルMOSトランジスタ148のソース端子およびドレイン端子へ出力する。
【0259】
したがって、インバータ146が出力する信号の論理レベルは、インバータ147が出力する信号の論理レベルを反転した論理レベルである。
【0260】
NチャネルMOSトランジスタ149,150は、ノードN2とノードNL4との間に並列に接続される。NチャネルMOSトランジスタ149は、ノードN2に供給される3.3Vの電源電圧をゲート端子に受ける。NチャネルMOSトランジスタ150は、ノードNL4上の電圧をゲート端子に受ける。
【0261】
NチャネルMOSトランジスタ151は、ノードN2とNチャネルMOSトランジスタ104のゲート端子との間に接続される。そして、NチャネルMOSトランジスタ151は、ノードNL4上の電圧をゲート端子に受ける。NチャネルMOSトランジスタ104は、ノードNL5とノードNL6との間に接続される。そして、NチャネルMOSトランジスタ104は、ノードNL5上の電圧をゲート端子に受ける。
【0262】
インバータ147がLレベルの信号をPチャネルMOSトランジスタ148のソース端子およびドレイン端子へ出力すると、正孔がNチャネルMOSトランジスタ149を介してノードN2からノードNL4へ流れる。そして、ノードNL4上の電圧は高くなる。そうすると、NチャネルMOSトランジスタ150のチャネル幅は、ノードNL4上の電圧が高くなるのに比例して広くなり、NチャネルMOSトランジスタ150を介してノードN2からノードNL4へ流れる正孔は増加する。そして、ノードNL4上の電圧はさらに高くなる。
【0263】
このように、ノードNL4上の電圧は、インバータ147が出力する信号のLレベルの期間に比例して高くなる。
【0264】
ノードNL4上の電圧が高くなると、NチャネルMOSトランジスタ151のチャネル幅も広くなり、NチャネルMOSトランジスタ151を介してノードN2からノードNL5へ流れる正孔は増加し、ノードNL5上の電圧も高くなる。
【0265】
インバータ147がLレベルの信号を出力する期間、インバータ146はHレベルの信号をPチャネルMOSトランジスタ152のソース端子およびドレイン端子へ出力するので、PチャネルMOSトランジスタ152のチャネル領域にはソース端子およびドレイン端子から正孔が注入され、ノードNL5上の正孔は、PチャネルMOSトランジスタ152のゲート端子から遠ざかる方向にクーロン力を受ける。
【0266】
したがって、ノードNL5上の正孔は、NチャネルMOSトランジスタ104を介してノードNL6へ供給され、ノードNL6上の電圧は高くなる。そして、ノードNL6は、3.3Vの電源電圧を昇圧した3.3Vの昇圧電圧VPPを出力する。なお、昇圧電圧VPPの電圧レベルは、ノードN2に供給される電源電圧と同じ電圧レベルであるが、ノードN2に供給される電源電圧は、±0.3V程度の誤差が許容されているので、昇圧電圧VPPの電圧レベルが3.3Vであっても、ノードN2に供給された電源電圧を昇圧したことになる。
【0267】
インバータ147がHレベルの信号をPチャネルMOSトランジスタ148のソース端子およびドレイン端子へ出力し、インバータ146がLレベルの信号をPチャネルMOSトランジスタ152のソース端子およびドレイン端子へ出力する期間においては、電子がNチャネルMOSトランジスタ149,150を介してノードN2からノードNL4へ流れる。
【0268】
そうすると、ノードNL4上の電圧は若干低くなり、NチャネルMOSトランジスタ150のチャネル幅も狭くなる。そして、NチャネルMOSトランジスタ151を介してノードN2からノードNL5へ流れる正孔は減少し、ノードNL5に供給された正孔は、PチャネルMOSトランジスタ152のゲート端子に引き寄せられる。
【0269】
したがって、この期間、ノードNL6上の昇圧電圧VPPは若干低くなる。
そして、インバータ147がLレベルの信号をPチャネルMOSトランジスタ148のソース端子およびドレイン端子へ出力し、インバータ146がHレベルの信号をPチャネルMOSトランジスタ152のソース端子およびドレイン端子へ出力すると、上述した動作と同じ動作によりノードNL6上の電圧は昇圧される。
【0270】
このように、ポンプ回路767は、ノードNL6上の電位を大きく正電位に設定する周期と、ノードNL6上の電位を若干低下させる周期とを繰返しながら3.3Vの昇圧電圧VPPを出力する。そして、このノードNL6上の電位を大きく正電位に設定する周期と、ノードNL6上の電位を若干低下させる周期とを繰返す動作がポンピングに相当する。
【0271】
図13および図14を参照して、レベル変換器766の好ましい実施の形態について説明する。図13を参照して、インバータ188を駆動するための1.5Vの電源電圧がノードN1に供給されておらず、インバータ189,190を駆動するための3.3Vの電源電圧がノードN2に供給されているとき、レベル変換器766が誤動作する可能性がある。
【0272】
すなわち、発振器765から出力されるクロックCLKがLレベルであるとき、PチャネルMOSトランジスタ183はオンされ、NチャネルMOSトランジスタ184はオフされる。そして、インバータ188は、駆動電源が供給されていないので、接地電圧から成るLレベルの信号をPチャネルMOSトランジスタ186およびNチャネルMOSトランジスタ187のゲート端子へ出力する。
【0273】
そうすると、PチャネルMOSトランジスタ186はオンされ、NチャネルMOSトランジスタ187はオフされる。そして、ノード191,192上の電圧は、ノードN2に供給される3.3Vの電源電圧に引っ張られて上昇する。その結果、インバータ189は、常時、Hレベルの信号を受け、そのHレベルの信号を反転して接地電圧から成るLレベルの信号をインバータ190へ出力し、インバータ190は、Lレベルの信号を反転して3.3Vの電源電圧から成るHレベルの信号をポンプ回路767へ出力する。これは、HレベルのクロックCLKが入力された場合も生じる。
【0274】
したがって、3.3Vの電源電圧が供給され、1.5Vの電源電圧が供給されていないとき、レベル変換器766は誤動作する可能性がある。
【0275】
そこで、図14に示すようにレベル変換器は、好ましくは、リセット信号RESETによりリセットする機能を備える。図14を参照して、レベル変換器766Aは、レベル変換器766(図8に示すレベル変換器732と同じ回路構成)にNチャネルMOSトランジスタ193と、リセット回路CKTREとを追加したものであり、その他はレベル変換器766と同じである。
【0276】
リセット回路CKTREは、PチャネルMOSトランジスタ194と、NチャネルMOSトランジスタ195と、インバータ196,197とを含む。
【0277】
NチャネルMOSトランジスタ193,195およびPチャネルMOSトランジスタ194は厚膜MOSトランジスタであり、インバータ196,197は厚膜MOSトランジスタにより構成される。
【0278】
NチャネルMOSトランジスタ193は、ノード192と接地ノードNS1との間に接続され、ソース端子およびドレイン端子は、それぞれ、NチャネルMOSトランジスタ187のソース端子およびドレイン端子に接続される。そして、NチャネルMOSトランジスタ193は、リセット信号RESETをゲート端子に受ける。
【0279】
PチャネルMOSトランジスタ194およびNチャネルMOSトランジスタ195は、ノードN2と接地ノードNS1との間に直列に接続される。PチャネルMOSトランジスタ194は、接地ノードNS1から接地電圧をゲート端子に受ける。NチャネルMOSトランジスタ195は、ノードN1に供給される電源電圧をゲート端子に受ける。
【0280】
インバータ196は、ノードN2に供給される3.3Vの電源電圧により駆動され、入力信号を反転してインバータ197へ出力する。インバータ197は、入力信号を反転してリセット信号RESETをNチャネルMOSトランジスタ193のゲート端子へ出力する。
【0281】
1.5Vの電源電圧および3.3Vの電源電圧が供給されているとき、PチャネルMOSトランジスタ194およびNチャネルMOSトランジスタ195はオンされ、インバータ196は、Lレベルの信号を受け、その受けたLレベルの信号を反転してHレベルの信号をインバータ197へ出力する。そして、インバータ197は、Hレベルの信号を反転してLレベルのリセット信号RESETをNチャネルMOSトランジスタ193のゲート端子へ出力する。
【0282】
そうすると、NチャネルMOSトランジスタ193はオフされ、レベル変換器766Aは、上述した動作により、クロックCLKのHレベルを構成する電圧レベルを1.5Vから3.3Vへ変換する。
【0283】
一方、1.5Vの電源電圧が供給されておらず、3.3Vの電源電圧が供給されているとき、PチャネルMOSトランジスタ194はオンされ、NチャネルMOSトランジスタ195はオフされる。そうすると、インバータ196は、Hレベルの信号を受け、その受けたHレベルの信号を反転してLレベルの信号をインバータ197へ出力する。そして、インバータ197は、Lレベルの信号を反転してHレベルのリセット信号RESETをNチャネルMOSトランジスタ193のゲート端子へ出力する。
【0284】
NチャネルMOSトランジスタ193は、Hレベルのリセット信号RESETによりオンされ、ノード192上の電圧は接地電圧になる。したがって、この場合、レベル変換器766Aは、Lレベルの信号を出力するので、誤動作を防止できる。
【0285】
このように、レベル変換器766Aを用いれば、1.5Vの電源電圧が供給されず、3.3Vの電源電圧が供給された場合も、レベル変換器における誤動作を防止できる。
【0286】
レベル変換器732にも、好ましくは、レベル変換器766Aを用いる。
1.5Vの電源電圧が供給されないとき、発振器765は、Lレベルが連続したクロックCLKを出力し、レベル変換器766Aは、Lレベルが連続したクロックCLKに応じてLレベルが連続する信号を出力する。そして、レベル変換器766Aは、1.5Vの電源電圧が供給されるまでLレベルが連続する信号を出力する。
【0287】
そうすると、ポンプ回路767は、Lレベルが連続する信号に応じて、上述したポンプ動作を行なわず、電圧レベルの低い電圧VPPを出力し、メモリセルアレイ10,20は不活性化される。
【0288】
この場合、1.5Vの電源電圧が供給されないときにレベル変換回路766Aが出力するLレベルの信号は、不活性化信号を構成する。また、レベル変換器766Aは、1.5Vの電源電圧が供給するまで不活性化信号を出力する「信号出力回路」を構成する。さらに、ポンプ回路767は、レベル変換器766A(信号出力回路)からのLレベルの信号(不活性化信号)に応じてメモリセルアレイを不活性化するための電圧レベルからなる電圧VPP(内部電圧)を発生する回路を構成する。
【0289】
再び、図2を参照して、上述したように、電源回路70に含まれるVbb発生回路71、基準電圧発生回路72、電圧降圧回路73、1/2Vcc発生回路74,75およびVPP発生回路76のうち、基準電圧発生回路72、電圧降圧回路73およびVPP発生回路76の一部の回路を厚膜MOSトランジスタにより構成し、それ以外の回路は薄膜MOSトランジスタにより構成した。
【0290】
これらの厚膜MOSトランジスタが必要な部分、すなわち、アレイ電圧VccSを出力する電圧降圧回路73および昇圧電圧VPPを出力するVPP発生回路76の一部の回路の数は、一度に活性化されるワード線の数と、ワード線の活性化に伴って活性化されるセンスアンプの個数とにより消費電流が決定されるので、アレイ容量の変化、バンク構成、I/O構成、ページサイズ(一度のロウ系の活性化でセンスアンプにラッチされるメモリセルデータの数)およびリフレッシュサイクルなどの構成に依存する。そして、これらの一部の回路の数は、最小構成のアレイに必要な電流のほぼ整数倍である。
【0291】
したがって、厚膜MOSトランジスタにより構成された回路は、メモリセルアレイに対応してユニット配置され、薄膜MOSトランジスタにより構成された回路は、シャッフル配置される。
【0292】
この発明の実施の形態1による電源回路70における各回路の配置例を図15〜図17に示す。図15および図16は、容量が4Mbの場合であり、図17は、容量が1Mbの場合である。
【0293】
図15を参照して、半導体記憶装置100Aは、メモリセルアレイ10A,10Bと、データバス40と、基準電圧発生回路72と、電圧降圧回路73と、VPP発生回路76と、テスト回路80と、回路群77とを含む。回路群77は、Vbb発生回路71および1/2Vcc発生回路74,75の電源電圧を生成する電源系と、薄膜MOSトランジスタにより構成される制御回路とを含む。
【0294】
電圧降圧回路73は、メモリセルアレイ10Aに隣接して配置される。また、VPP発生回路76は、メモリセルアレイ10Bに隣接して配置される。さらに、基準電圧発生回路72は、電圧降圧回路73に隣接して配置される。つまり、厚膜MOSトランジスタを含む基準電圧発生回路72、電圧降圧回路73およびVPP発生回路76は、メモリセルアレイ10A,10Bの配置位置に対応して配置される。
【0295】
電圧降圧回路73は、メモリセルアレイ10Aの幅W1にわたって配置され、VPP発生回路76は、メモリセルアレイ10Bの幅W1にわたって配置される。
【0296】
テスト回路80は、データバス40に隣接してデータバス40の幅W2にわたって配置される。
【0297】
基準電圧発生回路72、電圧降圧回路73、VPP発生回路76およびテスト回路80は、各回路の占有面積を考慮して配置位置が決定される。すなわち、基準電圧発生回路72、電圧降圧回路73、VPP発生回路76およびテスト回路80は、各々、一定の面積を占有する一定の大きさを有する。そして、基準電圧発生回路72、電圧降圧回路73、VPP発生回路76およびテスト回路80を配置するとき、各回路の境界を考慮して各回路は一定の大きさを有するものとして各回路を配置する。したがって、基準電圧発生回路72、電圧降圧回路73、VPP発生回路76およびテスト回路80は、ユニット化されて配置される。そして、基準電圧発生回路72を構成する素子と電圧降圧回路73を構成する素子とが入り乱れて配置されることはなく、電圧降圧回路73を構成する素子とVPP発生回路76を構成する素子とが入り乱れて配置されることもない。
【0298】
厚膜MOSトランジスタを含む回路は、メモリセルアレイ10A,10Bに対応して配置位置が決定されるとともに、メモリセルアレイ10A,10Bに隣接して配置される。これは、基準電圧発生回路72、電圧降圧回路73、およびVPP発生回路76は、メモリセルアレイ10A,10Bに含まれるメモリセルにデータを入出力するときに必要なアレイ電圧VccSおよび昇圧電圧VPPをメモリセルアレイ10A,10Bに供給するため、アレイ電圧VccSおよび昇圧電圧VPPの電圧レベルが低下するのを防止するためである。
【0299】
したがって、基準電圧発生回路72、電圧発生回路73およびVPP発生回路76は、メモリセルアレイ10A,10Bに隣接した領域に配置され、その領域内で3個にユニット化されて配置される。つまり、厚膜MOSトランジスタを含む複数の回路は、メモリセルアレイ10A,10Bに隣接した領域に配置され、厚膜MOSトランジスタを含む回路の数にユニット化されてその領域内に配置される。そして、厚膜MOSトランジスタを含む複数の回路は、メモリセルアレイ10A,10Bに隣接した領域内で、各回路を1つのユニットとして配置位置が調整され、かつ、決定される。
【0300】
回路群77に含まれる各回路は、基準電圧発生回路72、電圧降圧回路73、VPP発生回路76およびテスト回路80が配置される領域以外の領域にシャッフル配置される。回路群77に含まれる各回路については、一定の面積を占有する回路とは考えず、各回路を構成する複数の素子は、一定の範囲に存在するように配置される。つまり、各回路を構成する複数の素子は、1つの回路を構成するように1つの「かたまり」として配置される。したがって、回路群77に含まれる1つの回路を構成する素子と、もう1つの回路を構成する素子とが入り乱れて配置されることもある。回路群77に含まれる各回路は、メモリセルアレイ10A,10Bに対して共通に設けられる。
【0301】
図15に示すような配置を行なうことにより、厚膜MOSトランジスタを含む回路を基準電圧発生回路72、電圧降圧回路73およびVPP発生回路76が配置される領域に集め、薄膜MOSトランジスタを含む回路を回路群77が配置される領域に集めることができる。その結果、半導体記憶装置100Aにおけるノイズを低減できるとともに、従来の半導体記憶装置で生じていた面積ロスを少なくすることができる。
【0302】
なお、メモリセルアレイ10A,10Bの幅W1が狭くなってレイアウト条件が厳しくなった場合等には、図2および図15に示される電圧降圧回路73およびVPP発生回路76内の制御回路731,761については、これらの回路が薄膜トランジスタで構成される制御回路であるため、電圧降圧回路73またはVPP発生回路76等のユニットから除外して回路群77の中にシャッフル配置されてもよい。
【0303】
なお、回路群77における各回路の配置は、EDA(Electronic Design Automation)という自動配置装置を用いて配置してもよい。基準電圧発生回路72、電圧降圧回路73、VPP発生回路76およびテスト回路80の回路配置は、メモリセルアレイ10A,10Bの配置位置に対応させて手動で行なう。
【0304】
図16を参照して、半導体記憶装置100Bは、半導体記憶装置100Aにおいてテスト回路80を回路群77に含めるように配置した半導体記憶装置であり、その他は、半導体記憶装置100Aと同じである。
【0305】
図17を参照して、半導体記憶装置100Cは、メモリセルアレイ10Cと、データバス40と、VPP発生回路76と、電圧降圧回路73と、基準電圧発生回路72と、回路群77とを含む。
【0306】
半導体記憶装置100Cは、1Mbの容量を有する半導体記憶装置である。そして、半導体記憶装置100Cにおいては、VPP発生回路76がメモリセルアレイ10Cおよびデータバス40に接して配置され、VPP発生回路76に隣接して電圧降圧回路73が配置され、電圧降圧回路73に隣接して基準電圧発生回路72が配置される。そして、これらの基準電圧発生回路72、電圧降圧回路73およびVPP発生回路76は、各回路の占有面積に従って配置位置が調整される。
【0307】
回路群77に含まれる各回路は、基準電圧発生回路72、電圧降圧回路73およびVPP発生回路76が配置される領域以外の領域にシャッフル配置される。
【0308】
このように、この発明においては、厚膜MOSトランジスタを含む回路は、メモリセルアレイの配置位置に対応して一箇所にユニット化して配置され、薄膜MOSトランジスタを含む回路は、シャッフル配置される。そして、厚膜MOSトランジスタを含む回路の配置位置は、メモリセルアレイの容量に応じて変えられる。
【0309】
図18を参照して、この発明における「シャッフル配置」について説明する。上述したように、回路群77は、Vbb発生回路71を含む。そして、Vbb発生回路71を構成する制御回路710、検出器711、発振器712およびポンプ回路713は、それぞれ、点線で示される1つの領域内に配置される。この場合、たとえば、検出器711を構成するNチャネルMOSトランジスタ7118が発振器712を構成するNチャネルMOSトランジスタ7132に近接して配置される。したがって、検出器711を構成する複数の素子が発振器712を構成する複数の素子と入り乱れることもある。
【0310】
また、Vbb発生回路71を構成する回路のみならず、薄膜MOSトランジスタで構成される1/2Vcc発生回路74,75も点線で示される1つの領域内に配置される。
【0311】
つまり、この発明において、「シャッフル配置」とは、各回路を構成する複数の素子をランダムに配置するのではなく、各回路を構成する複数の素子を1つの回路を構成するように1つの「かたまり」として把握し、各回路をランダムに配置することを言う。そして、各回路の配置を決定する場合、各回路の境界は考慮されない。したがって、図18に示す点線は、各回路の境界を示すものではなく、各回路を構成する複数の素子が配置される領域の目安を示すものである。
【0312】
なお、半導体記憶装置100のメモリセルアレイ10,20に含まれる複数のメモリセルへデータを入出力する動作は、通常の入出力動作と同じであるので、ここでの説明は省略する。
【0313】
また、ロウコラムデコーダ30、データバス40,50、センスアンプ、およびイコライズ回路は、メモリセルアレイ10,20に含まれる複数のメモリセルにデータを入出力する「周辺回路」を構成する。
【0314】
さらに、図15および図16においては、メモリセルアレイ10A,10Bの全体を1つのメモリセルアレイと考えれば、メモリセルアレイ10A,10Bは、その1つのメモリセルアレイに含まれる複数のブロックを構成する。したがって、電圧降圧回路73は、VPP発生回路76が接するブロック10Bと異なるブロック10Aに接して配置される。
【0315】
実施の形態1によれば、半導体記憶装置は、メモリセルアレイの配置位置に対応して配置された基準電圧発生回路、電圧降圧回路およびVPP発生回路と、シャッフル配置されたVbb発生回路等を含む回路群とを備えるので、メモリセルアレイの容量が変化しても面積ロスを低減して各電源回路を配置できる。
【0316】
[実施の形態2]
図19を参照して、実施の形態2による半導体記憶装置200は、半導体記憶装置100の電源回路70を電源回路70Aに代えたものであり、その他は半導体記憶装置100と同じである。
【0317】
図20を参照して、電源回路70Aは、電源回路70のVbb発生回路71をVbb発生回路71Aに代え、VPP発生回路76をVPP発生回路76Aに代えたものであり、その他は、電源回路70と同じである。
【0318】
Vbb発生回路71Aは、Vbb発生回路71の検出回路711を検出回路711Aに代え、レベル変換器770,771を追加したものであり、その他は、Vbb発生回路71と同じである。
【0319】
レベル変換器770は、制御回路710と検出回路711Aとの間に接続される。また、レベル変換器771は、検出回路711Aと発振器712との間に接続される。
【0320】
レベル変換器770は、ノードN1から1.5Vの電源電圧を受け、ノードN2から3.3Vの電源電圧を受ける。そして、レベル変換器770は、制御回路710から受けたHレベルのテストモード信号TMを構成する電圧レベルを1.5Vから3.3Vに変換して検出回路711Aへ出力する。レベル変換器770は、より具体的には、図8または図14に示す回路構成から成る。
【0321】
検出回路711Aは、ノードN2から供給される3.3Vの電源電圧により駆動される。そして、検出回路711Aは、活性化されると、負電圧Vbbを検出し、検出信号をレベル変換器771へ出力する。
【0322】
レベル変換器771は、ノードN1から供給される1.5Vの電源電圧により駆動される。そして、レベル変換器771は、検出回路711Aから受けた検出信号を構成する電圧レベルを3.3Vから1.5Vに変換して発振器712へ出力する。
【0323】
図21を参照して、検出回路711Aは、PチャネルMOSトランジスタ7111A,7112A,7122A,7124A,7126A,7127Aと、NチャネルMOSトランジスタ7113A,7114A,7115A〜7118A,7123A,7125A,7128A,7129Aと、インバータ7130Aとを含む。なお、PチャネルMOSトランジスタ7111A,7112A,7122A,7124A,7126A,7127A、およびNチャネルMOSトランジスタ7113A,7114A,7115A〜7118A,7123A,7125A,7128A,7129Aは、厚膜MOSトランジスタであり、インバータ7130は厚膜MOSトランジスタにより構成される。
【0324】
検出回路711AのPチャネルMOSトランジスタ7111A,7112A,7122A,7124A,7126A,7127A、NチャネルMOSトランジスタ7113A,7114A,7115A〜7118A,7123A,7125A,7128A,7129A、およびインバータ7130Aは、それぞれ、検出回路711のPチャネルMOSトランジスタ7111,7112,7122,7124,7126,7127、NチャネルMOSトランジスタ7113,7114,7115〜7118,7123,7125,7128,7129、およびインバータ7130に相当する。
【0325】
検出回路711Aにおいては、ノードN2から3.3Vの電源電圧が供給される。つまり、検出回路711Aにおいては、1.5Vの電源電圧に代えて3.3Vの電源電圧が駆動電源である。
【0326】
PチャネルMOSトランジスタ7122A,7124AおよびNチャネルMOSトランジスタ7123A,7125Aから成る差動増幅回路DFA3は、NチャネルMOSトランジスタ7125Aのゲート端子に受ける電圧を、NチャネルMOSトランジスタ7123Aのゲート端子に受ける信号BIASLを構成する0.7Vの電圧と比較する。
【0327】
差動増幅回路DFA3は、カレントミラー型の差動増幅回路であり、参照電圧である信号BIASLを構成する0.7Vの電圧が、コモンソースの電位にNチャネルMOSトランジスタ7125Aのしきい値電圧を加えた電圧になるように設定されることが望ましい。
【0328】
厚膜MOSトランジスタのしきい値電圧は0.8Vであり、差動増幅回路DFA3におけるコモンソースは、接地ノードNS1であるので、NチャネルMOSトランジスタ7125Aを厚膜MOSトランジスタで構成することにより、参照電圧である信号BIASLを構成する0.7Vの電圧が、コモンソースの電位にNチャネルMOSトランジスタ7125Aのしきい値電圧を加えた電圧にほぼ等しくなる。
【0329】
したがって、実施の形態2においては、検出回路711Aを厚膜MOSトランジスタにより構成したものである。そして、検出回路711Aは、−0.7Vの負電圧Vbbを検出し、その検出信号VBBDETを3.3Vの電圧により構成して出力する。
【0330】
このように、検出回路711Aを厚膜MOSトランジスタにより構成することにより、比較用のMOSトランジスタであるNチャネルMOSトランジスタ7123Aが線形動作領域に陥るのを防止し、差動増幅回路DFA3における電圧の比較動作を、応答性およびゲインの良い領域で行なうことができる。
【0331】
図22を参照して、レベル変換器771は、インバータ198,199を含む。インバータ189,190は、直列に接続される。インバータ198,199は、ノードN1から供給される1.5Vの電源電圧により駆動される。インバータ198は、3.3Vの電源電圧から成るHレベルの検出信号VBBDETを反転した接地電圧から成るLレベルの検出信号VBBDETをインバータ199へ出力する。
【0332】
インバータ199は、接地電圧から成るLレベルの検出信号VBBDETを反転して1.5Vの電源電圧から成るHレベルの検出信号VBBDETを出力する。これにより、検出信号VBBDETを構成する電圧レベルが3.3Vから1.5Vへ変換される。
【0333】
再び、図20を参照して、VPP発生回路76Aは、VPP発生回路76の検出回路763,764をそれぞれ検出回路763A,764Aに代え、レベル変換器772,773を追加したものであり、その他はVPP発生回路76と同じである。
【0334】
レベル変換器772は、制御回路761と検出回路763A,764Aとの間に接続される。レベル変換器773は、検出回路763A,764Aと発振器765との間に接続される。
【0335】
レベル変換器772,773は、ノードN1から1.5Vの電源電圧を受け、レベル変換器772は、ノードN2から3.3Vの電源電圧を受ける。そして、レベル変換器772は、図8または図14に示す回路構成から成り、制御回路761から受けたHレベルのテストモード信号TMまたはHレベルのロウアドレスストローブ信号RASを構成する電圧レベルを1.5Vから3.3Vに変換し、その変換したHレベルのテストモード信号TMまたはHレベルのロウアドレスストローブ信号RASを検出回路763A,764Aへ出力する。
【0336】
検出回路763A,764Aは、ノードN2から供給される3.3Vの電源電圧により駆動される。検出回路763A,764Aは、それぞれ、検出回路763,764と同じ機能を果たし、検出信号VPPDETをレベル変換器773へ出力する。
【0337】
レベル変換器773は、検出回路763Aまたは764Aから受けた検出信号VPPDETを構成する電圧レベルを3.3Vから1.5Vに変換し、その変換した検出信号VPPDETを発振器765へ出力する。なお、レベル変換器773は、図21に示すレベル変換器771と同じ回路構成から成る。
【0338】
図23を参照して、検出回路763A,764Aは、PチャネルMOSトランジスタ112A,114A,117Aと、NチャネルMOSトランジスタ113A,115A,116A,118A,119Aと、インバータ120A,121Aとを含む。
【0339】
PチャネルMOSトランジスタ112A,114A,117A、およびNチャネルMOSトランジスタ113A,115A,116A,118A,119Aは、厚膜MOSトランジスタである。また、インバータ120A,121Aは、厚膜MOSトランジスタにより構成される。
【0340】
検出回路763A,764AのPチャネルMOSトランジスタ112A,114A,117A、NチャネルMOSトランジスタ113A,115A,116A,118A,119A、およびインバータ120A,121Aは、それぞれ、検出回路763,764のPチャネルMOSトランジスタ112,114,117、NチャネルMOSトランジスタ113,115,116,118,119、およびインバータ120,121に相当する。したがって、検出回路763A,764Aにおける各MOSトランジスタの動作は、上述した動作と同じである。
【0341】
検出回路763A,764Aにおいては、差動増幅回路DFA4は、1.65Vの電圧から成る分圧電圧VPDIVを1.5Vの電圧から成る基準電圧VrefSと比較する。したがって、NチャネルMOSトランジスタ113Aが線形動作領域に陥らずに、ゲインおよび応答性のよい領域で分圧電圧VPDIVが基準電圧VrefSと比較されるためには、1.65Vの電圧がコモンソースCSの電位にNチャネルMOSトランジスタ113A,115Aのしきい値電圧を加えた電圧になるようにする必要がある。
【0342】
そこで、NチャネルMOSトランジスタ113A,115A,116Aを厚膜MOSトランジスタにより構成することにより、コモンソースCSの電位(0.8V)にNチャネルMOSトランジスタ113A,115Aのしきい値電圧(0.8V)を加えた電圧(1.6V)が比較用の電圧(分圧電圧VPDIV=1.65V)にほぼ等しくなるようにした。
【0343】
これにより、差動増幅回路DFA4における比較動作を、応答性およびゲインの良い領域で行なうことができ、検出回路763A,764Aにおける分圧電圧VPDIVの検出動作を向上させることができる。
【0344】
その他は、実施の形態1と同じである。
実施の形態2によれば、2つの電圧を比較して差動増幅を行なうカレントミラー型の差動増幅回路は、厚膜MOSトランジスタにより構成され、入力される比較用の電圧は、コモンソースの電位にMOSトランジスタのしきい値電圧を加えた値にほぼ等しいので、応答性およびゲインが良い領域で2つの電圧を比較できる。その結果、検出回路における検出動作をより正確に行なうことができる。
【0345】
[実施の形態3]
図24を参照して、実施の形態3による半導体記憶装置300は、半導体記憶装置100の電源回路70を電源回路70Bに代えたものであり、その他は半導体記憶装置100と同じである。
【0346】
図25を参照して、電源回路70Bは、電源回路70のVPP発生回路76をVPP発生回路76Bに代えたものであり、その他は、電源回路70と同じである。VPP発生回路76Bは、VPP発生回路76にレベル変換器774を追加し、分割回路762を分割回路762Aに代えたものであり、その他はVPP発生回路76と同じである。
【0347】
図26を参照して、レベル変換器774は、PチャネルMOSトランジスタ201,202と、NチャネルMOSトランジスタ203〜205とを含む。PチャネルMOSトランジスタ201およびNチャネルMOSトランジスタ203は、ノードN2とノードN7との間に直列に接続される。PチャネルMOSトランジスタ202およびNチャネルMOSトランジスタ204は、ノードN2とノードN7との間に直列に接続される。PチャネルMOSトランジスタ201およびNチャネルMOSトランジスタ203は、PチャネルMOSトランジスタ202およびNチャネルMOSトランジスタ204に対して並列に接続される。
【0348】
NチャネルMOSトランジスタ205は、ノードN7と接地ノードNS1との間に接続される。PチャネルMOSトランジスタ201,202は、ノード206上の電圧をゲート端子に受ける。PチャネルMOSトランジスタ202のサイズは、PチャネルMOSトランジスタ201のサイズよりも小さい。
【0349】
NチャネルMOSトランジスタ203は、基準電圧発生回路72からの基準電圧VrefSをゲート端子に受ける。NチャネルMOSトランジスタ204は、ノード207上の電圧VrefDをゲート端子に受ける。NチャネルMOSトランジスタ205は、基準電圧発生回路72の電流源720からの信号BIASLをゲート端子に受ける。
【0350】
レベル変換器774は、NチャネルMOSトランジスタ205が信号BIASLをゲート端子に受けると活性化され、1.5Vの基準電圧VrefSを1.1Vの基準電圧VrefDに変換して出力する。PチャネルMOSトランジスタ202のサイズは、PチャネルMOSトランジスタ201のサイズよりも小さいので、ノードN2からノード207へ供給される電荷は、ノードN2からノード206へ供給される電荷よりも少ない。したがって、ノード207上の電位は、ノード206上の電位よりも低下し、1.5Vの基準電圧VrefSは、1.1Vの基準電圧VrefDに変換される。
【0351】
図27を参照して、分割回路762Aは、PチャネルMOSトランジスタ208〜210を含む。PチャネルMOSトランジスタ208〜210は、ノードN1と接地ノードNS1との間に直列にダイオード接続される。
【0352】
したがって、分割回路762Aは、ノードN1に供給された昇圧電圧VPPを3分の1に分圧し、その分圧した分圧電圧VPDIVをノード211から検出回路763,764へ出力する。
【0353】
昇圧電圧VPPは、3.3Vの電圧からなるので、分圧電圧VPDIVは1.1Vの電圧から成る。
【0354】
したがって、差動増幅回路DFA2のNチャネルMOSトランジスタ113のゲート端子に印加される電圧は、1.1Vの分圧電圧VPDIVであり、NチャネルMOSトランジスタ115のゲート端子に印加される電圧は、レベル変換器774から受ける1.1の基準電圧VrefDである。
【0355】
そうすると、NチャネルMOSトランジスタ113,115のゲート端子に印加される電圧は、差動増幅回路DFA2のコモンソースCMSの電位(0.4V=NチャネルMOSトランジスタ116のしきい値電圧)にNチャネルMOSトランジスタ113,115のしきい値電圧(0.4V)を加えた電圧(=0.4+0.4=0.8V)にほぼ等しい。
【0356】
したがって、分割回路762Aにおいて昇圧電圧VPPを3分の1に分圧することにより、差動増幅回路DFA2を薄膜MOSトランジスタにより構成しても、差動増幅回路DFA2における2つの電圧VPDIV,VrefDの比較動作を応答性およびゲインの良い領域で行なうことができる。
【0357】
上記においては、分割回路762Aは、昇圧電圧VPPを3分の1に分圧すると説明したが、この発明においては、分割回路762Aは、3分の1に限らず、一般的に、昇圧電圧VPPをn(nは自然数)分の1に分圧する回路であればよい。
【0358】
その他は、実施の形態1と同じである。
実施の形態3によれば、半導体記憶装置は、ワード線を活性化するための昇圧電圧をn分の1に分圧する分割回路を備えるので、カレントミラー型の差動増幅回路において応答性およびゲインが良い領域で2つの電圧を差動増幅することができる。その結果、昇圧電圧を正確に検出することができる。
【0359】
[実施の形態4]
図28を参照して、実施の形態4による半導体記憶装置400は、半導体記憶装置100の電源回路70を電源回路70Cに代えたものであり、その他は、半導体記憶装置100と同じである。
【0360】
図29を参照して、電源回路70Cは、電源回路70の基準電圧発生回路72を基準電圧発生回路72Aに代えたものであり、その他は、電源回路70と同じである。
【0361】
基準電圧発生回路72Aは、基準電圧発生回路72のカレントミラー回路721をカレントミラー回路721Aに代えたものであり、その他は基準電圧発生回路72と同じである。
【0362】
図30を参照して、カレントミラー回路721Aは、カレントミラー回路721のPチャネルMOSトランジスタ164およびNチャネルMOSトランジスタ165を削除し、NチャネルMOSトランジスタ166をNチャネルMOSトランジスタ213に代え、NチャネルMOSトランジスタ212を追加したものであり、その他はカレントミラー回路721と同じである。
【0363】
PチャネルMOSトランジスタ168およびNチャネルMOSトランジスタ212,213は、ノードN2と接地ノードNS1との間に直列に接続される。
【0364】
NチャネルMOSトランジスタ213は、薄膜MOSトランジスタであり、電流源720からの信号BIASLをゲート端子に受ける。また、NチャネルMOSトランジスタ212は厚膜MOSトランジスタであり、ダイオード接続される。
【0365】
NチャネルMOSトランジスタ213は、NチャネルMOSトランジスタ160,161がゲート端子に受ける電圧と同じ電圧から成る信号BIASLをゲート端子に受けるので、ノード214から接地ノードNS1へ一定の電流iを流す。
【0366】
また、3.3Vの電源電圧がノードN2に供給され、ノード169における電圧は2.5Vである。そして、ノード214における電圧は、ノード169における2.5Vの電圧をNチャネルMOSトランジスタ212のしきい値(0.8V)だけ低下させた1.7Vの電圧である。
【0367】
したがって、薄膜MOSトランジスタであるNチャネルMOSトランジスタ213のソース端子とドレイン端子との間には1.7V程度の電圧しか印加されず、NチャネルMOSトランジスタ213は、電流源720が発生した一定の電流iを信頼性よく、写し換えることができる。
【0368】
NチャネルMOSトランジスタ212は、ノード169における電圧を薄膜MOSトランジスタに印加可能な電圧まで低下し、その低下した電圧をNチャネルMOSトランジスタ213に供給するので、NチャネルMOSトランジスタ212は、薄膜MOSトランジスタであるNチャネルMOSトランジスタ213を保護する回路である。
【0369】
カレントミラー回路721Aは、カレントミラー回路721に比べ、ノードN1、PチャネルMOSトランジスタ164、NチャネルMOSトランジスタ165および接地ノードNS1が存在しないので、貫通電流がカレントミラー回路721よりも少なく、消費電流を低減することができる。
【0370】
なお、電流源720は、電流発生回路を構成する。
その他は、実施の形態1と同じである。
【0371】
実施の形態4によれば、半導体記憶装置は、貫通電流を低減して基準電圧VrefSを発生する基準電圧発生回路を備えるので、通常動作時における消費電力をさらに低減できる。
【0372】
[実施の形態5]
図31を参照して、実施の形態5による半導体記憶装置500は、接地配線520と、接地配線540とを備える。接地配線520は、3.3Vの電源電圧用の接地配線であり、接地配線540は、1.5Vの電源電圧用の接地配線である。
【0373】
接地配線520は、領域510に配置される。領域510には、厚膜MOSトランジスタを含む基準電圧発生回路72、電圧降圧回路73およびVPP発生回路76が配置される。そして、これらの基準電圧発生回路72、電圧降圧回路73およびVPP発生回路76は、接地配線510に接続される。
【0374】
また、接地配線540は、領域530に配置される。領域530には薄膜MOSトランジスタを含む1/2Vcc発生回路74,75および制御回路等が配置される。そして、これらの回路は、接地配線540に接続される。
【0375】
このように、実施の形態5による半導体記憶装置500においては、電圧レベルの高い電源電圧用の接地配線520は、電圧レベルの低い電源電圧用の接地配線540と分離される。接地配線520を接地配線540と接続すると、2つの接地配線520,540に主に別々の要因でピーク電流が生じ、それにより、接地配線520,540間で相互に電位上昇の干渉が生じる。したがって、この電位上昇の干渉を防止するために、接地配線520は、接地配線540から電気的に切離される。
【0376】
接地配線520にピーク電流が生じる例としては、アレイ電圧VccSが消費されるDRAMのセンスアンプ動作などがあり、接地配線540にピーク電流が生じる例としては、メモリセルのリード/ライト動作などがある。
【0377】
たとえば、複数のバンクを持つ半導体記憶装置では、あるバンクでリード動作中に接地配線540の電位が上昇し、その影響を受けた接地配線520の電位も上昇してしまうと、この状態で別のバンクがセンスアンプ動作を行なうと、接地配線520の電位がさらに上昇し、誤動作を引き起こすことが想定される。
【0378】
そこで、この実施の形態5による半導体記憶装置500においては、接地配線520は接地配線540から電気的に切り離される。
【0379】
なお、半導体装置に一般的に用いられているP型基板の場合、基板自体が接地電位となるため完全に絶縁することが困難であるが、基板の電気抵抗をメタル配線の抵抗と比べると、メタル配線の方が、抵抗は十分に小さいので、接地配線520を接地配線540とメタル配線で接続した場合、接地配線520と接地配線540との間でノイズが相互に干渉するが、接地配線520を接地配線540から分離したときは、接地配線520と接地配線540との間でのノイズの干渉が低減される。
【0380】
すなわち、図32を参照して、P型基板1に2つのMOSトランジスタ8,9が形成されている。MOSトランジスタ8は、厚膜MOSトランジスタであり、MOSトランジスタ9は、薄膜MOSトランジスタである。MOSトランジスタ8は、ソース端子2と、ドレイン端子3と、ゲート端子4とを含む。MOSトランジスタ9は、ソース端子5と、ドレイン端子6と、ゲート端子7とを含む。
【0381】
接地配線520は、MOSトランジスタ8のドレイン端子3に接続される。接地配線540は、MOSトランジスタ9のドレイン端子6に接続される。そして、接地配線520は、メタル配線550により接地配線540と接続される。
【0382】
そうすると、P型基板1を介したMOSトランジスタ8のドレイン端子3とMOSトランジスタ9のドレイン端子6との間の抵抗は大きく、接地配線520に発生したノイズは、メタル配線550を介して接地配線540に伝達され、接地配線540に発生したノイズは、メタル配線550を介して接地配線520に伝達される。その結果、接地配線に発生したノイズは、接地配線520,540間で相互に干渉し合う。
【0383】
一方、図33に示すように、接地配線520が接地配線540から電気的に切離されると、MOSトランジスタ8とMOSトランジスタ9との間には、P型基板1の大きな抵抗が存在するため、接地配線520に発生したノイズは、接地配線540に伝達されにくく、接地配線540に発生したノイズは、接地配線520に伝達されにくい。その結果、接地配線に発生したノイズは、接地配線520,540間で干渉しにくい。
【0384】
その他は、実施の形態1と同じである。
実施の形態5によれば、2つの異なる電源電圧用の2つの接地配線を相互に分離するので、一方の接地配線に生じたノイズが他方の接地配線へ伝達するのを防止できる。その結果、半導体記憶装置における誤動作を防止できる。
【0385】
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
【図面の簡単な説明】
【図1】実施の形態1による半導体記憶装置の概略ブロック図である。
【図2】図1に示す電源回路の回路およびブロック図である。
【図3】図2に示すVbb発生回路に含まれる検出回路の回路図である。
【図4】図2に示すVbb発生回路に含まれる発振器の回路図である。
【図5】図2に示すVbb発生回路に含まれるポンプ回路の回路図である。
【図6】図2に示す基準電圧発生回路の回路図である。
【図7】図2に示す電圧降圧回路に含まれる差動増幅回路の回路図である。
【図8】図2に示す電圧降圧回路に含まれるレベル変換器の回路図である。
【図9】図2に示す1/2Vcc発生回路の回路図である。
【図10】図2に示すVPP発生回路に含まれる分割回路および検出回路の回路図である。
【図11】図2に示すVPP発生回路に含まれる発振器の回路図である。
【図12】図2に示すVPP発生回路に含まれるポンプ回路の回路図である。
【図13】図2に示すVPP発生回路に含まれるレベル変換器の回路図およびポンプ回路のブロック図である。
【図14】図2に示すVPP発生回路に含まれるレベル変換器の他の回路図およびポンプ回路のブロック図である。
【図15】実施の形態1における4Mbの容量を有する半導体記憶装置の概略ブロック図である。
【図16】実施の形態1における4Mbの容量を有する半導体記憶装置の他の概略ブロック図である。
【図17】実施の形態1における1Mbの容量を有する半導体記憶装置の概略ブロック図である。
【図18】シャッフル配置を説明するための回路配置図である。
【図19】実施の形態2による半導体記憶装置の概略ブロック図である。
【図20】図19に示す電源回路の回路図およびブロック図である。
【図21】図20に示すVbb発生回路に含まれる検出回路の回路図である。
【図22】図20に示すVbb発生回路に含まれるレベル変換器の回路図である。
【図23】図20に示すVPP発生回路に含まれる分割回路および検出回路の回路図である。
【図24】実施の形態3による半導体記憶装置の概略ブロック図である。
【図25】図24に示す電源回路の回路図およびブロック図である。
【図26】図25に示すVPP発生回路に含まれるレベル変換器の回路図である。
【図27】図25に示すVPP発生回路に含まれる分割回路および検出回路の回路図である。
【図28】実施の形態4による半導体記憶装置の概略ブロック図である。
【図29】図28に示す電源回路の回路図およびブロック図である。
【図30】図29に示す基準電圧発生回路の回路図である。
【図31】実施の形態5による半導体記憶装置の接地配線を示す平面図である。
【図32】半導体記憶装置における断面図である。
【図33】半導体記憶装置における他の断面図である。
【図34】ロジック混載メモリの概略ブロック図である。
【図35】図34に示すDRAMの概略ブロック図である。
【図36】図35に示す電源回路の回路図およびブロック図である。
【図37】16Mbの容量を有する従来の半導体記憶装置の概略ブロック図である。
【図38】4Mbの容量を有する従来の半導体記憶装置の概略ブロック図である。
【図39】2Mbの容量を有する従来の半導体記憶装置の概略ブロック図である。
【図40】1Mbの容量を有する従来の半導体記憶装置の概略ブロック図である。
【符号の説明】
1 P型基板、2,5 ソース端子、3,6 ドレイン端子、4,7 ゲート端子、8,9 MOSトランジスタ、10,10A,10B,10C,20,801,802 メモリセルアレイ、30,803 ロウコラムデコーダ、40,50,804,805 データバス、60,710,731,761,806,852,872,902 制御回路、70,70A,70B,70C,807 電源回路、71,850 Vbb発生回路、72,72A,860 基準電圧発生回路、73,870 電圧降圧回路、74,75,880,890 1/2Vcc発生回路、76,76A,76B,900 VPP発生回路、77 回路群、80,808 テスト回路、100,100A,100B,100C,200,300,400,500 半導体記憶装置、104,113,113A,115,115A,116,116A,118,118A,119,119A,123,126,127,131,132,135,136,139,140,143,144,150,151,154,156,160,161,165,166,177,180,184,187,193,195,203〜205,212,213,734,737,875,878,7113,7113A,7114,7114A,7115〜7118,7115A〜7118A,7123,7123A,7125,7125A,7128,7128A,7129,7129A,7132,7135,7136,7139,7140,7143,7144,7147,7148,7151,7152 NチャネルMOSトランジスタ、105,120,120A,121,121A,145〜147,188〜190,196,197〜199,7130,7130A,7153,7155〜7157,IV1,IV2 インバータ、110〜112,112A,114,114A,117,117A,122,125,126,129,130,133,134,137,138,141,142,148,152,153,155,157,159,164,168,170〜175,178,181〜183,185,186,194,201,202,208〜210,735,738,874,877,7111,7111A,7112,7112A,7122,7122A,7124,7124A,7126,7126A,7127,7127A,7131,7133,7134,7137,7138,7141,7142,7145,7146,7149,7150,7158〜7163 PチャネルMOSトランジスタ、124,7154 ANDゲート、158,176,179 抵抗、162,163,169,191,192,206,207,214,7119,7119A,7121,7121A,N1〜N7,NL1〜NL6 ノード、510,530 領域、520,540 接地配線、550 メタル配線、700 ロジック混載メモリ、711,711A,763,763A,764,764A,853,904,905 検出回路、712,765,854,906 発振器、713,767,855,907〜910 ポンプ回路、720,861 電流源、721,721A,CMC カレントミラー回路、722,862 電圧発生回路、732,766,770〜774,851,871,901 レベル変換器、733,736,873,876,DFA1〜DFA4 差動増幅回路、762,762A,903 分割回路、800 DRAM、810,820 SRAM、830 ロジック回路、CMS コモンソース、CKTRE リセット回路、NOUT 出力ノード、NS1,NS2 接地ノード。
Claims (11)
- データを記憶するメモリセルアレイと、
前記メモリセルアレイに前記データを入出力する周辺回路と、
前記メモリセルアレイおよび前記周辺回路に電源電圧を供給する電源回路とを備え、
前記電源回路は、
第1のゲート酸化膜厚を有する厚膜トランジスタにより構成され、かつ、前記メモリセルアレイに前記データを入出力するための内部電圧を各々が発生するm(mは自然数)個の電圧発生回路を含む第1の電源回路群と、
前記第1のゲート酸化膜厚よりも薄い第2のゲート酸化膜厚を有する薄膜トランジスタにより構成され、各々が内部電圧を発生するn(nは自然数)個の電圧発生回路を含む第2の電源回路群とから成り、
前記第1の電源回路群は、前記メモリセルアレイに対応して前記メモリセルアレイに隣接した第1の領域に配置され、かつ、前記m個の電圧発生回路は前記第1の領域にm個にユニット化して配置され、
前記第2の電源回路群は、前記第1の領域と異なる第2の領域に配置され、かつ、前記n個の電圧発生回路は、前記第2の領域内でシャッフル配置される、半導体記憶装置。 - 前記第1の電源回路群は、
前記メモリセルアレイに含まれる複数のワード線を活性化するための昇圧電圧を発生する第1の電圧発生回路と、
前記メモリセルアレイに供給されるアレイ電圧を発生する第2の電圧発生回路と、
前記第2の電圧発生回路において用いられる基準電圧を発生する第3の電圧発生回路とから成り、
前記第1および第2の電圧発生回路は、前記メモリセルアレイに接する位置にユニット化して配置される、請求項1に記載の半導体記憶装置。 - 前記第2の電源回路群は、
前記メモリセルアレイに含まれる複数のメモリセルに供給されるセルプレート電圧を発生する第4の電圧発生回路と、
前記メモリセルアレイに含まれるビット線対をプリチャージするためのプリチャージ電圧を発生する第5の電圧発生回路と、
前記メモリセルアレイに供給される負電圧を発生する第6の電圧発生回路とから成る、請求項2に記載の半導体記憶装置。 - 前記メモリセルアレイは、当該半導体記憶装置の記憶容量に応じて決定される複数のブロックを含み、
前記第1の電圧発生回路は、前記第2の電圧発生回路が接するブロックと異なるブロックに接する位置に配置される、請求項2に記載の半導体記憶装置。 - 前記メモリセルアレイは、当該半導体記憶装置の記憶容量に応じて決定される複数のブロックを含み、
前記第2の領域は、前記複数のブロックに共通に設けられる、請求項1に記載の半導体記憶装置。 - 前記ユニット化して配置される前記m個の電圧発生回路は、昇圧電圧を発生する昇圧電圧発生回路を含み、
前記昇圧電圧発生回路は、
前記厚膜トランジスタにより構成され、前記データの入出力時に前記メモリセルアレイに供給される前記昇圧電圧を発生する第1のポンプ回路と、
前記昇圧電圧の電圧レベルを検出し、その検出した電圧レベルに応じた信号を、前記昇圧電圧の発生を制御する制御信号を生成するために出力する第1の電圧検出回路とからなり、
前記シャッフル配置されるn個の電圧発生回路は、負電圧を発生する負電圧発生回路を含み、
前記負電圧発生回路は、
前記薄膜トランジスタにより構成され、前記メモリセルアレイに供給される負電圧を発生する第2のポンプ回路と、
前記負電圧の電圧レベルを検出し、その検出した電圧レベルに応じた信号を、前記負電圧の発生を制御する制御信号を生成するために出力する第2の電圧検出回路とからなり、
前記第1および第2の電圧検出回路は、前記厚膜トランジスタを用いて構成される、請求項1に記載の半導体記憶装置。 - 前記第1の電圧検出回路は、
前記昇圧電圧を分圧した分圧電圧を出力する分圧回路と、
前記分圧電圧を第1の基準電圧と比較し、その比較結果に応じた電圧レベルから成る信号を出力するカレントミラー型の第1の差動増幅回路とを含み、
前記第1の差動増幅回路は、前記厚膜トランジスタにより構成され、
前記分圧電圧は、前記第1の差動増幅回路のコモンソースの電位に前記厚膜トランジスタのしきい値電圧を加えた電圧レベルを有し、
前記第2の電圧検出回路は、
前記負電圧の電圧レベルに対応した正電圧を出力するカレントミラー型の第2の差動増幅回路と、
前記正電圧を第2の基準電圧と比較し、その比較結果に応じた電圧レベルから成る信号を出力するカレントミラー型の第3の差動増幅回路とを含み、
前記第3の差動増幅回路は、前記厚膜トランジスタにより構成され、
前記正電圧は、前記第3の差動増幅回路のコモンソースの電位に前記厚膜トランジスタのしきい値電圧を加えた電圧レベルを有する、請求項6に記載の半導体記憶装置。 - 前記ユニット化して配置される前記m個の電圧発生回路は、昇圧電圧を発生する昇圧電圧発生回路を含み、
前記昇圧電圧発生回路は、
前記厚膜トランジスタにより構成され、前記データの入出力時に前記メモリセルアレイに供給される前記昇圧電圧を発生するポンプ回路と、
前記昇圧電圧の電圧レベルを検出し、その検出した電圧レベルに応じた信号を、前記昇圧電圧の発生を制御する制御信号を生成するために出力する電圧検出回路とを含み、
前記電圧検出回路は、
前記昇圧電圧をp(pは3以上の自然数)分の1に分圧した分圧電圧を出力する分圧回路と、
前記分圧電圧を基準電圧と比較し、その比較結果に応じた電圧レベルから成る信号を出力するカレントミラー型の差動増幅回路とを含み、
前記差動増幅回路は、前記薄膜トランジスタにより構成され、
前記分圧電圧は、前記差動増幅回路のコモンソースの電位に前記薄膜トランジスタのしきい値電圧を加えた電圧レベルを有する、請求項1に記載の半導体記憶装置。 - 前記ユニット化して配置される前記m個の電圧発生回路は、電圧発生回路を含み、
前記電圧発生回路は、
第1の電圧レベルを有する第1の電源電圧により駆動され、前記第1の電源電圧が供給されるまで不活性化信号を出力する信号出力回路と、
前記第1の電圧レベルよりも高い第2の電圧レベルを有する第2の電源電圧により駆動され、前記メモリセルアレイを動作させるための内部電圧を発生するポンプ回路とを含み、
前記ポンプ回路は、前記不活性化信号に応じて前記メモリセルアレイを不活性化するための電圧レベルから成る内部電圧を発生する、請求項1に記載の半導体記憶装置。 - 前記ユニット化して配置される前記m個の電圧発生回路は、前記データの入出力時に前記メモリセルアレイに供給される内部電圧を発生するための基準電圧を発生する基準電圧発生回路を含み、
前記基準電圧発生回路は、
一定電流を発生し、その発生した一定電流に応じた電圧レベルを有する第1の電圧を出力する電流発生回路と、
前記第1の電圧を受けて前記一定電流と同じ電流を発生し、その発生した電流に応じた電圧レベルを有する第2の電圧を出力する電流ミラー回路と、
前記第2の電圧を受け、その受けた第2の電圧に応じて前記基準電圧を発生する電圧発生回路とを含み、
前記電流発生回路は、前記薄膜トランジスタにより構成され、
前記電圧発生回路は、前記厚膜トランジスタを含み、
前記電流ミラー回路は、前記第1の電圧を受ける前記薄膜トランジスタを含む、請求項1に記載の半導体記憶装置。 - 第1の電源電圧により駆動される前記厚膜トランジスタを含む前記m個の電圧発生回路に第1の接地電圧を供給する第1の接地線と、
前記第1の電源電圧よりも低い電圧レベルを有する第2の電源電圧により駆動される前記薄膜トランジスタを含む前記n個の電圧発生回路に第2の接地電圧を供給する第2の接地線とをさらに備え、
前記第1の接地線は、前記第2の接地線と切離される、請求項1に記載の半導体記憶装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002225705A JP2004071000A (ja) | 2002-08-02 | 2002-08-02 | 半導体記憶装置 |
US10/356,560 US6819619B2 (en) | 2002-08-02 | 2003-02-03 | Semiconductor memory device allowing reduction of an area loss |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002225705A JP2004071000A (ja) | 2002-08-02 | 2002-08-02 | 半導体記憶装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004071000A true JP2004071000A (ja) | 2004-03-04 |
Family
ID=31185056
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002225705A Pending JP2004071000A (ja) | 2002-08-02 | 2002-08-02 | 半導体記憶装置 |
Country Status (2)
Country | Link |
---|---|
US (1) | US6819619B2 (ja) |
JP (1) | JP2004071000A (ja) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102004004785A1 (de) * | 2004-01-30 | 2005-08-25 | Infineon Technologies Ag | Spannungs-Pumpen-Anordnung für Halbleiter-Bauelemente |
DE102004047666B4 (de) * | 2004-09-30 | 2015-04-02 | Qimonda Ag | Speicher mit Widerstandsspeicherzelle und Bewertungsschaltung |
US7427889B2 (en) * | 2006-04-28 | 2008-09-23 | Ememory Technology Inc. | Voltage regulator outputting positive and negative voltages with the same offsets |
US8341384B2 (en) | 2008-06-06 | 2012-12-25 | Apple Inc. | Installation of software onto a computer |
KR20130015941A (ko) * | 2011-08-05 | 2013-02-14 | 에스케이하이닉스 주식회사 | 내부전압생성회로 |
KR20150025765A (ko) * | 2013-08-30 | 2015-03-11 | 에스케이하이닉스 주식회사 | 반도체 장치 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07105448B2 (ja) | 1988-03-14 | 1995-11-13 | 日本電気株式会社 | Mos型集積回路 |
JPH10228770A (ja) * | 1997-02-14 | 1998-08-25 | Mitsubishi Electric Corp | 半導体集積回路 |
JP4627827B2 (ja) * | 1999-10-28 | 2011-02-09 | ルネサスエレクトロニクス株式会社 | 半導体集積回路装置 |
US6563746B2 (en) * | 1999-11-09 | 2003-05-13 | Fujitsu Limited | Circuit for entering/exiting semiconductor memory device into/from low power consumption mode and method of controlling internal circuit at low power consumption mode |
JP2003242798A (ja) * | 2002-02-13 | 2003-08-29 | Mitsubishi Electric Corp | 半導体記憶装置 |
-
2002
- 2002-08-02 JP JP2002225705A patent/JP2004071000A/ja active Pending
-
2003
- 2003-02-03 US US10/356,560 patent/US6819619B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
US6819619B2 (en) | 2004-11-16 |
US20040022114A1 (en) | 2004-02-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5041631B2 (ja) | 半導体記憶装置 | |
US6434076B1 (en) | Refresh control circuit for low-power SRAM applications | |
CN101136244B (zh) | 半导体存储器和系统 | |
US20090257289A1 (en) | Internal voltage generator and semiconductor memory device including the same | |
US10998010B2 (en) | Systems for discharging leakage current over a range of process, voltage, temperature (PVT) conditions | |
JP3816022B2 (ja) | 半導体記憶装置 | |
US6753675B2 (en) | Method and circuit for limiting a pumped voltage | |
JPH1021699A (ja) | 半導体集積回路装置 | |
US8194476B2 (en) | Semiconductor memory device and method for operating the same | |
JP5021262B2 (ja) | 半導体メモリ装置 | |
KR100621554B1 (ko) | 반도체 메모리 장치 | |
JP4495854B2 (ja) | 半導体メモリ装置及びそれの読み出し方法 | |
CN112204495B (zh) | 用于初始化带隙电路的系统及方法 | |
US7869291B2 (en) | Precharge voltage supply circuit and semiconductor device using the same | |
JP2004071000A (ja) | 半導体記憶装置 | |
KR20030043575A (ko) | 반도체 집적 회로 | |
CN115701567B (zh) | 用于初始化带隙电路的系统和方法 | |
US20080042730A1 (en) | Internal voltage generating circuit and method for generating internal voltage using the same | |
KR0154755B1 (ko) | 가변플레이트전압 발생회로를 구비하는 반도체 메모리장치 | |
JP3410914B2 (ja) | 半導体集積回路 | |
KR100418578B1 (ko) | 반도체 메모리 장치의 비트라인 감지증폭기 제어회로 | |
US7978536B2 (en) | Semiconductor memory device and method of operating the same | |
KR0170518B1 (ko) | 승압 전원을 사용하는 디램 장치의 전원 공급 회로 | |
US5768200A (en) | Charging a sense amplifier | |
US8242835B2 (en) | Semiconductor integrated circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050711 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090127 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20090602 |