[go: up one dir, main page]

JP2004037133A - Rotation detector and bearing with rotation detector - Google Patents

Rotation detector and bearing with rotation detector Download PDF

Info

Publication number
JP2004037133A
JP2004037133A JP2002191594A JP2002191594A JP2004037133A JP 2004037133 A JP2004037133 A JP 2004037133A JP 2002191594 A JP2002191594 A JP 2002191594A JP 2002191594 A JP2002191594 A JP 2002191594A JP 2004037133 A JP2004037133 A JP 2004037133A
Authority
JP
Japan
Prior art keywords
rotation
angle
magnetic
magnetic line
line sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002191594A
Other languages
Japanese (ja)
Other versions
JP3973983B2 (en
Inventor
Shoji Kawahito
川人 祥二
Kenichi Iwamoto
岩本 憲市
Toru Takahashi
高橋 亨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2002191594A priority Critical patent/JP3973983B2/en
Publication of JP2004037133A publication Critical patent/JP2004037133A/en
Application granted granted Critical
Publication of JP3973983B2 publication Critical patent/JP3973983B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C41/00Other accessories, e.g. devices integrated in the bearing not relating to the bearing function as such
    • F16C41/007Encoders, e.g. parts with a plurality of alternating magnetic poles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/04Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
    • F16C19/06Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rotation detector which can be build in a small apparatus and can deliver a highly accurate rotational angle. <P>SOLUTION: The rotation detector comprises a magnetism generating means 4 arranged on the rotary side member 1, a line sensor 5 arranged on a non-rotary side member 2 and detecting the magnetism of the magnetism generating means 4, and a means 6 for calculating the rotational angle of the magnetism generating means 4 from the output of the magnetic line sensor 5. The magnetism generating means 4 has circumferential anisotropy about the center of rotation O. The magnetic line sensor 5 and the angle calculating means 6 are integrated on one semiconductor chip 9. The magnetic line sensor 5 is arranged on each side of a rectangle. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、各種の機器における回転検出、例えば小型モータの回転制御のための回転検出や、事務機器の位置検出のための回転検出に用いられる回転検出装置に関する。
【0002】
【従来の技術】
従来、コンパクトで組み立てが容易な利点に着目して、回転センサを転がり軸受に内蔵したものがある。その例を図11に示す。同図において、転がり軸受51の回転輪52にゴム製の磁気エンコーダ54を固定し、静止輪53に例えばホール素子等の磁気センサ55を配置している。このような構成を採ることにより、回転パルス信号や回転方向を得ることができる。
【0003】
【発明が解決しようとする課題】
しかし、上記の磁気エンコーダ54を設けた構造では、転がり軸受51のサイズが小さい小径軸受においては、磁気センサ55を静止輪53の外径寸法内に収容することが難しかったり、1回転での回転パルス数を500以上確保できる程度の高精度な回転角度検出が難しいなどの欠点があった。
【0004】
この発明の目的は、小型の機器に組み込みが可能で、かつ高精度な回転角度出力が可能な回転検出装置を提供することである。
この発明の他の目的は、小型化しても高精度な回転角度出力を得ることのできる回転検出装置付き軸受を提供することである。
【0005】
【課題を解決するための手段】
この発明の回転検出装置は、回転側部材に配置され、回転中心回りの円周方向異方性を有する磁気発生手段と、この磁気発生手段に回転中心の軸方向に対向して非回転側部材に配置され、上記磁気発生手段の磁気を検出する磁気ラインセンサと、この磁気ラインセンサの出力から磁気発生手段の回転角度を算出する角度算出手段とを備えたものである。
回転側部材が回転すると、磁気発生手段と磁気ラインセンサとの相対回転により、磁気ラインセンサにおける各磁気センサ素子から、回転角度に応じた検出信号が出力される。角度算出手段は、磁気ラインセンサの出力から上記回転角度を算出する。すなわち、回転により、磁気ラインセンサにおける磁気センサ素子の並びで検出される磁気発生手段の磁界パターンが変化し、その変化によって角度が算出される。ライン状に並ぶ複数の磁気センサ素子で検出するため、僅かな回転角度の違いでも検出することができる。磁気センサ素子は小さな寸法のものがあり、高密度に配列することが可能である。このため、磁気発生手段が磁気エンコーダのような細分化されたものでなくても高分解能の角度検出が可能である。磁気発生手段が細分化されている必要がないため、小型化を図っても検出に必要な磁界強度の確保が容易である。これらのため、小型化を図っても、高精度な回転角度出力が可能で、したがって小型の機器への組み込みが可能になる。また、磁界パターンの変化で角度情報を取得できるため、軸合わせ不要となり、組み立てが容易である。さらに、角度情報は、温度変動や電源電圧変動の影響を受けにくい。なお、磁気発生手段につき、回転中心回りの円周方向異方性を有するとは、磁気発生手段が上記回転中心回りに回転することで、発生磁界のN磁極範囲とS磁極範囲の回転位置が変化する形状であることを言う。磁気発生手段の全体の外形は問わない。
【0006】
上記磁気発生手段は、永久磁石、または永久磁石と磁性材とからなるものであっても良い。この場合に、磁気発生手段は一対の磁極のみを持つものであっても良い。また、上記角度算出手段は、上記磁気ラインセンサの出力から磁界分布のゼロクロスを検出して上記回転角度の算出を行うものとしても良い。すなわち、N極とS極間で変化するゼロ位置を検出して回転角度を検出する。
磁気発生手段がこのように永久磁石、または永久磁石と磁性材とからなるものであると、回転側の部材の機械的構造がシンプルでかつ堅牢に構成できる。また角度算出手段を、磁界分布のN極とS極のゼロクロスから回転角度を算出するものとすることにより、検出される角度位置の精度を向上させることができる。
【0007】
上記磁気ラインセンサは仮想の矩形の4辺における各辺に沿って配置し、各辺の磁気ラインセンサの個数を少なくとも1個以上としても良い。各辺の磁気ラインセンサは、1個であっても、複数個数が平行に設けられていても良い。
磁気ラインセンサを矩形の配置とすることで、90度ずつずれた位相の検出信号が得られ、精度の良い角度検出が簡単な演算処理で可能になる。
【0008】
このように矩形配置とする場合に、各辺に並べられる上記磁気ラインセンサの矩形の配置の内部に、上記角度算出手段を配置しても良い。この配置関係とすることにより、磁気ラインセンサの配置できない矩形内部を角度算出手段の配置箇所として有効に利用できて、磁気ラインセンサおよび角度算出手段の平面配置の効率が良く、コンパクトに配置することができる。
【0009】
上記磁気ラインセンサと角度算出手段とは、一つの半導体チップ上に集積化しても良い。角度算出手段は、この半導体チップ上に形成された集積回路とする。
このように、一つの半導体チップ上に磁気ラインセンサと角度算出手段とを集積すると、磁気ラインセンサと角度算出手段間の配線が不要となり、より一層のコンパクト化が可能で、断線等に対する信頼性も向上し、回転検出装置の組み立て作業も容易になる。特に、複数の磁気ラインセンサの配置の内部、例えば上記矩形配置の内部に角度算出手段を配置した場合は、チップサイズをより小さくすることができる。
【0010】
上記角度算出手段は、磁気ラインセンサの出力を増幅する増幅部と、その増幅されたアナログ出力をディジタル化するA/D変換部と、そのディジタル出力からノイズを除去する空間フィルタ部と、この空間フィルタ部の出力から磁界分布のゼロクロスを検出するゼロ検出部と、このゼロ検出部の出力から回転角度を算出する角度算出部とを有するものとしても良い。この構成とすることにより、回転角度出力をディジタル値で精度良く得ることができる。
【0011】
上記角度算出手段は、回転角度の算出結果をパルス変換してパルス出力するものとしても良い。このように構成することにより、回転角度出力としてインクリメンタルな信号を出力することができる。
【0012】
この発明の上記各構成の回転検出装置において、角度算出手段で算出された角度情報をワイヤレスで送信する送信器を磁気ラインセンサに隣接して設けても良い。ワイヤレスの送信器は、無線電波を用いるものであっても、光信号やその他の空間を電送可能な信号を用いるものであって良い。
ワイヤレスの送信器を用いれば、出力ケーブル無しで信号を取り出すことができる。また、この送信器を磁気ラインセンサに隣接して設けることにより、送信器付きのコンパクトな回転検出装置となる。
【0013】
この発明の回転検出装置付き軸受は、この発明における上記いずれかの構成の回転検出装置を転がり軸受に内蔵したものである。その場合に磁気発生手段は、回転側部材である回転側軌道輪に配置する。磁気ラインセンサは、非回転側部材である静止側軌道輪に配置する。
このように、転がり軸受に回転検出装置を一体化することで、軸受使用機器の部品点数、組立工数の削減、およびコンパクト化が図れる。その場合に、回転検出装置は、上記のように小型で高精度な回転角度出力が可能であるため、小径軸受等の小型の軸受においても、満足できる回転角度出力を得ることができる。
【0014】
【発明の実施の形態】
この発明の一実施形態を図面と共に説明する。図1は、この実施形態の回転検出装置の原理構成を示す。回転側部材1および非回転側部材2は、相対的に回転する回転側および非回転側の部材のことである。この回転検出装置3は、回転側部材1に配置された磁気発生手段4と、非回転側部材2に配置された磁気ラインセンサ5と、この磁気ラインセンサ5の出力から磁気発生手段4の回転角度を算出する角度算出手段6とを備える。磁気ラインセンサ5は、磁気発生手段4に対して僅かな隙間を隔てて配置される。
【0015】
磁気発生手段4は、発生する磁気が回転側部材1の回転中心Oの回りの円周方向異方性を有するものであり、永久磁石の単体、あるいは永久磁石と磁性材の複合体からなる。ここでは、磁気発生手段4は、1つの永久磁石7を2つの磁性体ヨーク8,8で挟んで一体化されたものとされて、概形が二叉のフォーク状とされ、一方の磁性体ヨーク8の一端がN磁極、他方の磁性体ヨーク8の一端がS磁極となる。磁気発生手段4をこのような構造とすることにより、シンプルでかつ堅牢に構成できる。この磁気発生手段4は、回転側部材1の回転中心Oが磁気発生手段4の中心と一致するように回転側部材1に取付けられ、回転側部材1の回転によって上記回転中心Oの回りをN磁極およびS磁極が旋回移動する。
【0016】
磁気ラインセンサ5は磁気発生手段4の磁気を検出するセンサであって、回転側部材1の回転中心Oの軸方向に向けて磁気発生手段4と対向するように、非回転側部材2に配置される。ここでは、磁気ラインセンサ5は、図2のように仮想の矩形の4辺における各辺に沿って配置され、各辺のセンサ列5A〜5Dにおける磁気センサ素子5aの個数は少なくとも1個以上とされている。この場合、前記矩形の中心は、回転側部材1の回転中心Oに一致する。磁気ラインセンサ5の検出精度を上げるためには、各センサ列5A〜5Dの個数は多いほどよく、例えば図3に示すように矩形の各辺に沿って磁気ラインセンサ5を複数列平行に配列して構成しても良い。このように構成される磁気ラインセンサ5は、非回転側部材2に取り付けられる一つの半導体チップ9の前記磁気発生手段4と対向する面上に形成される。半導体チップ9は、例えばシリコンチップである。
【0017】
角度算出手段6は集積回路からなり、半導体チップ9上に、磁気ラインセンサ5と共に集積されている。角度算出手段6は、磁気ラインセンサ5の矩形配置の内部に配置される。これにより、磁気ラインセンサ5および角度算出手段6をコンパクトに配置することができる。
図4は、角度算出手段6をアブソリュート出力を得るものとした概念構成例である。この角度算出手段6は、磁気ラインセンサ5の出力を増幅する増幅部11と、その増幅されたアナログ出力をディジタル化するA/D変換部12と、そのディジタル出力からノイズを除去する空間フィルタ部13と、この空間フィルタ部13の出力から磁界分布のゼロクロスを検出するゼロ検出部14と、このゼロ検出部14の出力から磁気発生手段4の回転角度を算出する角度算出部15とを有する。
【0018】
図5は、空間フィルタ部13のノイズ除去機能を説明する波形図である。そのうち、図5(A)は磁気ラインセンサ5の出力波形を示す。同図において、横軸はセンサ列5A〜5Dにおける各磁気センサ素子5aの並び位置を示し、縦軸は磁界強度(例えば横軸より上方がN極,下方がS極)を示す。図5(A)の波形からわかるように、磁気ラインセンサ5の出力はばらつきを持ったディジタル出力となっている。図5(B)はこの出力を周波数領域でスペクトラム表示したものであり、横軸は周波数を、縦軸は強度をそれぞれ示す。同図からわかるように、磁気ラインセンサ5の特性ばらつきは、本来の信号成分Pに対して、斜線で示すように高周波まで延びたノイズQとして重畳する。空間フィルタ部13は、磁気ラインセンサ5の出力に対して、図5(C)に示すようにディジタルフィルタFを掛けることで、図5(D)に示すように前記ノイズQを低減する。これにより、空間フィルタ部13を経たセンサ出力は、図5(E)に示すようにセンサばらつきによるノイズの低減された波形となる。このような機能を有する空間フィルタ13として、例えばくし形フィルタを使用することができる。
【0019】
図6および図7は、角度算出部15による角度算出処理の説明図である。図6(A)〜(D)は、回転側部材1が回転している時の磁気ラインセンサ5の各センサ列5A〜5Dによる出力波形図を示し、それらの横軸は各センサ列5A〜5Dにおける磁気センサ素子5aの並び位置を、縦軸は検出磁界の強度をそれぞれ示す。
いま、図7に示す位置X1とX2に磁気ラインセンサ5の検出磁界のN磁極とS磁極の境界であるゼロクロス位置があるとする。この状態で、磁気ラインセンサ5の各センサ列5A〜5Dの出力が、図6(A)〜(D)に示す信号波形となる。したがって、ゼロクロス位置X1,X2は、センサ列5A,5Cの出力から直線近似することで算出できる。
角度計算は、次式(1) で行うことができる。
θ=tan−1(2L/b)          ……(1)
ここで、θは、磁気発生手段4の回転角度θを絶対角度(アブソリュート値)で示した値である。2Lは、矩形に並べられる各磁気ラインセンサ5の1辺の長さである。bは、ゼロクロス位置X1,X2間の横方向長さである。
ゼロクロス位置X1,X2がセンサ列5B,5Dにある場合には、それらの出力から得られるゼロクロス位置データにより、上記と同様にして回転角度θが算出される。
このように、磁界分布のゼロクロスから回転角度を算出するので、検出精度を向上させることができる。また、磁界パターンから角度情報を取得するので、回転検出装置3の軸合わせが不要となり、取付けが容易となる。
【0020】
図8は、この実施形態の回転検出装置3を転がり軸受に組み込んだ例を示す。この転がり軸受20は、内輪21と外輪22の転走面間に、保持器23に保持された転動体24を介在させたものである。転動体24はボールからなり、この転がり軸受20は深溝玉軸受とされている。また、軸受空間の一端を覆うシール25が、外輪22に取付けられている。
回転軸10が嵌合する内輪21は、転動体24を介して外輪23に支持されている。外輪23は、軸受使用機器のハウジング(図示せず)に設置されている。
【0021】
内輪21には、磁気発生手段取付部材26が取付けられ、この磁気発生手段取付部材26に磁気発生手段4が取付けられている。磁気発生手段取付部材26は、内輪21の一端の内径孔を覆うように設けられ、外周縁に設けられた円筒部26aを、内輪21の肩部外周面に嵌合させることにより、内輪21に取付けられている。また、円筒部26aの近傍の側板部が内輪21の幅面に係合して軸方向の位置決めがなされている。
外輪22にはセンサ取付部材27が取付けられ、このセンサ取付部材27に、図1の磁気ラインセンサ5および角度算出手段6の集積された半導体チップ9が取付けられている。また、このセンサ取付部材27に、角度算出手段6の出力を取り出すための出力ケーブル29も取付けられている。センサ取付部材27は、外周部の先端円筒部27aを外輪22の内径面に嵌合させ、この先端円筒部27aの近傍に形成した鍔部27bを外輪22の幅面に係合させて軸方向の位置決めがなされている。
【0022】
このような構成において、磁気ラインセンサ5を構成する各磁気センサ素子5aの検出サイズを例えば10μm角とし、各センサ列5A〜5Dの素子数を200とすれば、各センサ列5A〜5Dの長さは2.0mmとなり、磁気ラインセンサ5の寸法は2mm角程度に収まる。この大きさは、代表的な小径軸受(型番♯608)の外径寸法がφ22mmであることを考えあわせれば、十分に小さな磁気ラインセンサ5と言える。
詳細は省略するが、1センサ列の素子数を200程度とした磁気ラインセンサ5を用いれば、角度分解能が0.3°の回転検出装置3が実現できると考えられ、従来の磁気エンコーダ方式の分解能の3°より、格段に性能の向上が期待できる。
さらに、半導体チップ9に隣接して、図1に鎖線で示すように無線電波などのワイヤレス送信器31や受信器(図示せず)を設ければ、上記した出力ケーブル29を用いることなく、検出信号を取り出すことができる。
【0023】
図9は、回転検出装置3における角度算出手段6の他の構成例を示すブロック図である。この角度算出手段6Aは、図4の角度算出手段6における角度算出部15の次段にパルス変換部16を設け、角度算出部15で得られた角度情報に基づき、インクリメンタルなパルス信号として検出信号を出力するようにしている。具体的には、1回転分の回転角度(360°)を、予め図10のように、所定角度ごとに「0」区間(図10で黒部分)と「1」区間(図10で白部分)に区分してROM等の記憶手段に書き込んでおく。角度算出部15で得られる回転角度θを前記記憶手段のデータと照合して、その算出回転角度θが図10の黒部分に相当するときは「0」を、白部分に相当するときは「1」をそれぞれ出力することにより、磁気発生手段4の回転に伴い、角度算出手段6Aからインクリメンタルなパルス出力が得られる。
【0024】
【発明の効果】
この発明の回転検出装置は、磁気発生手段と磁気ラインセンサとの組み合わせによって、小型・高精度の回転検出装置が実現できる。特に、磁気センサをラインセンサとすることで、少ないセンサ数で高精度が得られる。これらのため、小型の機器にも組み込みが可能なものとなる。
角度算出手段を、磁気ラインセンサの出力から磁界分布のゼロクロスを検出して角度を算出するものとした場合は、検出される角度位置の精度向上が期待できる。また、磁気ラインセンサを矩形に配置してその内部に角度算出手段を配置した場合は、空間効率良く各部品を配置することができて、よりコンパクトな構成となる。磁気ラインセンサと角度算出手段とを、一つの半導体チップ上に集積化した場合は、より一層のコンパクト化が可能で、断線等に対する信頼性も向上し、回転検出装置の組み立て作業も容易になる。
この発明の回転検出装置付き軸受は、この発明の回転検出装置を内蔵したものであるため、小型化しても高精度な回転角度出力を得ることができる。
【図面の簡単な説明】
【図1】この発明の一実施形態にかかる回転検出装置の概念構成を示す斜視図である。
【図2】同回転検出装置における半導体チップ上での磁気ラインセンサおよび角度算出手段の配置例を示す平面図である。
【図3】同回転検出装置における磁気ラインセンサの他の構成例を示す平面図である。
【図4】同回転検出装置における角度算出手段を示すブロック図である。
【図5】角度算出手段における空間フィルタ部の機能説明図である。
【図6】磁気ラインセンサの出力を示す波形図である。
【図7】角度算出手段による角度算出処理の説明図である。
【図8】同回転検出装置を備えた転がり軸受の一例を示す断面図である。
【図9】角度算出手段の他の構成例を示すブロック図である。
【図10】同角度算出手段におけるパルス変換部の処理を説明するための説明図である。
【図11】従来例の断面図である。
【符号の説明】
1…回転側部材
2…非回転側部材
3…回転検出装置
4…磁気発生手段
5…磁気ラインセンサ
5A〜5D…センサ列
6…角度算出手段
7…永久磁石
8…磁性体ヨーク
9…半導体チップ
11…増幅部
12…A/D変換部
13…空間フィルタ部
14…ゼロ検出部
15…角度算出部
16…パルス変換部
20…転がり軸受
O…回転中心
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a rotation detection device used for rotation detection in various devices, for example, rotation detection for controlling the rotation of a small motor and rotation detection for detecting the position of office equipment.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, there is a type in which a rotation sensor is incorporated in a rolling bearing, focusing on the advantage of being compact and easy to assemble. An example is shown in FIG. In the figure, a magnetic encoder 54 made of rubber is fixed to a rotating wheel 52 of a rolling bearing 51, and a magnetic sensor 55 such as a Hall element is arranged on a stationary wheel 53. By employing such a configuration, a rotation pulse signal and a rotation direction can be obtained.
[0003]
[Problems to be solved by the invention]
However, in the structure in which the magnetic encoder 54 is provided, in a small-diameter bearing in which the size of the rolling bearing 51 is small, it is difficult to accommodate the magnetic sensor 55 within the outer diameter of the stationary wheel 53, or the rotation in one rotation. There is a drawback that it is difficult to detect a rotation angle with high accuracy enough to secure 500 or more pulses.
[0004]
An object of the present invention is to provide a rotation detection device that can be incorporated into a small device and that can output a highly accurate rotation angle.
Another object of the present invention is to provide a bearing with a rotation detecting device capable of obtaining a highly accurate rotation angle output even if the bearing is downsized.
[0005]
[Means for Solving the Problems]
A rotation detecting device according to the present invention includes: a magnet generating means disposed on a rotating member and having a circumferential anisotropy around a rotation center; and a non-rotating member opposed to the magnet generating means in an axial direction of the rotation center. And a magnetic line sensor for detecting the magnetism of the magnetic generating means, and an angle calculating means for calculating the rotation angle of the magnetic generating means from the output of the magnetic line sensor.
When the rotating member rotates, a detection signal corresponding to the rotation angle is output from each magnetic sensor element of the magnetic line sensor due to the relative rotation between the magnetism generating means and the magnetic line sensor. The angle calculation means calculates the rotation angle from the output of the magnetic line sensor. That is, due to the rotation, the magnetic field pattern of the magnetism generating means detected by the arrangement of the magnetic sensor elements in the magnetic line sensor changes, and the angle is calculated based on the change. Since detection is performed by a plurality of magnetic sensor elements arranged in a line, even a slight difference in rotation angle can be detected. The magnetic sensor elements have small dimensions and can be arranged at high density. Therefore, high-resolution angle detection is possible even if the magnetism generating means is not a subdivided one such as a magnetic encoder. Since the magnetism generating means does not need to be subdivided, it is easy to secure the magnetic field strength required for detection even if the size is reduced. For these reasons, even if the size is reduced, a high-precision rotation angle output is possible, so that it can be incorporated into a small device. Further, since angle information can be obtained by a change in the magnetic field pattern, there is no need for axis alignment, and assembly is easy. Furthermore, the angle information is less susceptible to temperature fluctuations and power supply voltage fluctuations. In addition, the fact that the magnetic generating means has circumferential anisotropy around the center of rotation means that the rotating position of the generated magnetic field in the N magnetic pole range and the S magnetic pole range is It is a shape that changes. The entire outer shape of the magnetism generating means does not matter.
[0006]
The magnetism generating means may be made of a permanent magnet or a permanent magnet and a magnetic material. In this case, the magnetism generating means may have only a pair of magnetic poles. Further, the angle calculation means may detect the zero cross of the magnetic field distribution from the output of the magnetic line sensor and calculate the rotation angle. That is, the rotation angle is detected by detecting the zero position that changes between the north pole and the south pole.
If the magnetism generating means is made of a permanent magnet or a permanent magnet and a magnetic material as described above, the mechanical structure of the rotating member can be simple and robust. Further, by setting the angle calculating means to calculate the rotation angle from the zero crossing of the N pole and the S pole of the magnetic field distribution, the accuracy of the detected angular position can be improved.
[0007]
The magnetic line sensors may be arranged along each of the four sides of the virtual rectangle, and the number of magnetic line sensors on each side may be at least one or more. The number of magnetic line sensors on each side may be one, or a plurality of magnetic line sensors may be provided in parallel.
By arranging the magnetic line sensors in a rectangular shape, detection signals with phases shifted by 90 degrees can be obtained, and accurate angle detection can be performed by simple arithmetic processing.
[0008]
In such a rectangular arrangement, the angle calculating means may be arranged inside the rectangular arrangement of the magnetic line sensors arranged on each side. With this arrangement relationship, the inside of the rectangle in which the magnetic line sensor cannot be arranged can be effectively used as an arrangement place of the angle calculation means, and the magnetic line sensor and the angle calculation means can be arranged efficiently and compactly. Can be.
[0009]
The magnetic line sensor and the angle calculating means may be integrated on one semiconductor chip. The angle calculating means is an integrated circuit formed on this semiconductor chip.
In this way, when the magnetic line sensor and the angle calculating means are integrated on one semiconductor chip, wiring between the magnetic line sensor and the angle calculating means is not required, and the size can be further reduced, and the reliability against disconnection and the like can be improved. And the assembling work of the rotation detecting device is also facilitated. In particular, when the angle calculation means is arranged inside the arrangement of the plurality of magnetic line sensors, for example, inside the rectangular arrangement, the chip size can be made smaller.
[0010]
The angle calculating means includes an amplifier for amplifying the output of the magnetic line sensor, an A / D converter for digitizing the amplified analog output, a spatial filter for removing noise from the digital output, It may have a zero detection unit that detects a zero cross of the magnetic field distribution from the output of the filter unit, and an angle calculation unit that calculates the rotation angle from the output of the zero detection unit. With this configuration, the rotation angle output can be accurately obtained as a digital value.
[0011]
The angle calculating means may convert the calculation result of the rotation angle into a pulse and output a pulse. With this configuration, an incremental signal can be output as the rotation angle output.
[0012]
In the rotation detecting device having the above-mentioned configuration according to the present invention, a transmitter for wirelessly transmitting the angle information calculated by the angle calculating means may be provided adjacent to the magnetic line sensor. The wireless transmitter may use a radio wave, or may use an optical signal or another signal capable of transmitting electric space.
If a wireless transmitter is used, signals can be extracted without an output cable. Further, by providing this transmitter adjacent to the magnetic line sensor, a compact rotation detecting device with a transmitter is provided.
[0013]
A bearing with a rotation detecting device according to the present invention is one in which the rotation detecting device having any one of the above-described structures according to the present invention is incorporated in a rolling bearing. In that case, the magnetism generating means is arranged on the rotating raceway which is the rotating member. The magnetic line sensor is disposed on the stationary raceway, which is a non-rotating member.
As described above, by integrating the rotation detecting device with the rolling bearing, the number of parts and the number of assembling steps of the equipment using the bearing can be reduced, and the size can be reduced. In this case, since the rotation detecting device can output a rotation angle with high accuracy and small size as described above, a satisfactory rotation angle output can be obtained even with a small bearing such as a small-diameter bearing.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows the principle configuration of the rotation detecting device of this embodiment. The rotating member 1 and the non-rotating member 2 are members on the rotating and non-rotating sides that rotate relatively. The rotation detecting device 3 includes a magnetic generating unit 4 disposed on the rotating member 1, a magnetic line sensor 5 disposed on the non-rotating member 2, and a rotation of the magnetic generating unit 4 based on an output of the magnetic line sensor 5. And an angle calculating means 6 for calculating an angle. The magnetic line sensor 5 is arranged with a slight gap from the magnetism generating means 4.
[0015]
The magnetism generating means 4 is such that the magnetism generated has a circumferential anisotropy around the rotation center O of the rotating member 1 and is made of a single permanent magnet or a composite of a permanent magnet and a magnetic material. Here, the magnetism generating means 4 is formed by integrating one permanent magnet 7 by sandwiching it between two magnetic yokes 8, 8, and has a generally forked bifurcated shape. One end of the yoke 8 is an N magnetic pole, and one end of the other magnetic yoke 8 is an S magnetic pole. With such a structure of the magnetism generating means 4, a simple and robust structure can be achieved. The magnetic generating means 4 is attached to the rotating member 1 such that the rotation center O of the rotating member 1 coincides with the center of the magnetic generating means 4. The magnetic pole and the S magnetic pole pivot.
[0016]
The magnetic line sensor 5 is a sensor for detecting the magnetism of the magnetism generating means 4 and is arranged on the non-rotational side member 2 so as to face the magnetism generation means 4 in the axial direction of the rotation center O of the rotation side member 1. Is done. Here, the magnetic line sensors 5 are arranged along the four sides of the virtual rectangle as shown in FIG. 2, and the number of magnetic sensor elements 5a in the sensor rows 5A to 5D on each side is at least one or more. Have been. In this case, the center of the rectangle coincides with the rotation center O of the rotating member 1. In order to increase the detection accuracy of the magnetic line sensor 5, the number of the sensor rows 5A to 5D is preferably as large as possible. For example, as shown in FIG. 3, a plurality of magnetic line sensors 5 are arranged in parallel along each side of a rectangle. It is also possible to configure it. The magnetic line sensor 5 configured as described above is formed on a surface of one semiconductor chip 9 attached to the non-rotating side member 2 and facing the magnetic generation means 4. The semiconductor chip 9 is, for example, a silicon chip.
[0017]
The angle calculation means 6 is formed of an integrated circuit, and is integrated on the semiconductor chip 9 together with the magnetic line sensor 5. The angle calculation means 6 is arranged inside the rectangular arrangement of the magnetic line sensor 5. Thereby, the magnetic line sensor 5 and the angle calculating means 6 can be arranged compactly.
FIG. 4 is a conceptual configuration example in which the angle calculation means 6 obtains an absolute output. The angle calculating means 6 includes an amplifier 11 for amplifying the output of the magnetic line sensor 5, an A / D converter 12 for digitizing the amplified analog output, and a spatial filter for removing noise from the digital output. 13, a zero detector 14 for detecting a zero crossing of the magnetic field distribution from the output of the spatial filter 13, and an angle calculator 15 for calculating the rotation angle of the magnetism generating means 4 from the output of the zero detector 14.
[0018]
FIG. 5 is a waveform diagram illustrating the noise removal function of the spatial filter unit 13. FIG. 5A shows an output waveform of the magnetic line sensor 5. In the figure, the horizontal axis indicates the arrangement position of each magnetic sensor element 5a in the sensor rows 5A to 5D, and the vertical axis indicates the magnetic field strength (for example, the north pole is above the horizontal axis and the south pole is below). As can be seen from the waveform of FIG. 5A, the output of the magnetic line sensor 5 is a digital output having a variation. FIG. 5B is a spectrum display of this output in the frequency domain, where the horizontal axis indicates frequency and the vertical axis indicates intensity. As can be seen from the figure, the characteristic variation of the magnetic line sensor 5 is superimposed on the original signal component P as a noise Q extending to a high frequency as indicated by oblique lines. The spatial filter unit 13 reduces the noise Q as shown in FIG. 5D by applying a digital filter F to the output of the magnetic line sensor 5 as shown in FIG. 5C. As a result, the sensor output that has passed through the spatial filter unit 13 has a waveform with reduced noise due to sensor variations as shown in FIG. As the spatial filter 13 having such a function, for example, a comb filter can be used.
[0019]
6 and 7 are explanatory diagrams of the angle calculation processing by the angle calculation unit 15. FIGS. 6A to 6D show output waveform diagrams of the magnetic line sensors 5 by the respective sensor arrays 5A to 5D when the rotating member 1 is rotating, and the horizontal axis thereof indicates the respective sensor arrays 5A to 5D. 5D shows the arrangement position of the magnetic sensor elements 5a, and the vertical axis shows the strength of the detected magnetic field.
Now, it is assumed that there is a zero cross position at a position X1 and X2 shown in FIG. 7 which is a boundary between the N magnetic pole and the S magnetic pole of the magnetic field detected by the magnetic line sensor 5. In this state, the outputs of the sensor arrays 5A to 5D of the magnetic line sensor 5 have the signal waveforms shown in FIGS. Therefore, the zero cross positions X1 and X2 can be calculated by linear approximation from the outputs of the sensor arrays 5A and 5C.
The angle calculation can be performed by the following equation (1).
θ = tan −1 (2 L / b) (1)
Here, θ is a value indicating the rotation angle θ of the magnetism generating means 4 as an absolute angle (absolute value). 2L is the length of one side of each magnetic line sensor 5 arranged in a rectangle. b is the horizontal length between the zero cross positions X1 and X2.
When the zero cross positions X1 and X2 are located in the sensor rows 5B and 5D, the rotation angle θ is calculated in the same manner as described above, based on the zero cross position data obtained from the outputs.
As described above, since the rotation angle is calculated from the zero cross of the magnetic field distribution, the detection accuracy can be improved. In addition, since the angle information is obtained from the magnetic field pattern, the alignment of the rotation detecting device 3 is not required, and the mounting becomes easy.
[0020]
FIG. 8 shows an example in which the rotation detecting device 3 of this embodiment is incorporated in a rolling bearing. The rolling bearing 20 has a rolling element 24 held by a retainer 23 interposed between rolling surfaces of an inner ring 21 and an outer ring 22. The rolling element 24 is formed of a ball, and the rolling bearing 20 is a deep groove ball bearing. Further, a seal 25 covering one end of the bearing space is attached to the outer ring 22.
The inner race 21 to which the rotating shaft 10 fits is supported by the outer race 23 via a rolling element 24. The outer ring 23 is installed in a housing (not shown) of the equipment using the bearing.
[0021]
A magnet generating means attaching member 26 is attached to the inner ring 21, and the magnet generating means 4 is attached to the magnet generating means attaching member 26. The magnet generating means mounting member 26 is provided so as to cover the inner diameter hole at one end of the inner ring 21, and the cylindrical portion 26 a provided on the outer peripheral edge is fitted to the outer peripheral surface of the shoulder of the inner ring 21, so that Installed. Further, the side plate near the cylindrical portion 26a is engaged with the width surface of the inner race 21 to perform axial positioning.
A sensor mounting member 27 is mounted on the outer race 22, and the semiconductor chip 9 in which the magnetic line sensor 5 and the angle calculating means 6 of FIG. 1 are integrated is mounted on the sensor mounting member 27. An output cable 29 for extracting the output of the angle calculation means 6 is also attached to the sensor attachment member 27. The sensor mounting member 27 fits the distal end cylindrical portion 27a of the outer peripheral portion to the inner diameter surface of the outer ring 22 and engages the flange portion 27b formed in the vicinity of the distal end cylindrical portion 27a with the width surface of the outer ring 22 so that the axial direction is Positioning has been done.
[0022]
In such a configuration, if the detection size of each magnetic sensor element 5a constituting the magnetic line sensor 5 is, for example, 10 μm square and the number of elements of each sensor row 5A to 5D is 200, the length of each sensor row 5A to 5D is long. The height of the magnetic line sensor 5 is about 2 mm square. This size can be said to be a sufficiently small magnetic line sensor 5 in consideration of the fact that the outer diameter of a typical small-diameter bearing (model number # 608) is φ22 mm.
Although the details are omitted, it is considered that the rotation detecting device 3 having an angular resolution of 0.3 ° can be realized by using the magnetic line sensor 5 having about 200 elements in one sensor row. A remarkable improvement in performance can be expected from the resolution of 3 °.
Furthermore, if a wireless transmitter 31 or a receiver (not shown) for wireless radio waves or the like is provided adjacent to the semiconductor chip 9 as shown by a chain line in FIG. 1, detection can be performed without using the output cable 29 described above. The signal can be extracted.
[0023]
FIG. 9 is a block diagram showing another configuration example of the angle calculation means 6 in the rotation detection device 3. The angle calculating means 6A is provided with a pulse conversion section 16 at a stage subsequent to the angle calculating section 15 in the angle calculating means 6 in FIG. 4, and based on the angle information obtained by the angle calculating section 15, generates a detection signal as an incremental pulse signal. Is output. Specifically, as shown in FIG. 10, the rotation angle (360 °) for one rotation is previously set to a “0” section (black section in FIG. 10) and a “1” section (white section in FIG. 10) at predetermined angles. ) Is written in a storage means such as a ROM. The rotation angle θ obtained by the angle calculation unit 15 is compared with the data in the storage means, and “0” is set when the calculated rotation angle θ corresponds to the black portion in FIG. By outputting "1", an incremental pulse output is obtained from the angle calculation means 6A with the rotation of the magnetism generation means 4.
[0024]
【The invention's effect】
The rotation detecting device according to the present invention can realize a compact and high-precision rotation detecting device by a combination of the magnetism generating means and the magnetic line sensor. In particular, by using a magnetic sensor as a line sensor, high accuracy can be obtained with a small number of sensors. For these reasons, it can be incorporated into a small device.
If the angle calculation means calculates the angle by detecting the zero cross of the magnetic field distribution from the output of the magnetic line sensor, an improvement in the accuracy of the detected angular position can be expected. Further, when the magnetic line sensor is arranged in a rectangular shape and the angle calculating means is arranged therein, each component can be arranged with good space efficiency, resulting in a more compact configuration. When the magnetic line sensor and the angle calculating means are integrated on one semiconductor chip, further compactness is possible, reliability against disconnection and the like is improved, and the assembling work of the rotation detecting device is facilitated. .
Since the bearing with the rotation detecting device according to the present invention incorporates the rotation detecting device according to the present invention, a highly accurate rotation angle output can be obtained even when the bearing is downsized.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a conceptual configuration of a rotation detecting device according to an embodiment of the present invention.
FIG. 2 is a plan view showing an example of the arrangement of a magnetic line sensor and an angle calculation unit on a semiconductor chip in the rotation detection device.
FIG. 3 is a plan view showing another configuration example of the magnetic line sensor in the rotation detection device.
FIG. 4 is a block diagram showing an angle calculating means in the rotation detecting device.
FIG. 5 is an explanatory diagram of a function of a spatial filter unit in the angle calculating unit.
FIG. 6 is a waveform chart showing an output of a magnetic line sensor.
FIG. 7 is an explanatory diagram of an angle calculating process by an angle calculating unit.
FIG. 8 is a sectional view showing an example of a rolling bearing provided with the rotation detecting device.
FIG. 9 is a block diagram showing another configuration example of the angle calculation means.
FIG. 10 is an explanatory diagram for describing processing of a pulse conversion unit in the angle calculation unit.
FIG. 11 is a sectional view of a conventional example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Rotating side member 2 ... Non-rotating side member 3 ... Rotation detecting device 4 ... Magnetic generation means 5 ... Magnetic line sensors 5A-5D ... Sensor row 6 ... Angle calculation means 7 ... Permanent magnet 8 ... Magnetic body yoke 9 ... Semiconductor chip DESCRIPTION OF SYMBOLS 11 ... Amplification part 12 ... A / D conversion part 13 ... Spatial filter part 14 ... Zero detection part 15 ... Angle calculation part 16 ... Pulse conversion part 20 ... Rolling bearing O ... Rotation center

Claims (9)

回転側部材に配置され、回転中心回りの円周方向異方性を有する磁気発生手段と、この磁気発生手段に回転中心の軸方向に対向して非回転側部材に配置され、上記磁気発生手段の磁気を検出する磁気ラインセンサと、この磁気ラインセンサの出力から磁気発生手段の回転角度を算出する角度算出手段とを備えた回転検出装置。A magnet generating means arranged on the rotating member and having circumferential anisotropy around the center of rotation; and a magnet generating means arranged on the non-rotating member opposite to the magnet in the axial direction of the center of rotation. A rotation detecting device comprising: a magnetic line sensor for detecting the magnetism of the magnetic field sensor; 請求項1において、円周方向異方性を有する磁気発生手段が、永久磁石、または永久磁石と磁性材とからなり、上記角度算出手段は、上記磁気ラインセンサの出力から磁界分布のゼロクロスを検出して上記回転角度の算出を行うものとした回転検出装置。2. The magnetic field generating means having a circumferential anisotropy according to claim 1, wherein the magnetic generating means comprises a permanent magnet or a permanent magnet and a magnetic material, and the angle calculating means detects a zero cross of a magnetic field distribution from an output of the magnetic line sensor. And a rotation detection device for calculating the rotation angle. 請求項1または請求項2において、磁気ラインセンサを仮想の矩形の4辺における各辺に沿って配置し、各辺の磁気ラインセンサの個数を少なくとも1個以上とした回転検出装置。3. The rotation detecting device according to claim 1, wherein the magnetic line sensors are arranged along each of four sides of the virtual rectangle, and the number of magnetic line sensors on each side is at least one. 請求項3において、各辺に並べられる磁気ラインセンサの矩形の配置の内部に上記角度算出手段を配置した回転検出装置。4. The rotation detecting device according to claim 3, wherein the angle calculating means is arranged inside a rectangular arrangement of magnetic line sensors arranged on each side. 請求項1ないし請求項4のいずれかにおいて、磁気ラインセンサと角度算出手段とを、一つの半導体チップ上に集積化した回転検出装置。5. A rotation detecting device according to claim 1, wherein the magnetic line sensor and the angle calculating means are integrated on one semiconductor chip. 請求項1ないし請求項5のいずれかにおいて、上記角度算出手段は、磁気ラインセンサの出力を増幅する増幅部と、その増幅されたアナログ出力をディジタル化するA/D変換部と、そのディジタル出力からノイズを除去する空間フィルタ部と、この空間フィルタ部の出力から磁界分布のゼロクロスを検出するゼロ検出部と、このゼロ検出部の出力から回転角度を算出する角度算出部とを有するものとした回転検出装置。The angle calculating means according to any one of claims 1 to 5, wherein the angle calculating means amplifies an output of the magnetic line sensor, an A / D converter which digitizes the amplified analog output, and a digital output. A spatial filter that removes noise from the spatial filter, a zero detector that detects a zero crossing of the magnetic field distribution from the output of the spatial filter, and an angle calculator that calculates a rotation angle from the output of the zero detector. Rotation detection device. 請求項1ないし請求項6のいずれかにおいて、角度算出手段は、回転角度の算出結果をパルス変換してパルス出力するものとした回転検出装置。7. The rotation detecting device according to claim 1, wherein the angle calculation unit converts the calculation result of the rotation angle into a pulse and outputs a pulse. 請求項1ないし請求項7のいずれかにおいて、角度算出手段で算出された角度情報をワイヤレスで送信する送信器を磁気ラインセンサに隣接して設けた回転検出装置。8. The rotation detecting device according to claim 1, wherein a transmitter for wirelessly transmitting the angle information calculated by the angle calculating means is provided adjacent to the magnetic line sensor. 請求項1ないし請求項7のいずれかに記載の回転検出装置を内蔵した回転検出装置付き軸受。A bearing with a rotation detecting device incorporating the rotation detecting device according to claim 1.
JP2002191594A 2002-07-01 2002-07-01 Rotation detection device and bearing with rotation detection device Expired - Fee Related JP3973983B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002191594A JP3973983B2 (en) 2002-07-01 2002-07-01 Rotation detection device and bearing with rotation detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002191594A JP3973983B2 (en) 2002-07-01 2002-07-01 Rotation detection device and bearing with rotation detection device

Publications (2)

Publication Number Publication Date
JP2004037133A true JP2004037133A (en) 2004-02-05
JP3973983B2 JP3973983B2 (en) 2007-09-12

Family

ID=31701111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002191594A Expired - Fee Related JP3973983B2 (en) 2002-07-01 2002-07-01 Rotation detection device and bearing with rotation detection device

Country Status (1)

Country Link
JP (1) JP3973983B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006034678A (en) * 2004-07-28 2006-02-09 Olympus Corp Intra-subject orientation detection system
JP2006170720A (en) * 2004-12-14 2006-06-29 Ntn Corp Revolution detector and bearing with revolution detector
JP2006234530A (en) * 2005-02-24 2006-09-07 Ntn Corp Rotation detection device and bearing equipped therewith
JP2006343140A (en) * 2005-06-07 2006-12-21 Ntn Corp Magnetic array sensor circuit and rotation detection system using the same
WO2007034690A1 (en) 2005-09-22 2007-03-29 Ntn Corporation Bearing with rotation detecting device
JP2007085945A (en) * 2005-09-22 2007-04-05 Ntn Corp Magnetic array sensor circuit and rotation detection system using the same
JP2007178159A (en) * 2005-12-27 2007-07-12 Ntn Corp Magnetic line type angle detecting apparatus
JP2007178162A (en) * 2005-12-27 2007-07-12 Ntn Corp Magnetic line type position sensor
WO2007077700A1 (en) 2006-01-06 2007-07-12 Ntn Corporation Rotation angle detector and bearing with rotation angle detector
JP2007183154A (en) * 2006-01-06 2007-07-19 Ntn Corp Rotation angle detector and bearing with the same
WO2007105366A1 (en) 2006-03-14 2007-09-20 Ntn Corporation Rotation angle detector and bearing with rotation detector
WO2008023459A1 (en) * 2006-08-25 2008-02-28 Ntn Corporation Rotation sensor-equipped bearing device for wheel
WO2008053581A1 (en) * 2006-11-02 2008-05-08 Ntn Corporation Rotation detector and rotation detector-equipped bearing
US7609057B2 (en) 2005-09-22 2009-10-27 Ntn Corporation Rotation angle detector and bearing assembly using the same
US7728584B2 (en) 2005-08-17 2010-06-01 Ntn Corporation Rotation sensor and bearing assembly using the same
JP2010151302A (en) * 2008-11-28 2010-07-08 Aisin Aw Co Ltd Power transmission device
EP1804031A3 (en) * 2005-12-27 2011-01-26 NTN Corporation Magnetic line-type position-angle detecting device
US7948231B2 (en) 2004-12-14 2011-05-24 Ntn Corporation Rotation detecting apparatus having magnetic sensor array and bearing provided with same
US7988363B2 (en) 2005-02-22 2011-08-02 Ntn Corporation Bearing with rotation detection device
KR101417068B1 (en) 2008-04-24 2014-07-08 현대자동차주식회사 Steering angle sensor for vehicle
DE112006000444B4 (en) * 2005-02-22 2015-11-05 Ntn Corp. Bearing with rotation detection device

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006034678A (en) * 2004-07-28 2006-02-09 Olympus Corp Intra-subject orientation detection system
US8283913B2 (en) 2004-12-14 2012-10-09 Ntn Corporation Magnetic array sensor circuit having offset variation reduction circuit
US7948231B2 (en) 2004-12-14 2011-05-24 Ntn Corporation Rotation detecting apparatus having magnetic sensor array and bearing provided with same
EP1830162A4 (en) * 2004-12-14 2013-07-17 Ntn Toyo Bearing Co Ltd Rotation detecting apparatus and bearing provided with same
EP2905581A2 (en) 2004-12-14 2015-08-12 NTN Corporation Rotation detecting apparatus and bearing provided with same
JP2006170720A (en) * 2004-12-14 2006-06-29 Ntn Corp Revolution detector and bearing with revolution detector
DE112006000444B4 (en) * 2005-02-22 2015-11-05 Ntn Corp. Bearing with rotation detection device
US7988363B2 (en) 2005-02-22 2011-08-02 Ntn Corporation Bearing with rotation detection device
JP2006234530A (en) * 2005-02-24 2006-09-07 Ntn Corp Rotation detection device and bearing equipped therewith
JP2006343140A (en) * 2005-06-07 2006-12-21 Ntn Corp Magnetic array sensor circuit and rotation detection system using the same
US7728584B2 (en) 2005-08-17 2010-06-01 Ntn Corporation Rotation sensor and bearing assembly using the same
JP2007085945A (en) * 2005-09-22 2007-04-05 Ntn Corp Magnetic array sensor circuit and rotation detection system using the same
WO2007034690A1 (en) 2005-09-22 2007-03-29 Ntn Corporation Bearing with rotation detecting device
US7609057B2 (en) 2005-09-22 2009-10-27 Ntn Corporation Rotation angle detector and bearing assembly using the same
EP2154485A2 (en) 2005-09-22 2010-02-17 Ntn Corporation Rotation angle detector andbearing assembly using the same
JP2007178159A (en) * 2005-12-27 2007-07-12 Ntn Corp Magnetic line type angle detecting apparatus
JP2007178162A (en) * 2005-12-27 2007-07-12 Ntn Corp Magnetic line type position sensor
EP1804031A3 (en) * 2005-12-27 2011-01-26 NTN Corporation Magnetic line-type position-angle detecting device
WO2007077700A1 (en) 2006-01-06 2007-07-12 Ntn Corporation Rotation angle detector and bearing with rotation angle detector
EP1972900A4 (en) * 2006-01-06 2012-12-12 Ntn Toyo Bearing Co Ltd Rotation angle detector and bearing with rotation angle detector
US7884600B2 (en) 2006-01-06 2011-02-08 Ntn Corporation Rotation angle detector and bearing with rotation angle detector
JP2007183154A (en) * 2006-01-06 2007-07-19 Ntn Corp Rotation angle detector and bearing with the same
US7928725B2 (en) 2006-03-14 2011-04-19 Ntn Corporation Rotational angle detector and rotational angle detector incorporated bearing assembly
WO2007105366A1 (en) 2006-03-14 2007-09-20 Ntn Corporation Rotation angle detector and bearing with rotation detector
JP2008051683A (en) * 2006-08-25 2008-03-06 Ntn Corp Bearing device for wheel fitted with rotation sensor
US8378665B2 (en) 2006-08-25 2013-02-19 Ntn Corporation Rotation sensor-equipped bearing device for wheel
WO2008023459A1 (en) * 2006-08-25 2008-02-28 Ntn Corporation Rotation sensor-equipped bearing device for wheel
DE112007001983T5 (en) 2006-08-25 2009-07-02 Ntn Corp. Wheel bearing assembly equipped with a rotary sensor
US8040129B2 (en) 2006-11-02 2011-10-18 Ntn Corporation Rotation detector and rotation detector-equipped bearing
WO2008053581A1 (en) * 2006-11-02 2008-05-08 Ntn Corporation Rotation detector and rotation detector-equipped bearing
KR101417068B1 (en) 2008-04-24 2014-07-08 현대자동차주식회사 Steering angle sensor for vehicle
JP2010151302A (en) * 2008-11-28 2010-07-08 Aisin Aw Co Ltd Power transmission device

Also Published As

Publication number Publication date
JP3973983B2 (en) 2007-09-12

Similar Documents

Publication Publication Date Title
JP3973983B2 (en) Rotation detection device and bearing with rotation detection device
JP5583317B2 (en) Rotation detection device and bearing with rotation detection device
US7884600B2 (en) Rotation angle detector and bearing with rotation angle detector
WO2006090588A1 (en) Bearing with rotation detection device
JP2008051683A (en) Bearing device for wheel fitted with rotation sensor
WO2007034690A1 (en) Bearing with rotation detecting device
JP2009121958A (en) Rotary encoder and brushless motor
JP2008116291A (en) Rotation detector and bearing with the rotation detector
JP5406860B2 (en) Angle measuring system and method for manufacturing the angle measuring system
JP2003148999A (en) Rotation detection device and bearing with rotation detection device
JP4925389B2 (en) Encoder
JP2008224440A (en) Bearing rotation detecting apparatus
JP2012026829A (en) Rotation detection device and bearing with rotation detection device
JP2009271054A (en) Position detecting device and rotary linear motion motor with the same
JP2007089312A (en) Angle detector for motor rotating shafts
JP2004239699A (en) Angle detection device and bearing with angle detection device
JP4869760B2 (en) Bearing with rotation detector
JP2004132477A (en) Rolling bearing device
JP5042510B2 (en) Rotation angle detection device with rotation speed signal output and bearing with detection device
JP4845513B2 (en) Rotation angle detection device and bearing with rotation angle detection device
JP2008151803A (en) Rotation detector, and bearing with rotation detector
JP2008267867A (en) Rotation detector, and bearing with the rotation detector
JP4343585B2 (en) Bearing device with absolute angle sensor and method of using the same
JP2007078402A (en) Apparatus for detecting angle of rotation of throttle valve
JP2007183156A (en) Rotation angle detector and bearing with the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070320

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070613

R150 Certificate of patent or registration of utility model

Ref document number: 3973983

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130622

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees