[go: up one dir, main page]

JP2004032944A - Control device for synchronous motor and synchronous motor - Google Patents

Control device for synchronous motor and synchronous motor Download PDF

Info

Publication number
JP2004032944A
JP2004032944A JP2002188205A JP2002188205A JP2004032944A JP 2004032944 A JP2004032944 A JP 2004032944A JP 2002188205 A JP2002188205 A JP 2002188205A JP 2002188205 A JP2002188205 A JP 2002188205A JP 2004032944 A JP2004032944 A JP 2004032944A
Authority
JP
Japan
Prior art keywords
value
axis
voltage compensation
voltage
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002188205A
Other languages
Japanese (ja)
Other versions
JP4234359B2 (en
Inventor
Akiyoshi Satake
佐竹 明喜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okuma Corp
Original Assignee
Okuma Corp
Okuma Machinery Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okuma Corp, Okuma Machinery Works Ltd filed Critical Okuma Corp
Priority to JP2002188205A priority Critical patent/JP4234359B2/en
Publication of JP2004032944A publication Critical patent/JP2004032944A/en
Application granted granted Critical
Publication of JP4234359B2 publication Critical patent/JP4234359B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Electric Motors In General (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

【課題】電動機効率が良く、しかもトルクリップルの低い制御性の良い同期電動機の制御装置を提供することを目的とする。
【解決手段】電動機10に印加するための電流指令振幅値SIQC,SIDC、回転子位置検出値SVD、回転子速度検出値SPDをそれぞれ参照して同期周波数と複数の任意高次周波数の電圧補償値SVBCC,SVACCをそれぞれ演算し加算合成する高調波電圧補償値演算部16を備え、この高調波電圧補償値演算部16で演算された電圧補償値SVBCC,SVACCを電圧指令値SVU,SVV,SVWに加算する。
【選択図】    図1
An object of the present invention is to provide a control device for a synchronous motor having high motor efficiency and low torque ripple and good controllability.
A synchronous frequency and a voltage compensation value of a plurality of arbitrary higher-order frequencies are referred to by referring to current command amplitude values SIQC, SIDC, a rotor position detection value SVD, and a rotor speed detection value SPD to be applied to an electric motor. A harmonic voltage compensation value calculator 16 is provided to calculate SVBCC and SVACC and add and combine them. The voltage compensation values SVBCC and SVACC calculated by the harmonic voltage compensation value calculator 16 are converted into voltage command values SVU, SVV and SVW. to add.
[Selection diagram] Fig. 1

Description

【0001】
【発明の属する技術分野】
本発明は、工作機械等に利用されるリラクタンストルクおよびマグネットトルクを利用した同期電動機の制御装置に関するものであり、特に電動機に印加する電圧の補償制御技術に関するものである。
【0002】
【従来の技術】
図6に一般的な工作機械の送り軸制御や主軸用に適用される電動機の制御ブロック図を示す。
【0003】
図6において、1は速度制御器、2はトルク−電流変換器、3は電流制御器、4はd−q軸座標変換器、5はα−β軸座標変換器、6は位相演算器、7は3/2変換部、8は2/3変換部、9は電力変換器、10は同期電動機、11は検出器、12は位置−速度変換部、13は電流センサ、14は加算器である。
【0004】
次に、指令系について説明する。速度制御器1には、図示を略する上位制御器から速度指令値SVCと、位置−速度変換部12から回転子速度検出値SVDとが与えられ、その誤差を図示を略するPI制御器で演算することによってトルク指令値STCが得られる。
【0005】
このトルク指令値STCは、トルク−電流変換器2でd軸電流指令振幅値SIDCとq軸電流指令振幅値SIQCとに変換される。
【0006】
電流制御器3には、上述したd軸電流指令振幅値SIDCとq軸電流指令振幅値SIQCとが入力されると共に、d−q軸座標変換器4から出力されたd軸電流検出値SIDDとq軸電流検出値SIQDとが入力され、それぞれの軸の指令値と検出値の誤差とがPI制御器を介して、d軸電圧指令値SVDCとq軸電圧指令値SVQCとに変換される。
【0007】
ここで、d軸電流指令振幅値SIDCとq軸電流指令振幅値SIQC、d軸電流検出値SIDDとq軸電流検出値SIQD、d軸電圧指令値SVDCとq軸電圧指令値SVQCは回転子座標(d−q軸)なので、実際に電動機10に電流を流すためには固定子座標(α−β軸)に変換を行う必要がある。
【0008】
そこで、α−β軸座標変換器5によって、固定子座標のα軸電圧指令値SVACとβ軸電圧指令値SVBCとに変換される。この座標変換には、位相演算器6の出力であるCOS(SPD)とSIN(SPD)を使用する。尚、COSは余弦関数、SINは正弦関数を意味し、引数のSPDは回転子位置検出手段としての検出器11の出力、即ち、回転子位置検出値SPDを使用する。
【0009】
また、電動機10の制御は3相制御を前提としているため、2相指令値であるα軸電圧指令値SVAC、β軸電圧指令値SVBCを3相変換する必要があり、2/3変換部8にてU相電圧指令値SVU、V相電圧指令値SVV、U相電圧指令値SVWとし、インバータ等に代表される電力変換器9を介して各相の電圧を電動機10に印加することによって、実際に電動機10が駆動する。
【0010】
次に検出系を説明する。電動機10には回転子位置検出手段である検出器11が取り付けられており、この検出器11よって回転子位置検出値SPDが得られる。回転子位置検出値SPDは、位置−速度変換部12によって回転子速度SVDに変換され、上述したように、この回転子速度SVDが速度制御器1に出力される。
【0011】
電流検出は、電流センサ13により行われ2相分(例えば、U相電流検出値SIUD、V相電流検出値SIVD)を検出し、加算器14にて残りの相(W相電流検出値SIWD)を演算し、3相の電流検出値を3/2変換部7へ出力する。
【0012】
3/2変換部7は2相変換された固定子座標のα軸電流検出値SIADとβ軸電流検出値SIBDをd−q軸座標変換器4へ出力する。
【0013】
d−q軸座標変換器4は位相演算器6の出力であるCOS(SPD)とSIN(SPD)とを使用して回転子座標のd軸電流検出値SIDD、q軸電流検出値SIQDへ変換する。
【0014】
【発明が解決しようとする課題】
一般的に、永久磁石を回転子の表面に貼り付けた構造を採用する永久磁石電動機は、その永久磁石の形状に工夫を凝らすことによって永久磁石磁束による誘起電圧の形状が正弦波状になるようにしている。
【0015】
これは、電動機10を駆動する電流(または電圧)波形が正弦波形状を基本としているためであり、これにより効率良く、またトルクリップルの低い特性が得られることは周知である。
【0016】
しかし、リラクタンス型電動機(RM)やリラクタンストルクと永久磁石型トルクを利用する永久磁石内装型電動機(IPM)は、その構造上、回転子表面が軟磁性材で覆われており、回転子表面の磁束がパーミアンスが大きい場所に集中してしまうために誘起電圧(またはRMの場合、励磁電圧)波形が正弦波状にならないうえ、回転子の位置により回転方向に高調波を含んだ波形で周期的に変化する。
【0017】
この波形は、基本波(同期周波数)に対して複数次の高調波を含んだ波形になることが実験的に解っている。
【0018】
この原因は、回転子形状による固定子間のパーミアンス変化と、永久磁石内挿型電動機(IPM)の場合、永久磁石による回転子表面の磁束分布が回転方向に対して磁極性(N/S)の切り替わり部分に集中し易いという性質に起因する。この高調波を含んだ誘起電圧(RMの場合、励磁電圧)は、制御電流波形に高調波電流成分として現れ、鉄損の増大につながっている。
【0019】
このような鉄損は、周波数が高くなるほど大きくなるため、より周波数の高い高調波電流は電動機駆動時の効率低下の原因となる。
【0020】
また、高調波電流により駆動電流の波形率が悪くなることで電動機のトルクリップルの原因となるため、高調波電流成分が少ないということは、電動機の効率も良くトルクリップルも低くなるということを意味する。そのため制御性が良くなる。
【0021】
本発明は、上述した事情から成されたものであり、電動機効率が良く、しかもトルクリップルの低い制御性の良い同期電動機の制御装置を提供することを目的とする。
【0022】
【課題を解決するための手段】
その目的を達成するため、本発明の同期電動機の制御装置は、軟磁性体または硬磁性体で構成され回転方向に固定子巻線から見てインダクタンス変化がある回転子を持つ電動機を制御する同期電動機の制御装置において、該電動機に印加する電流指令振幅値と、回転子位置検出手段から得られる回転子位置検出値と、回転子速度検出手段から得られる回転子速度検出値とを参照し、同期周波数と複数の任意高次周波数の電圧補償値をそれぞれ演算し加算・合成する高調波電圧補償値演算部を備え、該高調波電圧補償値演算部で演算された電圧補償値を電圧指令値に加算することを特徴とする。
【0023】
また、前記高調波電圧補償値演算部で演算される電圧補償値は、同期周波数と複数の任意高次周波数が任意設定されるしきい値周波数以下の周波数について演算・合成されることを特徴とする。
【0024】
さらに、固定子座標であるα−β軸について各々について演算されα軸高調波電圧補償値およびβ軸高調波電圧補償値として、それぞれα軸電圧指令値およびβ軸電圧指令値に補償されることを特徴とする。
【0025】
また、本発明の同期電動機は、速度制御器から出力されたトルク指令値がトルク−電流変換器で電流指令振幅値に変換され、該電流指令振幅値を電圧指令値に変換した上で電圧が印加される同期電動機において、前記電流指令振幅値を取得すると共に回転子の回転位置に基づく回転子位置検出値と前記回転子の回転速度に基づく回転子速度検出値とを参照して高調波電圧補償値が高調波電圧補償値演算部によって演算され、該高調波電圧補償値演算部から出力された高調波電圧補償値を前記電流指令振幅値から前記電圧指令値へと変換する過程で加算した補償後電圧指令値とした上で補償後電圧が印加されることを特徴とする。
【0026】
また、本発明の同期電動機は、速度制御器から出力されたトルク指令値がトルク−電流変換器で2相のd軸電流指令振幅値とq軸電流指令振幅値に変換され、該d軸電流指令振幅値とq軸電流指令振幅値をα軸電圧指令値とβ軸電圧指令値とに変換した後に、該α軸電圧指令値とβ軸電圧指令値とを相変換部によって3相の電圧指令値に変換した上で電力変換器を介して各相の電圧が印加される同期電動機において、前記d軸電流指令振幅値とq軸電流指令振幅値とを取得すると共に回転子の回転位置に基づく回転子位置検出値と前記回転子の回転速度に基づく回転子速度検出値とを参照してα軸高調波電圧補償値とβ軸高調波電圧補償値とが高調波電圧補償値演算部によって演算され、該高調波電圧補償値演算部から出力されたα軸高調波電圧補償値とβ軸高調波電圧補償値とをα軸電圧指令値とβ軸電圧指令値とい加算して補償後α軸電圧指令値と補償後β軸電圧指令値とを相変換部によって3相の電圧指令値に変換した上で電力変換器を介して各相の補償後電圧が印加されることを特徴とする。
【0027】
さらに、本発明の同期電動機は、前記高調波電圧補償値演算部は、前記d軸電流指令振幅値から求めたd軸磁束値を出力するd軸磁束演算器と、前記q軸電流指令振幅値から求めたq軸磁束値を出力するq軸磁束演算器と、前記回転子速度検出値から角周波数を生成する単位変換器と、前記d軸磁束値と前記q軸磁束値の各々に前記角周波数を乗じてd軸基本電圧補償振幅値とq軸基本電圧補償振幅値とを出力する乗算器と、前記角周波数を基本波として前記回転子位置検出値から求められた高次数の角周波数を予め設定されたしきい値角周波数と比較した後にその比較後の高次数の角周波数を使用して前記d軸基本電圧補償振幅値並びに前記q軸基本電圧補償振幅値から前記α軸高調波電圧補償値と前記β軸高調波電圧補償値とを演算する高次数電圧補償値合成器とを備えていることを特徴とする。
【0028】
【発明の実施の形態】
次に、本発明の同期電動機の制御装置に係る実施の形態を図1乃至図5に基づいて説明する。
【0029】
図1は本発明の同期電動機の制御装置としての工作機械の送り軸制御や主軸用に適用される電動機の制御ブロック図である。
【0030】
図1において、1は速度制御器、2はトルク−電流変換器、3は電流制御器、4はd−q軸座標変換器、5はα−β軸座標変換器、6は位相演算器、7は3/2変換部、8は2/3変換部、9は電力変換器、10は同期電動機、11は検出器、12は位置−速度変換部、13は電流センサ、14は加算器、15はα−β軸座標変換器5と2/3変換部加算器8との間に設けられた加算器、16は高調波電圧補償値演算部である。
【0031】
この高調波電圧補償値演算部16には、回転子座標(d−q軸)のd軸電流指令振幅値(電流指令振幅値)SIDC並びにq軸電流指令振幅値(電流指令振幅値)SIQCが入力される。また、高調波電圧補償値演算部16には、回転子位置検出値SPDと、この回転子位置検出値SPDに基づく回転子速度検出値SVDとが入力される。
【0032】
高調波電圧補償値演算部16からは、α軸高調波電圧補償値SVACCとβ軸高調波電圧補償値SVBCCとが出力され、加算器15を介してα−β軸座標変換器5から出力されたα軸電圧指令値SVAC並びにβ軸電圧指令値SVBCに加算される。これにより、2/3変換部8には、補償後α軸電圧指令値SVADCと補償後β軸電圧指令値SVBDCとが入力される。
【0033】
なお、詳細は後述するがα軸高調波電圧補償値SVACCとβ軸高調波電圧補償値SVBCCとは、角軸基本波(=同期周波数)と複数の任意高調波成分(任意高次周波数)とを合成した電圧補償値である。
【0034】
図2は、本発明が適用される電動機10の説明図である。
【0035】
この図2において、21は固定子、22は固定子巻線、23はスロット、24は軸、25は永久磁石、26は回転子である。
【0036】
固定子21は珪素鋼板に代表されるような軟磁性材でありスロット23が設けられ、その内に固定子巻線22が収められている。固定子21の内側には固定子21と同材料でできた回転子26が収められ、回転子26は軸24に固定されており軸24を中心に回転する構造である。
【0037】
回転子26内には空隙が設けられ内部に永久磁石25が固定される。図2中の永久磁石25は、交互に逆向きの矢印Mfで示した着磁方向となっており、固定子21の固定子巻線22に電流を流さない状態では、磁気ループMLで示した磁束の流れができている。
【0038】
図3は、図2に示した電動機10を回転させた場合に発生する誘起電圧のグラフ図を示す。
【0039】
図3(a)は相電圧の例であり、実線で示す波形31をU相電圧、破線で示す波形32はV相電圧と仮定する。図3(a)からもわかるように、各相電圧は3相の場合、それぞれが2π/3ラジアンだけ位相がずれている。また、図3(a)の縦軸の0(零)よりも上側を正、下側を負とすると、誘起電圧のゼロクロス部分がちょうど永久磁石の極性(N/S極)の切り替わり部分である。
【0040】
図3(b)は電動機の巻線をY結線にした場合のU−V相間:線間電圧波形のグラフ図であり、図3(a)に示したU相誘起電圧とV相誘起電圧とを合成した波形になる。ここで、同期周波数(=基本波成分)に対して高調波が重畳しているため、正弦波状の波形にはなっていない。(図では3次または5次の高調波成分が顕著である。)
【0041】
尚、図3では説明の便宜上、模式的な波形を示したが実際には、図3(a)、図3(b)の双方共、より次数の高い高調波が含まれていることが多く、これが鉄損の原因となり発熱量が大きくなることで電動機効率が低下するという問題が発生する。また誘起電圧が制御電流波形に影響し、波形率の低下の原因となりトルクリップルとなり駆動時の騒音や工作機械の送り軸に適用した場合、加工面に縞目となって現れるため問題になることがある。
【0042】
図4は図1で示した高調波電圧補償値演算部16の一例を示すブロック図である。
【0043】
図4において、41はd軸磁束演算器、42はq軸磁束演算器、43は乗算器、44は乗算器、45は単位変換器、46は次数発生器、47は次数判定部、48は高次位相発生部、49は高次数電圧補償値合成器である。
【0044】
回転子座標のd軸電流指令振幅値SIDCがd軸磁束演算器41に入力され、d軸磁束演算器41では、d軸電流指令振幅値SIDCの電流の大きさを考慮したインダクタンス推定値や、永久磁石の磁束を考慮した磁束推定値を基に回転子d軸磁束を推定し、d軸磁束値SPHIDとして出力される。
【0045】
同様に回転子座標のq軸電流指令振幅値SIQCがq軸磁束演算器42に入力され、q軸磁束演算器42では、q軸電流指令振幅値SIQCの電流の大きさを考慮したインダクタンス推定値を基に回転子q軸磁束を推定し、q軸磁束値SPHIQとして出力される。
【0046】
回転子速度検出値SVDは、単位変換器45により単位変換され角周波数SOMEGAとして出力される。d軸磁束値SPHIDとq軸磁束値SPHIQは角周波数SOMEGAが乗算器43、44によりそれぞれ乗じられることにより、回転子座標のd軸基本電圧補償振幅値SVEDとq軸基本電圧補償振幅値SVEQが高次数電圧補償値合成器49に出力される。
【0047】
また、回転子位置検出値SPDは次数発生器46に出力される。次数発生器46には予め基本波に対する次数DEGとその次数に対する振幅AMPが設定されており、次数は1〜n(nは整数)までの任意の次数が設定可能である。
【0048】
誘起電圧の高調波の次数は1〜n(nは整数)の全て演算しても良いが、経験上、上位数個の次数を選択するのみで良い。これは高調波が全ての次数を含んでいないのと演算を簡便にするためであるが、これだけでも充分期待する効果が得られる。
【0049】
次数発生器46から出力される基本波に対する次数DEGとその次数に対する振幅AMPは次数判定部47に出力される。
【0050】
次数判定部47には単位変換器45で演算された角周波数SOMEGAが入力されており、角周波数SOMEGAを基本波として次数発生器46から出力される基本波に対する次数DEGを使用して、角周波数SOMEGA*次数DEGとすることで高次数の角周波数(SOMEGA)nを演算する。ここで添え字のnは次数を意味(以下同)しており、この時点で高次数の角周波数(SOMEGA)nは1つではなく、次数発生器46で選択された1〜n(nは整数)の複数の任意次数である。
【0051】
ここで、高次数の角周波数(SOMEGA)nと予め次数判定部47内に設定してあるしきい値角周波数(しきい値周波数)SOMEGACとを比較し、高次数の角周波数(SOMEGA)nがしきい値角周波数SOMEGAC以下であれば、そのn次の次数と振幅[DEG,AMP]nは高次位相発生部48に出力されるが、nがしきい値角周波数SOMEGAC以上の場合、高次位相発生部48に出力されない。
【0052】
このようにしきい値を設けるのは電動機10(又は制御装置)の伝達関数が高い周波数に応答しないためであり、応答不能な周波数の指令を加えることで制御系が不安定になるのを避けるということと、無駄な補償のための処理時間を省くのに有用である。
【0053】
よって、このしきい値角周波数SOMEGACは電動機10(又は制御装置)の伝達関数に依存しており、使用する電動機10(又は制御装置)により任意に設定を行うことができる。
【0054】
このように次数判定部47によりフィルタリングされたn次の次数と振幅である[DEG,AMP]nは高次位相発生部48でAMPn*COS(DEGn*SPD)、およびAMPn*SIN(DEGn*SPD)を演算し、高次数電圧補償値合成器49へ出力される。なお、前式のSINは正弦関数であり、COSは余弦関数である。
【0055】
高次数電圧補償値合成器49は回転子座標のd軸基本電圧補償振幅値SVEDとq軸基本電圧補償振幅値SVEQを高次位相発生部48から出力されたAMPn*COS(DEGn*SPD)、およびAMPn*SIN(DEGn*SPD)を使用して、固定子座標のα軸高調波電圧補償値SVACCとβ軸高調波電圧補償値SVBCCを演算する。
【0056】
よって、α軸高調波電圧補償値SVACCを例にあげると、
SVACC=Σ[SVED*AMPn*COS(DEGn*SPD)]…(1)
となっている。
【0057】
また、同様にβ軸高調波電圧補償値SVBCCは、
SVBCC=Σ[SVEQ*AMPn*SIN(DEGn*SPD)]…(2)
となる。
【0058】
ここで、高次数電圧補償値合成器49ではd−q軸回転子座標からα−β軸固定子座標に変換されており、n次の振幅AMPnは基本波振幅に対する割合を意味していることが式(1),式(2)からわかる。
【0059】
図5は、本発明の効果の一例を示したグラフ図であり、1相あたりの電流指令波形および応答波形を示している。
【0060】
電流指令波形50に対し、波形52は従来例で示した同期電動機の制御装置で電動機に電流を印加した場合の電流検出値、波形51は本発明を適用した場合の電流検出値である。
【0061】
波形52には基本波に対して高調波が重畳されており、この高調波成分が鉄損の原因となり発熱量が大きくなることで電動機効率が低下し、誘起電圧が制御電流波形に影響しトルクリップルとなり駆動時の騒音や工作機械の送り軸に適用した場合、加工面に縞目となって現れるため問題になる。
【0062】
波形51では高調波成分が低減しており、なおかつ電流指令値50に対して位相遅れも少なくなっており制御性も向上していることがわかる。
【0063】
尚、本発明は前述の実施形態に限定されるものではなく、主旨を逸脱しない範囲で下記のような変形を行うことが可能である。
【0064】
高調波電圧補償値演算部16内で回転子座標のd−q軸(または固定子座標のα−β軸)の両方について演算を行ったがd軸もしくはq軸の片方だけを演算しても良い。
【0065】
高調波電圧補償値演算部16内で回転子座標のd−q軸(または固定子座標のα−β軸)のそれぞれの軸について次数発生器46、次数判定部47、高次位相発生部48を設けて、各軸ごとに必ずしも次数が一致する必要はない。
【0066】
高調波電圧補償値SVBCC、SVACCを独立して3相変換し、3相電圧指令値SVU、SVV、SVWに補償を行っても良い。
【0067】
回転機で説明したがリニア型電動機に適用しても良い。
【0068】
電動機10の巻線方式をY結線で説明したがΔ結線に適用しても良い。
【0069】
【発明の効果】
以上説明したように、本発明の同期電動機の制御装置によれば、軟磁性体または硬磁性体で構成され回転方向に固定子巻線から見てインダクタンス変化がある回転子を持つ電動機を制御する同期電動機の制御装置において、該電動機に印加する電流指令振幅値と、回転子位置検出手段から得られる回転子位置検出値と、回転子速度検出手段から得られる回転子速度検出値とを参照し、同期周波数と複数の任意高次周波数の電圧補償値をそれぞれ演算し加算合成する高調波電圧補償値演算部を備え、該高調波電圧補償値演算部で演算された電圧補償値を電圧指令値に加算する手段を備え、また、高調波電圧補償値演算部で演算される電圧補償値は、同期周波数と複数の任意高次周波数が任意に設定されるしきい値周波数以下の周波数について演算・合成されることにより、電動機効率が良く、しかもトルクリップルの低い制御性の良い同期電動機の制御装置とすることができる。
【0070】
また、高調波電圧補償値演算部で演算される電圧補償値は、固定子座標であるα−β軸について各々について演算されα軸高調波電圧補償値およびβ軸高調波電圧補償値として、それぞれα軸電圧指令値およびβ軸電圧指令値に補償されることにより、電動機に印加される電流の高調波成分が低減し、鉄損が低下することで電動機効率が向上するばかりでなく、トルクリップルも低下するため電動機の制御性を大幅に向上させることができる。
【図面の簡単な説明】
【図1】本発明の同期電動機の制御装置の実施の形態を示し、制御装置のブロック図である。
【図2】本発明の同期電動機の制御装置が適用される電動機の説明図である。
【図3】本発明の同期電動機の制御装置が適用される電動機の誘起電圧波形を示し、(a)は相電圧のグラフ図、(b)は電動機の巻線をY結線にした場合のU−V相間:線間電圧波形のグラフ図である。
【図4】本発明の同期電動機の制御装置を示し、高調波電圧補償値演算部のブロック図である。
【図5】本発明の同期電動機の制御装置の効果を示すグラフ図である。
【図6】従来の同期電動機の制御装置を示し、制御装置のブロック図である。
【符号の説明】
1 速度制御器、2 トルク−電流変換器、3 電流制御器、4 d−q軸座標変換器、5 α−β軸座標変換器、6 位相演算器、7 3/2変換部、8 2/3変換部、9 電力変換器、10 同期電動機、11 検出器、12 位置−速度変換部、13 電流センサ、14 加算器、15 加算器、16 高調波電圧補償値演算部、21 固定子、41 d軸磁束演算器、42 q軸磁束演算器、43 乗算器、44 乗算器、45 単位変換器、46 次数発生器、47次数判定部、48 高次位相発生部、49 高次数電圧補償値合成器、STCトルク指令値、SIQC q軸電流指令振幅値、SIDC d軸電流指令振幅値、SIQD q軸電流検出値、SIDD d軸電流検出値、SVQC q軸電圧指令値、SVDC d軸電圧指令値、SVBC β軸電圧指令値、SVAC α軸電圧指令値、SVBCC β軸高調波電圧補償値、SVACC α軸高調波電圧補償値、SVBDC 補償後β軸電圧指令値、SVADC 補償後α軸電圧指令値、SVU U相電圧指令値、SVV V相電圧指令値、SVW W相電圧指令値、SIUD U相電流検出値、SIVD V相電流検出値、SIWD W相電流検出値、SIAD α軸電流検出値、SIBD β軸電流検出値、SIDD d軸電流検出値、SIQD q軸電流検出値、SPD 回転子位置検出値、SVD 回転子速度検出値、DEG 次数、AMP 振幅(割合)、SOMEGA 角周波数、SPHID d軸磁束値、SPHIQ q軸磁束値、SVED d軸基本電圧補償振幅値、SVEQ q軸基本電圧補償振幅値。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a control device for a synchronous motor using a reluctance torque and a magnet torque used for a machine tool or the like, and more particularly to a technique for controlling and controlling a voltage applied to the motor.
[0002]
[Prior art]
FIG. 6 shows a control block diagram of a motor applied to feed axis control and a spindle of a general machine tool.
[0003]
6, 1 is a speed controller, 2 is a torque-current converter, 3 is a current controller, 4 is a dq axis coordinate converter, 5 is an α-β axis coordinate converter, 6 is a phase calculator, 7 is a 3/2 converter, 8 is a 2/3 converter, 9 is a power converter, 10 is a synchronous motor, 11 is a detector, 12 is a position-speed converter, 13 is a current sensor, and 14 is an adder. is there.
[0004]
Next, the command system will be described. The speed controller 1 is provided with a speed command value SVC from a higher-level controller (not shown) and a rotor speed detection value SVD from the position-speed converter 12, and the error thereof is determined by a PI controller (not shown). By performing the calculation, the torque command value STC is obtained.
[0005]
The torque command value STC is converted by the torque-current converter 2 into a d-axis current command amplitude value SIDC and a q-axis current command amplitude value SIQC.
[0006]
The d-axis current command amplitude SIDC and the q-axis current command amplitude SIQC described above are input to the current controller 3, and the d-axis current detection value SIDD output from the dq-axis coordinate converter 4 is input to the current controller 3. The q-axis current detection value SIQD is input, and the error between the command value of each axis and the detection value is converted into a d-axis voltage command value SVDC and a q-axis voltage command value SVQC via a PI controller.
[0007]
Here, the d-axis current command amplitude SIDC and the q-axis current command amplitude SIQC, the d-axis current detection value SIDD and the q-axis current detection value SIQC, the d-axis voltage command value SVDC and the q-axis voltage command value SVQC are rotor coordinates. (D-q axes), it is necessary to convert the current to the stator coordinates (α-β axes) in order to actually apply a current to the electric motor 10.
[0008]
Then, the α-β axis coordinate converter 5 converts the command into an α-axis voltage command value SVAC and a β-axis voltage command value SVBC of the stator coordinates. For this coordinate conversion, COS (SPD) and SIN (SPD) output from the phase calculator 6 are used. COS means a cosine function, SIN means a sine function, and the argument SPD uses the output of the detector 11 as the rotor position detecting means, that is, the rotor position detection value SPD.
[0009]
In addition, since the control of the electric motor 10 is based on the three-phase control, it is necessary to convert the two-phase command values α-axis voltage command value SVAC and β-axis voltage command value SVBC into three phases. By applying a U-phase voltage command value SVU, a V-phase voltage command value SVV, and a U-phase voltage command value SVW, and applying the voltage of each phase to the electric motor 10 through a power converter 9 represented by an inverter, The electric motor 10 is actually driven.
[0010]
Next, the detection system will be described. The electric motor 10 is provided with a detector 11 serving as a rotor position detecting means, and the rotor 11 detects a rotor position detection value SPD. The rotor position detection value SPD is converted into a rotor speed SVD by the position-speed converter 12, and the rotor speed SVD is output to the speed controller 1 as described above.
[0011]
The current detection is performed by the current sensor 13 to detect two phases (for example, the U-phase current detection value SIUD and the V-phase current detection value SIVDD), and the adder 14 detects the remaining phases (W-phase current detection value SIWD). And outputs the three-phase current detection values to the 3/2 conversion unit 7.
[0012]
The 3/2 conversion section 7 outputs the α-axis current detection value SIAD and β-axis current detection value SIBD of the stator coordinates subjected to the two-phase conversion to the dq axis coordinate converter 4.
[0013]
The dq-axis coordinate converter 4 converts COS (SPD) and SIN (SPD) output from the phase calculator 6 into a d-axis current detection value SIDD and a q-axis current detection value SIQD of rotor coordinates. I do.
[0014]
[Problems to be solved by the invention]
Generally, permanent magnet motors that adopt a structure in which permanent magnets are attached to the surface of a rotor are designed so that the shape of the induced voltage due to the permanent magnet magnetic flux becomes sinusoidal by devising the shape of the permanent magnet. ing.
[0015]
This is because the current (or voltage) waveform for driving the electric motor 10 is based on a sinusoidal waveform, and it is well known that this makes it possible to obtain an efficient and low torque ripple characteristic.
[0016]
However, a reluctance type electric motor (RM) and a permanent magnet built-in type electric motor (IPM) using reluctance torque and permanent magnet type torque have a structure in which the rotor surface is covered with a soft magnetic material. Since the magnetic flux concentrates on the place where the permeance is large, the induced voltage (or the excitation voltage in the case of RM) waveform does not become a sine wave shape. Change.
[0017]
It has been experimentally understood that this waveform becomes a waveform containing a plurality of harmonics with respect to the fundamental wave (synchronous frequency).
[0018]
This is due to the change in permeance between the stators due to the rotor shape and, in the case of a permanent magnet insertion motor (IPM), the magnetic flux distribution on the rotor surface due to the permanent magnets (N / S) in the direction of rotation. This is due to the property that it is easy to concentrate on the switching part. The induced voltage (excitation voltage in the case of RM) containing this harmonic appears as a harmonic current component in the control current waveform, leading to an increase in iron loss.
[0019]
Since such iron loss increases as the frequency increases, a higher-frequency harmonic current causes a reduction in efficiency when the motor is driven.
[0020]
In addition, since the waveform ratio of the drive current becomes worse due to the harmonic current, which causes torque ripple of the motor, a small harmonic current component means that the efficiency of the motor is high and the torque ripple is low. I do. Therefore, controllability is improved.
[0021]
The present invention has been made in view of the above circumstances, and has as its object to provide a control device for a synchronous motor having good motor efficiency and low torque ripple and good controllability.
[0022]
[Means for Solving the Problems]
In order to achieve the object, a synchronous motor control device of the present invention is a synchronous motor for controlling a motor having a rotor that is made of a soft magnetic material or a hard magnetic material and has a change in inductance when viewed from a stator winding in a rotational direction. In the motor control device, with reference to the current command amplitude value applied to the motor, the rotor position detection value obtained from the rotor position detection means, and the rotor speed detection value obtained from the rotor speed detection means, A harmonic voltage compensation value calculator for calculating, synthesizing and synthesizing voltage compensation values of the synchronization frequency and a plurality of arbitrary higher-order frequencies is provided, and the voltage compensation value calculated by the harmonic voltage compensation value calculator is a voltage command value. , Is added.
[0023]
The voltage compensation value calculated by the harmonic voltage compensation value calculation unit is calculated and synthesized for a frequency equal to or lower than a threshold frequency at which a synchronization frequency and a plurality of arbitrary higher-order frequencies are arbitrarily set. I do.
[0024]
Furthermore, it is calculated for each of the α-β axes that are the stator coordinates, and compensated for the α-axis voltage command value and the β-axis voltage command value as the α-axis harmonic voltage compensation value and the β-axis harmonic voltage compensation value, respectively. It is characterized by.
[0025]
In the synchronous motor of the present invention, the torque command value output from the speed controller is converted into a current command amplitude value by a torque-current converter, and the current command amplitude value is converted into a voltage command value. In the applied synchronous motor, the harmonic voltage is obtained by acquiring the current command amplitude value and referring to a rotor position detection value based on the rotation position of the rotor and a rotor speed detection value based on the rotation speed of the rotor. The compensation value is calculated by the harmonic voltage compensation value calculation unit, and the harmonic voltage compensation value output from the harmonic voltage compensation value calculation unit is added in the process of converting the current command amplitude value to the voltage command value. The present invention is characterized in that a voltage after compensation is applied after setting a voltage command value after compensation.
[0026]
Further, in the synchronous motor of the present invention, the torque command value output from the speed controller is converted into a two-phase d-axis current command amplitude value and a q-axis current command amplitude value by a torque-current converter, and the d-axis current After converting the command amplitude value and the q-axis current command amplitude value into an α-axis voltage command value and a β-axis voltage command value, the phase conversion unit converts the α-axis voltage command value and the β-axis voltage command value into a three-phase voltage. In the synchronous motor to which the voltage of each phase is applied via the power converter after being converted into the command value, the d-axis current command amplitude value and the q-axis current command amplitude value are obtained and the rotational position of the rotor is changed. The α-axis harmonic voltage compensation value and the β-axis harmonic voltage compensation value are calculated by the harmonic voltage compensation value calculating unit with reference to the detected rotor position value based on the rotor position and the detected rotor speed value based on the rotation speed of the rotor. Α-axis harmonic voltage calculated and output from the harmonic voltage compensation value calculation unit The compensation value and the β-axis harmonic voltage compensation value are added to the α-axis voltage command value and the β-axis voltage command value, and the compensated α-axis voltage command value and the compensated β-axis voltage command value are converted into three phases by a phase converter. After the conversion into the voltage command value, and applying the compensated voltage of each phase via the power converter.
[0027]
Further, in the synchronous motor according to the present invention, the harmonic voltage compensation value calculation unit includes a d-axis magnetic flux calculator that outputs a d-axis magnetic flux value obtained from the d-axis current command amplitude value, and the q-axis current command amplitude value. A q-axis magnetic flux calculator that outputs a q-axis magnetic flux value obtained from the above, a unit converter that generates an angular frequency from the detected rotor speed value, and an angle calculator for each of the d-axis magnetic flux value and the q-axis magnetic flux value. A multiplier for multiplying a frequency to output a d-axis basic voltage compensation amplitude value and a q-axis basic voltage compensation amplitude value; and a high-order angular frequency obtained from the rotor position detection value using the angular frequency as a fundamental wave. After comparing with the preset threshold angular frequency, the α-axis harmonic voltage is calculated from the d-axis basic voltage compensation amplitude value and the q-axis basic voltage compensation amplitude value using the higher-order angular frequency after the comparison. High value for calculating the compensation value and the β-axis harmonic voltage compensation value. And an order voltage compensation value synthesizer.
[0028]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, an embodiment of a control device for a synchronous motor according to the present invention will be described with reference to FIGS.
[0029]
FIG. 1 is a control block diagram of a motor applied to a feed shaft control and a spindle of a machine tool as a control device of a synchronous motor according to the present invention.
[0030]
In FIG. 1, 1 is a speed controller, 2 is a torque-current converter, 3 is a current controller, 4 is a dq axis coordinate converter, 5 is an α-β axis coordinate converter, 6 is a phase calculator, 7 is a 3/2 converter, 8 is a 2/3 converter, 9 is a power converter, 10 is a synchronous motor, 11 is a detector, 12 is a position-speed converter, 13 is a current sensor, 14 is an adder, An adder 15 is provided between the α-β axis coordinate converter 5 and the 2/3 converter adder 8, and 16 is a harmonic voltage compensation value calculator.
[0031]
The harmonic voltage compensation value calculation unit 16 stores a d-axis current command amplitude value (current command amplitude value) SIDC and a q-axis current command amplitude value (current command amplitude value) SIQC of the rotor coordinates (dq axis). Is entered. The harmonic voltage compensation value calculation unit 16 receives the rotor position detection value SPD and the rotor speed detection value SVD based on the rotor position detection value SPD.
[0032]
The harmonic voltage compensation value calculator 16 outputs the α-axis harmonic voltage compensation value SVACC and the β-axis harmonic voltage compensation value SVBCC, and outputs the α-β axis coordinate converter 5 via the adder 15. Is added to the α-axis voltage command value SVAC and β-axis voltage command value SVBC. As a result, the compensated α-axis voltage command value SVADC and the compensated β-axis voltage command value SVBDC are input to the 2/3 converter 8.
[0033]
Although the details will be described later, the α-axis harmonic voltage compensation value SVACC and the β-axis harmonic voltage compensation value SVBCC are a square-axis fundamental wave (= synchronous frequency) and a plurality of arbitrary harmonic components (arbitrary higher-order frequencies). Is a voltage compensation value obtained by combining
[0034]
FIG. 2 is an explanatory diagram of the electric motor 10 to which the present invention is applied.
[0035]
In FIG. 2, 21 is a stator, 22 is a stator winding, 23 is a slot, 24 is a shaft, 25 is a permanent magnet, and 26 is a rotor.
[0036]
The stator 21 is a soft magnetic material typified by a silicon steel plate and has a slot 23 in which a stator winding 22 is housed. A rotor 26 made of the same material as the stator 21 is housed inside the stator 21, and the rotor 26 is fixed to a shaft 24 and has a structure that rotates about the shaft 24.
[0037]
An air gap is provided in the rotor 26 and the permanent magnet 25 is fixed inside. The permanent magnets 25 in FIG. 2 have the magnetization directions alternately indicated by arrows Mf opposite to each other. When no current flows through the stator windings 22 of the stator 21, the permanent magnets 25 are indicated by magnetic loops ML. A flow of magnetic flux is created.
[0038]
FIG. 3 is a graph showing an induced voltage generated when the electric motor 10 shown in FIG. 2 is rotated.
[0039]
FIG. 3A shows an example of the phase voltage. It is assumed that a waveform 31 indicated by a solid line is a U-phase voltage and a waveform 32 indicated by a broken line is a V-phase voltage. As can be seen from FIG. 3A, when each phase voltage has three phases, each phase is shifted by 2π / 3 radian. When the upper side of the vertical axis in FIG. 3A is positive (0) and the lower side is negative, the zero-cross portion of the induced voltage is just the switching portion of the polarity (N / S pole) of the permanent magnet. .
[0040]
FIG. 3B is a graph showing a voltage waveform between the U and V phases when the winding of the motor is Y-connected: a U-phase induced voltage and a V-phase induced voltage shown in FIG. Becomes a synthesized waveform. Here, since a harmonic is superimposed on the synchronization frequency (= fundamental wave component), the waveform does not have a sinusoidal waveform. (In the figure, the third or fifth harmonic components are prominent.)
[0041]
Although FIG. 3 shows a schematic waveform for convenience of description, in actuality, both of FIGS. 3A and 3B often include higher-order harmonics. However, this causes iron loss and increases the calorific value, causing a problem that the motor efficiency is reduced. In addition, the induced voltage affects the control current waveform, causing a reduction in waveform ratio, resulting in torque ripple, noise when driving, or when applied to the feed shaft of a machine tool, causing problems because it appears as streaks on the machined surface. There is.
[0042]
FIG. 4 is a block diagram showing an example of the harmonic voltage compensation value calculator 16 shown in FIG.
[0043]
In FIG. 4, 41 is a d-axis magnetic flux calculator, 42 is a q-axis magnetic flux calculator, 43 is a multiplier, 44 is a multiplier, 45 is a unit converter, 46 is an order generator, 47 is an order determining unit, and 48 is The high-order phase generator 49 is a high-order voltage compensation value synthesizer.
[0044]
The d-axis current command amplitude value SIDC of the rotor coordinates is input to the d-axis magnetic flux calculator 41. The d-axis magnetic flux calculator 41 estimates an inductance value in consideration of the magnitude of the current of the d-axis current command amplitude value SIDC, The rotor d-axis magnetic flux is estimated based on the estimated magnetic flux in consideration of the magnetic flux of the permanent magnet, and is output as the d-axis magnetic flux value SPHID.
[0045]
Similarly, the q-axis current command amplitude SIQC of the rotor coordinates is input to the q-axis magnetic flux calculator 42, and the q-axis magnetic flux calculator 42 estimates the inductance value in consideration of the magnitude of the q-axis current command amplitude SIQC. The rotor q-axis magnetic flux is estimated on the basis of the above, and is output as a q-axis magnetic flux value SPHIQ.
[0046]
The rotor speed detection value SVD is unit-converted by the unit converter 45 and output as the angular frequency SOMEGA. The d-axis magnetic flux value SPHID and the q-axis magnetic flux value SPHIQ are respectively multiplied by the angular frequency SOMEGA by the multipliers 43 and 44, so that the d-axis basic voltage compensation amplitude value SVED and the q-axis basic voltage compensation amplitude value SVEQ of the rotor coordinates are obtained. It is output to the high-order voltage compensation value combiner 49.
[0047]
Further, the rotor position detection value SPD is output to the order generator 46. In the order generator 46, an order DEG for the fundamental wave and an amplitude AMP for the order are set in advance, and the order can be set to any order from 1 to n (n is an integer).
[0048]
The order of the harmonics of the induced voltage may be all calculated from 1 to n (n is an integer), but from experience, it is only necessary to select the top few orders. This is because the harmonics do not include all the orders and the operation is simplified. However, this alone can provide the expected effect.
[0049]
The order DEG for the fundamental wave output from the order generator 46 and the amplitude AMP for the order are output to the order determination unit 47.
[0050]
The angular frequency SOMEGA calculated by the unit converter 45 is input to the order determining unit 47, and the angular frequency SOMEGA is used as a fundamental wave, and the angular frequency of the fundamental wave output from the order generator 46 is used. By setting SOMEGA * order DEG, a higher-order angular frequency (SOMEGA) n is calculated. Here, the subscript n means the order (the same applies hereinafter). At this time, the higher-order angular frequency (SOMEGA) n is not one, but 1 to n (n: n) selected by the order generator 46. Integers).
[0051]
Here, the higher-order angular frequency (SOMEGA) n is compared with a threshold angular frequency (threshold frequency) SOMEGAC set in advance in the order determining unit 47, and the higher-order angular frequency (SOMEGA) n is compared. Is less than or equal to the threshold angular frequency SOMEGAC, the n-th order and amplitude [DEG, AMP] n are output to the higher-order phase generator 48. If n is equal to or greater than the threshold angular frequency SOMEGAC, It is not output to the higher-order phase generator 48.
[0052]
The reason for setting the threshold value in this way is that the transfer function of the electric motor 10 (or the control device) does not respond to a high frequency. This is useful to save processing time for unnecessary compensation.
[0053]
Therefore, the threshold angular frequency SOMEGAC depends on the transfer function of the electric motor 10 (or the control device), and can be arbitrarily set by the electric motor 10 (or the control device) to be used.
[0054]
In this way, [DEG, AMP] n, which is the n-th order and amplitude filtered by the order determining unit 47, is AMPn * COS (DEGn * SPD) and AMPn * SIN (DEGn * SPD) in the high-order phase generating unit 48. ) Is calculated and output to the high-order voltage compensation value synthesizer 49. Note that SIN in the above equation is a sine function, and COS is a cosine function.
[0055]
The high-order voltage compensation value synthesizer 49 converts the d-axis basic voltage compensation amplitude value SVED and the q-axis basic voltage compensation amplitude value SVEQ of the rotor coordinates into AMPn * COS (DEGn * SPD) output from the high-order phase generator 48, And AMPn * SIN (DEGn * SPD) to calculate the α-axis harmonic voltage compensation value SVACC and the β-axis harmonic voltage compensation value SVBCC of the stator coordinates.
[0056]
Therefore, taking the α-axis harmonic voltage compensation value SVACC as an example,
SVACC = Σ [SVED * AMPn * COS (DEGn * SPD)] (1)
It has become.
[0057]
Similarly, the β-axis harmonic voltage compensation value SVBCC is
SVBCC = Σ [SVEQ * AMPn * SIN (DEGn * SPD)] (2)
It becomes.
[0058]
Here, in the high-order voltage compensation value synthesizer 49, the dq-axis rotor coordinates are converted to α-β-axis stator coordinates, and the nth-order amplitude AMPn means a ratio to the fundamental wave amplitude. Can be understood from Expressions (1) and (2).
[0059]
FIG. 5 is a graph showing an example of the effect of the present invention, showing a current command waveform and a response waveform per phase.
[0060]
With respect to the current command waveform 50, a waveform 52 is a detected current value when a current is applied to the motor by the synchronous motor control device shown in the conventional example, and a waveform 51 is a detected current value when the present invention is applied.
[0061]
A harmonic is superimposed on the fundamental wave in the waveform 52, and the harmonic component causes iron loss, resulting in an increase in the amount of heat generated, thereby reducing the motor efficiency. When applied to a driving noise or a feed shaft of a machine tool due to ripples, it becomes a problem because it appears as streaks on a processing surface.
[0062]
It can be seen that in the waveform 51, the harmonic component is reduced, the phase lag is smaller than the current command value 50, and the controllability is improved.
[0063]
Note that the present invention is not limited to the above-described embodiment, and the following modifications can be made without departing from the gist of the present invention.
[0064]
In the harmonic voltage compensation value calculation unit 16, the calculation is performed for both the dq axes of the rotor coordinates (or the α-β axes of the stator coordinates). However, even if only one of the d axis and the q axis is calculated. good.
[0065]
The order generator 46, the order determiner 47, and the higher-order phase generator 48 for each of the dq axes of the rotor coordinates (or the α-β axes of the stator coordinates) in the harmonic voltage compensation value calculator 16. And the order does not necessarily have to be the same for each axis.
[0066]
The harmonic voltage compensation values SVBCC and SVACC may be independently converted to three phases to compensate for the three-phase voltage command values SVU, SVV and SVW.
[0067]
Although the description has been given of the rotating machine, the invention may be applied to a linear motor.
[0068]
Although the winding method of the electric motor 10 has been described with respect to the Y connection, the winding method may be applied to the Δ connection.
[0069]
【The invention's effect】
As described above, according to the control device for a synchronous motor of the present invention, a motor having a rotor made of a soft magnetic material or a hard magnetic material and having a change in inductance when viewed from a stator winding in a rotational direction is controlled. In the control device for the synchronous motor, a current command amplitude value applied to the motor, a rotor position detection value obtained from the rotor position detection unit, and a rotor speed detection value obtained from the rotor speed detection unit are referred to. A harmonic voltage compensation value calculation unit for calculating and adding and synthesizing the voltage compensation values of the synchronization frequency and a plurality of arbitrary higher-order frequencies. The voltage compensation value calculated by the harmonic voltage compensation value calculation unit is a voltage command value. And a voltage compensation value calculated by the harmonic voltage compensation value calculation section is calculated for a frequency equal to or lower than a threshold frequency at which a synchronization frequency and a plurality of arbitrary higher-order frequencies are arbitrarily set. - by being synthesized, the motor efficiency and moreover can be a control device of a good synchronous motor with low controllability of torque ripple.
[0070]
The voltage compensation values calculated by the harmonic voltage compensation value calculation unit are calculated for each of the α-β axes, which are the stator coordinates, as an α-axis harmonic voltage compensation value and a β-axis harmonic voltage compensation value, respectively. By compensating for the α-axis voltage command value and the β-axis voltage command value, harmonic components of the current applied to the motor are reduced, and iron loss is reduced, so that not only is the motor efficiency improved, but also the torque ripple is reduced. Therefore, the controllability of the electric motor can be greatly improved.
[Brief description of the drawings]
FIG. 1 shows an embodiment of a control device for a synchronous motor of the present invention, and is a block diagram of the control device.
FIG. 2 is an explanatory diagram of a motor to which the control device for a synchronous motor of the present invention is applied.
3A and 3B show an induced voltage waveform of a motor to which the synchronous motor control device of the present invention is applied, wherein FIG. 3A is a graph showing phase voltages, and FIG. 3B is a graph showing U when the winding of the motor is Y-connected; FIG. 9 is a graph of a voltage waveform between lines: between V phases.
FIG. 4 is a block diagram of a control device for a synchronous motor of the present invention, showing a harmonic voltage compensation value calculation unit.
FIG. 5 is a graph showing the effect of the control device for a synchronous motor of the present invention.
FIG. 6 is a block diagram showing a conventional control device for a synchronous motor.
[Explanation of symbols]
Reference Signs List 1 speed controller, 2 torque-current converter, 3 current controller, 4 d-q axis coordinate converter, 5 α-β axis coordinate converter, 6 phase calculator, 7 3/2 converter, 8 2 / 3 conversion unit, 9 power converter, 10 synchronous motor, 11 detector, 12 position-speed conversion unit, 13 current sensor, 14 adder, 15 adder, 16 harmonic voltage compensation value calculation unit, 21 stator, 41 d-axis magnetic flux calculator, 42 q-axis magnetic flux calculator, 43 multiplier, 44 multiplier, 45 unit converter, 46 order generator, 47 order determiner, 48 higher order phase generator, 49 higher order voltage compensation value synthesis Sensor, STC torque command value, SIQC q-axis current command amplitude value, SIDC d-axis current command amplitude value, SIQC q-axis current detection value, SIDD d-axis current detection value, SVQC q-axis voltage command value, SVDC d-axis voltage command value , SVBC β axis voltage command value, SVA α axis voltage command value, SVBCC β axis harmonic voltage compensation value, SVACC α axis harmonic voltage compensation value, β axis voltage command value after SVBDC compensation, α axis voltage command value after SVADC compensation, SVU U phase voltage command value, SVV V-phase voltage command value, SVW W-phase voltage command value, SIUD U-phase current detection value, SIIV V-phase current detection value, SIWD W-phase current detection value, SIAD α-axis current detection value, SIBD β-axis current detection value, SIDD d Shaft current detection value, SIQD q-axis current detection value, SPD rotor position detection value, SVD rotor speed detection value, DEG order, AMP amplitude (ratio), SOMEGA angular frequency, SPHID d-axis magnetic flux value, SPHIQ q-axis magnetic flux value , SVED d-axis basic voltage compensation amplitude value, SVEQ q-axis basic voltage compensation amplitude value.

Claims (6)

軟磁性体または硬磁性体で構成され回転方向に固定子巻線から見てインダクタンス変化がある回転子を持つ電動機を制御する同期電動機の制御装置において、
該電動機に印加する電流指令振幅値と、
回転子位置検出手段から得られる回転子位置検出値と、
回転子速度検出手段から得られる回転子速度検出値と、
を参照し、
同期周波数と複数の任意高次周波数の電圧補償値をそれぞれ演算し加算・合成する高調波電圧補償値演算部を備え、
該高調波電圧補償値演算部で演算された電圧補償値を電圧指令値に加算する手段を備えることを特徴とする同期電動機の制御装置。
In a synchronous motor control device for controlling a motor having a rotor that is made of a soft magnetic material or a hard magnetic material and has a change in inductance when viewed from a stator winding in a rotational direction,
A current command amplitude value applied to the motor;
A rotor position detection value obtained from the rotor position detection means,
A rotor speed detection value obtained from the rotor speed detection means,
See
A harmonic voltage compensation value calculation unit for calculating, adding and synthesizing the voltage compensation values of the synchronization frequency and a plurality of arbitrary higher-order frequencies,
A control device for a synchronous motor, comprising: means for adding a voltage compensation value calculated by the harmonic voltage compensation value calculation unit to a voltage command value.
前記高調波電圧補償値演算部で演算される電圧補償値は、同期周波数と複数の任意高次周波数が任意設定されるしきい値周波数以下の周波数について演算・合成されることを特徴とする請求項1に記載の同期電動機の制御装置。The voltage compensation value calculated by the harmonic voltage compensation value calculation unit is calculated and synthesized for a frequency equal to or lower than a threshold frequency at which a synchronization frequency and a plurality of arbitrary higher-order frequencies are arbitrarily set. Item 2. The control device for a synchronous motor according to item 1. 前記高調波電圧補償値演算部で演算される電圧補償値は、固定子座標であるα−β軸各々の軸成分に対するα軸高調波電圧補償値およびβ軸高調波電圧補償値を演算し、その演算値をα軸電圧指令値およびβ軸電圧指令値に補償することを特徴とする請求項1に記載の同期電動機の制御装置。The voltage compensation value calculated by the harmonic voltage compensation value calculation unit calculates an α-axis harmonic voltage compensation value and a β-axis harmonic voltage compensation value for each axis component of the α-β axes that are stator coordinates, The control device for a synchronous motor according to claim 1, wherein the calculated value is compensated for an α-axis voltage command value and a β-axis voltage command value. 速度制御器から出力されたトルク指令値がトルク−電流変換器で電流指令振幅値に変換され、該電流指令振幅値を電圧指令値に変換した上で電圧が印加される同期電動機において、
前記電流指令振幅値を取得すると共に回転子の回転位置に基づく回転子位置検出値と前記回転子の回転速度に基づく回転子速度検出値とを参照して高調波電圧補償値が高調波電圧補償値演算部によって演算され、該高調波電圧補償値演算部から出力された高調波電圧補償値を前記電流指令振幅値から前記電圧指令値へと変換する過程で加算した補償後電圧指令値とした上で補償後電圧が印加されることを特徴とする同期電動機。
In a synchronous motor in which a torque command value output from a speed controller is converted to a current command amplitude value by a torque-current converter, and the voltage is applied after converting the current command amplitude value to a voltage command value,
The harmonic voltage compensation value is obtained by obtaining the current command amplitude value and referring to the rotor position detection value based on the rotor rotation position and the rotor speed detection value based on the rotor rotation speed. The calculated voltage command value was calculated by the value calculation unit and added in the process of converting the harmonic voltage compensation value output from the harmonic voltage compensation value calculation unit from the current command amplitude value to the voltage command value. A synchronous motor to which the compensated voltage is applied.
速度制御器から出力されたトルク指令値がトルク−電流変換器で2相のd軸電流指令振幅値とq軸電流指令振幅値に変換され、該d軸電流指令振幅値とq軸電流指令振幅値をα軸電圧指令値とβ軸電圧指令値とに変換した後に、該α軸電圧指令値とβ軸電圧指令値とを相変換部によって3相の電圧指令値に変換した上で電力変換器を介して各相の電圧が印加される同期電動機において、
前記d軸電流指令振幅値とq軸電流指令振幅値とを取得すると共に回転子の回転位置に基づく回転子位置検出値と前記回転子の回転速度に基づく回転子速度検出値とを参照してα軸高調波電圧補償値とβ軸高調波電圧補償値とが高調波電圧補償値演算部によって演算され、該高調波電圧補償値演算部から出力されたα軸高調波電圧補償値とβ軸高調波電圧補償値とをα軸電圧指令値とβ軸電圧指令値とに加算して補償後α軸電圧指令値と補償後β軸電圧指令値とを相変換部によって3相の電圧指令値に変換した上で電力変換器を介して各相の補償後電圧が印加されることを特徴とする同期電動機。
The torque command value output from the speed controller is converted into a two-phase d-axis current command amplitude value and a q-axis current command amplitude value by a torque-current converter, and the d-axis current command amplitude value and the q-axis current command amplitude are converted. After converting the values into an α-axis voltage command value and a β-axis voltage command value, the α-axis voltage command value and the β-axis voltage command value are converted into three-phase voltage command values by a phase converter, and then power conversion is performed. In the synchronous motor to which the voltage of each phase is applied via a heater,
Acquire the d-axis current command amplitude value and the q-axis current command amplitude value, and refer to a rotor position detection value based on the rotation position of the rotor and a rotor speed detection value based on the rotation speed of the rotor. The α-axis harmonic voltage compensation value and the β-axis harmonic voltage compensation value are calculated by a harmonic voltage compensation value calculation unit, and the α-axis harmonic voltage compensation value and β-axis output from the harmonic voltage compensation value calculation unit are calculated. The harmonic voltage compensation value is added to the α-axis voltage command value and the β-axis voltage command value, and the compensated α-axis voltage command value and the compensated β-axis voltage command value are converted into a three-phase voltage command value by a phase converter. Wherein the compensated voltages of the respective phases are applied via a power converter after the conversion into a synchronous motor.
前記高調波電圧補償値演算部は、前記d軸電流指令振幅値から求めたd軸磁束値を出力するd軸磁束演算器と、前記q軸電流指令振幅値から求めたq軸磁束値を出力するq軸磁束演算器と、前記回転子速度検出値から角周波数を生成する単位変換器と、前記d軸磁束値と前記q軸磁束値の各々に前記角周波数を乗じてd軸基本電圧補償振幅値とq軸基本電圧補償振幅値とを出力する乗算器と、前記角周波数を基本波として前記回転子位置検出値から求められた高次数の角周波数を予め設定されたしきい値角周波数と比較した後にその比較後の高次数の角周波数を使用して前記d軸基本電圧補償振幅値並びに前記q軸基本電圧補償振幅値から前記α軸高調波電圧補償値と前記β軸高調波電圧補償値とを演算する高次数電圧補償値合成器とを備えていることを特徴とする請求項5に記載の同期電動機。The harmonic voltage compensation value calculation unit outputs a d-axis magnetic flux value obtained from the d-axis current command amplitude value, and outputs a q-axis magnetic flux value obtained from the q-axis current command amplitude value. A q-axis magnetic flux calculator, a unit converter for generating an angular frequency from the rotor speed detection value, and a d-axis basic voltage compensation by multiplying each of the d-axis magnetic flux value and the q-axis magnetic flux value by the angular frequency. A multiplier for outputting an amplitude value and a q-axis basic voltage compensation amplitude value; and a threshold angular frequency set in advance to a higher-order angular frequency obtained from the rotor position detection value using the angular frequency as a fundamental wave. After the comparison, the α-axis harmonic voltage compensation value and the β-axis harmonic voltage are calculated from the d-axis fundamental voltage compensation amplitude value and the q-axis fundamental voltage compensation amplitude value using the higher-order angular frequency after the comparison. And a high-order voltage compensation value synthesizer for calculating the compensation value. The synchronous motor according to claim 5, wherein:
JP2002188205A 2002-06-27 2002-06-27 Control device for synchronous motor Expired - Fee Related JP4234359B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002188205A JP4234359B2 (en) 2002-06-27 2002-06-27 Control device for synchronous motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002188205A JP4234359B2 (en) 2002-06-27 2002-06-27 Control device for synchronous motor

Publications (2)

Publication Number Publication Date
JP2004032944A true JP2004032944A (en) 2004-01-29
JP4234359B2 JP4234359B2 (en) 2009-03-04

Family

ID=31183023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002188205A Expired - Fee Related JP4234359B2 (en) 2002-06-27 2002-06-27 Control device for synchronous motor

Country Status (1)

Country Link
JP (1) JP4234359B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006191775A (en) * 2005-01-07 2006-07-20 Mitsubishi Electric Corp Motor device
JP2008000503A (en) * 2006-06-26 2008-01-10 Matsushita Electric Ind Co Ltd Washing machine
JP2008072832A (en) * 2006-09-14 2008-03-27 Mitsubishi Electric Corp Controller for ac motor, and method of calculating superimposition current for suppression of iron loss
WO2011145451A1 (en) * 2010-05-20 2011-11-24 三菱電機株式会社 Motor control device
ITVA20100046A1 (en) * 2010-06-04 2011-12-05 St Microelectronics Srl METHOD OF CONTROL OF A SYNCHRONOUS THREE-PHASE MOTOR WITH PERMANENT MAGNETS TO REDUCE NOISE AND RELATIVE CONTROL DEVICE
JP2012135100A (en) * 2010-12-21 2012-07-12 Hitachi Ltd Synchronous motor control device and control method
WO2012098875A1 (en) * 2011-01-18 2012-07-26 ダイキン工業株式会社 Power conversion apparatus
CN103346721A (en) * 2013-06-19 2013-10-09 江苏大学 Thrust ripple suppressing method of primary permanent magnet linear motor
WO2014097918A1 (en) * 2012-12-17 2014-06-26 株式会社ミツバ Method for controlling brushless motor, device for controlling brushless motor, and elec tric power steering device
KR101664739B1 (en) * 2015-08-31 2016-10-12 현대자동차주식회사 Control method and system of motor
CN109980998A (en) * 2019-04-25 2019-07-05 广东金霸智能科技股份有限公司 A kind of control method of permanent magnet synchronous motor, device and electric system
CN112234892A (en) * 2020-09-21 2021-01-15 瑞声新能源发展(常州)有限公司科教城分公司 Method for suppressing thrust fluctuation of linear motor, related equipment and medium
CN112234893A (en) * 2020-09-21 2021-01-15 瑞声新能源发展(常州)有限公司科教城分公司 Method for suppressing thrust fluctuation of linear motor, related equipment and medium
CN114221552A (en) * 2021-12-10 2022-03-22 同济大学 A PMSM Harmonic Suppression Control Method Based on PWM and Improved Quasi-Resonant Controller
DE112021006189T5 (en) 2021-01-29 2023-09-14 Hitachi Astemo, Ltd. CONTROL DEVICE FOR AN ELECTRIC MOTOR
CN116982253A (en) * 2021-03-31 2023-10-31 大金工业株式会社 Motor control device, motor, compressor, refrigerating device, and vehicle
WO2023221763A1 (en) * 2022-05-19 2023-11-23 中国第一汽车股份有限公司 Method and apparatus for controlling output torque of motor, and electronic device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6540538B2 (en) * 2016-02-24 2019-07-10 株式会社デンソー Control device for AC motor

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4717446B2 (en) * 2005-01-07 2011-07-06 三菱電機株式会社 Electric motor device
JP2006191775A (en) * 2005-01-07 2006-07-20 Mitsubishi Electric Corp Motor device
JP2008000503A (en) * 2006-06-26 2008-01-10 Matsushita Electric Ind Co Ltd Washing machine
JP4687584B2 (en) * 2006-06-26 2011-05-25 パナソニック株式会社 Washing machine
JP2008072832A (en) * 2006-09-14 2008-03-27 Mitsubishi Electric Corp Controller for ac motor, and method of calculating superimposition current for suppression of iron loss
CN102906994A (en) * 2010-05-20 2013-01-30 三菱电机株式会社 Motor control device
WO2011145451A1 (en) * 2010-05-20 2011-11-24 三菱電機株式会社 Motor control device
TWI466432B (en) * 2010-05-20 2014-12-21 Mitsubishi Electric Corp Motor control unit
US8779712B2 (en) 2010-05-20 2014-07-15 Mitsubishi Electric Corporation Motor control device
ITVA20100046A1 (en) * 2010-06-04 2011-12-05 St Microelectronics Srl METHOD OF CONTROL OF A SYNCHRONOUS THREE-PHASE MOTOR WITH PERMANENT MAGNETS TO REDUCE NOISE AND RELATIVE CONTROL DEVICE
JP2012135100A (en) * 2010-12-21 2012-07-12 Hitachi Ltd Synchronous motor control device and control method
JP2012165634A (en) * 2011-01-18 2012-08-30 Daikin Ind Ltd Power converter
WO2012098875A1 (en) * 2011-01-18 2012-07-26 ダイキン工業株式会社 Power conversion apparatus
US9257931B2 (en) 2011-01-18 2016-02-09 Daikin Industries, Ltd. Power conversion apparatus
WO2014097918A1 (en) * 2012-12-17 2014-06-26 株式会社ミツバ Method for controlling brushless motor, device for controlling brushless motor, and elec tric power steering device
JP2014121182A (en) * 2012-12-17 2014-06-30 Mitsuba Corp Brushless motor control method, brushless motor control device, and electrically-driven power steering device
CN104871426A (en) * 2012-12-17 2015-08-26 株式会社美姿把 Method for controlling brushless motor, device for controlling brushless motor, and elec tric power steering device
US9455616B2 (en) 2012-12-17 2016-09-27 Mitsuba Corporation Brushless motor control method and brushless motor control device and electric power steering device
CN103346721A (en) * 2013-06-19 2013-10-09 江苏大学 Thrust ripple suppressing method of primary permanent magnet linear motor
KR101664739B1 (en) * 2015-08-31 2016-10-12 현대자동차주식회사 Control method and system of motor
CN109980998A (en) * 2019-04-25 2019-07-05 广东金霸智能科技股份有限公司 A kind of control method of permanent magnet synchronous motor, device and electric system
CN109980998B (en) * 2019-04-25 2023-10-03 广东金霸智能科技股份有限公司 Control method and device of permanent magnet synchronous motor and motor system
CN112234892A (en) * 2020-09-21 2021-01-15 瑞声新能源发展(常州)有限公司科教城分公司 Method for suppressing thrust fluctuation of linear motor, related equipment and medium
CN112234893A (en) * 2020-09-21 2021-01-15 瑞声新能源发展(常州)有限公司科教城分公司 Method for suppressing thrust fluctuation of linear motor, related equipment and medium
DE112021006189T5 (en) 2021-01-29 2023-09-14 Hitachi Astemo, Ltd. CONTROL DEVICE FOR AN ELECTRIC MOTOR
CN116982253A (en) * 2021-03-31 2023-10-31 大金工业株式会社 Motor control device, motor, compressor, refrigerating device, and vehicle
CN114221552A (en) * 2021-12-10 2022-03-22 同济大学 A PMSM Harmonic Suppression Control Method Based on PWM and Improved Quasi-Resonant Controller
CN114221552B (en) * 2021-12-10 2024-04-26 同济大学 PMSM harmonic suppression control method based on PWM and improved quasi-resonant controller
WO2023221763A1 (en) * 2022-05-19 2023-11-23 中国第一汽车股份有限公司 Method and apparatus for controlling output torque of motor, and electronic device

Also Published As

Publication number Publication date
JP4234359B2 (en) 2009-03-04

Similar Documents

Publication Publication Date Title
Lara et al. Effects of rotor position error in the performance of field-oriented-controlled PMSM drives for electric vehicle traction applications
CN102362424B (en) Device and method for rotating electric machine
JP4234359B2 (en) Control device for synchronous motor
US6900613B2 (en) Motor control apparatus
TWI282209B (en) Controller for synchronous motor, electric appliance and module
JP2001161090A (en) Position sensor-less control method for synchronous motor
JP3809783B2 (en) Motor control device
JP2009268267A (en) Motor controller and generator controller
JP2003199389A (en) Motor controller and controlling method
JP3783695B2 (en) Motor control device
JP2004064909A (en) Motor control device
JP2009268268A (en) Motor controller and generator controller
JP2008219966A (en) Controller of permanent magnet motor
JP4631672B2 (en) Magnetic pole position estimation method, motor speed estimation method, and motor control apparatus
JP2014180148A (en) Motor controller
JP2009183051A (en) Controller of synchronous machine
JP2004254423A (en) Motor controller
JP2008206330A (en) Device and method for estimating magnetic pole position of synchronous electric motor
JP4924115B2 (en) Permanent magnet synchronous motor drive control device
JP4945307B2 (en) Twin drive control device and torsional vibration suppression method
JP3551911B2 (en) Brushless DC motor control method and device
JP2006197712A (en) System and method for driving synchronous motor
JP2012080776A (en) Control apparatus for synchronous machine
JP5082216B2 (en) Rotation detection device for turbocharger with electric motor and rotation detection method for turbocharger with electric motor
JP4147883B2 (en) Motor control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050408

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081211

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141219

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees