[go: up one dir, main page]

JP2004036562A - Hermetic compressor - Google Patents

Hermetic compressor Download PDF

Info

Publication number
JP2004036562A
JP2004036562A JP2002197054A JP2002197054A JP2004036562A JP 2004036562 A JP2004036562 A JP 2004036562A JP 2002197054 A JP2002197054 A JP 2002197054A JP 2002197054 A JP2002197054 A JP 2002197054A JP 2004036562 A JP2004036562 A JP 2004036562A
Authority
JP
Japan
Prior art keywords
shaft
lubricating oil
hermetic compressor
vertical hole
sub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002197054A
Other languages
Japanese (ja)
Other versions
JP4154937B2 (en
Inventor
Makoto Katayama
片山 誠
Shunzo Watakabe
渡壁 俊造
Hironari Akashi
明石 浩業
Akihiko Kubota
窪田 昭彦
Takahide Nagao
長尾 崇秀
Kosuke Tsuboi
坪井 康祐
Takashi Kakiuchi
垣内 隆志
Takeshi Kojima
小島 健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP2002197054A priority Critical patent/JP4154937B2/en
Publication of JP2004036562A publication Critical patent/JP2004036562A/en
Application granted granted Critical
Publication of JP4154937B2 publication Critical patent/JP4154937B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Compressor (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve oil feeding performance of a compressor used for a refrigerating cycle. <P>SOLUTION: In the inclined pump part 130, the pump head can reach the lower edges of a viscous pump part 131, and oil pressure going upward generated in the viscous pump 131 fills the pump head of the vertical hole part 132 communicating an auxiliary bearing part 119, thereby acquiring an effect of stably conveying adequate amount of a lubricant. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、冷蔵庫、エアーコンディショナー、冷凍冷蔵装置等に用いられる密閉形圧縮機に関するものである。
【0002】
【従来の技術】
近年、家庭用冷凍冷蔵庫等の冷凍装置に使用される密閉型圧縮機については、消費電力の低減や静音化が強く望まれており、冷凍機油の低粘度化や、インバータ駆動による圧縮機の低回転化(例えば、家庭用冷蔵庫の場合、1200r/min程度)が進んできている。一方、使用冷媒としてはオゾン破壊係数がゼロであるR134aやR600aに代表される温暖化係数の低い自然冷媒である炭化水素系冷媒の対応が前提となってきている。また、古くから採用されていたシャフトを主軸受けと副軸受けの2ヵ所で保持する両持ち軸受という方法は、摺動ロスを減らし、また運転時の振動を減らす要素技術として有効である。
【0003】
両持ち軸受という方法を採用した従来の密閉型圧縮機としては、特開昭61−118571号公報に記載されているものがある。
【0004】
以下、図面を参照しながら、上述した従来の密閉型圧縮機について説明する。
【0005】
図13は従来の密閉型圧縮機の縦断面図、図14は従来の密閉形圧縮機の要部上面図である。図15及び図16は従来の密閉形圧縮機の要部断面図である。図13、図14において1は密閉容器で、2は密閉容器内空間である。密閉容器1内には、巻線部3aを保有する固定子3と回転子4からなる電動要素5と、電動要素5によって駆動される圧縮要素6を収容する。8は密閉容器1内に貯溜した潤滑油である。
【0006】
10はシャフトで、回転子4を圧入固定した主軸部11および主軸部11に対し偏心して形成された偏心部12に加え、主軸部と同軸に設けられた副軸部13を有する。主軸部11の内部には同芯ポンプ14が設けられ一端が潤滑油8中に開口し他端が縦孔部15と連通しており、縦孔部15はシャフト10の上端面へ連通開口している。16はシリンダーブロックで、略円筒形の圧縮室17を有するとともに主軸部11を軸支する主軸受18を有し、上方に副軸部13を軸支する副軸受19が固定されており、副軸受19にはシャフト10外周部に設けた窪み部19aを設けている。20はピストンでシリンダーブロック16の圧縮室17に往復摺動自在に挿入され、偏心部12との間を連結手段21によって連結されている。
【0007】
以上のように構成された密閉型圧縮機について以下その動作を説明する。
【0008】
電動要素5の回転子4はシャフト10を回転させ、偏心部12の回転運動が連結手段21を介してピストン20に伝えられることでピストン20は圧縮室17内を往復運動する。これにより、冷却システム(図示せず)からの冷媒ガスは圧縮室17内へ吸入・圧縮された後、再び冷却システムへと吐き出されるといったサイクルを繰返す。
【0009】
ここで、両持ち軸受けの摺動ロス減のメカニズムに関して説明する。
【0010】
圧縮機運転中にピストン20の圧縮荷重が連結手段21を介して偏心部12へと伝達される。ここで、両持ち軸受タイプはピストンからの圧縮荷重のかかる偏心部12(作用点)を中心にして上下両方で荷重を受けるため、軸受けには上下でほぼ均等な荷重が配分され、また、内周でこじりが生ずる片持ち軸受けタイプと異なり面当たりとなるため、シャフト10摺動部の荷重分布が均等となることで面圧が下がり、片持ちタイプよりも摺動長を短くすることができる。その結果、摺動ロスが減少し、圧縮機の効率向上が図れるといった長所を備える。
【0011】
次に従来の両持ち軸受タイプの給油メカニズムに関して説明する。
【0012】
図15において、シャフト10の回転により、同芯ポンプ14内の潤滑油8は遠心力により放物線状A1、A2の自由表面をなしながら上方へと汲み上げられ、支流A1の搬送力により縦孔部15に流入され、主軸11、偏心部12、副軸部13への各摺動部へと順に潤滑される。また、図16において、縦孔部15へ汲み上げられた潤滑油8の内、一方は副軸部13に設けた連通孔13a及び窪み部19aをガイドに密閉容器1への放散(方向B)され、一方は縦孔部15上端から密閉容器1へと放散(方向C)を行なう。これによって各摺動部から受熱した潤滑油8が密閉容器1によって放熱・冷却できる仕組みとなっている。
【0013】
【発明が解決しようとする課題】
しかしながら上記従来の構成では、副軸部13を持たない片持ち軸受タイプの密閉型圧縮機と比べて、副軸部13を備える分の軸方向長さが必然的に必要となり、それに伴い給油通路も長くなる。その結果、潤滑油を上方向へ搬送する時の流路抵抗の増加と高い揚程による潤滑油自体の重量増加による影響から、副軸部13の摺動部への給油量が不足し、摺動部での潤滑不良が生じやすかった。
【0014】
また、圧縮機の起動初期等、潤滑油8と同時に冷媒ガスが給油経路内に混入し易い場合において、上記従来の副軸部13を持つ給油経路の長い構成では、給油通路内でガス留まりが生じることで給油阻害が発生しやすかった。
【0015】
また、潤滑油8内で冷媒の溶け込み量が多い場合においては、冷媒から気化するガス量も多くなるため、更にガス留まりによる給油阻害を起こしやすくなる。
【0016】
また、上記従来の構成では、潤滑油が密閉容器へ放散される量が減ることで、放熱効果が減少し、またピストン20への給油を副軸部13から放出する潤滑油に依存しているために、ピストン20とシリンダ16間の潤滑油によるシール性が低下して体積効率が低下する他、ピストン20とシリンダ16の間での異常な摩耗が発生するといった信頼性低下の問題も発生しやすかった。
【0017】
特に、電源周波数以下の運転周波数で駆動される密閉型電動機においては、同心ポンプ14内の潤滑油8に働く遠心力が低下して更に給油阻害が発生し易くなる。
【0018】
本発明は上記従来の課題を解決するもので、エネルギー効率が高く、且つ信頼性の高い密閉型圧縮機を提供することを目的とする。
【0019】
【課題を解決するための手段】
本発明の請求項1に記載の発明は、シャフトには、前記主軸部の下半部に、前記潤滑油に連通する絞り部を下端に有するとともに前記主軸部の下端から外周に向かい軸心が傾斜した円筒空洞で形成した傾斜ポンプ部を設け、前記主軸部の上半部外周に、下端が前記傾斜ポンプ部の上端近傍と連通し、上方に向かって前記シャフトの反回転方向に傾斜しながら螺旋状に刻設した粘性ポンプ部を設け、前記偏芯軸部から前記副軸部にかけて、一端が前記粘性ポンプ部上端近傍と連通し、他端が前記副軸部の上端面近傍に連通開口した縦孔部とを設けたことで、傾斜ポンプ部では粘性ポンプ部の下端まで揚程が得られ、更に粘性ポンプで発生した上向きの油圧が縦孔部の揚程をまかない、十分な量の潤滑油を安定して搬送することができるという作用を有する。
【0020】
請求項2に記載の発明は、請求項1記載の発明に、更に、縦孔部が下から上に向けてシャフトの回転中心軸から遠ざかる方向へ傾斜したものであり、縦孔部においても上向き搬送力を発生させることができ、さらに十分な量の潤滑油の搬送が可能となるという作用を有する。
【0021】
請求項3に記載の発明は、請求項1記載の発明に、更に、縦孔部が下から上に向けてシャフトの回転方向と反対方向に傾斜したものであり、縦孔部においても上向き搬送力を発生させることができ、さらに十分な量の潤滑油の搬送が可能となるという作用を有する。
【0022】
請求項4に記載の発明は、請求項1から請求項3記載のいずれか1項に記載の発明に、更に、絞り部は傾斜ポンプ部内に円板状のキャップを挿入係止したことで、組立時の装着による絞り部が回転軸心に対して振れることを防止できるので安定した給油が確保できると共に、絞り部を設けた円筒部を長手方向に備えた構成と比べて安価な構成でシャフト主軸部の長さを短くできるという作用を有する。
【0023】
請求項5に記載の発明は、請求項1から請求項3記載のいずれか1項に記載の発明に、更に、傾斜通路内に平板状のデバイダーを挿入係止されたことを特徴とするものであり、傾斜ポンプ部内で潤滑油の回転方向のすべりが抑制されることで、特に低速回転域における傾斜ポンプ部内で遠心力が潤滑油に有効に働き、より強い上向き搬送力が発生するという作用を有する。
【0024】
請求項6に記載の発明は、請求項1から請求項3記載のいずれか1項に記載の発明に、更に、傾斜ポンプ部の円筒空洞部から縦孔部の上部開口に至る経路上に軸受部を介さずに密閉容器内空間とを連通する少なくとも1つ以上のガス抜き孔を設けたものであり、給油経路の長い給油機構において圧縮機起動時に混入した冷媒ガスや潤滑油内から気化するガス等を有効に密閉容器内空間へ逃がすことで、給油経路内での潤滑油に発生する上向き搬送力を途切れさせないという作用を有する。
【0025】
請求項7に記載の発明は、請求項1記載から請求項3のいずれか1項に記載の発明に、更に、シャフトの副軸受部において、一端が縦孔部に開口し、他端が副軸受の上部または下部で密閉容器内空間とを連通し、前記シャフトの回転に対して遠心力方向に潤滑油放出横孔を穿設したものであり、潤滑油放出横孔内で潤滑油に遠心力が有効に発生するとともに整流されて放出されることで放出方向が一定となり、密閉容器への飛散が確実にされるといった作用を有する。
【0026】
請求項8に記載の発明は、請求項1から請求項3記載のいずれか1項に記載の発明に、更に、一端が縦孔部に開口し、他端が副軸受内周に開口する副軸給油路を有したものであり、副軸部と副軸受との摺動部に確実に給油をすることで信頼性が向上するという作用を有する。
【0027】
請求項9に記載の発明は、請求項1から請求項3記載のいずれか1項に記載の発明に、更に、一端が縦孔部に開口し、他端が副軸受内周と密閉容器内空間との双方に開口した連通共用孔を設けたものであり、加工工数を減らしたシャフトで副軸への給油とピストン及び密閉容器への放出を同じ孔で行うことが出来るといった作用を有する。
【0028】
請求項10に記載の発明は、請求項1から請求項3記載のいずれか1項に記載の発明に、更に、一端がシャフト縦孔部上端と連通し、他端がシャフトの回転に対して遠心力方向に湾曲しながら延出し、密閉容器内空間に開口する潤滑油放出部を備えたものであり、縦孔部の潤滑油を吸引し引き上げることで、粘性ポンプ部の潤滑油にも吸引し引き上げることとなり、潤滑油放出部の開口端が遠心力方向へ潤滑油を放出するため、給油量が増加するといった作用を有する。
【0029】
請求項11に記載の発明は、請求項1から請求項3のいずれか1項に記載の発明に、更に、シャフト縦孔部の上端を封止する封止部と、一端がシャフト縦孔部と連通し、他端がシャフトの回転に対して遠心力方向に直線的に延出し密閉容器内空間に開口する潤滑油吸引部を備えたものであり、縦孔部の潤滑油を吸引し引き上げることで潤滑油放出部の開口端が遠心力方向へ延長しながら潤滑油を放出するため、給油経路内の潤滑油を吸引し引き上げることとなり、給油量を増加するといった作用を有する。
【0030】
請求項12に記載の発明は、請求項1から請求項3のいずれか1項に記載の発明に、更に、シャフト副軸部外周で、一端が副軸給油路と連通し他端が密閉容器内空間に開口した螺旋状の副軸リード溝を設けたものであり、副軸摺動部への給油を確実に行うことができるとともに、シャフトの回転により潤滑油の粘性を利用して潤滑油が副軸リード溝から密閉容器内へ放出する際、ピストン及び密閉容器へ飛散することでピストンへの給油と密閉容器からの放熱を兼ねることができるといった作用を有する。
【0031】
請求項13に記載の発明は、請求項1から請求項12のいずれか1項に記載の発明に、更に、少なくとも電源周波数以下の運転周波数を含む複数の運転周波数でインバーター駆動されるものであり、低い運転周波数運転においてシャフトの回転数が低下した場合においても傾斜ポンプから粘性ポンプを経て縦孔部への給油経路を通して各摺動部の潤滑油を供給できるといった作用を有する。
【0032】
請求項14に記載の発明は、請求項13に記載された発明に、更に、電源周波数以下の運転周波数には少なくとも30Hz以下の運転周波数を含むものであり、30Hz以下の低い運転周波数運転においても摺動部への給油を確保することができるといった作用を有する。
【0033】
【発明の実施の形態】
以下、本発明による密閉型圧縮機の実施例について、図面を参照しながら説明する。なお、従来と同一構成については、同一符号を付して詳細な説明を省略する。
【0034】
(実施の形態1)
図1は、本発明の実施の形態1による密閉型圧縮機の縦断面図、図2は、同実施の形態の密閉型圧縮機のシャフト断面図である。図3は同実施の形態の密閉型圧縮機のシャフト下端部拡大図、図4は同実施の形態の密閉型圧縮機のシャフトの回転数と副軸上端から吐出される給油量の関係を示すグラフである。
【0035】
図1ないし図3において、101は密閉容器で、巻線部103aを保有する固定子103と回転子104からなる電動要素105と、電動要素105によって駆動される圧縮要素106を収容する。108は密閉容器101内に貯溜した潤滑油である。電動要素5はインバーター(図示せず)によって30Hz以下の運転周波数および60Hz以上の運転周波数を含む複数の運転周波数で駆動される。
【0036】
110はシャフトで、主軸部111と、主軸部111と偏心して設けた偏心部112と、偏心部112を挟んで主軸部111と同軸状に設けた副軸部113とから形成される。主軸部111は上半部111aと下半部111bとからなり、下半部111bには回転子104を圧入固定してある。116はシリンダーブロックで、略円筒形の圧縮室117を有するとともに主軸部111の上半部111aを軸支する主軸受118を有し、上方に副軸部113を軸支する副軸受119が固定されている。なお、圧縮室117は主軸受118と副軸受119に対して略直角となるように配置されている。
【0037】
120はピストンでシリンダーブロック116の圧縮室117に往復摺動自在に挿入され、偏心部112との間を連結手段であるコンロッド121によって連結されている。
【0038】
シャフト主軸部111の下半部111b内には、下端から軸心PCに対して上方に向かい外側にθ1傾斜した円筒空洞で形成した傾斜ポンプ部130が設けられている。傾斜ポンプ部130の内部には平板状のデバイダー133が圧入固定されている。油中開口端にはシャフト110の回転軸心RCに導入孔134aを備えた平板状のキャップからなる絞り部134が圧入固定されている。
【0039】
絞り部134はばね性を有する材料からなり、ばね性を利用してシャフト110内に埋設し、容易に組み込むことができるとともに、他の部品と干渉してずれたりすることのない構成となっている。
【0040】
シャフト主軸部111の上半部111aには、外周に、下端が傾斜ポンプ部130の上端近傍と連通し、上方に向かってシャフト110の反回転方向に傾斜しながら螺旋状に刻設した粘性ポンプ部131が形成されている。
【0041】
さらにシャフト110の偏芯部112から副軸部113にかけて、一端が前記粘性ポンプ部130上端近傍と連通し、他端が副軸部113の上端面近傍に連通開口した縦孔部132を設けてある。
【0042】
縦孔部132には、偏心部112摺動部への連通孔112aと副軸受119内周に開口する副軸給油路113aをそれぞれ備えている。
【0043】
137aは傾斜ポンプ部130上端と密閉容器101内の空間102とを連通するガス抜き孔、137bは傾斜ポンプ部130中間と密閉容器101内の空間102とを連通するガス抜き孔、137cは縦孔部132と密閉容器1内の空間102とを連通するガス抜き孔である。
【0044】
尚、本圧縮機に使用される冷媒は、例えばオゾン破壊係数がゼロのR134aやR600aに代表される温暖化係数の低い自然冷媒である炭化水素系冷媒であり、それぞれ相溶性のある潤滑油と組み合わせてある。
【0045】
以上のように構成された密閉型圧縮機について、以下にその動作を説明する。
【0046】
電動要素105の回転子104はシャフト110を回転させ、偏心部112の回転運動が連結手段121を介してピストン120に伝えられることでピストン120は圧縮室117内を往復運動する。この時、シャフト110の回転により傾斜ポンプ部130内の潤滑油108もシャフト110と共に回転し、潤滑油108には遠心力が作用する。この際、デバイダー133は傾斜ポンプ部130内での潤滑油108の回転方向の滑りを防ぐため、潤滑油はシャフト110の回転速度と同じ速さで回転するため、遠心力が有効に発生、作用する。導入孔134aより流入する潤滑油108は傾斜ポンプ部130内で遠心力方向へ作用力を受け、傾斜ポンプ部130の中で上方向Aと下方向Bへ分流するが、下方向Bへと押圧された潤滑油108は、絞り部134によって移動できず、上方向Cへの潤滑油の搬送力が主体に発生する。また、傾斜ポンプ部130は上方に向かって遠心力方向へ角度θ1傾斜していることから、遠心力が作用する潤滑油108は揚力を得て傾斜ポンプ部130内を斜め方向に這い上がり、上方向への搬送がなされる。従って、従来例に示した同芯ポンプのように潤滑油108が遠心力方向に対して直角上向に搬送するだけの形式と比べて遥かに高い揚程が得られる。
【0047】
次に、傾斜ポンプ部130の上部に至った潤滑油108は、粘性ポンプ部131へと導入される。粘性ポンプ部131のリード溝はシャフト回転方向と逆向きに働く慣性力と同方向に傾斜していることから、潤滑油には新たに上方向への搬送力が働くことになる。これは、従来例で示した上方向の推進力を持たない主軸部11内の縦孔部15に較べて遥かに大きな上方向の推進力を得ることができる。粘性ポンプ部131上端に至った潤滑油108は縦孔部132へと導入される。縦孔部132内の潤滑油108は粘性ポンプ部131の上方向の推進力により押上げられ、シャフト110上端での開口から潤滑油108は放出される。その結果シャフト110の各摺動部で最も高い位置に有る副軸部113へ給油される。
【0048】
ところで両持ち軸受タイプの密閉形圧縮機は副軸部113を持つ分、シャフト110の下部ポンプ部からシャフト110上端までの給油経路が片持ちタイプと比べて構造的に延長される。そこで、圧縮機の起動時直後にけるシャフトの給油経路を通過する潤滑油108の挙動は、シャフトの回転による攪拌と密閉容器101内の減圧により潤滑油中に溶解した冷媒の発泡、気化により傾斜ポンプ部130内や粘性ポンプ131内にガスが押し留められ易くなり、いわゆるガス噛みによる給油阻害が生じる可能性が高くなる。
【0049】
しかしながら、この時、傾斜ポンプ部130内の発泡等による冷媒ガスにおいてはガス抜き孔137aと137bからガス抜きを促し、更に粘性ポンプ部131や縦孔部132で生じた冷媒ガスに関してはガス抜き孔137cによってそれぞれガス抜きを促すことから、ガス噛みを回避し給油経路が潤滑油で満たされるので、粘性ポンプでの潤滑油の揚力を得ることができ給油不良を防ぐことができる。
【0050】
本実施の形態によれば、図4に示すように、従来の同芯ポンプ14を組み合せたタイプではほとんど給油できない、20r/sといった低速域での運転においても確実に、しかも十分な給油量を得ることができることが判明した。また、潤滑油内への冷媒の溶け込み量が多い為、ガス留まりによる給油阻害を起こしやすいR600aやR290と鉱油の組み合せ、またR134aとエステル油の組み合わせにおいても確実に、しかも十分な給油量を得ることができた。また、上記のような潤滑油内への冷媒の溶け込み量が多い潤滑油と冷媒の組み合わせに加えて潤滑性の低下する粘度8〜10[cts]といった低粘度の潤滑油を使用した運転においても確実に、しかも十分な給油量を得ることができた。したがって従来の同芯ポンプ14を組み合せたタイプでは困難な、潤滑油に溶け込みやすい冷媒で低粘度の潤滑油を用いたものや、より低速域における運転が可能となる低い周端数運転における給油もより安定するため、冷凍システムの飛躍的な消費電力低減を図ることができるのである。
(実施の形態2)
図5は本発明の実施の形態2による密閉型圧縮機のシャフト断面図である。図6は同実施の形態における密閉型圧縮機のシャフト上面図である。なお、本実施の形態における密閉型圧縮機の基本構成は図1と同じである。
【0051】
図5、6において、シャフト110は主軸部111、偏心部112を挟んだ副軸部113からなり、主軸部111は上半部111aと下半部111bを有し、下半部111b内にはデバイダー133、絞り部134を備えた傾斜ポンプ部130が設けられ、上半部には粘性ポンプ131が形成されている。縦孔部135は粘性ポンプ部130上端近傍と下部135aで連通し、上部135bでシャフト110上端より密閉容器101内へ通じている。また、縦孔部135には偏心部112の摺動部への連通孔112aと副軸部113の摺動部への副軸給油路113aをそれぞれ備えている。さらに、縦孔部135はシャフト上端に向って遠心力方向へθ2傾斜している。シャフト110は下端より傾斜ポンプ部130、粘性ポンプ131、縦孔部135とにより上端につながる給油経路が形成されている。
【0052】
以上のように構成された密閉型圧縮機について以下その動作を説明する。したがって、シャフト110の回転によって縦孔部135の潤滑油は遠心力による上方向推進力を得る事ができ、遠心力に対して直角に立ち上がった縦孔部132に較べ、さらに大きな上方向の推進力を得ることができる。その結果、密閉容器への潤滑油の放散量が増加し、放熱性が向上し、また、潤滑油に溶け込みやすい冷媒で低粘度の潤滑油を用いたものや、より低速域における運転が可能となる低い周端数運転における給油もより安定するため、密閉型圧縮機の信頼性が向上する。
(実施の形態3)
図7は本発明の実施の形態3による密閉型圧縮機のシャフト上面図である。なお、本実施の形態における密閉型圧縮機の基本構成は図1と同じであり、シャフトの基本構成は図2又は図5と同じである。
【0053】
図7において、縦孔部136は粘性ポンプ部130上端近傍と下部136aで連通し、上部136bでシャフト110上端より密閉容器101内へ通じている。さらに、縦孔部136はシャフト110回転方向と逆向きに働く慣性力と同方向に傾斜している。
【0054】
以上のような構成による密閉型圧縮機の動作について説明する。シャフト110の回転によって粘性ポンプ上端まで汲み上げられた潤滑油108は縦孔部136の傾斜により上方向への搬送力が働く。その結果、密閉容器への潤滑油の放散量が増加し、放熱性が向上し、また、潤滑油に溶け込みやすい冷媒で低粘度の潤滑油を用いたものや、より低速域における運転が可能となる低い周端数運転における給油もより安定するため、冷凍システムの飛躍的な消費電力低減を図ることができ、また密閉型圧縮機の信頼性が向上する。
縦孔部がシャフト上端に向って遠心力方向へ傾斜し、かつシャフト110の反回転方向に傾斜した組み合わせにおいては、相乗効果で更に潤滑油には上方向への搬送力が強く働くこととなる。
【0055】
(実施の形態4)
図8は、本発明の実施の形態4による密閉型圧縮機のシャフト要部断面図である。なお、本実施の形態における密閉型圧縮機の基本構成は図1と同じであり、シャフトの基本構成は図2又は図5と同じである。
【0056】
図8において、138は、縦孔部132と密閉容器101内とを連通する潤滑油放出横孔であり、副軸部113の上方に設けられている。
【0057】
以上のような構成による密閉型圧縮機の動作について説明する。まずシャフト110の回転によって縦孔部132まで搬送された潤滑油108は、副軸部113の摺動部へと副軸給油路113aを介して給油した後、そこで余った潤滑油が潤滑油放出横孔138から密閉容器101へと放出される。
【0058】
この時、従来例で示した構成では、副軸受19の壁面を伝って密閉容器1への潤滑油放散を行う事を特徴としているために、副軸部19を持つ給油経路の長い構成においては、縦孔部15からの給油量も減少することから、シャフト10上端から潤滑油を放散する勢いが減少し、副軸受19壁面の表面張力によって密閉容器まで放散できないといった状態が生じる可能性がある。
【0059】
しかしながら、このような給油経路の長い場合でも、潤滑油放出横孔138が放出される潤滑油を整流する効果を発揮し、一ヵ所から分散されないように遠心力方向へと放散(支流D)できるので、副軸受119部壁面への表面張力によって放出潤滑油が分散される事もなく、確実に潤滑油を密閉容器へと放散することができる。従って、潤滑油の冷却が促されて信頼性向上を図る事ができ、また、低周波数運転時のような遠心力が小さく潤滑油の振り出し力が低下している場合においても、潤滑油を密閉容器101へと放散できる。
【0060】
次に、図9は同実施の形態による密閉型圧縮機の他の例によるシャフトの要部断面図である。
【0061】
図9において、139は連通共用孔でシャフトの回転に対して遠心力方向に穿設しており、一端が縦孔部132と連通し、他端が副軸受119内周と密閉容器101内空間との双方に開口している。
【0062】
シャフト110の回転によって縦孔部まで搬送された潤滑油108は、連通共用孔139を通り、一部は副軸受119内周に給油され副軸受119と副軸部113との摺動部を潤滑し、一部が支流Eとして密閉容器101内雰囲気に開放されることで潤滑油冷却を行うと共に、ピストン120への潤滑によるピストン120、シリンダ116間との潤滑油シール性の向上による体積効率の向上が図れる。従って、一つの孔で副軸部の潤滑と潤滑油の潤滑油冷却及びピストン120摺動部への潤滑油跳ね掛けの共用化が図れるため、加工点数増によるコストアップも回避できるといった、低コストを達成しつつ高効率・高信頼性の圧縮機を提供する事ができる。
【0063】
(実施の形態5)
図10は本発明の実施の形態5による密閉型圧縮機のシャフトの要部断面図である。なお、本実施の形態における密閉型圧縮機の基本構成は図1と同じであり、シャフトの基本構成は図2又は図5と同じである。
【0064】
図10において、140は潤滑油吸引部で湾曲させたチューブで形成され、一端が縦孔部132上端に圧入開口し、他端はシャフト110の回転による遠心力方向に密閉容器101内へ延出開口している。
【0065】
以上のような構成による密閉型圧縮機の動作について説明する。シャフト110の回転によって傾斜ポンプ部130から縦孔部まで搬送された潤滑油108は、潤滑油吸引部140の遠心力方向へ延出した部分で遠心力が働き、潤滑油を吸引する作用が働く。
【0066】
この作用によって縦孔部132の潤滑油が潤滑油吸引部140に吸引され、上方向へ引き上げられることで滞溜していた粘性ポンプ部132のガスも同時に引き出されるといった効果を持つ。従って、両持ち軸受タイプといった給油経路の長い物でもガス噛みを防止することができ、片持ちタイプと同等の安定した給油特性を確保できる。また、潤滑油に溶け込みやすい冷媒で低粘度の潤滑油を用いたものや、より低速域における運転が可能となる低い周端数運転における給油もより安定するため、冷凍システムの飛躍的な消費電力低減を図ることができ、また密閉型圧縮機の信頼性が向上する。
【0067】
(実施の形態6)
図11は実施の形態6による密閉型圧縮機のシャフトの断面図である。なお、本実施の形態における密閉型圧縮機の基本構成は図1と同じであり、シャフトの基本構成は図2又は図5と同じである。
【0068】
図11において、141は潤滑油吸引部で潤滑油放出横孔に圧入し、シャフト110の回転による遠心力方向に密閉容器101内へ延出開口している。141aは縦孔部132上端の封止部でキャップ状の金属プレス部品で形成される。
【0069】
以上のような構成において、シャフト110の回転によって縦孔部まで搬送された潤滑油108は、潤滑油吸引部141へと搬送される。搬送された潤滑油108には、潤滑油吸引部141が遠心力方向へ延出しているため、遠心力が働き潤滑油を吸引する。
【0070】
この作用によって縦孔部132の潤滑油が潤滑油吸引部141に吸引され、上方向へ引き上げられることで滞溜していた粘性ポンプ部132のガスも同時に引き出されるといった効果を持つ。従って、両持ち軸受タイプといった給油経路の長い物でもガス噛みを防止することができ、片持ちタイプと同等の安定した給油特性を確保できる。また、潤滑油に溶け込みやすい冷媒で低粘度の潤滑油を用いたものや、より低速域における運転が可能となる低い周端数運転における給油もより安定するため、冷凍システムの飛躍的な消費電力低減を図ることができ、また密閉型圧縮機の信頼性が向上する。
【0071】
本構成は、さらに潤滑油吸引部が直管といった比較的加工の少ない安価な部品で構成できるため、コスト低減が図れる。
【0072】
(実施の形態7)
図12は実施の形態7による密閉型圧縮機のシャフト副軸部の詳細図である。なお、本実施の形態における密閉型圧縮機の基本構成は図1と同じであり、シャフトの基本構成は図2又は図5と同じである。
【0073】
図12において、142は副軸リード溝で副軸部113の外周に刻設され、副軸給油路113aと連通し、副軸部113下部に副軸部密閉容器101内空間へ開口する開口端142aを有する。リード溝142は副軸給油路113aを起点に下方に向かってシャフト110の反回転方向に傾斜し、螺旋形状を持つ。
【0074】
以上のような構成において、シャフト110の回転によって縦孔部132まで搬送された潤滑油108は、まず副軸部113の給油路113aへと搬送され、次にリード溝142へと送り込まれる。この時リード溝部142がシャフト110回転方向に対して上向きの角度を持つことから、潤滑油108はリード溝142を伝って下方向へと押し出され、密閉容器101との連通端142aから支流Gに示した如く、密閉容器101内へ放出され、放熱とともにピストン120への給油を司る。したがってリード溝部142の回転に伴い副軸部113摺動部全周に亘って潤滑することができ、より副軸部113の摺動部の信頼性が向上するとともに低速回転運転時においても、良好な放熱が得られ、またピストン120摺動部の潤滑がより確実に行われることで信頼性の高い密閉型圧縮機を得ることができる。また、潤滑油に溶け込みやすい冷媒で低粘度の潤滑油を用いたものや、より低速域における運転が可能となる低い周端数運転における給油もより安定するため、冷凍システムの飛躍的な消費電力低減を図ることができ、また密閉型圧縮機の信頼性が向上する。
【0075】
【発明の効果】
以上説明したように本発明の請求項1に記載の発明は、シャフトには、前記主軸部の下半部に、前記潤滑油に連通する絞り部を下端に有するとともに前記主軸部の下端から外周に向かい軸心が傾斜した円筒空洞で形成した傾斜ポンプ部を設け、前記主軸部の上半部外周に、下端が前記傾斜ポンプ部の上端近傍と連通し、上方に向かって前記シャフトの反回転方向に傾斜しながら螺旋状に刻設した粘性ポンプ部を設け、前記偏芯軸部から前記副軸部にかけて、一端が前記粘性ポンプ部上端近傍と連通し、他端が前記副軸部の上端面近傍に連通開口した縦孔部とを設けたことで、傾斜ポンプ部では粘性ポンプ部の下端まで揚程が得られ、更に粘性ポンプで発生した上向きの油圧が縦孔部の揚程をまかない、十分な量の潤滑油を安定して搬送することができる。
【0076】
また請求項2に記載の発明は、請求項1記載の発明に、更に、縦孔部が下から上に向けてシャフトの回転中心軸から遠ざかる方向へ傾斜したものであり、縦孔部においても上向き搬送力を発生させることができ、さらに十分な量の潤滑油の搬送が可能となる。
【0077】
請求項3に記載の発明は、請求項1記載の発明に、更に、縦孔部が下から上に向けてシャフトの回転方向と反対方向に傾斜したものであり、縦孔部においても上向き搬送力を発生させることができ、さらに十分な量の潤滑油の搬送が可能となる。
【0078】
請求項4に記載の発明は、請求項1から請求項3記載のいずれか1項に記載の発明に、更に、絞り部は傾斜ポンプ部内に円板状のキャップを挿入係止したことで、組立時の装着による絞り部が回転軸心に対して振れることを防止できるので安定した給油が確保できると共に、絞り部を設けた円筒部を長手方向に加えなくた構成と比べて安価な構成でシャフト主軸部の長さを短くできる。
【0079】
請求項5に記載の発明は、請求項1から請求項3記載のいずれか1項に記載の発明に、更に、傾斜通路内に平板状のデバイダーを挿入係止されたことを特徴とするものであり、傾斜ポンプ部内で潤滑油の回転方向のすべりが抑制されることで、特に低速回転域における傾斜ポンプ部内で遠心力が潤滑油に有効に働き、より強い上向き搬送力が発生する。
【0080】
請求項6に記載の発明は、請求項1から請求項3記載のいずれか1項に記載の発明に、更に、傾斜ポンプ部の円筒空洞部から縦孔部の上部開口に至る経路上に軸受部を介さずに密閉容器内空間とを連通する少なくとも1つ以上のガス抜き孔を設けたものであり、給油経路の長い給油機構において圧縮機起動時に混入した冷媒ガスや潤滑油内から気化するガス等を有効に密閉容器内空間へ逃がすことで、給油経路内での潤滑油に発生する上向き搬送力を途切れさせない。
【0081】
請求項7に記載の発明は、請求項1記載から請求項3のいずれか1項に記載の発明に、更に、シャフトの副軸受部において、一端が縦孔部に開口し、他端が副軸受の上部または下部で密閉容器内空間とを連通し、前記シャフトの回転に対して遠心力方向に潤滑油放出横孔を穿設したものであり、潤滑油放出横孔内で潤滑油に遠心力が有効に発生するとともに整流されて放出されることで放出方向が一定となり、密閉容器への飛散が確実にされる。
【0082】
請求項8に記載の発明は、請求項1から請求項3記載のいずれか1項に記載の発明に、更に、一端が縦孔部に開口し、他端が副軸受内周に開口する副軸給油路を有したものであり、副軸部と副軸受との摺動部に確実に給油をすることで信頼性が向上する。
【0083】
請求項9に記載の発明は、請求項1から請求項3記載のいずれか1項に記載の発明に、更に、一端が縦孔部に開口し、他端が副軸受内周と密閉容器内空間との双方に開口した連通共用孔を設けたものであり、加工工数を減らしたシャフトで副軸への給油とピストン及び密閉容器への放出を同じ孔で行うことが出来る。
【0084】
請求項10に記載の発明は、請求項1から請求項3記載のいずれか1項に記載の発明に、更に、一端がシャフト縦孔部上端と連通し、他端がシャフトの回転に対して遠心力方向に湾曲しながら延出し、密閉容器内空間に開口する潤滑油放出部を備えたものであり、縦孔部の潤滑油を吸引し引き上げることで、粘性ポンプ部の潤滑油にも吸引し引き上げることとなり、潤滑油放出部の開口端が遠心力方向へ潤滑油を放出するため、給油量が増加する。
【0085】
請求項11に記載の発明は、請求項1から請求項3のいずれか1項に記載の発明に、更に、シャフト縦孔部の上端を封止する封止部と、一端がシャフト縦孔部と連通し、他端がシャフトの回転に対して遠心力方向に直線的に延出し密閉容器内空間に開口する潤滑油吸引部を備えたものであり、縦孔部の潤滑油を吸引し引き上げることで潤滑油放出部の開口端が遠心力方向へ延長しながら潤滑油を放出するため、給油経路内の潤滑油を吸引し引き上げることとなり、給油量を増加する。
【0086】
請求項12に記載の発明は、請求項1から請求項3のいずれか1項に記載の発明に、更に、シャフト副軸部外周で、一端が副軸給油路と連通し他端が密閉容器内空間に開口した螺旋状の副軸リード溝を設けたものであり、副軸摺動部への給油を確実に行うことができるとともに、シャフトの回転により潤滑油の粘性を利用して潤滑油が副軸リード溝から密閉容器内へ放出する際、ピストン及び密閉容器へ飛散することでピストンへの給油と密閉容器からの放熱を兼ねることができる。
【0087】
請求項13に記載の発明は、請求項1から請求項12のいずれか1項に記載の発明に、更に、少なくとも電源周波数以下の運転周波数を含む複数の運転周波数でインバーター駆動されるものであり、低い運転周波数運転においてシャフトの回転数が低下した場合においても傾斜ポンプから粘性ポンプを経て縦孔部への給油経路を通して各摺動部の潤滑油を供給できる。
【0088】
請求項14に記載の発明は、請求項13に記載された発明に、更に、電源周波数以下の運転周波数には少なくとも30Hz以下の運転周波数を含むものであり、30Hz以下の低い運転周波数運転においても摺動部への給油を確保することができる。
【図面の簡単な説明】
【図1】本発明による実施の形態1の密閉型圧縮機の縦断面図
【図2】同実施の形態の密閉型圧縮機のシャフト側面図
【図3】同実施の形態の密閉型圧縮機のシャフト下端部拡大図
【図4】同実施の形態の密閉型圧縮機の給油特性を示す特性図
【図5】本発明による実施の形態2の密閉型圧縮機のシャフト断面図
【図6】同実施の形態の密閉型圧縮機のシャフト上面図
【図7】本発明による実施の形態3の密閉型圧縮機のシャフト上面図
【図8】本発明による実施の形態4の密閉型圧縮機のシャフト要部断面図
【図9】同実施の形態による密閉型圧縮機のシャフト要部断面図
【図10】本発明による実施の形態5の密閉型圧縮機のシャフト要部断面図
【図11】本発明による実施の形態6の密閉型圧縮機のシャフト要部断面図
【図12】本発明による実施の形態7の密閉型圧縮機のシャフト副軸部詳細図
【図13】従来の密閉型圧縮機の縦断面図
【図14】従来の密閉型圧縮機の上面図
【図15】従来の密閉型圧縮機のシャフト下部断面図
【図16】従来の密閉型圧縮機のシャフト副軸要部断面図
【符号の説明】
101 密閉容器
105 電動要素
106 圧縮要素
108 潤滑油
110 シャフト
111 主軸部
112 偏芯軸部
113 副軸部
116 シリンダブロック
117 圧縮機
118 主軸受
119 副軸受
120 ピストン
121 連結手段
130 傾斜ポンプ部
131 粘性ポンプ部
132 縦孔部
135 縦孔部
136 縦孔部
137a ガス抜き孔
137b ガス抜き孔
137c ガス抜き孔
138 潤滑油放出横孔
139 連通共用孔
140 潤滑油吸引部
141 潤滑油吸引部
141a 封止部
142 副軸リード溝
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a hermetic compressor used for a refrigerator, an air conditioner, a freezing and refrigeration device, and the like.
[0002]
[Prior art]
In recent years, for hermetic compressors used in refrigerators such as home refrigerators and the like, there has been a strong demand for reduction in power consumption and noise reduction. Rotation (for example, in the case of a home refrigerator, about 1200 r / min) is progressing. On the other hand, it is premised that a hydrocarbon-based refrigerant which is a natural refrigerant having a low global warming coefficient represented by R134a or R600a having an ozone depletion coefficient of zero is used as a refrigerant. The method of using a double-supported bearing that holds a shaft at two places, a main bearing and a sub-bearing, which has been used for a long time, is effective as an elemental technology for reducing sliding loss and vibration during operation.
[0003]
As a conventional hermetic compressor employing a method of a double-sided bearing, there is one disclosed in Japanese Patent Application Laid-Open No. 61-118571.
[0004]
Hereinafter, the conventional hermetic compressor described above will be described with reference to the drawings.
[0005]
FIG. 13 is a longitudinal sectional view of a conventional hermetic compressor, and FIG. 14 is a top view of a main part of the conventional hermetic compressor. FIG. 15 and FIG. 16 are sectional views of a main part of a conventional hermetic compressor. 13 and 14, reference numeral 1 denotes a closed container, and 2 denotes a space in the closed container. The closed casing 1 accommodates an electric element 5 including a stator 3 having a winding part 3a and a rotor 4, and a compression element 6 driven by the electric element 5. Reference numeral 8 denotes a lubricating oil stored in the closed container 1.
[0006]
Reference numeral 10 denotes a shaft having a main shaft portion 11 to which the rotor 4 is press-fitted and fixed, an eccentric portion 12 formed eccentrically to the main shaft portion 11, and a sub shaft portion 13 provided coaxially with the main shaft portion. A concentric pump 14 is provided inside the main shaft portion 11, one end of which is opened in the lubricating oil 8, and the other end thereof communicates with the vertical hole portion 15, and the vertical hole portion 15 opens and communicates with the upper end surface of the shaft 10. ing. Reference numeral 16 denotes a cylinder block having a substantially cylindrical compression chamber 17, a main bearing 18 for supporting the main shaft 11, and a sub bearing 19 for supporting the sub shaft 13 fixed above. The bearing 19 is provided with a depression 19 a provided on the outer peripheral portion of the shaft 10. Reference numeral 20 denotes a piston which is reciprocally slidably inserted into the compression chamber 17 of the cylinder block 16 and is connected to the eccentric portion 12 by a connection means 21.
[0007]
The operation of the hermetic compressor configured as described above will be described below.
[0008]
The rotor 4 of the electric element 5 rotates the shaft 10, and the rotational movement of the eccentric part 12 is transmitted to the piston 20 via the connecting means 21, so that the piston 20 reciprocates in the compression chamber 17. Thereby, a cycle is repeated in which the refrigerant gas from the cooling system (not shown) is sucked and compressed into the compression chamber 17 and then discharged again to the cooling system.
[0009]
Here, the mechanism for reducing the sliding loss of the double-sided bearing will be described.
[0010]
During the operation of the compressor, the compression load of the piston 20 is transmitted to the eccentric portion 12 via the connecting means 21. Here, the double-sided bearing type receives a load both vertically above and below the eccentric portion 12 (point of action) to which a compressive load is applied from the piston. Therefore, a substantially uniform load is distributed to the bearing vertically. Unlike the cantilever bearing type in which twisting occurs in the circumference, the bearing is flat, so that the load distribution on the sliding portion of the shaft 10 becomes uniform, the surface pressure decreases, and the sliding length can be shorter than that of the cantilever type. . As a result, the sliding loss is reduced and the compressor efficiency is improved.
[0011]
Next, a conventional double-sided bearing type lubrication mechanism will be described.
[0012]
In FIG. 15, the rotation of the shaft 10 causes the lubricating oil 8 in the concentric pump 14 to be pumped upward while forming the free surfaces of the paraboloids A1 and A2 by centrifugal force. And is sequentially lubricated to respective sliding portions to the main shaft 11, the eccentric portion 12, and the sub shaft portion 13. In FIG. 16, one of the lubricating oils 8 pumped into the vertical hole 15 is diffused (direction B) into the closed container 1 by using the communication hole 13a and the depression 19a provided in the sub shaft 13 as a guide. One diffuses (direction C) from the upper end of the vertical hole portion 15 to the closed container 1. Thus, the lubricating oil 8 received from each sliding portion can be radiated and cooled by the closed casing 1.
[0013]
[Problems to be solved by the invention]
However, in the above-mentioned conventional configuration, compared with a cantilevered hermetic compressor having no sub shaft portion 13, an axial length corresponding to the provision of the sub shaft portion 13 is inevitably required. Is also longer. As a result, the lubricating oil is conveyed in the upward direction, and the amount of lubricating oil itself increases due to the increase in the flow path resistance and the high lift. Poor lubrication was likely to occur in the part.
[0014]
In addition, when the refrigerant gas is liable to be mixed into the oil supply path at the same time as the lubricating oil 8 at the initial stage of the compressor or the like, in the conventional oil supply path having the long counter shaft section 13, gas traps in the oil supply path. This was likely to cause refueling obstruction.
[0015]
Further, when the amount of the refrigerant dissolved in the lubricating oil 8 is large, the amount of gas vaporized from the refrigerant is also large, so that the refueling is more likely to be hindered due to gas retention.
[0016]
Further, in the above-described conventional configuration, the amount of the lubricating oil radiated to the closed container is reduced, so that the heat radiation effect is reduced, and the lubrication oil to the piston 20 depends on the lubricating oil discharged from the sub shaft portion 13. As a result, the sealing performance due to the lubricating oil between the piston 20 and the cylinder 16 is reduced and the volume efficiency is reduced, and there is also a problem of reduced reliability such as abnormal wear between the piston 20 and the cylinder 16. It was easy.
[0017]
In particular, in a hermetic motor driven at an operating frequency equal to or lower than the power supply frequency, the centrifugal force acting on the lubricating oil 8 in the concentric pump 14 is reduced, and the oil supply is more likely to be inhibited.
[0018]
An object of the present invention is to solve the above-mentioned conventional problems and to provide a highly reliable hermetic compressor with high energy efficiency.
[0019]
[Means for Solving the Problems]
The invention according to claim 1 of the present invention is characterized in that the shaft has, at the lower half of the main shaft portion, a throttle portion communicating with the lubricating oil at the lower end, and an axial center from the lower end of the main shaft portion toward the outer periphery. An inclined pump portion formed of an inclined cylindrical cavity is provided, and a lower end communicates with the vicinity of an upper end of the inclined pump portion on an outer periphery of an upper half portion of the main shaft portion, while being inclined upward in a counter-rotating direction of the shaft. A spirally engraved viscous pump portion is provided. From the eccentric shaft portion to the sub shaft portion, one end communicates with the vicinity of the upper end of the viscous pump portion, and the other end communicates with the vicinity of the upper end surface of the sub shaft portion. With the provision of a vertical hole section, a lift is obtained in the inclined pump section up to the lower end of the viscous pump section, and a sufficient amount of lubricating oil is provided so that the upward hydraulic pressure generated by the viscous pump does not cover the lift of the vertical hole section. Product that can be transported stably Having.
[0020]
According to a second aspect of the present invention, in addition to the first aspect of the present invention, the vertical hole portion is further inclined upward and downward in a direction away from the rotation center axis of the shaft, and the vertical hole portion also faces upward. This has the effect that a conveying force can be generated and a sufficient amount of lubricating oil can be conveyed.
[0021]
According to a third aspect of the present invention, in addition to the first aspect of the present invention, the vertical hole portion is inclined upward from the bottom in the direction opposite to the rotational direction of the shaft, and the vertical hole portion also conveys upward. A force can be generated, and a sufficient amount of lubricating oil can be transported.
[0022]
According to a fourth aspect of the present invention, in addition to the first aspect of the present invention, the throttle portion has a disk-shaped cap inserted and locked in the inclined pump portion. The shaft can be prevented from swinging with respect to the rotation axis due to installation during assembly, so that stable lubrication can be secured, and the shaft has a cheaper configuration than the configuration in which the cylindrical portion provided with the throttle is provided in the longitudinal direction. This has the effect of shortening the length of the main shaft.
[0023]
According to a fifth aspect of the present invention, in addition to any one of the first to third aspects of the present invention, a flat plate-shaped divider is inserted and locked in the inclined passage. By suppressing the slip in the rotational direction of the lubricating oil in the inclined pump part, the centrifugal force works effectively on the lubricating oil particularly in the inclined pump part in the low-speed rotation region, and a stronger upward conveying force is generated. Having.
[0024]
According to a sixth aspect of the present invention, in addition to any one of the first to third aspects of the present invention, a bearing is provided on a path from the cylindrical cavity of the inclined pump section to the upper opening of the vertical hole. At least one or more gas vent holes are provided to communicate with the space inside the closed container without passing through the portion, and in the oil supply mechanism having a long oil supply path, the refrigerant gas and the lubricating oil mixed when starting the compressor are vaporized. By effectively allowing gas or the like to escape to the space inside the closed container, an effect is provided that the upward conveying force generated in the lubricating oil in the oil supply path is not interrupted.
[0025]
The invention according to claim 7 is the invention according to any one of claims 1 to 3, further comprising, in the auxiliary bearing portion of the shaft, one end opened to the vertical hole and the other end connected to the auxiliary bearing. The upper or lower part of the bearing communicates with the space inside the sealed container, and a lubricating oil discharge lateral hole is formed in the direction of centrifugal force with respect to the rotation of the shaft. Since the force is generated effectively and rectified and released, the direction of release becomes constant, and this has the effect of ensuring the scattering to the closed container.
[0026]
The invention according to claim 8 is the invention according to any one of claims 1 to 3, further comprising a sub-opening having a vertical hole at one end and an inner periphery at the other end. It has a shaft oil supply passage, and has an effect that reliability is improved by reliably lubricating the sliding portion between the sub shaft portion and the sub bearing.
[0027]
According to a ninth aspect of the present invention, in addition to any one of the first to third aspects of the present invention, one end is opened to the vertical hole portion, and the other end is formed in the inner periphery of the sub-bearing and in the closed container. A shared communication hole is provided in both the space and the space. The shaft has a reduced number of processing steps, and has an effect that oil can be supplied to the auxiliary shaft and discharged to the piston and the sealed container through the same hole.
[0028]
According to a tenth aspect of the present invention, in addition to any one of the first to third aspects of the present invention, one end communicates with the upper end of the shaft vertical hole, and the other end is connected to the rotation of the shaft. It has a lubricating oil discharge section that extends while curving in the direction of centrifugal force and opens into the space inside the sealed container. By sucking and pulling up the lubricating oil in the vertical hole, it also sucks in the lubricating oil in the viscous pump section Then, since the opening end of the lubricating oil discharging portion discharges the lubricating oil in the centrifugal force direction, the lubricating oil discharging portion has an effect of increasing the amount of lubricating oil.
[0029]
According to an eleventh aspect of the present invention, in addition to the invention of any one of the first to third aspects, a sealing portion for sealing an upper end of the shaft vertical hole portion, and one end of the shaft vertical hole portion are provided. And a lubricating oil suction part whose other end extends linearly in the direction of centrifugal force with respect to the rotation of the shaft and opens to the space inside the sealed container, and sucks and pulls up the lubricating oil in the vertical hole. Thus, since the opening end of the lubricating oil discharging portion discharges the lubricating oil while extending in the direction of the centrifugal force, the lubricating oil in the lubricating path is sucked and pulled up, thereby having an effect of increasing the lubricating amount.
[0030]
According to a twelfth aspect of the present invention, in addition to the invention of any one of the first to third aspects, the outer periphery of the shaft countershaft portion further includes one end communicating with the countershaft oil supply passage and the other end closed. A spiral countershaft lead groove that opens in the inner space is provided, which can reliably supply lubrication to the sliding portion of the countershaft, and uses the viscosity of the lubricating oil by rotating the shaft to lubricate the lubricating oil. When the gas is discharged from the countershaft lead groove into the closed container, it is scattered to the piston and the closed container, so that it has an effect of being able to perform both oil supply to the piston and heat radiation from the closed container.
[0031]
According to a thirteenth aspect of the present invention, in addition to any one of the first to twelfth aspects, the invention is further driven by an inverter at a plurality of operation frequencies including at least an operation frequency equal to or lower than a power supply frequency. In addition, the lubricating oil of each sliding portion can be supplied through the oil supply path from the inclined pump to the vertical hole portion via the viscous pump even when the rotation speed of the shaft is reduced in the low operation frequency operation.
[0032]
According to a fourteenth aspect of the present invention, in addition to the thirteenth aspect, the operating frequency equal to or lower than the power supply frequency includes at least the operating frequency equal to or lower than 30 Hz. This has the effect of ensuring oil supply to the sliding part.
[0033]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the hermetic compressor according to the present invention will be described with reference to the drawings. In addition, about the same structure as a conventional one, the same code | symbol is attached | subjected and detailed description is abbreviate | omitted.
[0034]
(Embodiment 1)
FIG. 1 is a longitudinal sectional view of a hermetic compressor according to Embodiment 1 of the present invention, and FIG. 2 is a shaft sectional view of the hermetic compressor of the embodiment. FIG. 3 is an enlarged view of the lower end of the shaft of the hermetic compressor of the embodiment, and FIG. 4 is a diagram showing the relationship between the rotational speed of the shaft and the amount of oil supplied from the upper end of the countershaft of the hermetic compressor of the embodiment. It is a graph.
[0035]
In FIG. 1 to FIG. 3, reference numeral 101 denotes an airtight container, which accommodates an electric element 105 including a stator 103 having a winding portion 103a and a rotor 104, and a compression element 106 driven by the electric element 105. Reference numeral 108 denotes a lubricating oil stored in the closed container 101. The electric element 5 is driven by an inverter (not shown) at a plurality of operating frequencies including an operating frequency of 30 Hz or less and an operating frequency of 60 Hz or more.
[0036]
A shaft 110 includes a main shaft portion 111, an eccentric portion 112 provided eccentrically with the main shaft portion 111, and a sub shaft portion 113 provided coaxially with the main shaft portion 111 with the eccentric portion 112 interposed therebetween. The main shaft portion 111 includes an upper half portion 111a and a lower half portion 111b, and the rotor 104 is press-fitted and fixed to the lower half portion 111b. Reference numeral 116 denotes a cylinder block having a substantially cylindrical compression chamber 117, a main bearing 118 for supporting the upper half 111a of the main shaft 111, and a sub bearing 119 for supporting the sub shaft 113 fixed above. Have been. The compression chamber 117 is disposed so as to be substantially perpendicular to the main bearing 118 and the sub-bearing 119.
[0037]
A piston 120 is reciprocally slidably inserted into the compression chamber 117 of the cylinder block 116, and is connected to the eccentric portion 112 by a connecting rod 121 as connecting means.
[0038]
In the lower half portion 111b of the shaft main shaft portion 111, an inclined pump portion 130 formed of a cylindrical cavity inclined upward by θ1 outward from the lower end with respect to the axis PC is provided. A flat divider 133 is press-fitted and fixed inside the inclined pump unit 130. At the opening end in the oil, a throttle portion 134 formed of a flat cap having an introduction hole 134a at the rotation axis RC of the shaft 110 is press-fitted and fixed.
[0039]
The squeezed portion 134 is made of a material having a spring property, is buried in the shaft 110 by using the spring property, can be easily incorporated, and has a configuration in which it does not interfere with other parts and shift. I have.
[0040]
The upper half portion 111a of the shaft main shaft portion 111 has a lower end communicating with the vicinity of the upper end of the inclined pump portion 130 at the outer periphery, and a viscous pump engraved in a spiral shape while being inclined upward in the anti-rotation direction of the shaft 110. A part 131 is formed.
[0041]
Further, from the eccentric portion 112 of the shaft 110 to the sub-shaft portion 113, a vertical hole portion 132 having one end communicating with the vicinity of the upper end of the viscous pump portion 130 and the other end communicating with and opening near the upper end surface of the sub-shaft portion 113 is provided. is there.
[0042]
The vertical hole portion 132 is provided with a communication hole 112a for the sliding portion of the eccentric portion 112 and a sub-shaft oil supply passage 113a opened on the inner periphery of the sub-bearing 119, respectively.
[0043]
137a is a gas vent hole communicating the upper end of the inclined pump unit 130 with the space 102 in the sealed container 101, 137b is a gas vent hole communicating the middle of the inclined pump unit 130 with the space 102 in the sealed container 101, and 137c is a vertical hole. A gas vent hole that communicates the part 132 with the space 102 in the sealed container 1.
[0044]
The refrigerant used in the compressor is a hydrocarbon-based refrigerant which is a natural refrigerant having a low global warming coefficient represented by, for example, R134a or R600a having an ozone depletion potential of zero. There is a combination.
[0045]
The operation of the hermetic compressor configured as described above will be described below.
[0046]
The rotor 104 of the electric element 105 rotates the shaft 110, and the rotational movement of the eccentric portion 112 is transmitted to the piston 120 via the connecting means 121, so that the piston 120 reciprocates in the compression chamber 117. At this time, the rotation of the shaft 110 causes the lubricating oil 108 in the inclined pump unit 130 to rotate together with the shaft 110, and a centrifugal force acts on the lubricating oil 108. At this time, the divider 133 prevents the lubricating oil 108 from slipping in the rotational direction in the inclined pump unit 130, and the lubricating oil rotates at the same speed as the rotation speed of the shaft 110. I do. The lubricating oil 108 flowing from the introduction hole 134a receives an acting force in the direction of the centrifugal force in the inclined pump portion 130, and divides into the upward direction A and the downward direction B in the inclined pump portion 130, but is pressed in the downward direction B. The lubricating oil 108 that has been moved cannot be moved by the throttle unit 134, and the lubricating oil conveying force in the upward direction C is mainly generated. In addition, since the inclined pump unit 130 is inclined upward at an angle θ1 in the centrifugal force direction, the lubricating oil 108 to which the centrifugal force acts obtains a lift and crawls in the inclined pump unit 130 in an oblique direction, and The conveyance in the direction is performed. Therefore, a much higher head can be obtained as compared with the concentric pump shown in the conventional example in which the lubricating oil 108 is only conveyed upward at right angles to the direction of centrifugal force.
[0047]
Next, the lubricating oil 108 reaching the upper part of the inclined pump unit 130 is introduced into the viscous pump unit 131. Since the lead groove of the viscous pump portion 131 is inclined in the same direction as the inertial force acting in the direction opposite to the shaft rotation direction, a new upward conveying force acts on the lubricating oil. This makes it possible to obtain a much larger upward propulsion force than the vertical hole portion 15 in the main shaft portion 11 having no upward propulsion force shown in the conventional example. The lubricating oil 108 reaching the upper end of the viscous pump 131 is introduced into the vertical hole 132. The lubricating oil 108 in the vertical hole 132 is pushed up by the upward propulsive force of the viscous pump 131, and the lubricating oil 108 is discharged from the opening at the upper end of the shaft 110. As a result, oil is supplied to the counter shaft 113 located at the highest position in each sliding portion of the shaft 110.
[0048]
By the way, the double-sided bearing type hermetic compressor has the countershaft portion 113, so that the oil supply path from the lower pump portion of the shaft 110 to the upper end of the shaft 110 is structurally extended as compared with the cantilever type. Therefore, the behavior of the lubricating oil 108 passing through the oil supply path of the shaft immediately after the start of the compressor is inclined by foaming and vaporization of the refrigerant dissolved in the lubricating oil due to the agitation by the rotation of the shaft and the pressure reduction in the closed vessel 101. The gas is more likely to be pressed down in the pump section 130 and the viscous pump 131, so that the possibility that the so-called gas biting causes an obstruction of refueling increases.
[0049]
However, at this time, with respect to the refrigerant gas due to foaming or the like in the inclined pump portion 130, the gas is urged to be vented from the gas vent holes 137a and 137b, and the refrigerant gas generated in the viscous pump portion 131 and the vertical hole portion 132 is vented. Since the degassing is promoted by 137c, gas biting is avoided and the lubrication path is filled with lubricating oil, so that the lubricating oil can be lifted by the viscous pump and poor lubrication can be prevented.
[0050]
According to the present embodiment, as shown in FIG. 4, it is possible to reliably supply a sufficient amount of lubrication even in an operation at a low speed range of 20 r / s, which can hardly be lubricated by a type in which the conventional concentric pump 14 is combined. It turns out that it can be obtained. In addition, since the amount of the refrigerant dissolved into the lubricating oil is large, the combination of R600a or R290 and mineral oil, or the combination of R134a and ester oil, which are likely to cause oil supply hindrance due to gas retention, ensures a sufficient and sufficient oil supply. I was able to. Further, even in operation using a low-viscosity lubricating oil having a viscosity of 8 to 10 [cts] in which the lubricity is reduced in addition to the combination of the lubricating oil and the refrigerant having a large amount of the refrigerant dissolved into the lubricating oil as described above. Sufficient and sufficient lubrication could be obtained. Therefore, it is difficult to use the conventional concentric pump 14 in combination with a low-viscosity lubricating oil, which is a refrigerant that easily dissolves in the lubricating oil, and is also more suitable for lubrication in a low peripheral speed operation that enables operation in a lower speed range. To stabilize, the power consumption of the refrigeration system can be dramatically reduced.
(Embodiment 2)
FIG. 5 is a sectional view of a shaft of a hermetic compressor according to Embodiment 2 of the present invention. FIG. 6 is a top view of a shaft of the hermetic compressor according to the embodiment. The basic configuration of the hermetic compressor in the present embodiment is the same as that in FIG.
[0051]
5 and 6, the shaft 110 includes a main shaft portion 111 and a sub shaft portion 113 sandwiching an eccentric portion 112. The main shaft portion 111 has an upper half portion 111a and a lower half portion 111b. An inclined pump unit 130 having a divider 133 and a throttle unit 134 is provided, and a viscous pump 131 is formed in the upper half. The vertical hole portion 135 communicates with the vicinity of the upper end of the viscous pump portion 130 at a lower portion 135a, and communicates at an upper portion 135b from the upper end of the shaft 110 into the closed container 101. The vertical hole 135 is provided with a communication hole 112a for the sliding portion of the eccentric portion 112 and a sub-shaft oil supply passage 113a for the sliding portion of the sub-shaft portion 113, respectively. Further, the vertical hole 135 is inclined by θ2 in the centrifugal force direction toward the upper end of the shaft. The shaft 110 has an oil supply path connected to the upper end by the inclined pump section 130, the viscous pump 131, and the vertical hole section 135 from the lower end.
[0052]
The operation of the hermetic compressor configured as described above will be described below. Therefore, the rotation of the shaft 110 allows the lubricating oil in the vertical hole 135 to obtain an upward propulsion force due to the centrifugal force, which is larger than that of the vertical hole 132 rising perpendicular to the centrifugal force. You can gain power. As a result, the amount of lubricating oil diffused into the sealed container is increased, the heat dissipation is improved, and it is possible to use a low-viscosity lubricating oil with a refrigerant that easily dissolves in the lubricating oil, and to operate at lower speeds. Since the refueling at a lower peripheral number operation is more stable, the reliability of the hermetic compressor is improved.
(Embodiment 3)
FIG. 7 is a top view of a shaft of a hermetic compressor according to Embodiment 3 of the present invention. The basic configuration of the hermetic compressor according to the present embodiment is the same as that of FIG. 1, and the basic configuration of the shaft is the same as that of FIG. 2 or FIG.
[0053]
In FIG. 7, the vertical hole 136 communicates with the vicinity of the upper end of the viscous pump unit 130 at a lower part 136a, and communicates from the upper end of the shaft 110 into the closed container 101 at an upper part 136b. Further, the vertical hole 136 is inclined in the same direction as the inertial force acting in the direction opposite to the rotation direction of the shaft 110.
[0054]
The operation of the hermetic compressor having the above configuration will be described. The lubricating oil 108 pumped up to the upper end of the viscous pump by the rotation of the shaft 110 exerts an upward conveying force due to the inclination of the vertical hole 136. As a result, the amount of lubricating oil diffused into the sealed container is increased, the heat dissipation is improved, and it is possible to use a low-viscosity lubricating oil with a refrigerant that easily dissolves in the lubricating oil, and to operate at lower speeds. Since the refueling at a low peripheral number operation is more stable, the power consumption of the refrigeration system can be drastically reduced, and the reliability of the hermetic compressor is improved.
In a combination in which the vertical hole portion is inclined in the centrifugal force direction toward the upper end of the shaft and is inclined in the anti-rotation direction of the shaft 110, the upward conveying force acts more strongly on the lubricating oil due to the synergistic effect. .
[0055]
(Embodiment 4)
FIG. 8 is a cross-sectional view of a main part of a shaft of a hermetic compressor according to Embodiment 4 of the present invention. The basic configuration of the hermetic compressor according to the present embodiment is the same as that of FIG. 1, and the basic configuration of the shaft is the same as that of FIG. 2 or FIG.
[0056]
In FIG. 8, reference numeral 138 denotes a lubricating oil discharge horizontal hole that communicates the vertical hole 132 with the inside of the closed container 101, and is provided above the counter shaft 113.
[0057]
The operation of the hermetic compressor having the above configuration will be described. First, the lubricating oil 108 conveyed to the vertical hole 132 by the rotation of the shaft 110 is supplied to the sliding portion of the sub-shaft portion 113 via the sub-shaft oil supply passage 113a. It is discharged from the horizontal hole 138 to the closed container 101.
[0058]
At this time, the configuration shown in the conventional example is characterized in that lubricating oil is diffused to the closed casing 1 along the wall surface of the auxiliary bearing 19, so that in a configuration in which the oil supply path having the auxiliary shaft portion 19 is long, Since the amount of lubrication from the vertical hole portion 15 is also reduced, the momentum for dispersing the lubricating oil from the upper end of the shaft 10 is reduced, and there is a possibility that the surface tension of the wall surface of the sub-bearing 19 prevents the lubricating oil from being diffused to the closed container. .
[0059]
However, even in the case of such a long oil supply path, the lubricating oil discharge lateral hole 138 exerts the effect of rectifying the discharged lubricating oil, and can be diffused (branch D) in the direction of centrifugal force so as not to be dispersed from one place. Therefore, the released lubricating oil is not dispersed by the surface tension on the wall surface of the sub bearing 119, and the lubricating oil can be surely diffused to the closed container. Therefore, cooling of the lubricating oil is promoted to improve reliability, and the lubricating oil is sealed even when the centrifugal force is small, such as during low frequency operation, and the lubricating oil ejection force is reduced. It can be released to the container 101.
[0060]
Next, FIG. 9 is a cross-sectional view of a main part of a shaft according to another example of the hermetic compressor according to the embodiment.
[0061]
In FIG. 9, reference numeral 139 denotes a communication hole which is bored in the direction of centrifugal force with respect to the rotation of the shaft. One end communicates with the vertical hole portion 132, and the other end has the inner periphery of the sub bearing 119 and the inner space of the closed casing 101. And open to both sides.
[0062]
The lubricating oil 108 conveyed to the vertical hole by the rotation of the shaft 110 passes through the communication common hole 139, and a part of the oil is supplied to the inner periphery of the sub-bearing 119 to lubricate the sliding portion between the sub-bearing 119 and the sub-shaft 113. Then, the lubricating oil is cooled by being partially released to the atmosphere in the closed vessel 101 as a tributary E, and the volume efficiency is improved by improving the lubricating oil sealing property between the piston 120 and the cylinder 116 by lubricating the piston 120. Improvement can be achieved. Therefore, lubrication of the countershaft portion, cooling of lubricating oil, and splashing of lubricating oil to the sliding portion of the piston 120 can be shared by one hole, so that cost increase due to an increase in the number of machining points can be avoided. And a highly efficient and highly reliable compressor can be provided.
[0063]
(Embodiment 5)
FIG. 10 is a sectional view of a main part of a shaft of a hermetic compressor according to Embodiment 5 of the present invention. The basic configuration of the hermetic compressor according to the present embodiment is the same as that of FIG. 1, and the basic configuration of the shaft is the same as that of FIG. 2 or FIG.
[0064]
In FIG. 10, reference numeral 140 denotes a tube formed by bending a lubricating oil suction unit, one end of which is press-fitted and opened at the upper end of the vertical hole 132, and the other end of which extends into the sealed container 101 in the direction of centrifugal force due to the rotation of the shaft 110. It is open.
[0065]
The operation of the hermetic compressor having the above configuration will be described. The lubricating oil 108 conveyed from the inclined pump section 130 to the vertical hole section by the rotation of the shaft 110 is subjected to centrifugal force at the portion of the lubricating oil suction section 140 extending in the centrifugal force direction, and acts to suction the lubricating oil. .
[0066]
By this action, the lubricating oil in the vertical hole portion 132 is sucked by the lubricating oil suction portion 140, and the lubricating oil is sucked upward, so that the accumulated gas in the viscous pump portion 132 is simultaneously drawn. Therefore, even if the lubrication path is long, such as a double-sided bearing type, gas can be prevented from being caught, and stable lubrication characteristics equivalent to the cantilever type can be secured. In addition, the use of low-viscosity lubricating oil as a refrigerant that easily dissolves in lubricating oil, and low-friction operation that enables operation at lower speeds are more stable. And the reliability of the hermetic compressor is improved.
[0067]
(Embodiment 6)
FIG. 11 is a sectional view of a shaft of a hermetic compressor according to the sixth embodiment. The basic configuration of the hermetic compressor according to the present embodiment is the same as that of FIG. 1, and the basic configuration of the shaft is the same as that of FIG. 2 or FIG.
[0068]
In FIG. 11, reference numeral 141 denotes a lubricating oil suction unit, which is press-fitted into a lubricating oil discharge lateral hole, and extends and opens into the closed container 101 in the direction of centrifugal force due to the rotation of the shaft 110. 141a is a sealing part at the upper end of the vertical hole part 132 and is formed of a cap-shaped metal pressed part.
[0069]
In the above configuration, the lubricating oil 108 conveyed to the vertical hole by the rotation of the shaft 110 is conveyed to the lubricating oil suction unit 141. Since the lubricating oil suction unit 141 extends in the direction of centrifugal force to the conveyed lubricating oil 108, centrifugal force acts to suck lubricating oil.
[0070]
By this operation, the lubricating oil in the vertical hole portion 132 is sucked by the lubricating oil suction portion 141, and the lubricating oil is sucked upward, so that the accumulated gas in the viscous pump portion 132 is simultaneously drawn. Therefore, even if the lubrication path is long, such as a double-sided bearing type, gas can be prevented from being caught, and stable lubrication characteristics equivalent to the cantilever type can be secured. In addition, the use of low-viscosity lubricating oil as a refrigerant that easily dissolves in lubricating oil, and low-friction operation that enables operation at lower speeds are more stable. And the reliability of the hermetic compressor is improved.
[0071]
According to this configuration, the lubricating oil suction unit can be configured by inexpensive parts such as straight pipes that are relatively less processed, so that the cost can be reduced.
[0072]
(Embodiment 7)
FIG. 12 is a detailed view of the shaft countershaft portion of the hermetic compressor according to the seventh embodiment. The basic configuration of the hermetic compressor according to the present embodiment is the same as that of FIG. 1, and the basic configuration of the shaft is the same as that of FIG. 2 or FIG.
[0073]
In FIG. 12, reference numeral 142 denotes a countershaft lead groove, which is engraved on the outer periphery of the countershaft 113 and communicates with the countershaft oil supply passage 113a. 142a. The lead groove 142 is inclined downward in the anti-rotational direction of the shaft 110 starting from the auxiliary shaft oil supply passage 113a, and has a spiral shape.
[0074]
In the above configuration, the lubricating oil 108 conveyed to the vertical hole 132 by the rotation of the shaft 110 is first conveyed to the oil supply passage 113 a of the sub shaft 113, and then sent into the lead groove 142. At this time, since the lead groove 142 has an upward angle with respect to the rotation direction of the shaft 110, the lubricating oil 108 is pushed downward along the lead groove 142 and flows into the tributary G from the communication end 142 a with the closed container 101. As shown, the gas is discharged into the closed container 101 and controls the oil supply to the piston 120 together with the heat radiation. Accordingly, the lubrication can be performed over the entire circumference of the sliding portion of the sub shaft portion 113 with the rotation of the lead groove portion 142, so that the reliability of the sliding portion of the sub shaft portion 113 is further improved and good even during low-speed rotation operation. As a result, it is possible to obtain a highly reliable hermetic-type compressor by reliably performing lubrication of the sliding portion of the piston 120. In addition, the use of low-viscosity lubricating oil as a refrigerant that easily dissolves in lubricating oil, and low-friction operation that enables operation at lower speeds are more stable. And the reliability of the hermetic compressor is improved.
[0075]
【The invention's effect】
As described above, the invention according to claim 1 of the present invention is characterized in that the lower end of the main shaft portion has a throttle portion communicating with the lubricating oil at the lower end, and the shaft has an outer periphery from the lower end of the main shaft portion. An inclined pump portion formed of a cylindrical cavity whose axis is inclined toward the outer periphery of the main shaft portion, a lower end thereof communicates with a vicinity of an upper end of the inclined pump portion, and the shaft rotates counterclockwise upward. A viscous pump portion spirally engraved while being inclined in the direction, from the eccentric shaft portion to the sub-shaft portion, one end communicating with the vicinity of the upper end of the viscous pump portion, and the other end above the sub-shaft portion. By providing a vertical hole with a communicating opening near the end face, a head is obtained up to the lower end of the viscous pump in the inclined pump, and the upward hydraulic pressure generated by the viscous pump does not cover the head of the vertical hole. Transport a stable amount of lubricating oil Can.
[0076]
According to a second aspect of the present invention, in addition to the first aspect of the invention, the vertical hole is further inclined upward and downward in a direction away from the rotation center axis of the shaft. An upward conveying force can be generated, and a sufficient amount of lubricating oil can be conveyed.
[0077]
According to a third aspect of the present invention, in addition to the first aspect of the present invention, the vertical hole portion is inclined upward from the bottom in the direction opposite to the rotational direction of the shaft, and the vertical hole portion also conveys upward. A force can be generated, and a sufficient amount of lubricating oil can be transported.
[0078]
According to a fourth aspect of the present invention, in addition to the first aspect of the present invention, the throttle portion has a disk-shaped cap inserted and locked in the inclined pump portion. It can prevent the throttle part from swinging with respect to the rotation axis due to mounting during assembly, so stable oil supply can be secured, and it is inexpensive configuration compared to the configuration where the cylindrical part with the throttle part is not added in the longitudinal direction The length of the shaft main shaft can be reduced.
[0079]
According to a fifth aspect of the present invention, in addition to any one of the first to third aspects of the present invention, a flat plate-shaped divider is inserted and locked in the inclined passage. Since the slip in the rotational direction of the lubricating oil is suppressed in the inclined pump portion, the centrifugal force effectively acts on the lubricating oil particularly in the inclined pump portion in a low-speed rotation region, and a stronger upward conveying force is generated.
[0080]
According to a sixth aspect of the present invention, in addition to any one of the first to third aspects of the present invention, a bearing is provided on a path from the cylindrical cavity of the inclined pump section to the upper opening of the vertical hole. At least one or more gas vent holes are provided to communicate with the space inside the closed container without passing through the portion, and in the oil supply mechanism having a long oil supply path, the refrigerant gas and the lubricating oil mixed when starting the compressor are vaporized. By effectively allowing gas and the like to escape to the space inside the closed container, the upward conveying force generated in the lubricating oil in the oil supply path is not interrupted.
[0081]
The invention according to claim 7 is the invention according to any one of claims 1 to 3, further comprising, in the auxiliary bearing portion of the shaft, one end opened to the vertical hole and the other end connected to the auxiliary bearing. The upper or lower part of the bearing communicates with the space inside the sealed container, and a lubricating oil discharge lateral hole is formed in the direction of centrifugal force with respect to the rotation of the shaft. Since the force is effectively generated and rectified and emitted, the emission direction becomes constant, and the scattering to the closed container is ensured.
[0082]
The invention according to claim 8 is the invention according to any one of claims 1 to 3, further comprising a sub-opening having a vertical hole at one end and an inner periphery at the other end. It has a shaft oil supply passage, and reliability is improved by reliably lubricating the sliding portion between the sub shaft portion and the sub bearing.
[0083]
According to a ninth aspect of the present invention, in addition to any one of the first to third aspects of the present invention, one end is opened to the vertical hole portion, and the other end is formed in the inner periphery of the sub-bearing and in the closed container. A communication hole is provided in both the space and the space, so that the shaft can reduce the number of processing steps and can supply oil to the sub-shaft and discharge the oil to the piston and the sealed container in the same hole.
[0084]
According to a tenth aspect of the present invention, in addition to any one of the first to third aspects of the present invention, one end communicates with the upper end of the shaft vertical hole, and the other end is connected to the rotation of the shaft. It has a lubricating oil discharge section that extends while curving in the direction of centrifugal force and opens into the space inside the sealed container. By sucking and pulling up the lubricating oil in the vertical hole, it also sucks in the lubricating oil in the viscous pump section Then, the opening end of the lubricating oil discharging portion discharges the lubricating oil in the centrifugal force direction, so that the amount of lubricating oil increases.
[0085]
According to an eleventh aspect of the present invention, in addition to the invention of any one of the first to third aspects, a sealing portion for sealing an upper end of the shaft vertical hole portion, and one end of the shaft vertical hole portion are provided. And a lubricating oil suction part whose other end extends linearly in the direction of centrifugal force with respect to the rotation of the shaft and opens to the space inside the sealed container, and sucks and pulls up the lubricating oil in the vertical hole. Since the opening end of the lubricating oil discharge section discharges the lubricating oil while extending in the direction of the centrifugal force, the lubricating oil in the lubricating path is suctioned and pulled up, thereby increasing the lubricating amount.
[0086]
According to a twelfth aspect of the present invention, in addition to the invention of any one of the first to third aspects, the outer periphery of the shaft countershaft portion further includes one end communicating with the countershaft oil supply passage and the other end closed. A spiral countershaft lead groove that opens in the inner space is provided, which can reliably supply lubrication to the sliding portion of the countershaft, and uses the viscosity of the lubricating oil by rotating the shaft to lubricate the lubricating oil. When is released from the countershaft lead groove into the closed container, it scatters to the piston and the closed container, so that oil can be supplied to the piston and heat can be released from the closed container.
[0087]
According to a thirteenth aspect of the present invention, in addition to any one of the first to twelfth aspects, the invention is further driven by an inverter at a plurality of operation frequencies including at least an operation frequency equal to or lower than a power supply frequency. In addition, even when the rotation speed of the shaft is reduced in the low operation frequency operation, the lubricating oil of each sliding portion can be supplied through the oil supply path from the inclined pump to the vertical hole portion through the viscous pump.
[0088]
According to a fourteenth aspect of the present invention, in addition to the thirteenth aspect, the operating frequency equal to or lower than the power supply frequency includes at least the operating frequency equal to or lower than 30 Hz. Lubrication to the sliding portion can be ensured.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a hermetic compressor according to a first embodiment of the present invention.
FIG. 2 is a side view of a shaft of the hermetic compressor according to the embodiment.
FIG. 3 is an enlarged view of a lower end portion of a shaft of the hermetic compressor according to the embodiment.
FIG. 4 is a characteristic diagram showing lubrication characteristics of the hermetic compressor of the embodiment.
FIG. 5 is a sectional view of a shaft of a hermetic compressor according to a second embodiment of the present invention.
FIG. 6 is a top view of a shaft of the hermetic compressor of the embodiment.
FIG. 7 is a top view of a shaft of a hermetic compressor according to a third embodiment of the present invention.
FIG. 8 is a sectional view of a main part of a shaft of a hermetic compressor according to a fourth embodiment of the present invention.
FIG. 9 is a sectional view of a main part of a shaft of the hermetic compressor according to the embodiment.
FIG. 10 is a sectional view of a main part of a shaft of a hermetic compressor according to a fifth embodiment of the present invention.
FIG. 11 is a sectional view of a main part of a shaft of a hermetic compressor according to a sixth embodiment of the present invention.
FIG. 12 is a detailed view of a shaft countershaft portion of a hermetic compressor according to a seventh embodiment of the present invention.
FIG. 13 is a longitudinal sectional view of a conventional hermetic compressor.
FIG. 14 is a top view of a conventional hermetic compressor.
FIG. 15 is a sectional view of a lower portion of a shaft of a conventional hermetic compressor.
FIG. 16 is a sectional view of a main part of a shaft countershaft of a conventional hermetic compressor.
[Explanation of symbols]
101 Closed container
105 motorized element
106 compression element
108 Lubricating oil
110 shaft
111 spindle
112 Eccentric shaft
113 counter shaft
116 cylinder block
117 Compressor
118 Main bearing
119 Secondary bearing
120 piston
121 connecting means
130 Inclined pump
131 viscous pump
132 vertical hole
135 vertical hole
136 Vertical hole
137a Gas vent hole
137b Gas vent hole
137c Gas vent hole
138 Lubricating oil discharge lateral hole
139 Common communication hole
140 Lubricating oil suction unit
141 Lubricating oil suction unit
141a sealing part
142 counter shaft lead groove

Claims (14)

密閉容器内に潤滑油を貯溜するとともに電動要素と前記電動要素によって駆動される圧縮要素を収容し、前記圧縮要素は偏芯軸部と前記偏芯軸部を挟んで上下に同軸状に設けた副軸部および主軸部とを有したシャフトと、略円筒形の圧縮室と前記圧縮室の軸心と略直交するように形成され前記主軸部の上半部を軸支する主軸受とを備えたシリンダブロックと、前記シリンダブロックに固定されるか又は一体に形成され前記副軸部を軸支する副軸受と、前記圧縮室内で往復運動するピストンと、前記ピストンと前記偏芯軸部とを連結する連結手段とを備えており、前記シャフトには、前記主軸部の下半部に、前記潤滑油に連通する絞り部を下端に有するとともに前記主軸部の下端から外周に向かい軸心が傾斜した円筒空洞で形成した傾斜ポンプ部を設け、前記主軸部の上半部外周に、下端が前記傾斜ポンプ部の上端近傍と連通し、上方に向かって前記シャフトの反回転方向に傾斜しながら螺旋状に刻設した粘性ポンプ部を設け、前記偏芯軸部から前記副軸部にかけて、一端が前記粘性ポンプ部上端近傍と連通し、他端が前記副軸部の上端面近傍に連通開口した縦孔部とを設けた密閉型圧縮機。While storing the lubricating oil in the closed container, an electric element and a compression element driven by the electric element are housed, and the compression element is provided coaxially with the eccentric shaft part and the eccentric shaft part vertically. A shaft having a sub shaft portion and a main shaft portion, a substantially cylindrical compression chamber, and a main bearing formed so as to be substantially orthogonal to the axis of the compression chamber and supporting the upper half of the main shaft portion. A cylinder block, a sub-bearing fixed to or integral with the cylinder block and supporting the sub-shaft portion, a piston reciprocating in the compression chamber, the piston and the eccentric shaft portion. A coupling means for coupling, wherein the shaft has a throttle portion at the lower half of the main shaft portion at the lower end, and an axial center is inclined from the lower end of the main shaft portion toward the outer periphery. Pump formed by a hollow cylindrical cavity A viscous pump portion is provided on the outer periphery of the upper half portion of the main shaft portion, the lower end of which is in communication with the vicinity of the upper end of the inclined pump portion, and is spirally engraved while being inclined upward in the counter-rotating direction of the shaft. A hermetic pump provided with a vertical hole having one end communicating with the vicinity of the upper end of the viscous pump portion and the other end communicating with and opening near the upper end surface of the sub shaft portion from the eccentric shaft portion to the sub shaft portion. Compressor. 縦孔部は下から上に向けてシャフトの回転中心軸から遠ざかる方向へ傾斜した請求項1に記載の密閉型圧縮機。The hermetic compressor according to claim 1, wherein the vertical hole portion is inclined upward from the bottom in a direction away from the rotation center axis of the shaft. 縦孔部は下から上に向けてシャフトの回転方向と反対方向に傾斜した請求項1に記載の密閉型圧縮機。The hermetic compressor according to claim 1, wherein the vertical hole portion is inclined upward from the bottom in a direction opposite to a rotation direction of the shaft. 絞り部は円板状の部材からなる請求項1から請求項3のいずれか1項に記載の密閉型圧縮機。The hermetic compressor according to any one of claims 1 to 3, wherein the throttle portion is formed of a disk-shaped member. 傾斜通路内に平板状のデバイダーを挿入係止した請求項1から請求項3のいずれか1項に記載の密閉型圧縮機。The hermetic compressor according to any one of claims 1 to 3, wherein a flat plate-shaped divider is inserted and locked in the inclined passage. 傾斜ポンプ部の円筒空洞部から縦孔部の上部開口に至る経路上に密閉容器内空間と連通する少なくとも1つ以上のガス抜き孔を設けた請求項1から請求項3のいずれか1項に記載の密閉型圧縮機。4. The gas pump according to any one of claims 1 to 3, wherein at least one or more gas vent holes communicating with the internal space of the closed vessel are provided on a path from the cylindrical hollow portion of the inclined pump portion to the upper opening of the vertical hole portion. A hermetic compressor as described. シャフトの副軸受部において、一端が縦孔部に開口し、他端が副軸受の上部または下部で密閉容器内空間と連通し、前記シャフトの回転に対して遠心力方向に潤滑油放出横孔を穿設した請求項1から請求項3のいずれか1項に記載の密閉型圧縮機。In the sub-bearing portion of the shaft, one end is opened to the vertical hole portion, and the other end is communicated with the space inside the closed container at the upper or lower portion of the sub-bearing, and the lubricating oil discharge lateral hole in the centrifugal force direction with respect to the rotation of the shaft. The hermetic compressor according to any one of claims 1 to 3, wherein the hermetic compressor is provided. 一端が縦孔部に開口し、他端が副軸受内周に開口する副軸給油路を設けた請求項1から請求項3のいずれか1項に記載の密閉型圧縮機。The hermetic compressor according to any one of claims 1 to 3, further comprising a sub-shaft oil supply passage having one end opened to the vertical hole and the other end opened to the inner periphery of the sub-bearing. 一端が縦孔部に開口し、他端が副軸受内周と密閉容器内空間との双方に開口した連通共用孔を設けた請求項1から請求項3のいずれか1項に記載の密閉型圧縮機。The closed type according to any one of claims 1 to 3, wherein one end is opened to the vertical hole portion, and the other end is provided with a communication common hole opened to both the inner periphery of the sub-bearing and the space in the sealed container. Compressor. 一端がシャフト縦孔部上端と連通し、他端がシャフトの回転に対して遠心力方向に延出し、密閉容器内空間に開口する潤滑油吸引部を備えた請求項1から請求項3のいずれか1項に記載の密閉型圧縮機。4. The lubricating oil suction part according to claim 1, wherein one end communicates with the upper end of the shaft vertical hole part, and the other end is extended in the direction of centrifugal force with respect to the rotation of the shaft, and is provided with a lubricating oil suction part that opens to the space inside the closed container. 2. The hermetic compressor according to claim 1. シャフト縦孔部の上端を封止する封止部と、一端がシャフト縦孔部上端と連通し、他端がシャフトの回転に対して遠心力方向に直線的に延出し密閉容器内空間に開口する潤滑油吸引部を備えた請求項1から請求項3のいずれか1項に記載の密閉型圧縮機。A sealing portion for sealing the upper end of the shaft vertical hole portion, and one end communicates with the upper end of the shaft vertical hole portion, and the other end linearly extends in the centrifugal force direction with respect to the rotation of the shaft and opens to the space inside the closed container. The hermetic compressor according to any one of claims 1 to 3, further comprising a lubricating oil suction unit that performs the lubricating oil suction. シャフト副軸部外周において、一端が副軸給油路を介して縦孔部と連通し下方に向ってシャフトの反回転方向に傾斜しながら螺旋状に刻設するとともに下端が密閉容器内空間と連通した副軸リード溝を備えた請求項1から請求項3のいずれか1項に記載の密閉型圧縮機。At the outer periphery of the shaft countershaft portion, one end communicates with the vertical hole through the countershaft oil supply passage, and is spirally carved while tilting downward in the anti-rotation direction of the shaft, and the lower end communicates with the space inside the sealed container. The hermetic compressor according to any one of claims 1 to 3, further comprising a countershaft lead groove formed as described above. 少なくとも電源周波数以下の運転周波数を含む複数の運転周波数でインバーター駆動される請求項1から請求項13のいずれか1項に記載の密閉型圧縮機。The hermetic compressor according to any one of claims 1 to 13, wherein the compressor is driven at a plurality of operation frequencies including an operation frequency at least equal to or lower than a power supply frequency. 電源周波数以下の運転周波数には少なくとも30Hz以下の運転周波数を含む請求項13記載の密閉型圧縮機。14. The hermetic compressor according to claim 13, wherein the operation frequency equal to or lower than the power supply frequency includes at least an operation frequency equal to or lower than 30 Hz.
JP2002197054A 2002-07-05 2002-07-05 Hermetic compressor Expired - Fee Related JP4154937B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002197054A JP4154937B2 (en) 2002-07-05 2002-07-05 Hermetic compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002197054A JP4154937B2 (en) 2002-07-05 2002-07-05 Hermetic compressor

Publications (2)

Publication Number Publication Date
JP2004036562A true JP2004036562A (en) 2004-02-05
JP4154937B2 JP4154937B2 (en) 2008-09-24

Family

ID=31704923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002197054A Expired - Fee Related JP4154937B2 (en) 2002-07-05 2002-07-05 Hermetic compressor

Country Status (1)

Country Link
JP (1) JP4154937B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100705459B1 (en) 2005-08-06 2007-04-10 삼성광주전자 주식회사 Hermetic compressor
JP2007100670A (en) * 2005-10-07 2007-04-19 Matsushita Electric Ind Co Ltd Enclosed compressor
JP2010031729A (en) * 2008-07-29 2010-02-12 Hitachi Appliances Inc Scroll compressor
JP2013545025A (en) * 2010-12-06 2013-12-19 ワールプール・エシ・ア Crankshaft for alternating cooling compressor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100705459B1 (en) 2005-08-06 2007-04-10 삼성광주전자 주식회사 Hermetic compressor
JP2007100670A (en) * 2005-10-07 2007-04-19 Matsushita Electric Ind Co Ltd Enclosed compressor
JP4622793B2 (en) * 2005-10-07 2011-02-02 パナソニック株式会社 Hermetic compressor
JP2010031729A (en) * 2008-07-29 2010-02-12 Hitachi Appliances Inc Scroll compressor
JP2013545025A (en) * 2010-12-06 2013-12-19 ワールプール・エシ・ア Crankshaft for alternating cooling compressor

Also Published As

Publication number Publication date
JP4154937B2 (en) 2008-09-24

Similar Documents

Publication Publication Date Title
CN100379986C (en) hermetic compressor
JP2003028065A (en) Hermetically closed electric compressor
KR100860203B1 (en) Hermetic compressor
JP2005337160A (en) Hermetically sealed compressor
KR20110054813A (en) compressor
KR100567494B1 (en) Hermetic Electric Compressor
EP1673538B1 (en) Hermetic-type compressor
JP2004036562A (en) Hermetic compressor
US6527086B2 (en) Oil supply device for closed reciprocating compressor
JP2001020864A (en) Hermetic compressor
JP5045521B2 (en) Hermetic compressor
CN100489306C (en) Compressor
JP2008501080A (en) Hermetic compressor
JP2009062954A (en) Hermetic compressor
KR100771594B1 (en) Crankshaft of compressor for cold application
JP2011185156A (en) Hermetic compressor
JP2015010490A (en) Sealed type compressor
KR100296102B1 (en) Structure for supplying oil of compressor
KR20080017213A (en) Hermetic compressor
KR20090125649A (en) Friction Reduction Device for Hermetic Compressor
KR20020019225A (en) crankshaft in compressor
KR900003829Y1 (en) Lubricating devices in hermitic compressor
JP2006342691A (en) Hermetic compressor
CN118653985A (en) An oil pump device, variable frequency compressor and method for adaptively adjusting oil supply amount
JP2005113866A (en) Hermetic electric compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050704

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050816

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080415

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080425

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080617

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080630

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees