[go: up one dir, main page]

JP2004068027A - Roll for rolling - Google Patents

Roll for rolling Download PDF

Info

Publication number
JP2004068027A
JP2004068027A JP2002224310A JP2002224310A JP2004068027A JP 2004068027 A JP2004068027 A JP 2004068027A JP 2002224310 A JP2002224310 A JP 2002224310A JP 2002224310 A JP2002224310 A JP 2002224310A JP 2004068027 A JP2004068027 A JP 2004068027A
Authority
JP
Japan
Prior art keywords
roll
hardness
rolling
carbides
fracture toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002224310A
Other languages
Japanese (ja)
Inventor
Nozomi Oda
小田 望
Ryota Honda
本田 亮太
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2002224310A priority Critical patent/JP2004068027A/en
Publication of JP2004068027A publication Critical patent/JP2004068027A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a roll for rolling superior in abrasion resistance and cracking resistance. <P>SOLUTION: The roll for rolling has an outer layer contacting with a rolled stock, of which the surface hardness is 87 or higher by Shore hardness, and of which the value of a fracture toughness K1C is 75kgf/mm<SP>3/2</SP>or higher. The outer layer is further characterized by being an Fe-based alloy which includes, by wt.%, 1.0-2.6% C, 4.0-10.0% Cr, 5.0-10.0% Mo, 0-5.0% W and 3.0-8.0% V, and satisfies 12.0% ≤ 2Mo+W ≤ 20.0%, 2Mo/W ≥ 3.0, and 0.2% ≤ C-0.24V ≤ 0.7%. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、耐摩耗性、耐クラック性に優れた圧延用ロールに関する。
【0002】
【従来の技術】
圧延用ロールにおいて、圧延材と接触する外層は一般的に耐摩耗性、耐肌荒れ性、耐クラック性(耐事故性)が要求される。この要求に応えることを目論んだロール材として、Cr、Mo、W、Vなどの合金元素を各数%含有させたハイス系材料が用いられている。
【0003】
このハイス系ロール材は、V系炭化物であるMC(Mはメタルをさす)、Mo及びW系炭化物であるMCやMCなどの高硬度炭化物を晶出もしくは析出させ、Feの基地と炭化物の総和としての硬さを高め、Mo、Wにより高温での基地硬さの低下を抑えた材料であり、特に熱間圧延用ロールの外層に適する。
【0004】
ハイス系ロール材として、例えばWO88/07594号WIPO国際公開公報には、外層に金属的に接合した鋼製の軸とからなる耐摩耗複合ロールであって、外層の表面硬さがショア硬さ70以上であり、外層が重量%でC:1.5〜3.5%、Si:0.3〜3.0%、Mn:0.3〜1.5%、Cr:2〜7%、Mo:9%以下、W:20%以下、V:3〜15%及び残部実質的にFeからなり、さらにNi:5%以下、Co:5%以下、Nb:5%以下のうちいずれか1種以上を含有できることが記載されている。
【0005】
また、特開平6−122937号公報には、外層の成分が重量%でC:1.0〜3.5%、Si:3.0%以下、Mn:1.5%以下、Cr:2〜7%、Ni:5%以下、Mo:9%以下、W:20%以下、V:3〜15%及び残部実質的にFeからなり、内層として鍛鋼材もしくは鋳鋼材を用いた複合ロールにおいて、表面の圧縮残留応力を15〜35kgf/mmに付与し、ロール表面におけるショア硬さがHS70以上で、かつ外層の深さ方向100mmあたりの硬さ低下がHS3以下、引張強さが70kgf/mm以上、破壊靭性値K1Cが70kgf/mm3/2以上であることが記載されている。また、この公報中の実施例では、ロール表面におけるショア硬さがHS79〜80、破壊靭性値K1Cが76kgf/mm3/2であるロール材が記載されている。
【0006】
また、特開平2−88745号公報には、C:1.0〜3.0%、Si:0.3〜2.0%、Mn:0.3〜1.5%、Cr:4.0〜10%、Mo:3.0〜10%、W:3.0〜10%、V:2.0〜10%、Co:5.0〜10%、Ni:1.0%以下、Nb:3.0%以下、残部はFe及び不可避不純物からなる耐摩耗鋳鉄ロール材が記載されている。
【0007】
【発明が解決しようとする課題】
前記従来のハイス系ロール材においては、組織中の硬質炭化物を増加させることは、耐摩耗性の向上には有効であるものの、むやみに増やすと靭性の低下を招き、耐クラック性の低下につながる課題が依然として残されていた。このため、圧延用ロールに優れた耐摩耗性、耐クラック性の両者を具備させることは実際には難しく、圧延用ロールの用途に合わせて耐摩耗性あるいは耐クラック性のいずれかを偏重的に考慮して製造せざるを得なかった。
【0008】
そこで、本発明は上記のハイス系ロール材における問題を解消し、耐摩耗性および耐クラック性に優れた圧延用ロールを提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明者らは鋭意検討を重ねた結果、生成される炭化物の中でも比較的硬さが低く耐摩耗性を劣化させる原因となる、またクラックが粒界に沿って進展して耐クラック性を劣化させる原因となるMやM23炭化物を極力抑える必要がある。また、特にCとVとMoとWのバランスを最適な条件にすることにより、耐摩耗性に特に付与するMC、M、MC、MC炭化物を最適な範囲で生成させる必要がある。また、耐クラック性を劣化させる原因となるMC、MC炭化物を最適な範囲に抑える必要があると考えた。これらの技術的思想により、圧延材と接触するロール材をより一層高硬度化するとともに、ロール材の靭性を高めて耐クラック性を向上できる知見を得て本発明を完成した。
【0010】
すなわち、本発明の圧延用ロールは、圧延材と接触するロール外層表面の硬さがショア硬さ87以上であり、外層の破壊靭性値K1Cが75kgf/mm3/2以上であることを特徴とする。また、本発明において外層が重量%で、C:1.0〜2.6%、Cr:4.0〜10.0%、Mo:5.0〜10.0%、W:0〜5.0%、V:3.0〜8.0%を含有し、12.0%≦2Mo+W≦20.0%、2Mo/W≧3.0、0.2%≦C−0.24V≦0.7%を満足するFe基合金であることを特徴とする。
【0011】
【作用】
本発明の圧延用ロールは、圧延材と接触するロール外層表面の硬さがショア硬さ87以上であるので、従来材でのショア硬さ80程度に比べ、耐摩耗性が格段に良好となる。それとともに、外層の破壊靭性値K1Cが75kgf/mm3/2以上である優れた靭性を兼備するので、圧延事故においてもクラックの発生、進展を抑えることができる。したがって、特に熱間圧延用ロールとして有効に用いることができる。
【0012】
本発明における各成分元素の含有範囲の限定理由について説明する。
【0013】
Cは、耐摩耗性向上のための炭化物の形成と、基地への固溶による焼入れ・焼戻し時の基地硬さの向上に必要である。Cは、耐摩耗性を付与すべきMC、M、MC、MC、Mなどの炭化物を生成する。Cが1.0%未満では炭化物の生成量が不足して耐摩耗性に劣る。Cが2.6%を超えると、耐摩耗性は良好であるが、靭性が低下する。
【0014】
Crは、焼入れ性を向上させ、硬さを高くする。Crが4.0%未満ではその効果が小さい。また、10.0%を超えると、常温での残留オーステナイトが多くなるので、焼戻し回数が多くなり不経済となる。さらに、Crは比較的硬さの低いMやM23炭化物を形成し、多量の添加はこれらの炭化物が過剰となり耐摩耗性が劣化する。より好ましいCr含有量は、4.5〜7.0%である。
【0015】
Moは、焼入れ性の向上と高温硬さを得るために必要である。基地組織中に固溶して焼入れ性の向上をもたらす。また、Cと結合して硬質のMC、MC炭化物を生成する。Moが5.0%未満ではその効果が小さい。また、10.0%を超えると、CとVとMoのバランスにおいてMC、MC炭化物が多く晶出しすぎ、破壊靭性値K1Cが低下する。
【0016】
Wは、Moと同様に焼入れ性の向上と高温硬さを得るために必要である。基地の焼入れ性を上げ、Cと結合して硬質のMC、MC炭化物を生成する。Wの下限は0%である。また、5.0%を超えると、MC炭化物が増加して靭性及び耐肌荒れ性の点で好ましくない。
【0017】
Vは、耐摩耗性の向上に最も寄与する硬質な炭化物であるMC、Mを形成する。Vが3.0%未満では炭化物の生成が少なく耐摩耗性が劣化する。Vが8.0%を超えると、本発明のC含有量とのバランスにより、初晶としてオーステナイト、もしくはMC、M炭化物が晶出する。オーステナイトが初晶で晶出すれば硬さが不十分となる。また、MC、Mが初晶で晶出すれば凝固中に凝集し、圧延用ロールとして使用した場合、硬質炭化物であるMC、Mの凝集偏析が被圧延材に転写されるので好ましくない。
【0018】
12.0%≦2Mo+W≦20.0%
Mo、Wは焼入れ性の向上、炭化物形成などでその効果が類似しており、重量比で見た場合、その原子量差からMoはWのほぼ2倍の効果がある。本発明の最も特徴とするものの一つに、Mo、W含有量とショア硬さ、破壊靭性値の相関がある。2Mo+Wが12.0%以上の場合、焼入れ性の向上が顕著になり、ショア硬さ87以上を安定して確保できる。また、2Mo+Wが20.0%を超えると、MC、MCの炭化物を多く晶出させすぎ破壊靭性値K1Cが低下するので好ましくない。
【0019】
2Mo/W≧3.0
MoとWは、炭化物形成と基地硬さの上昇に関してほぼ同様な効果があるが、Wに対してMoは基地の粘さを向上させる効果を有する。また、炭化物形成においてWはMC炭化物を晶出させる効果がMoに比べて大きい。Mo、Wが形成する炭化物としてMC、MCがあるが、凝固時に晶出するMCに対してMCは粗大になりやすい。これらのことより、前述の12.0%≦2Mo+W≦20.0%を満たすにあたり、Wを多く添加すると基地粘さが向上せず粗大MCを晶出させて破壊靭性値K1Cが向上しないのでMoを多く添加したほうがよい。2Mo/W≧3.0とすることで、基地粘さを十分に向上させ、粗大MCの晶出を防止できることにより、破壊靭性値K1Cを75kgf/mm3/2以上にすることができる。
【0020】
0.2%≦C−0.24V≦0.7%
Vの含有量が多すぎるとVC炭化物にCをとられるため、基地組織のC含有量が不足して、焼入れ後の硬さが低くなる。Vの含有量が少なすぎるとVC炭化物が不足し硬さが低くなる。そこで、C、Vのバランスを考慮した0.2%≦C−0.24V≦0.7%の条件を満足すれば、ショア硬さ87以上を安定して確保できる。
【0021】
また、本発明のロール材の成分元素として、Siの含有量は0.1〜3.0%が好ましい。Siは、脱酸剤として作用し、またMC炭化物中に固溶してW、Moなどの元素を置換して含有されるため、W、Moなどの高価な元素の節減を図るために有効である。Siが0.1%未満では脱酸効果が不足して鋳造欠陥を生じやすい。また、3.0%を超えると脆化が生じやすい。
【0022】
Mnの含有量は0.1〜3.0%が好ましい。Mnは、Siと同様に脱酸作用がある。また、不純物であるSをMnSとして固定する作用がある。Mnが0.1%未満では脱酸性に乏しい。また、3.0%を超えると残留オーステナイトが生じやすくなり、安定して十分な硬さを維持できない。
【0023】
本発明の圧延用ロールは、遠心鋳造法、鋳掛け肉盛法などにより製造される。なかでも製造コスト的に有利な遠心鋳造法がより好ましい。また、本発明のロール材を外層とし、内層と金属接合させた複合ロールが好ましいが、本発明のロール材で形成される単体ロールにも当然ながら適用できる。
【0024】
【発明の実施の形態】
本発明の圧延用ロール材の実施例について以下に説明する。
【0025】
表1に示す圧延用ロール材の化学組成(重量%)にて、No.1〜4の本発明実施例の各供試材と、No.5〜11の比較例の各供試材を、1500〜1550℃まで加熱、溶解し、直径90mm、高さ90mmの円柱状の鋳型に鋳込んだ。冷却後、インゴットを取りだし、1000〜1200℃で、焼入れを行い、500〜600℃で3回焼戻しを行った。
【0026】
その後、インゴットの中央部から硬さ測定用の試験片を採取した。硬さは各供試材の表面の硬さをショア硬さ計により測定した。
【0027】
また、インゴットの中央部から破壊靭性値K1C測定用の試験片を採取した。破壊靭性値K1CはASTM E399に準拠した試験により測定した。
【0028】
供試材No.1〜4は、本発明の請求項に掲げたC、Cr、Mo、W、Vの成分範囲内で調整し、さらに本発明の2Mo+W、2Mo/WおよびC−0.24Vの各条件を満足するものである。また、供試材No.5〜11は、本発明の2Mo+W、2Mo/WおよびC−0.24Vのいずれかの条件から外れるものである。表1に、ショア硬さ及び破壊靭性値K1Cの測定結果を併記する。また、図1に各供試材における供試材表面のショア硬さと破壊靭性値K1Cの関係を示す。
【0029】
【表1】

Figure 2004068027
【0030】
表1から、ショア硬さについては、本発明の実施例である供試材No.1〜4において、2Mo+W、2Mo/WおよびC−0.24Vのいずれの条件も満足しており、ショア硬さ87以上を安定して得られることが確認できた。
【0031】
同様に、表1から、破壊靭性値K1Cについては、本発明の実施例である供試材No.1〜4において、2Mo+W、2Mo/WおよびC−0.24Vのいずれの条件も満足しており、硬さが上昇しても破壊靭性値K1Cの低下が見られず、75kgf/mm3/2以上を安定して得られることが確認できた。
【0032】
また、比較例の供試材No.5〜11では、本発明の特徴である2Mo+W、2Mo/WおよびC−0.24Vのいずれかの条件を外れるため、ショア硬さ87以上、破壊靭性値K1Cが75kgf/mm3/2以上を同時に満足し得なかった。すなわち、硬さが高いと破壊靭性値K1Cが小さく、破壊靭性値K1Cが大きいと硬さが不足し、十分な耐摩耗性と耐クラック性を兼備できなかった。
【0033】
また、遠心鋳造機を用い、本発明実施例である供試材No.1の成分を胴部外層に有する胴径φ600mm、胴長1830mmの熱間圧延用の遠心鋳造製複合ロールを製造した。ロールは胴部表面の硬さがショア硬さ88、胴部端部の破壊靭性値K1Cは84kgf/mm3/2であった。さらに胴部端部の組織調査、及び超音波非破壊調査を行い、組織、欠陥の調査を行い、健全なロールであることを確認した。実際の圧延に供したところ従来の遠心鋳造複合ロールより、耐摩耗性に優れ、圧延操業に起因する耐事故性にも優れることがわかった。
【0034】
【発明の効果】
本発明の圧延用ロールは、圧延材と接触するロール外層表面の硬さがショア硬さ87以上と高硬度であるとともに、外層の破壊靭性値K1Cが75kgf/mm3/2以上と靭性が高く、耐摩耗性および耐クラック性に優れ、安定した圧延を行うことができる。
【図面の簡単な説明】
【図1】各供試材における供試材表面のショア硬さと破壊靭性値K1Cの関係を示すグラフである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a roll for rolling that is excellent in wear resistance and crack resistance.
[0002]
[Prior art]
In a roll for rolling, an outer layer that comes into contact with a rolled material generally requires wear resistance, rough surface resistance, and crack resistance (accident resistance). As a roll material intended to meet this demand, a high-speed material containing alloy elements such as Cr, Mo, W, and V each containing several percent is used.
[0003]
This high-speed roll material crystallizes or precipitates high-hardness carbides such as V-based carbides (M denotes metal), Mo and W-based carbides such as M 6 C and M 2 C, and forms a base of Fe. It is a material in which the hardness as a total of carbides and carbides is increased, and a decrease in the base hardness at high temperatures is suppressed by Mo and W, and is particularly suitable for the outer layer of a hot rolling roll.
[0004]
As a high-speed roll material, for example, WO 88/07594 discloses a wear-resistant composite roll composed of a steel shaft metallically bonded to an outer layer, and the outer layer has a Shore hardness of 70. As described above, the outer layer has a weight percentage of C: 1.5 to 3.5%, Si: 0.3 to 3.0%, Mn: 0.3 to 1.5%, Cr: 2 to 7%, Mo. : 9% or less, W: 20% or less, V: 3 to 15% and the balance substantially consisting of Fe, and further any one of Ni: 5% or less, Co: 5% or less, Nb: 5% or less It is described that the above can be contained.
[0005]
JP-A-6-122937 discloses that the components of the outer layer are expressed in terms of% by weight: C: 1.0 to 3.5%, Si: 3.0% or less, Mn: 1.5% or less, Cr: 2 to In a composite roll comprising 7%, Ni: 5% or less, Mo: 9% or less, W: 20% or less, V: 3 to 15% and the balance substantially Fe, and using a forged steel material or a cast steel material as an inner layer, A compressive residual stress of 15 to 35 kgf / mm 2 is applied to the surface, the shore hardness of the roll surface is HS 70 or more, the hardness of the outer layer per 100 mm in the depth direction is 3 HS or less, and the tensile strength is 70 kgf / mm. 2 or more, the fracture toughness value K1C is described that is 70 kgf / mm 3/2 or more. Further, in the example in this publication, a roll material having a shore hardness of HS 79 to 80 on the roll surface and a fracture toughness value K1C of 76 kgf / mm 3/2 is described.
[0006]
JP-A-2-88745 discloses that C: 1.0 to 3.0%, Si: 0.3 to 2.0%, Mn: 0.3 to 1.5%, and Cr: 4.0. -10%, Mo: 3.0-10%, W: 3.0-10%, V: 2.0-10%, Co: 5.0-10%, Ni: 1.0% or less, Nb: A wear-resistant cast iron roll material containing 3.0% or less, the balance being Fe and unavoidable impurities is described.
[0007]
[Problems to be solved by the invention]
In the conventional high-speed roll material, increasing the amount of hard carbide in the structure is effective for improving the wear resistance, but increasing the amount unnecessarily causes a decrease in toughness, leading to a decrease in crack resistance. Challenges remained. For this reason, it is actually difficult to equip the rolling roll with both excellent wear resistance and crack resistance, and either the wear resistance or the crack resistance is predominantly adjusted according to the use of the rolling roll. It had to be manufactured in consideration of it.
[0008]
Accordingly, an object of the present invention is to solve the above-mentioned problems in the high-speed roll material and to provide a roll for rolling having excellent wear resistance and crack resistance.
[0009]
[Means for Solving the Problems]
The present inventors have conducted intensive studies and found that among the carbides formed, the hardness is relatively low, which causes deterioration of wear resistance, and that cracks develop along grain boundaries and deteriorate crack resistance. It is necessary to minimize M 7 C 3 and M 23 C 6 carbides that cause the carbonization. In particular, by setting the balance of C, V, Mo, and W to optimal conditions, MC, M 4 C 3 , M 2 C, and M 6 C carbides particularly imparting to abrasion resistance are generated in an optimal range. There is a need. In addition, the inventors considered that it is necessary to suppress M 2 C and M 6 C carbides that cause deterioration of crack resistance to an optimum range. According to these technical ideas, the present invention has been completed by obtaining the knowledge that the hardness of the roll material in contact with the rolled material can be further increased and the toughness of the roll material can be improved to improve the crack resistance.
[0010]
That is, the roll for rolling of the present invention is characterized in that the hardness of the outer layer surface of the roll in contact with the rolled material is not less than 87 Shore hardness and the fracture toughness value K1C of the outer layer is not less than 75 kgf / mm 3/2. I do. In the present invention, the outer layer is represented by weight%, C: 1.0 to 2.6%, Cr: 4.0 to 10.0%, Mo: 5.0 to 10.0%, W: 0 to 5. 0%, V: 3.0-8.0%, 12.0% ≦ 2Mo + W ≦ 20.0%, 2Mo / W ≧ 3.0, 0.2% ≦ C−0.24V ≦ 0. It is a Fe-based alloy satisfying 7%.
[0011]
[Action]
Since the hardness of the outer surface of the roll in contact with the rolled material is equal to or greater than the Shore hardness of 87 in the rolling roll of the present invention, the abrasion resistance is significantly better than the Shore hardness of about 80 in the conventional material. . At the same time, since the outer layer also has excellent toughness in which the fracture toughness value K1C of the outer layer is 75 kgf / mm 3/2 or more, generation and progress of cracks can be suppressed even in a rolling accident. Therefore, it can be particularly effectively used as a roll for hot rolling.
[0012]
The reason for limiting the content range of each component element in the present invention will be described.
[0013]
C is necessary for the formation of carbides for improving wear resistance and for improving the hardness of the matrix during quenching and tempering by solid solution in the matrix. C forms carbides such as MC, M 4 C 3 , M 2 C, M 6 C, and M 7 C 3 to be provided with wear resistance. If C is less than 1.0%, the amount of carbide generated is insufficient, resulting in poor wear resistance. If C exceeds 2.6%, the wear resistance is good, but the toughness decreases.
[0014]
Cr improves the hardenability and increases the hardness. If the Cr content is less than 4.0%, the effect is small. On the other hand, if it exceeds 10.0%, the amount of retained austenite at room temperature increases, so that the number of tempering increases, which is uneconomical. Further, Cr forms M 7 C 3 and M 23 C 6 carbides having relatively low hardness, and when added in a large amount, these carbides become excessive and wear resistance deteriorates. A more preferable Cr content is 4.5 to 7.0%.
[0015]
Mo is necessary for improving hardenability and obtaining high-temperature hardness. It forms a solid solution in the base structure to improve hardenability. Further, it combines with C to form hard M 2 C and M 6 C carbides. If Mo is less than 5.0%, the effect is small. On the other hand, if it exceeds 10.0%, M 2 C and M 6 C carbides are excessively crystallized in the balance of C, V and Mo, and the fracture toughness value K1C decreases.
[0016]
W is necessary for improving hardenability and obtaining high-temperature hardness, similarly to Mo. Improves the hardenability of the matrix and combines with C to form hard M 2 C, M 6 C carbides. The lower limit of W is 0%. On the other hand, if the content exceeds 5.0%, M 6 C carbides increase, which is not preferable in terms of toughness and surface roughness resistance.
[0017]
V forms MC and M 4 C 3 which are hard carbides most contributing to the improvement of wear resistance. If V is less than 3.0%, the generation of carbides is small and the wear resistance is deteriorated. When V exceeds 8.0%, austenite or MC or M 4 C 3 carbide is crystallized as primary crystals due to the balance with the C content of the present invention. If austenite is crystallized as primary crystals, the hardness becomes insufficient. In addition, if MC and M 4 C 3 are crystallized as primary crystals, they coagulate during solidification, and when used as a rolling roll, the cohesion and segregation of MC and M 4 C 3 which are hard carbides are transferred to the material to be rolled. This is not preferred.
[0018]
12.0% ≦ 2Mo + W ≦ 20.0%
Mo and W have similar effects in improving hardenability, forming carbides, and the like, and when viewed in terms of weight ratio, Mo has approximately twice the effect of W due to its atomic weight difference. One of the most characteristic features of the present invention is the correlation between the Mo and W contents and Shore hardness and fracture toughness. When 2Mo + W is 12.0% or more, the hardenability is remarkably improved, and a Shore hardness of 87 or more can be stably secured. On the other hand, if 2Mo + W exceeds 20.0%, too much M 2 C and M 6 C carbides are crystallized, and the fracture toughness value K1C is undesirably reduced.
[0019]
2Mo / W ≧ 3.0
Mo and W have almost the same effect on carbide formation and increase in the hardness of the matrix, but Mo has the effect of improving the viscosity of the matrix with respect to W. In the formation of carbides, W has a greater effect of crystallizing M 6 C carbides than Mo. There are M 2 C and M 6 C as carbides formed by Mo and W, but M 6 C tends to be coarser than M 2 C crystallized during solidification. From these facts, in satisfying the above-mentioned 12.0% ≦ 2Mo + W ≦ 20.0%, if a large amount of W is added, the base viscosity does not improve, coarse M 6 C is crystallized, and the fracture toughness value K1C does not improve. Therefore, it is better to add a large amount of Mo. By setting 2Mo / W ≧ 3.0, the base viscosity can be sufficiently improved and the crystallization of coarse M 6 C can be prevented, so that the fracture toughness value K1C can be increased to 75 kgf / mm 3/2 or more. .
[0020]
0.2% ≦ C−0.24V ≦ 0.7%
If the content of V is too large, C is taken into the VC carbide, so that the C content of the base structure is insufficient and the hardness after quenching is low. If the content of V is too small, the amount of VC carbide is insufficient and the hardness becomes low. Therefore, if the condition of 0.2% ≦ C−0.24V ≦ 0.7% in consideration of the balance between C and V is satisfied, a Shore hardness of 87 or more can be stably secured.
[0021]
Further, the content of Si as a component element of the roll material of the present invention is preferably 0.1 to 3.0%. Si acts as a deoxidizing agent, and is dissolved in M 6 C carbide to be contained by replacing elements such as W and Mo. Therefore, in order to save expensive elements such as W and Mo, It is valid. If the content of Si is less than 0.1%, the deoxidizing effect is insufficient, and casting defects are likely to occur. If it exceeds 3.0%, embrittlement is likely to occur.
[0022]
The content of Mn is preferably from 0.1 to 3.0%. Mn has a deoxidizing effect similarly to Si. Further, it has an effect of fixing S as an impurity as MnS. If Mn is less than 0.1%, deacidification is poor. On the other hand, if the content exceeds 3.0%, retained austenite is likely to be generated, and sufficient hardness cannot be stably maintained.
[0023]
The rolling roll of the present invention is manufactured by a centrifugal casting method, a casting overlay method, or the like. Among them, a centrifugal casting method which is advantageous in terms of production cost is more preferable. In addition, a composite roll in which the roll material of the present invention is used as an outer layer and which is metal-bonded to the inner layer is preferable, but can be naturally applied to a single roll formed of the roll material of the present invention.
[0024]
BEST MODE FOR CARRYING OUT THE INVENTION
Examples of the roll material for rolling according to the present invention will be described below.
[0025]
In the chemical composition (% by weight) of the roll material for rolling shown in Table 1, Nos. 1 to 4 according to the present invention, Each of the test materials of Comparative Examples 5 to 11 was heated and melted to 1500 to 1550 ° C., and cast into a cylindrical mold having a diameter of 90 mm and a height of 90 mm. After cooling, the ingot was taken out, quenched at 1000 to 1200 ° C, and tempered at 500 to 600 ° C three times.
[0026]
Thereafter, a test piece for measuring hardness was collected from the center of the ingot. The hardness was determined by measuring the surface hardness of each test material with a Shore hardness tester.
[0027]
Further, a test piece for measuring the fracture toughness value K1C was collected from the center of the ingot. The fracture toughness value K1C was measured by a test based on ASTM E399.
[0028]
Test material No. 1 to 4 are adjusted within the component ranges of C, Cr, Mo, W and V listed in the claims of the present invention, and further satisfy the conditions of 2Mo + W, 2Mo / W and C-0.24V of the present invention. Is what you do. In addition, the test material No. 5 to 11 deviate from any of the conditions of 2Mo + W, 2Mo / W and C-0.24V of the present invention. Table 1 also shows the measurement results of the Shore hardness and the fracture toughness value K1C. FIG. 1 shows the relationship between the Shore hardness of the test material surface and the fracture toughness value K1C in each test material.
[0029]
[Table 1]
Figure 2004068027
[0030]
From Table 1, the Shore hardness was determined for the test material No. which was an example of the present invention. In each of Nos. 1 to 4, 2Mo + W, 2Mo / W, and C-0.24V were all satisfied, and it was confirmed that a Shore hardness of 87 or more was stably obtained.
[0031]
Similarly, from Table 1, regarding the fracture toughness value K1C, the test material No. which is an example of the present invention was used. In each of Nos. 1 to 4, 2Mo + W, 2Mo / W and C-0.24V were all satisfied, and even when the hardness increased, the fracture toughness value K1C did not decrease, and 75 kgf / mm 3/2 It was confirmed that the above could be obtained stably.
[0032]
In addition, the test material No. of the comparative example. In Nos. 5 to 11, any of the conditions of 2Mo + W, 2Mo / W and C-0.24V, which are the characteristics of the present invention, are out of the range, so that the Shore hardness is 87 or more and the fracture toughness value K1C is 75 kgf / mm 3/2 or more. I was not satisfied at the same time. That is, when the hardness is high, the fracture toughness value K1C is small, and when the fracture toughness value K1C is large, the hardness is insufficient, and sufficient wear resistance and crack resistance cannot be obtained.
[0033]
Further, using a centrifugal casting machine, the test material No. A hot rolled centrifugally cast composite roll having a diameter of 600 mm and a length of 1830 mm having the component 1 in the outer layer of the body was produced. The roll had a body surface hardness of Shore hardness 88 and a body toughness value K1C of fracture toughness K1C of 84 kgf / mm 3/2 . In addition, the structure of the torso end and non-destructive ultrasonic inspection were performed, and the structure and defects were checked to confirm that the roll was sound. When subjected to actual rolling, it was found that the conventional centrifugally cast composite roll had better wear resistance and also had better accident resistance due to the rolling operation.
[0034]
【The invention's effect】
The rolling roll of the present invention has a high hardness of the surface of the outer layer of the roll in contact with the rolled material, with a Shore hardness of 87 or more, and a high toughness with a fracture toughness value K1C of the outer layer of 75 kgf / mm 3/2 or more. It is excellent in wear resistance and crack resistance, and can perform stable rolling.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the Shore hardness of the test material surface and the fracture toughness value K1C in each test material.

Claims (2)

圧延材と接触するロール外層表面の硬さがショア硬さ87以上であり、外層の破壊靭性値K1Cが75kgf/mm3/2以上であることを特徴とする圧延用ロール。A roll for rolling, wherein the outer surface of the roll in contact with the rolled material has a Shore hardness of 87 or more and a fracture toughness value K1C of the outer layer of 75 kgf / mm 3/2 or more. 前記外層が重量%で、C:1.0〜2.6%、Cr:4.0〜10.0%、Mo:5.0〜10.0%、W:0〜5.0%、V:3.0〜8.0%を含有し、12.0%≦2Mo+W≦20.0%、2Mo/W≧3.0、0.2%≦C−0.24V≦0.7%を満足するFe基合金であることを特徴とする請求項1に記載の圧延用ロール。C: 1.0 to 2.6%, Cr: 4.0 to 10.0%, Mo: 5.0 to 10.0%, W: 0 to 5.0%, V : Contains 3.0 to 8.0%, and satisfies 12.0% ≦ 2Mo + W ≦ 20.0%, 2Mo / W ≧ 3.0, 0.2% ≦ C−0.24V ≦ 0.7% The rolling roll according to claim 1, wherein the roll is a Fe-based alloy.
JP2002224310A 2002-08-01 2002-08-01 Roll for rolling Pending JP2004068027A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002224310A JP2004068027A (en) 2002-08-01 2002-08-01 Roll for rolling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002224310A JP2004068027A (en) 2002-08-01 2002-08-01 Roll for rolling

Publications (1)

Publication Number Publication Date
JP2004068027A true JP2004068027A (en) 2004-03-04

Family

ID=32012305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002224310A Pending JP2004068027A (en) 2002-08-01 2002-08-01 Roll for rolling

Country Status (1)

Country Link
JP (1) JP2004068027A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114875340A (en) * 2022-04-07 2022-08-09 中钢集团邢台机械轧辊有限公司 Fixed reducing roll collar for seamless steel pipe and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01191746A (en) * 1988-01-26 1989-08-01 Kawasaki Steel Corp Production of outside layer material for rolling roll having excellent wear resistance and crack resistance
JP2000051912A (en) * 1998-08-03 2000-02-22 Hitachi Metals Ltd Roll for hot-rolling
JP2001234288A (en) * 2000-02-21 2001-08-28 Nippon Steel Corp Hot working tool materials
JP2001234289A (en) * 2000-02-28 2001-08-28 Hitachi Metals Ltd Roll for hot rolling

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01191746A (en) * 1988-01-26 1989-08-01 Kawasaki Steel Corp Production of outside layer material for rolling roll having excellent wear resistance and crack resistance
JP2000051912A (en) * 1998-08-03 2000-02-22 Hitachi Metals Ltd Roll for hot-rolling
JP2001234288A (en) * 2000-02-21 2001-08-28 Nippon Steel Corp Hot working tool materials
JP2001234289A (en) * 2000-02-28 2001-08-28 Hitachi Metals Ltd Roll for hot rolling

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114875340A (en) * 2022-04-07 2022-08-09 中钢集团邢台机械轧辊有限公司 Fixed reducing roll collar for seamless steel pipe and preparation method thereof
CN114875340B (en) * 2022-04-07 2023-07-14 中钢集团邢台机械轧辊有限公司 Fixed-diameter reducing roll collar for seamless steel tube and preparation method thereof

Similar Documents

Publication Publication Date Title
JP4381210B2 (en) High wear-resistant roll material and high wear-resistant composite roll
CN100529137C (en) Component for machine structure, method for producing same, and material for high-frequency hardening
JP4831346B2 (en) Centrifugal casting outer layer for rolling roll and method for producing the same
TWI650430B (en) Roller outer layer for rolling and composite roll for rolling
CN113661019B (en) Composite roll for rolling produced by centrifugal casting method and method for producing same
EP3581288B1 (en) Composite roll for rolling and method for producing same
JP6515957B2 (en) Roll outer layer material for rolling having excellent wear resistance and composite roll for rolling
JP4922971B2 (en) Composite roll for hot rolling and manufacturing method thereof
JP4354718B2 (en) Composite roll for hot rolling made by centrifugal casting
CN113710385A (en) Composite roll for rolling produced by centrifugal casting method and method for producing same
JP4123903B2 (en) Hot roll outer layer material and hot roll composite roll
JP4311073B2 (en) Roll outer layer material for hot rolling and composite roll for hot rolling
JP3919092B2 (en) Composite roll for hot rolling
JP3891419B2 (en) Roll for rolling
JP2007196257A (en) Roll for rolling
JP2004068027A (en) Roll for rolling
JP4259406B2 (en) Hot rolling roll
JP2003193175A (en) Single-layer sleeve roll for rolling
JP2004183085A (en) Roll for rolling
JP2003001307A (en) Roll
JP5867143B2 (en) Centrifugal cast roll outer layer material for hot rolling excellent in fatigue resistance, centrifugal cast composite roll for hot rolling, and production method thereof
JP3030077B2 (en) Abrasion-resistant composite roll excellent in crack resistance and method for producing the same
JP2000144303A (en) Outer layer material for centrifugal casting roll
JP4650734B2 (en) Composite roll for rolling
JP2003253396A (en) Roll material for hot rolling and roll for hot rolling using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070816

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070925

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080125