[go: up one dir, main page]

JP2004021154A - Optical transmission device - Google Patents

Optical transmission device Download PDF

Info

Publication number
JP2004021154A
JP2004021154A JP2002179429A JP2002179429A JP2004021154A JP 2004021154 A JP2004021154 A JP 2004021154A JP 2002179429 A JP2002179429 A JP 2002179429A JP 2002179429 A JP2002179429 A JP 2002179429A JP 2004021154 A JP2004021154 A JP 2004021154A
Authority
JP
Japan
Prior art keywords
light
transmission device
emitting element
optical transmission
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002179429A
Other languages
Japanese (ja)
Other versions
JP4302941B2 (en
Inventor
Junji Okada
岡田 純二
Shinobu Koseki
小関 忍
Masaaki Miura
三浦 昌明
Tsutomu Hamada
浜田 勉
Tomoo Baba
馬場 智夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP2002179429A priority Critical patent/JP4302941B2/en
Publication of JP2004021154A publication Critical patent/JP2004021154A/en
Application granted granted Critical
Publication of JP4302941B2 publication Critical patent/JP4302941B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Couplings Of Light Guides (AREA)
  • Optical Communication System (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical transmission device improved in the utilization efficiency of light radiated from a light emitting element. <P>SOLUTION: The optical transmission device is equipped with a light transmissive medium 23 having an inclined (45°) surface 22 and a light emitting element 24 whose beam spread angle is different in two orthogonal directions at an optical signal incident part 21. An optical signal 25 radiated from the light emitting element 24 is reflected on the inclined surface 22 after it is made incident on the medium 23, and propagated in a leftward direction in figure in the medium 23. The light emitting element 24 is arranged with respect to the incident part 21 so that a direction where the beam spread angle is narrow may be positioned in the inclined direction of the inclined surface 22. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、複数の回路基板またはデバイス間において光信号の伝送を担う透光性媒体を使用した光伝送装置に関する。
【0002】
【従来の技術】
回路基板間やデバイス間の信号の授受は、従来、電気バスを用いて行われるのが通例であった。しかしながら電気バスでは、ファンアウトが不足し、信号の高速化に対して対応が困難である(林巌雄:“光と電子の集積化−シリコン集積回路の限界と光インターコネクション”,応用物理,vol.65,No.8,pp.824−831,1996)。
【0003】
一方、特開平2−41042号公報には、各回路基板の表裏両面に発光/受光デバイスを配置し、隣接する回路基板上の発光/受光デバイス間を空間的に光で結合した光データ・バスが提案されている。しかし、この技術は、隣接回路基板間の通信毎に光/電気変換を必要とするため、高コストかつ大レイテンシーであり、また自由空間伝搬を用いているため、位置決めが厳しく、クロストークや埃などに弱いという欠点がある。
【0004】
また、特開昭61−196210号公報には、プレート表面に配置された回折格子、反射素子により構成された光路を介して回路基板間を光学的に結合する技術が提案されている。しかしながら、この技術では、1点から発せられた光を固定された1点にしか接続できないため、多対多の接続を行うことができないという問題がある。
【0005】
このような事情に鑑み、特開2002−62457公報には、透光性媒体の一端に光の入出射部を形成するための複数の段差を設け、他端に入出射部から入射した光信号を反射する反射手段を設けた光信号伝達装置が提案されている。この装置は、発光素子から光信号が1つの入出射部より入射され、透光性媒体内を伝搬し、反射手段で反射され、再び透光性媒体内を伝搬し、複数の入出射部を介して、対応して設けられた複数の受光素子に出射されるものである。
【0006】
【発明が解決しようとする課題】
この種の光伝送装置は、発光素子として、例えば端面発光型のレーザダイオードが用いられる。端面発光型のレーザダイオードから放射されるビームは、楕円形状であり、広がり角は半値全幅(FWHM:Full Width at Half Maximum)で定義される。レーザビームが光伝送装置を構成する透光性媒体の傾斜面に入射する場合、理想的にはすべての入射光線が傾斜面で全反射されるべきであるが、広がりのある入射光線の一部が透光性媒体より外部に抜けてしまう場合がある。このような場合、発光素子から放射された光の利用効率が低下するという問題がある。
【0007】
従って本発明の目的は、発光素子から放射された光の利用効率を向上した光伝送装置を提供することにある。
【0008】
【課題を解決するための手段】
上記目的は、少なくとも光信号の入射部に傾斜面を有する透光性媒体と、直交する2つの方向でビーム広がり角が異なる発光素子とを備えた光伝送装置であって、前記発光素子が、前記傾斜面の傾斜方向にビーム広がり角の狭い方向が位置するように前記入射部に対して配置された光伝送装置により、達成される。
【0009】
また、本発明に係る光伝送装置は、透光性媒体の一端に傾斜面をそれぞれ有する複数の光信号の入出射部を備えた階段状の段差部および他端に垂直面を有する透光性媒体と、直交する2つの方向でビーム広がり角が異なる発光素子とを備えた光伝送装置であって、前記発光素子が、前記傾斜面の傾斜方向にビーム広がり角の狭い方向が位置するように前記入出射部に対して配置される。ここで、透光性媒体の他端に光信号の反射部または反射拡散部を設けることができる。
【0010】
さらに、本発明に係る光伝送装置は、少なくとも光信号の入射部に垂直面を有し、少なくとも出射部に傾斜面を有する透光性媒体と、直交する2つの方向でビーム広がり角が異なる発光素子とを備えた光伝送装置であって、前記発光素子が、前記傾斜面の傾斜方向にビーム広がり角の狭い方向が位置するように前記入射部に対して配置される。ここで、透光性媒体の入射部に光信号の拡散部を設けることができる。
【0011】
また、これらの光伝送装置を用いて、光信号によりデータを伝送する光データバスシステムを構成することができる。
このように構成することにより、発光素子から放射された光の利用効率を向上することができる。
【0012】
【発明の実施の形態】
以下、本発明の実施例を説明するが、その前にまず、入射光線の一部が透光性媒体より外部に抜けてしまう現象について述べる。
【0013】
図1は、傾斜面を有する透光性媒体に入射した光の経路の一例を示す図である。図のように、透光性媒体1は傾斜面2を有し、透光性媒体1に近接して発光素子3が配置されている。透光性媒体の周囲の屈折率をn、透光性媒体1の屈折率をn、発光素子3から放射されるビームの広がり角の半値をφとする。ビームの最も外側の光線に注目すると、この光線は入射角φで透光性媒体1に入射し、屈折角φで屈折して傾斜面2に至る。ここで、傾斜面2が45°の傾斜を有する場合、この光線は入射角(45°−φ)で傾斜面2に到達するが、この入射角(45°−φ)が臨界角(φ)より小さい場合、すなわち
φ>sin−1{n/n・sin(45°−φ)}
の場合、入射した光線は透光性媒体より、外部に抜けてしまう。例えば、n=1.0(空気を想定)、n=1.525(ポリオレフィンを想定)した場合、φ>6.14°の光線は透光性媒体より、外部に抜けることになる。従って、傾斜面の傾斜方向にビーム広がり角の狭い方向が位置するように発光素子を配置することにより、傾斜面から外部へ光線が抜けるのを抑制でき、発光素子から放射される光の利用効率を向上することができる。
【0014】
図2は本発明に係る光伝送装置の一実施例を示す図であり、(a)は平面図、(b)は側面図、(c)は斜視図である。本実施例は、図のように、光信号の入射部21に傾斜(45°)面22を有する透光性媒体23と、直交する2つの方向(図中のX方向とY方向)でビーム広がり角が異なる発光素子24とを備える。発光素子24は、傾斜面22の傾斜方向(Y方向)にビーム広がり角の狭い方向が位置するように入射部21に対して配置される。発光素子24は図示しない例えば回路基板に固定されている。
【0015】
図2において、発光素子24から放射された光信号25は、透光性媒体23に入射したのち傾斜面22で反射され、透光性媒体23内を図中左方向に伝播する。本実施例では、傾斜面の傾斜方向にビーム広がり角の狭い方向が位置するように発光素子を配置しているので、傾斜面より外部に抜ける光線量を抑制することができ、これにより光の利用効率を向上することができる。
【0016】
図3は本発明に係る光伝送装置の他の実施例を示す図であり、(a)は平面図、(b)は側面図、(c)は斜視図である。本実施例は、図のように、一端に傾斜(45°)面31をそれぞれ有する複数の光信号の入出射部32を備えた階段状の段差部と他端に垂直面33とを有する透光性媒体34と、直交する2つの方向(図中のX方向とY方向)でビーム広がり角が異なる発光素子35と、複数の受光素子36とを備える。透光性媒体の他端の垂直面33には、光信号の反射部(または反射拡散部)37が設けられている。発光素子35は、傾斜面31の傾斜方向(Y方向)にビーム広がり角の狭い方向が位置するように入出射部32に対して配置される。発光素子35および複数の受光素子36はそれぞれ図示しない例えば回路基板に固定される。
【0017】
図3において、発光素子35から放射された光信号38は、入出射部32の1つから透光性媒体34に入射したのち傾斜面31で反射され、透光性媒体34内を図中左方向に伝播する。そして、光信号は、反射部(反射拡散部)37で反射(拡散)されたのち、透光性媒体34内を逆方向に伝播して各入出射部32から受光素子36に出射される。本実施例では、傾斜面の傾斜方向にビーム広がり角の狭い方向が位置するように発光素子を配置しているので、傾斜面より外部に抜ける光線量を抑制することができ、これにより光の利用効率を向上することができる。
【0018】
図4は本発明に係る光伝送装置の他の実施例を示す図であり、(a)は平面図、(b)は側面図、(c)は斜視図である。本実施例は、図のように、光信号の入射部41に垂直面を有し、出射部42に傾斜(45°)面43を有する透光性媒体44と、直交する2つの方向(図中のX方向とY方向)でビーム広がり角が異なる発光素子45とを備える。発光素子45は、傾斜面43の傾斜方向(Y方向)にビーム広がり角の狭い方向が位置するように入射部41に対して配置される。この入射部には、光信号の拡散部46が設けられている。一方、各出射部42には受光素子47がそれぞれ対応して配置されている。
【0019】
図4において、発光素子45から放射された光信号48は拡散部46で拡散されて透光性媒体44内を図中右方向に伝播し、各出射部42から受光素子47に出射される。本実施例では、傾斜面の傾斜方向(Y方向)(入射部の垂直面では、Z方向)にビーム広がり角の狭い方向が位置するように発光素子を配置しているので、傾斜面より外部に抜ける光線量を抑制することができ、これにより光の利用効率を向上することができる。
【0020】
図5は、図3(c)において、発光素子の配置方向を90°回転させた場合の、出射部での挿入損失(dB)のシミュレーションを説明するための図であり、(a)はシミュレーション・パラメータ、(b)はシミュレーション結果である。図5(a)に示すように、このシミュレーションでは、光源(発光素子)のビーム広がり角が8×20°、受光部の受光径がφ0.8mm、結合距離が1.2mm、反射型拡散部の拡散角が0.2×40°、透光性媒体の厚さが1.5mm、幅が8mm、ミキシング長が100mm、ステップ長が13.25mm、屈折率が1.49(例えば、ポリメチルメタクリレート)、分岐数(ノード数)を8とした。ここで、ミキシング長とは透光性媒体の一端に形成された階段状の段差部を除いた部分の長さであり、ステップ長とは階段状の各段差部の長さであり、分岐数(ノード数)とは階段状の段差部(入出射部)の数に相当する。
【0021】
図5(b)に示すシミュレーション結果によれば、最大挿入損失は、本発明の形態では18.4dB、90°回転した形態では20.0dBである。すなわち、本発明の形態によれば、発光素子の配置方向を90°回転させた場合と比較して挿入損失を1.6dB小さくできる。
【0022】
本発明では、発光素子は、端面発光型レーザダイオード(LD)に限らず、面発光レーザ(VCSEL)や発光ダイオード(LED)でも良い。
また、透光性媒体の形状は、上述したものに限らず、図6、図7に示す形態等、入出射部に斜め傾斜面を有する、いずれの形状のものでも良い。図6は本発明に係る光伝送装置の他の実施例を示す図であり、(a)は平面図、(b)は側面図である。本実施例は、図のように、一端に傾斜(45°)面61をそれぞれ有し複数の光信号の入出射部を備えた階段状の段差部と他端に垂直面62および傾斜(45°)面63を有する入出射部とを有する透光性媒体64を有する。透光性媒体の他端の垂直面62の入出射部以外のところには、光信号の反射部(または反射拡散部)が設けられている。本実施例では、傾斜面61または傾斜面63の傾斜方向にビーム広がり角の狭い方向が位置するように、図示しない発光素子が配置される。これにより傾斜面より外部に抜ける光線量を抑制することができ、光の利用効率を向上することができる。また、図7は本発明に係る光伝送装置の他の実施例を示す図であり、(a)は斜視図、(b)は側面図である。本実施例は、図のように、両端に傾斜(45°)面71,72をそれぞれ有し複数の光信号の入出射部を備えた断面が台形状の透光性媒体73を有する。傾斜面71側には複数の発光素子74が、また傾斜面72側には複数の受光素子75が配置されている。本実施例では、傾斜面71の傾斜方向にビーム広がり角の狭い方向が位置するように、発光素子74が配置される。これにより傾斜面71より外部に抜ける光線量を抑制することができ、光の利用効率を向上することができる。
【0023】
これらの光伝送装置を用いて、光信号によりデータを伝送する光データバスシステムを構成することができる。このように構成することにより、光バスシステムにおいて、光の利用効率を向上させることが可能となる。さらに、複数の回路基板を有する信号処理装置を構成すれば、任意の回路基板間での信号伝送が可能となり、温度変化や埃などの環境変化に対する耐性が高い光バスシステムが得られる。
【0024】
【発明の効果】
本発明によれば、発光素子から放射された光の利用効率を向上した光伝送装置を得ることができる。
【図面の簡単な説明】
【図1】傾斜面を有する透光性媒体に入射した光の経路の一例を示す図である。
【図2】本発明に係る光伝送装置の一実施例を示す図であり、(a)は平面図、(b)は側面図、(c)は斜視図である。
【図3】本発明に係る光伝送装置の他の実施例を示す図であり、(a)は平面図、(b)は側面図、(c)は斜視図である。
【図4】本発明に係る光伝送装置の他の実施例を示す図であり、(a)は平面図、(b)は側面図、(c)は斜視図である。
【図5】発光素子の配置方向を90°回転させた場合の、出射部での挿入損失のシミュレーションを説明するための図であり、(a)はシミュレーション・パラメータ、(b)はシミュレーション結果である。
【図6】(a)、(b)は本発明に係る光伝送装置の他の実施例を示す図である。
【図7】(a)、(b)は本発明に係る光伝送装置の他の実施例を示す図である。
【符号の説明】
21 入射部
22 傾斜(45°)面
23 透光性媒体
24 発光素子
25 光信号
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an optical transmission device using a translucent medium that transmits an optical signal between a plurality of circuit boards or devices.
[0002]
[Prior art]
Conventionally, transmission and reception of signals between circuit boards and devices has been conventionally performed using an electric bus. However, electric buses have insufficient fan-out, making it difficult to respond to high-speed signals (Iwao Hayashi: "Integration of Light and Electron-Limits of Silicon Integrated Circuits and Optical Interconnection", Applied Physics, vol. .65, No. 8, pp. 824-831, 1996).
[0003]
On the other hand, Japanese Patent Application Laid-Open No. 2-41042 discloses an optical data bus in which light emitting / receiving devices are arranged on both front and back surfaces of each circuit board, and the light emitting / receiving devices on adjacent circuit boards are spatially coupled by light. Has been proposed. However, this technology requires high cost and large latency because optical / electrical conversion is required for each communication between adjacent circuit boards, and uses free space propagation, so positioning is severe, and crosstalk and dust Has the disadvantage of being weak.
[0004]
Japanese Patent Application Laid-Open No. S61-196210 proposes a technique for optically coupling circuit boards through an optical path constituted by a diffraction grating and a reflection element arranged on a plate surface. However, this technique has a problem that light emitted from one point can be connected only to a fixed point, so that many-to-many connection cannot be performed.
[0005]
In view of such circumstances, Japanese Patent Application Laid-Open No. 2002-62457 discloses a method in which a plurality of steps are provided at one end of a translucent medium for forming a light input / output section, and an optical signal incident from the input / output section is provided at the other end. There has been proposed an optical signal transmission device provided with a reflection means for reflecting light. In this device, an optical signal from a light emitting element is incident from one input / output unit, propagates in a light transmitting medium, is reflected by a reflection unit, propagates again in the light transmitting medium, and passes through a plurality of input / output units. The light is emitted to a plurality of light receiving elements provided correspondingly.
[0006]
[Problems to be solved by the invention]
This type of optical transmission device uses, for example, an edge-emitting laser diode as a light emitting element. The beam emitted from the edge-emitting laser diode has an elliptical shape, and the divergence angle is defined by FWHM (Full Width at Half Maximum). When the laser beam is incident on the inclined surface of the translucent medium constituting the optical transmission device, ideally all the incident light should be totally reflected on the inclined surface, but a part of the divergent incident light May escape from the translucent medium to the outside. In such a case, there is a problem that utilization efficiency of light emitted from the light emitting element is reduced.
[0007]
Therefore, an object of the present invention is to provide an optical transmission device in which the utilization efficiency of light emitted from a light emitting element is improved.
[0008]
[Means for Solving the Problems]
The above object is an optical transmission device including a translucent medium having an inclined surface at least at an incident portion of an optical signal and a light emitting element having a different beam divergence angle in two orthogonal directions, wherein the light emitting element is This is achieved by an optical transmission device disposed with respect to the incident portion such that a direction in which the beam divergence angle is narrow is located in the inclination direction of the inclined surface.
[0009]
Further, the optical transmission device according to the present invention has a light-transmitting medium having a step-like stepped portion provided with a plurality of optical signal input / output sections each having an inclined surface at one end and a vertical surface at the other end. An optical transmission device comprising a medium and a light-emitting element having a different beam spread angle in two orthogonal directions, wherein the light-emitting element is positioned such that a narrow beam spread angle is located in a direction in which the inclined surface is inclined. It is arranged with respect to the input / output unit. Here, a reflection portion or a reflection diffusion portion for an optical signal can be provided at the other end of the translucent medium.
[0010]
Further, the optical transmission device according to the present invention is characterized in that a light-transmitting medium having at least a vertical surface at an incident portion of an optical signal and an inclined surface at least at an emitting portion, and a light emitting device having different beam divergence angles in two orthogonal directions. An optical transmission device comprising: a light-emitting element, wherein the light-emitting element is arranged with respect to the incident portion such that a direction in which a beam divergence angle is narrow is positioned in a direction in which the inclined surface is inclined. Here, a diffusion portion for an optical signal can be provided at the incident portion of the translucent medium.
[0011]
In addition, an optical data bus system that transmits data by an optical signal can be configured by using these optical transmission devices.
With this configuration, the efficiency of using light emitted from the light emitting element can be improved.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described. Before that, first, a phenomenon in which a part of an incident light beam escapes from a translucent medium to the outside will be described.
[0013]
FIG. 1 is a diagram illustrating an example of a path of light incident on a translucent medium having an inclined surface. As shown in the figure, the light-transmitting medium 1 has an inclined surface 2, and a light-emitting element 3 is arranged near the light-transmitting medium 1. The refractive index of the surrounding transparent medium n 1, the refractive index of the transparent medium 1 n 2, the half-value of the spread angle of the beam emitted from the light-emitting element 3 and phi 1. Focusing on the outermost ray of the beam, the light beam is incident on the transparent medium 1 at an incident angle phi 1, reaches the inclined surface 2 is refracted at refraction angle phi 2. Here, if the inclined surface 2 has an inclination of 45 °, although this ray reaches the inclined surface 2 at an incident angle (45 ° -.phi 2), the angle of incidence (45 ° -.phi 2) is the critical angle ( φ c ), that is, φ 1 > sin −1 {n 2 / n 1 · sin (45 ° −φ c )}
In the case of, the incident light beam escapes to the outside from the translucent medium. For example, when n 1 = 1.0 (assuming air) and n 2 = 1.525 (assuming polyolefin), light rays with φ 1 > 6.14 ° pass through the translucent medium to the outside. . Therefore, by arranging the light emitting element such that the direction in which the beam divergence angle is narrow is located in the direction of inclination of the inclined surface, it is possible to suppress the escape of light rays from the inclined surface to the outside, and the efficiency of use of light emitted from the light emitting element Can be improved.
[0014]
2A and 2B are diagrams showing an embodiment of the optical transmission device according to the present invention, wherein FIG. 2A is a plan view, FIG. 2B is a side view, and FIG. 2C is a perspective view. In this embodiment, as shown in the figure, a light-transmitting medium 23 having an inclined (45 °) surface 22 at an incident portion 21 of an optical signal, and a beam in two orthogonal directions (X direction and Y direction in the figure). And light emitting elements 24 having different spread angles. The light emitting element 24 is arranged with respect to the incident part 21 so that the direction in which the beam spread angle is narrow is located in the inclination direction (Y direction) of the inclined surface 22. The light emitting element 24 is fixed to, for example, a circuit board (not shown).
[0015]
In FIG. 2, an optical signal 25 emitted from a light emitting element 24 is incident on a light transmitting medium 23, is reflected on the inclined surface 22, and propagates inside the light transmitting medium 23 to the left in the figure. In the present embodiment, since the light emitting elements are arranged so that the direction in which the beam divergence angle is narrower is located in the direction of inclination of the inclined surface, the amount of light rays that escape from the inclined surface to the outside can be suppressed, and as a result, the light Usage efficiency can be improved.
[0016]
3A and 3B are diagrams showing another embodiment of the optical transmission device according to the present invention, wherein FIG. 3A is a plan view, FIG. 3B is a side view, and FIG. 3C is a perspective view. In this embodiment, as shown in the figure, a transparent step having a stepped step portion having a plurality of optical signal input / output portions 32 each having an inclined (45 °) surface 31 at one end and a vertical surface 33 at the other end. An optical medium 34, a light emitting element 35 having a different beam divergence angle in two orthogonal directions (X direction and Y direction in the figure), and a plurality of light receiving elements 36 are provided. On the vertical surface 33 at the other end of the translucent medium, a reflection part (or reflection diffusion part) 37 for an optical signal is provided. The light emitting element 35 is arranged with respect to the incident / emission unit 32 such that the direction in which the beam divergence angle is narrow is located in the inclination direction (Y direction) of the inclined surface 31. The light emitting element 35 and the plurality of light receiving elements 36 are respectively fixed to, for example, a circuit board (not shown).
[0017]
In FIG. 3, an optical signal 38 emitted from a light emitting element 35 enters a light transmitting medium 34 from one of the input / output sections 32, is reflected by the inclined surface 31, and passes through the inside of the light transmitting medium 34 in the left of the figure. Propagation in the direction. Then, the optical signal is reflected (diffused) by the reflection section (reflection / diffusion section) 37, propagates in the light-transmitting medium 34 in the opposite direction, and is emitted from each of the input / output sections 32 to the light receiving element 36. In the present embodiment, since the light emitting elements are arranged so that the direction in which the beam divergence angle is narrower is located in the direction of inclination of the inclined surface, the amount of light rays that escape from the inclined surface to the outside can be suppressed, and as a result, the light Usage efficiency can be improved.
[0018]
4A and 4B are diagrams showing another embodiment of the optical transmission device according to the present invention, wherein FIG. 4A is a plan view, FIG. 4B is a side view, and FIG. 4C is a perspective view. In the present embodiment, as shown in the figure, a light-transmitting medium 44 having a vertical surface at an optical signal incident portion 41 and an inclined (45 °) surface 43 at an output portion 42 and two orthogonal directions (FIG. A light-emitting element 45 having a different beam spread angle between the middle X direction and the Y direction). The light emitting element 45 is arranged with respect to the incident portion 41 such that the direction in which the beam divergence angle is narrow is located in the inclination direction (Y direction) of the inclined surface 43. In this incident part, a diffusion part 46 for an optical signal is provided. On the other hand, a light receiving element 47 is arranged in each of the emission sections 42 in correspondence with each other.
[0019]
In FIG. 4, an optical signal 48 emitted from a light emitting element 45 is diffused by a diffusion section 46, propagates in a translucent medium 44 rightward in the figure, and is emitted from each emission section 42 to a light receiving element 47. In this embodiment, since the light emitting elements are arranged so that the direction in which the beam divergence angle is narrow is located in the inclination direction (Y direction) of the inclined surface (the Z direction in the vertical plane of the incident portion), the light emitting element is located outside the inclined surface. It is possible to suppress the amount of light passing through the light source, thereby improving the light use efficiency.
[0020]
FIG. 5 is a diagram for explaining a simulation of the insertion loss (dB) at the light emitting portion when the arrangement direction of the light emitting elements is rotated by 90 ° in FIG. 3C, and FIG. -Parameters, (b) are simulation results. As shown in FIG. 5A, in this simulation, the beam divergence angle of the light source (light emitting element) is 8 × 20 °, the light receiving diameter of the light receiving unit is φ0.8 mm, the coupling distance is 1.2 mm, and the reflection type diffusion unit Has a diffusion angle of 0.2 × 40 °, a translucent medium having a thickness of 1.5 mm, a width of 8 mm, a mixing length of 100 mm, a step length of 13.25 mm, and a refractive index of 1.49 (for example, polymethyl Methacrylate) and the number of branches (the number of nodes) was set to 8. Here, the mixing length is a length of a portion excluding a step-shaped step portion formed at one end of the light transmitting medium, and the step length is a length of each step-shaped step portion, and the number of branches The (number of nodes) corresponds to the number of steps (incoming and outgoing portions) having a step-like shape.
[0021]
According to the simulation result shown in FIG. 5B, the maximum insertion loss is 18.4 dB in the embodiment of the present invention and 20.0 dB in the embodiment rotated by 90 °. That is, according to the embodiment of the present invention, the insertion loss can be reduced by 1.6 dB as compared with the case where the arrangement direction of the light emitting elements is rotated by 90 °.
[0022]
In the present invention, the light emitting element is not limited to the edge emitting laser diode (LD), but may be a surface emitting laser (VCSEL) or a light emitting diode (LED).
Further, the shape of the translucent medium is not limited to the above-described one, and may be any shape having an obliquely inclined surface at the entrance / exit portion, such as the forms shown in FIGS. 6A and 6B are diagrams showing another embodiment of the optical transmission device according to the present invention, wherein FIG. 6A is a plan view and FIG. 6B is a side view. In the present embodiment, as shown in the figure, a stepped step portion having an inclined (45 °) surface 61 at one end and a plurality of optical signal input / output portions, and a vertical surface 62 and an inclined (45 °) a light-transmitting medium 64 having an input / output portion having a surface 63; A reflection portion (or a reflection diffusion portion) of an optical signal is provided at a position other than the entrance / exit portion of the vertical surface 62 at the other end of the translucent medium. In the present embodiment, a light emitting element (not shown) is arranged such that the direction in which the beam divergence angle is narrow is located in the direction of inclination of the inclined surface 61 or the inclined surface 63. Thus, the amount of light rays that escape from the inclined surface to the outside can be suppressed, and the light use efficiency can be improved. FIGS. 7A and 7B are diagrams showing another embodiment of the optical transmission device according to the present invention, wherein FIG. 7A is a perspective view and FIG. 7B is a side view. In this embodiment, as shown in the figure, a translucent medium 73 having trapezoidal cross sections having inclined (45 °) surfaces 71 and 72 at both ends and a plurality of optical signal input / output sections is provided. A plurality of light emitting elements 74 are arranged on the inclined surface 71 side, and a plurality of light receiving elements 75 are arranged on the inclined surface 72 side. In this embodiment, the light emitting elements 74 are arranged such that the direction in which the beam divergence angle is narrow is located in the direction of inclination of the inclined surface 71. Thus, the amount of light rays that escape from the inclined surface 71 to the outside can be suppressed, and the light use efficiency can be improved.
[0023]
Using these optical transmission devices, an optical data bus system for transmitting data by optical signals can be configured. With this configuration, it is possible to improve the light use efficiency in the optical bus system. Furthermore, if a signal processing device having a plurality of circuit boards is configured, signal transmission between arbitrary circuit boards becomes possible, and an optical bus system having high resistance to environmental changes such as temperature change and dust can be obtained.
[0024]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the optical transmission apparatus which improved the utilization efficiency of the light radiated from the light emitting element can be obtained.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating an example of a path of light incident on a translucent medium having an inclined surface.
FIGS. 2A and 2B are diagrams showing an embodiment of the optical transmission device according to the present invention, wherein FIG. 2A is a plan view, FIG. 2B is a side view, and FIG.
3A and 3B are diagrams showing another embodiment of the optical transmission device according to the present invention, wherein FIG. 3A is a plan view, FIG. 3B is a side view, and FIG. 3C is a perspective view.
4A and 4B are diagrams showing another embodiment of the optical transmission device according to the present invention, wherein FIG. 4A is a plan view, FIG. 4B is a side view, and FIG.
FIGS. 5A and 5B are diagrams for explaining a simulation of insertion loss at the emission part when the arrangement direction of the light emitting elements is rotated by 90 °, where FIG. 5A is a simulation parameter, and FIG. 5B is a simulation result. is there.
FIGS. 6A and 6B are diagrams showing another embodiment of the optical transmission device according to the present invention.
FIGS. 7A and 7B are diagrams showing another embodiment of the optical transmission device according to the present invention.
[Explanation of symbols]
Reference Signs List 21 Incident part 22 Inclined (45 °) surface 23 Translucent medium 24 Light emitting element 25 Optical signal

Claims (7)

少なくとも光信号の入射部に傾斜面を有する透光性媒体と、直交する2つの方向でビーム広がり角が異なる発光素子とを備えた光伝送装置であって、前記発光素子が、前記傾斜面の傾斜方向にビーム広がり角の狭い方向が位置するように前記入射部に対して配置されたことを特徴とする光伝送装置。An optical transmission device comprising: a light-transmitting medium having an inclined surface at least at an optical signal incident portion; and a light emitting element having a different beam divergence angle in two orthogonal directions, wherein the light emitting element has an inclined surface. An optical transmission device, wherein the optical transmission device is disposed with respect to the incident portion such that a direction in which a beam divergence angle is narrow is located in a tilt direction. 透光性媒体の一端に傾斜面をそれぞれ有する複数の光信号の入出射部を備えた階段状の段差部および他端に垂直面を有する透光性媒体と、直交する2つの方向でビーム広がり角が異なる発光素子とを備えた光伝送装置であって、前記発光素子が、前記傾斜面の傾斜方向にビーム広がり角の狭い方向が位置するように前記入出射部に対して配置されたことを特徴とする光伝送装置。A light-transmitting medium having a stepped stepped portion having a plurality of optical signal input / output sections each having an inclined surface at one end of the light-transmitting medium and a vertical surface at the other end; and a beam spread in two orthogonal directions. An optical transmission device comprising a light emitting element having a different angle, wherein the light emitting element is disposed with respect to the incident / exit unit such that a direction in which a beam divergence angle is narrow is located in a direction in which the inclined surface is inclined. An optical transmission device characterized by the above-mentioned. 透光性媒体の両端に傾斜面をそれぞれ有する複数の光信号の入出射部を備えた階段状の段差部および他端の一部に垂直面を有する透光性媒体と、直交する2つの方向でビーム広がり角が異なる発光素子とを備えた光伝送装置であって、前記発光素子が、前記傾斜面の傾斜方向にビーム広がり角の狭い方向が位置するように前記入出射部に対して配置されたことを特徴とする光伝送装置。A translucent medium having a step-like stepped portion having a plurality of optical signal input / output portions each having an inclined surface at both ends of the translucent medium, and a translucent medium having a vertical surface at a part of the other end, and two orthogonal directions And a light emitting element having a different beam divergence angle in the light transmission element, wherein the light emitting element is disposed with respect to the incident / emission unit such that a narrow beam divergence angle is located in a direction of inclination of the inclined surface. An optical transmission device, comprising: 前記透光性媒体の他端に光信号の反射部または反射拡散部が設けられていることを特徴とする請求項2または請求項3記載の光伝送装置。The optical transmission device according to claim 2, wherein a reflection portion or a reflection diffusion portion for an optical signal is provided at the other end of the light transmitting medium. 少なくとも光信号の入射部に垂直面を有し、少なくとも出射部に傾斜面を有する透光性媒体と、直交する2つの方向でビーム広がり角が異なる発光素子とを備えた光伝送装置であって、前記発光素子が、前記傾斜面の傾斜方向にビーム広がり角の狭い方向が位置するように前記入射部に対して配置されたことを特徴とする光伝送装置。An optical transmission device comprising: a light-transmitting medium having at least a vertical surface at an incident portion of an optical signal and having an inclined surface at least at an output portion; and a light-emitting element having different beam spread angles in two orthogonal directions. An optical transmission device, wherein the light emitting element is arranged with respect to the incident portion such that a direction in which a beam divergence angle is narrow is located in an inclination direction of the inclined surface. 前記透光性媒体の入射部に光信号の拡散部が設けられていることを特徴とする請求項5記載の光伝送装置。6. The optical transmission device according to claim 5, wherein a light signal diffusion portion is provided at an incident portion of the light transmitting medium. 請求項1から請求項6のいずれかに記載の光伝送装置を用い、光信号によりデータを伝送する光データバスシステム。An optical data bus system for transmitting data by an optical signal using the optical transmission device according to any one of claims 1 to 6.
JP2002179429A 2002-06-20 2002-06-20 Optical transmission equipment Expired - Fee Related JP4302941B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002179429A JP4302941B2 (en) 2002-06-20 2002-06-20 Optical transmission equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002179429A JP4302941B2 (en) 2002-06-20 2002-06-20 Optical transmission equipment

Publications (2)

Publication Number Publication Date
JP2004021154A true JP2004021154A (en) 2004-01-22
JP4302941B2 JP4302941B2 (en) 2009-07-29

Family

ID=31176828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002179429A Expired - Fee Related JP4302941B2 (en) 2002-06-20 2002-06-20 Optical transmission equipment

Country Status (1)

Country Link
JP (1) JP4302941B2 (en)

Also Published As

Publication number Publication date
JP4302941B2 (en) 2009-07-29

Similar Documents

Publication Publication Date Title
JP2004226584A (en) Optical signal transmission device and signal processing device
US6792213B1 (en) Optical signal transmitting apparatus, optical data bus system and signal processing apparatus
JP3837980B2 (en) Optical branching device and optical bus circuit using the same
JP3988357B2 (en) Optical bus circuit board
JP2008015034A (en) Optical transmitter, optical module, and optical transmission system
JP4302941B2 (en) Optical transmission equipment
JP3752981B2 (en) Optical signal transmission device, optical data bus system, and signal processing device
JP3785919B2 (en) Optical signal transmission device, optical data bus system, and signal processing device
JP3752977B2 (en) Optical data bus and opto-electric hybrid board
JP3925081B2 (en) Optical coupling device
JP3528523B2 (en) Optical bus and signal processor
JP3635878B2 (en) Optical data bus, optical data bus complex, and signal processing apparatus
JP3752967B2 (en) Optical branching device
JP3695055B2 (en) Optical data bus, optical data bus device, and signal processing device
JP3815186B2 (en) Signal processing circuit and optical bus device
JP3820881B2 (en) Optical signal transmission device
JP3582328B2 (en) Optical data bus and signal processing device
JPH11202141A (en) Optical bus and signal processor
JP2000249866A (en) Optical branching device, optical data bus, and signal processor
JP2002243973A (en) Optical bus circuit board
JP2001305395A (en) Optical transmission device
JP3635879B2 (en) Optical data bus and signal processing apparatus
JP2000009959A (en) Optical bus and signal processor
JP2003322769A (en) Optical transmission module
JP2004226611A (en) Optical demultiplexing and multiplexing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071226

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080423

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090325

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090423

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130501

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140501

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees