[go: up one dir, main page]

JP2003511657A - How to monitor wind power facilities - Google Patents

How to monitor wind power facilities

Info

Publication number
JP2003511657A
JP2003511657A JP2001528338A JP2001528338A JP2003511657A JP 2003511657 A JP2003511657 A JP 2003511657A JP 2001528338 A JP2001528338 A JP 2001528338A JP 2001528338 A JP2001528338 A JP 2001528338A JP 2003511657 A JP2003511657 A JP 2003511657A
Authority
JP
Japan
Prior art keywords
spectrum
wind power
power generation
noise spectrum
noise
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001528338A
Other languages
Japanese (ja)
Other versions
JP3629465B2 (en
Inventor
アロイス・ヴォベン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7924735&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2003511657(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Individual filed Critical Individual
Publication of JP2003511657A publication Critical patent/JP2003511657A/en
Application granted granted Critical
Publication of JP3629465B2 publication Critical patent/JP3629465B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • F03D7/042Automatic control; Regulation by means of an electrical or electronic controller
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D17/00Monitoring or testing of wind motors, e.g. diagnostics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0264Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor for stopping; controlling in emergency situations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0296Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor to prevent, counteract or reduce noise emissions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/21Rotors for wind turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/96Preventing, counteracting or reducing vibration or noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/333Noise or sound levels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Wind Motors (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

(57)【要約】 風力発電設備のパラメータをモニターすることにより、斯かる設備の維持管理、安全性、経済性を改善することができる。従って、風力発電設備をモニターすのが本発明の目的であり、設備の運転ノイズスペクトルを予め記録した基準ノイズスペクトルと比較して、両者間のズレの大小でトラブルの有無を判断する。   (57) [Summary] By monitoring the parameters of the wind power installation, the maintenance, safety and economy of such installation can be improved. Therefore, it is an object of the present invention to monitor a wind power generation facility, and compare the operation noise spectrum of the facility with a pre-recorded reference noise spectrum to determine the presence or absence of a trouble based on the magnitude of the difference between the two.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】 (技術分野) 本発明は、風力発電設備をモニターする方法に関し、特に音響モニターを行う
方法に関する。
TECHNICAL FIELD The present invention relates to a method for monitoring a wind power generation facility, and more particularly to a method for acoustic monitoring.

【0002】 (背景技術) 風力発電設備を効果的に利用するためには、風力発電設備の調整、運転管理と
を、当該設備が完全自動化されるように行うのが望ましい。通常の運転手順で人
的介在を要する他の運転法は、経済的な観点からして受け入れられるものではな
い。風力発電設備の経済性を更に増大させるためには、各運伝条件におけるエネ
ルギー変換率ができるだけ高くなるように調整を行わなければならない。また、
風力発電設備の調整と運転管理との見地から重要なことは、運転上の安全性があ
る。技術的障害や環境に対する危害も考慮すべきであり、安全システムも働かせ
るべきである。更に、調整システムとしても、風力発電設備に対する機械的負荷
を減らすことができるものでなければならない。
(Background Art) In order to effectively utilize a wind power generation facility, it is desirable to perform adjustment and operation management of the wind power generation facility so that the facility is fully automated. Other driving methods that require human intervention in normal driving procedures are not acceptable from an economic point of view. In order to further increase the economic efficiency of wind power generation facilities, adjustments must be made to maximize the energy conversion rate under each transmission condition. Also,
Operational safety is important from the perspective of wind power plant coordination and operation management. Technical obstacles and environmental hazards should be taken into account, and safety systems should work. Furthermore, the adjustment system must also be capable of reducing the mechanical load on the wind power generation facility.

【0003】 風力発電設備をモニターする見地からすれば、遠隔分析が行えればそれ程望ま
しいことはない。遠隔分析は、それぞれの運転データの中央管理できる利点があ
る。斯かる遠隔モニターにより、風力発電設備の経済性を高め、また、設備の平
均利用率も高めることができる。そのような場合では、例えば、サービス・セン
ターないし遠隔監視センターで運転データを調査したり分析することができる。
入力パラメータを分析することで、発生している問題を容易に認識することがで
きると共に、運転データから、開発部門のための生産、風力データなどに関する
重要な資料が得られる。斯かるデータを開発部門で分析できれば、風力発電設備
を改善することができるのである。
From the standpoint of monitoring wind power generation equipment, remote analysis would be less desirable. Remote analysis has the advantage that each operation data can be centrally managed. Such remote monitoring can improve the economic efficiency of the wind power generation facility and also increase the average utilization rate of the facility. In such a case, the operating data can be investigated and analyzed at a service center or a remote monitoring center, for example.
By analyzing the input parameters, the problems that are occurring can be easily recognized and the operational data provides important material for production, wind data, etc. for the development department. If such data can be analyzed by the development department, the wind power generation facility can be improved.

【0004】 従来の風力発電設備では、例えば風速、風向き、空気密度、1分あたりのロー
ター回転速度(平均値と極端値)、温度、電流、電圧、切替えパルス、落雷(事象
計数器)などの如くのパラメータがセンサー手段により定期的にモニターされて
いる。 風力発電設備の維持管理、安全性、経済性を更に改善するには、風力発
電設備のその他のパラメータもモニターできるのが望ましい。
In conventional wind power generation equipment, for example, wind speed, wind direction, air density, rotor rotation speed per minute (average value and extreme value), temperature, current, voltage, switching pulse, lightning strike (event counter), etc. Such parameters are regularly monitored by sensor means. It is desirable to be able to monitor other parameters of the wind farm to further improve the maintenance, safety and economics of the wind farm.

【0005】 遠隔監視センサーで入力パラメータを分析すれば、この遠隔監視センターがト
ラブル源などについて正確な現場保守管理用の手掛かり情報が得られることから
、現場での保守作業が捗ることになる。
By analyzing the input parameters with the remote monitoring sensor, the remote monitoring center can obtain accurate clue information for on-site maintenance management regarding trouble sources and the like, and thus the on-site maintenance work progresses.

【0006】 (発明の開示) 従って、本発明の目的は、風力発電設備のモニター法を改善することにある。
この目的は、本発明によれば、前述のように風力発電設備をモニターするばかり
ではなくて、このモニターを音響を利用して行うことで達成できる。
DISCLOSURE OF THE INVENTION Accordingly, it is an object of the present invention to improve a method for monitoring wind power generation equipment.
According to the present invention, this object can be achieved not only by monitoring the wind power generation equipment as described above, but also by using this sound.

【0007】 本発明によれば、考えられる損傷を予め避けるために、トラブルを早期検出す
ることができる利点がある。これにより、螺合接続部でのネジ類のゆるみ、イン
バータに関して、または、変圧器に関して発電区域での電気障害、ローター羽の
摩耗や氷結などを早い段階で前もって識別することができる。
According to the present invention, there is an advantage that a trouble can be detected early in order to avoid possible damage in advance. This makes it possible to identify, at an early stage, loosening of screws or the like at the screwed connection, electrical failure in the power generation area with respect to the inverter or with respect to the transformer, wear and icing of rotor blades, and the like.

【0008】 本発明によれば、風力発電設備を音響モニターするには、先ず、設備ないしそ
の構成部品の基準ノイズスペクトルを記録して保存する。運転時に運転時のノイ
ズスペクトルを連続または繰り返して記録し、これを保存している基準スペクト
ルと比較することで、両者間のズレを検出する。風力発電設備の基準ノイズスペ
クトルを記録する代わりに、既に保存されている風力発電設備の基準ノイズスペ
クトルを利用することも可能である。
According to the invention, in order to acoustically monitor a wind power installation, the reference noise spectrum of the installation or its components is first recorded and saved. During operation, the noise spectrum during operation is recorded continuously or repeatedly, and the difference between the two is detected by comparing this with the stored reference spectrum. Instead of recording the reference noise spectrum of the wind power plant, it is possible to use the already stored reference noise spectrum of the wind power plant.

【0009】 本発明の好ましい実施の形態では、運転時のノイズスペクトルと基準ノイズス
ペクトルとの間で検出されたズレは、集中分析のために遠隔監視センターに送信
されるようになっている。
In a preferred embodiment of the invention, the deviation detected between the driving noise spectrum and the reference noise spectrum is transmitted to a remote monitoring center for centralized analysis.

【0010】 好ましくは、音響ピックアップで記録され、運転時のノイズスペクトルと基準
ノイズスペクトルとの比較結果でズレの生じる元のノイズも遠隔監視センターに
送信されるようになっているので、当該センターでの保守管理員が聴取によりノ
イズをチェックすることができる。
[0010] Preferably, the original noise, which is recorded by the acoustic pickup and causes a deviation in the comparison result between the noise spectrum during driving and the reference noise spectrum, is also transmitted to the remote monitoring center. The maintenance staff can check the noise by listening.

【0011】 そのような場合では、元のノイズからノイズパターンを形成し、斯かるノイズ
パターンから音響データの書庫を構築するのが望ましい。
In such a case, it is desirable to form a noise pattern from the original noise and construct a library of acoustic data from the noise pattern.

【0012】 運転時のノイズスペクトルと基準ノイズスペクトルとの間のズレが所定閾値よ
りも大きければ、風力発電設備は恐らくはオフになっている。
If the deviation between the operating noise spectrum and the reference noise spectrum is larger than a predetermined threshold, the wind power generation facility is probably turned off.

【0013】 (発明を実施するための最良の形態) 以後、本発明の好ましい実施の形態を詳述する。本発明によれば、風力発電設
備の試運転時に、当該風力発電設備の典型的な基準ノイズパターンないし基準ノ
イズプロファイルを、例えば部分負荷または定格負荷下の如くの所定運転レンジ
について記録すると共に、データ記憶装置に保存する。風力発電設備が全て同一
構造であれば、改めて特定の基準ノイズスペクトルを記録する代わりに、既に保
存している基準ノイズスペクトルを利用することも可能である。風力発電設備に
おけるノイズスペクトルを記録するための音響ピックアップの設置個所は、複数
箇所が考えられ、何処であってもよい。例えば、ローター羽や、発電機、駆動系
、電子機器などをモニターすることも可能である。ローター羽をモニターする場
合では、音響ピックアップはタワーにあってその外側に装着してもよいし、発電
機は駆動系をモニターする場合では音響ピックアップはポッドに設けてもよく、
更に電子機器をモニターする場合では音響ピックアップはタワーの基底ないし変
電所に設けてもよい。このように音響ピックアップを設置する場所は、奇人ノイ
ズスペクトルの記録時と運転時ノイズスペクトルの記録時とで変えるべきではな
い。
(Best Mode for Carrying Out the Invention) Hereinafter, preferred embodiments of the present invention will be described in detail. According to the present invention, at the time of test operation of the wind power generation facility, a typical reference noise pattern or reference noise profile of the wind power generation facility is recorded for a predetermined operation range such as under partial load or rated load, and data is stored. Save to device. If all the wind power generation facilities have the same structure, it is possible to use the already stored reference noise spectrum instead of recording a specific reference noise spectrum again. There may be a plurality of installation locations of the acoustic pickup for recording the noise spectrum in the wind power generation facility, and any location may be provided. For example, it is also possible to monitor rotor blades, generators, drive systems, electronic devices, and the like. When monitoring rotor wings, the acoustic pickup may be mounted on the outside of the tower and the generator may be mounted on the pod when monitoring the drivetrain,
Further, when monitoring electronic equipment, the acoustic pickup may be provided at the base of the tower or at the substation. In this way, the place where the acoustic pickup is installed should not be changed when recording the eccentric noise spectrum and when recording the driving noise spectrum.

【0014】 風力発電設備を運転しているときに、それぞれの音響(例えば、0.1Hz〜30
KHzの間の周波数スペクトル)を、例えば0KWから定格出力電力kまでの可動範囲
ないし運転時点に応じて記録する。その運転音響は基準ノイズスペクトルと比較
され、評価される。
When operating the wind power generation facility, each sound (for example, 0.1 Hz to 30 Hz)
The frequency spectrum between KHz) is recorded, for example, depending on the operating range from 0 KW to the rated output power k or the operating time. The driving sound is compared and evaluated with a reference noise spectrum.

【0015】 運転ノイズスペクトルが検出されると、稼働範囲ないし運転範囲における運転
ノイズスペクトルをそれに対応する基準ノイズスペクトルと比較するために、風
力発電設備の稼働範囲ないし運転範囲を先ず判断する。その時に所定閾値を超過
するズレが発生すると、トラブル警報が発せられ、それが遠隔監視センターに伝
達され、場合によっては風力発電設備が自動的に或いは手動(センター側で)シャ
ットダウンされる。
When the operating noise spectrum is detected, the operating range or operating range of the wind turbine generator is first determined in order to compare the operating noise spectrum in the operating range or operating range with the corresponding reference noise spectrum. At that time, if a deviation exceeding a predetermined threshold value occurs, a trouble alarm is issued, the trouble alarm is transmitted to the remote monitoring center, and the wind power generation facility is shut down automatically or manually (on the center side) in some cases.

【0016】 閾値を越える運転ノイズスペクトルと基準ノイズスペクトルとのズレが検出さ
れると、前述したようにトラブル警報が遠隔監視センターに伝達される。このト
ラブル警報ないし前記ズレの正確な分析は、遠隔監視センターで行われる。この
遠隔監視センターの運転係は恐らくはこのトラブル警報に直ぐ反応して、そのト
ラブル警報を現場の保守管理員に伝えるであろう。そのように、トラブル検出が
適時になされ、斯かる種のトラブルは迅速に保守管理員により対処されるのであ
る。また、考えられる損傷もそのようにして未然に防ぐことができるのである。
風力発電設備をこのように維持管理し、維持することにより、風力発電設備の平
均利用度、ひいてはその経済性を高めることができるのである。
When the deviation between the operation noise spectrum exceeding the threshold value and the reference noise spectrum is detected, the trouble alarm is transmitted to the remote monitoring center as described above. The trouble alarm or the accurate analysis of the deviation is performed at the remote monitoring center. The operator of this remote monitoring center will probably react immediately to this trouble alarm and transmit the trouble alarm to maintenance personnel on site. As such, troubles are detected in a timely manner, and such troubles are promptly dealt with by maintenance personnel. Also possible damage can be prevented in this way.
By maintaining and maintaining the wind power generation facility in this way, it is possible to increase the average utilization rate of the wind power generation facility and thus its economic efficiency.

【0017】 トラブル診断を改善にするには、音響ピックアップで記録されていて、運転ス
ペクトルと基準スペクトルとの間のズレをもたらした元のノイズを遠隔監視セン
ターに伝達する。すると、運転係が問題の音響を聴取して、以上の有無を知覚で
判断し、適当な対策を採るようになるであろう。このような手順は、ヒトの耳は
敏感に反応するし、しかも、信号処理装置よりはノイズの聞き分けが上手である
から望ましいものである。
To improve the trouble diagnosis, the original noise, which was recorded by the acoustic pickup and caused the deviation between the operating spectrum and the reference spectrum, is transmitted to the remote monitoring center. Then, the driver will listen to the sound in question, judge the presence or absence of the above, and take appropriate measures. Such a procedure is desirable because the human ear reacts sensitively and is better at identifying noise than signal processing devices.

【0018】 遠隔監視センターの運転員の負担を軽減するためには、元のノイズ(オーディ
オ信号)からノイズパターンを作成して、これらのパターンを集めて音響データ
の書庫を構築しておくのが望ましい。信号処理装置が風力発電設備の記録された
ノイズを保存さて手いるノイズパターンと比較して、考えられるトラブル原因か
ら予め対策を施すことができるのである。例えば記録されているオーディオ信号
は、それをデジタル化してノイズパターンに変換することができ、その後別のデ
ジタル処理にかける。遠隔監視センターの運転員はそのノイズを聞くのではある
が、その場合、信号処理装置により示唆されたトラブル原因を掴むことがでいる
であろう。そのような手順により、遠隔監視センターの運転職員に掛る職場での
負担を改善ないし軽減することができ、監視作業をより能率的に実施することが
できる。
In order to reduce the burden on the operator of the remote monitoring center, it is necessary to create a noise pattern from the original noise (audio signal) and collect these patterns to build a library of acoustic data. desirable. The signal processor can compare the recorded noise of the wind power generation facility with the stored noise pattern and take proactive measures from possible causes of the trouble. For example, the recorded audio signal can be digitized into a noise pattern and then subjected to another digital process. The operator of the remote monitoring center would hear the noise, in which case he would be able to grasp the cause of the trouble suggested by the signal processor. Such a procedure can reduce or reduce the burden on the driving staff of the remote monitoring center at the workplace, and the monitoring work can be carried out more efficiently.

【0019】 更に、運転ノイズスペクトルと基準ノイズスペクトルとのズレを全て時間の結
果と共に保存したデータ書庫を構築すれば、原因とトラブル時の変動についての
情報を得ることも可能である。また、データ書庫のデータは、例えば風速、温度
、電流、電圧などの如くのその他の運転パラメータを比較することもできる。ト
ラブル発生に関しての相関も、斯かるデータの比較から見いだすことができるで
あろう。そのような指標は、それを知っていることが風力発電設備を新たに建設
したり、既存の設備の将来開発に利用できることから、開発部門からしても価値
のあるものである。
Further, by constructing a data archive in which all the deviations between the operation noise spectrum and the reference noise spectrum are stored together with the result of time, it is possible to obtain information on the cause and the fluctuation at the time of trouble. The data in the data store can also be compared with other operating parameters such as wind speed, temperature, current, voltage, etc. Correlations regarding the occurrence of troubles can also be found by comparing such data. Such indicators are of value to the development sector as knowledge of them can be used to build new wind power plants or for future development of existing plants.

【手続補正書】[Procedure amendment]

【提出日】平成14年9月10日(2002.9.10)[Submission date] September 10, 2002 (2002.10.10)

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Name of item to be amended] Claims

【補正方法】変更[Correction method] Change

【補正の内容】[Contents of correction]

【特許請求の範囲】[Claims]

───────────────────────────────────────────────────── フロントページの続き (81)指定国 EP(AT,BE,CH,CY, DE,DK,ES,FI,FR,GB,GR,IE,I T,LU,MC,NL,PT,SE),OA(BF,BJ ,CF,CG,CI,CM,GA,GN,GW,ML, MR,NE,SN,TD,TG),AP(GH,GM,K E,LS,MW,MZ,SD,SL,SZ,TZ,UG ,ZW),EA(AM,AZ,BY,KG,KZ,MD, RU,TJ,TM),AE,AG,AL,AM,AT, AU,AZ,BA,BB,BG,BR,BY,BZ,C A,CH,CN,CR,CU,CZ,DK,DM,DZ ,EE,ES,FI,GB,GD,GE,GH,GM, HR,HU,ID,IL,IN,IS,JP,KE,K G,KP,KR,KZ,LC,LK,LR,LS,LT ,LU,LV,MA,MD,MG,MK,MN,MW, MX,MZ,NO,NZ,PL,PT,RO,RU,S D,SE,SG,SI,SK,SL,TJ,TM,TR ,TT,TZ,UA,UG,US,UZ,VN,YU, ZA,ZW─────────────────────────────────────────────────── ─── Continued front page    (81) Designated countries EP (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, I T, LU, MC, NL, PT, SE), OA (BF, BJ , CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG), AP (GH, GM, K E, LS, MW, MZ, SD, SL, SZ, TZ, UG , ZW), EA (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, C A, CH, CN, CR, CU, CZ, DK, DM, DZ , EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, K G, KP, KR, KZ, LC, LK, LR, LS, LT , LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, S D, SE, SG, SI, SK, SL, TJ, TM, TR , TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 風力発電設備を音響モニターする方法であって、 少なくとも一箇所での風力発電設備とその構成部品の何れか、または両方の基
準ノイズスペクトルを記録するステップと、 前記基準スペクトルを記憶手段に保存するステップと、 前記一箇所または設置個所で運転時の運転ノイズスペクトルを記録するステッ
プと、 運転ノイズスペクトルと基準スペクトルとのズレを検出するステップとからな
るモニター方法。
1. A method for acoustically monitoring a wind power generation facility, comprising recording a reference noise spectrum of at least one location of the wind power generation facility and / or its components, and storing the reference spectrum. A monitoring method comprising the steps of storing in a means, recording an operation noise spectrum during operation at the one place or installation location, and detecting a deviation between the operation noise spectrum and a reference spectrum.
【請求項2】 風力発電設備を音響モニターする方法であって、 少なくとも一箇所での風力発電設備とその構成部品の何れか、または両方の基
準ノイズスペクトルを記憶手段に保存するステップと、 前記一箇所または設置個所で運転時の運転ノイズスペクトルを記録するステッ
プと、 記録した運転ノイズスペクトルを保存した基準スペクトルと比較するステップ
と、 運転ノイズスペクトルと基準スペクトルとのズレを検出するステップとからな
るモニター方法。
2. A method for acoustically monitoring a wind power generation facility, comprising storing in a storage means a reference noise spectrum of at least one of the wind power generation facility and its constituent parts, or both. A monitor consisting of recording a driving noise spectrum during operation at a location or installation site, comparing the recorded driving noise spectrum with a stored reference spectrum, and detecting a deviation between the driving noise spectrum and the reference spectrum. Method.
【請求項3】 請求項1または2に記載の方法であって、前記運転ノイズス
ペクトルが、前記箇所での運転時に連続または繰り返して記録されることよりな
るモニター方法。
3. The method according to claim 1, wherein the driving noise spectrum is recorded continuously or repeatedly during driving at the location.
【請求項4】 請求項1から3までの何れか一項に記載の方法であって、運
転ノイズスペクトルと基準スペクトルとの間で検出されたズレが遠隔監視センタ
ーに伝達されることよりなるモニター方法。
4. The method according to claim 1, wherein the deviation detected between the driving noise spectrum and the reference spectrum is transmitted to a remote monitoring center. Method.
【請求項5】 請求項4に記載の方法であって、運転ノイズスペクトルと基
準スペクトルとの間にズレをもたらした元のノイズが遠隔監視センターに伝達さ
れることよりなるモニター方法。
5. The method according to claim 4, wherein the original noise causing the deviation between the driving noise spectrum and the reference spectrum is transmitted to the remote monitoring center.
【請求項6】 請求項5に記載の方法であって、前記元のノイズからノイズ
パターンを形成し、このノイズパターンから音響データの書庫を構築することよ
りなるモニター方法。
6. The monitoring method according to claim 5, comprising forming a noise pattern from the original noise and constructing an archive of acoustic data from the noise pattern.
【請求項7】 請求項1または2に記載の方法であって、運転ノイズスペク
トルと基準スペクトルとの間のズレが所定閾値を越えた場合に、風力発電設備を
シャットダウンすることよりなるモニター方法。
7. The method according to claim 1, wherein the wind power generation facility is shut down when the deviation between the operation noise spectrum and the reference spectrum exceeds a predetermined threshold value.
【請求項8】 請求項1から5までに記載の音響モニター方法を適用する風
力発電設備であって、 少なくとも風力発電設備の所定の一箇所に配置されて、ある一時には基準ノイ
ズスペクトルを記録し、風力発電設備とその構成部品の何れか、または両方の運
転ノイズスペクトルを連続して記録する少なくとも一つの音響ピックアップと、 設備の基準スペクトルを保存する記憶手段と、 記録した運転ノイズスペクトルを保存した基準スペクトルと比較して運転ノイ
ズスペクトルと基準スペクトルとのズレを検出するデータ処理手段とからなり、 運転ノイズスペクトルと基準スペクトルとの間のズレが所定閾値を越えた場合
に、シャットダウンされることよりなる風力発電設備。
8. A wind power generation facility to which the acoustic monitoring method according to any one of claims 1 to 5 is applied, wherein the wind power generation facility is arranged at least at a predetermined location of the wind power generation facility, and a reference noise spectrum is recorded at a certain time. , At least one acoustic pickup that continuously records the operating noise spectrum of the wind power generation facility and / or its components, storage means that stores the reference spectrum of the facility, and the recorded operating noise spectrum. It is composed of data processing means for detecting a deviation between the driving noise spectrum and the reference spectrum by comparing with the reference spectrum, and is shut down when the deviation between the driving noise spectrum and the reference spectrum exceeds a predetermined threshold. Wind power generation equipment.
JP2001528338A 1999-10-06 2000-07-07 Wind power generation facility monitoring method Expired - Lifetime JP3629465B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19948194.6 1999-10-06
DE19948194A DE19948194C2 (en) 1999-10-06 1999-10-06 Process for monitoring wind turbines
PCT/EP2000/006433 WO2001025631A1 (en) 1999-10-06 2000-07-07 Method for monitoring wind power plants

Publications (2)

Publication Number Publication Date
JP2003511657A true JP2003511657A (en) 2003-03-25
JP3629465B2 JP3629465B2 (en) 2005-03-16

Family

ID=7924735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001528338A Expired - Lifetime JP3629465B2 (en) 1999-10-06 2000-07-07 Wind power generation facility monitoring method

Country Status (13)

Country Link
US (2) US6785637B1 (en)
EP (1) EP1222391B1 (en)
JP (1) JP3629465B2 (en)
KR (1) KR100544013B1 (en)
AT (1) ATE496218T1 (en)
AU (1) AU6690000A (en)
CA (1) CA2386114C (en)
CY (1) CY1111610T1 (en)
DE (2) DE19948194C2 (en)
DK (1) DK1222391T3 (en)
ES (1) ES2357418T3 (en)
PT (1) PT1222391E (en)
WO (1) WO2001025631A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009544880A (en) * 2006-07-21 2009-12-17 リパワー システムズ エージー Wind power generator operation method
WO2011111730A1 (en) * 2010-03-12 2011-09-15 Ntn株式会社 Abrasion detection device, wind power generator equipped therewith, and abrasion detection method
WO2011151875A1 (en) * 2010-05-31 2011-12-08 三菱重工業株式会社 Wind power generator provided with in-rotor contaminant detection device, and method for driving wind power generator

Families Citing this family (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE20021970U1 (en) 2000-12-30 2001-04-05 Igus Ingenieurgemeinschaft Umweltschutz Meß-und Verfahrenstechnik GmbH, 01099 Dresden Device for monitoring the condition of rotor blades on wind turbines
DE10065314B4 (en) * 2000-12-30 2007-08-16 Igus - Innovative Technische Systeme Gmbh Method and device for monitoring the condition of rotor blades on wind turbines
DE10109553B4 (en) 2001-02-28 2006-03-30 Wobben, Aloys, Dipl.-Ing. Air density dependent power control
DE10115267C2 (en) * 2001-03-28 2003-06-18 Aloys Wobben Method for monitoring a wind energy plant
SE0200237D0 (en) * 2002-01-29 2002-01-29 Abb Ab Apparatus and method for operation of a power generating plant
DE20210406U1 (en) * 2002-07-05 2003-11-13 GEO Gesellschaft für Energie und Ökologie mbH, 25917 Enge-Sande Device for testing, maintaining wind energy system rotor blades has frame with two legs linked together, each with guide rollers and sensors, holding band attached to both legs, tensioning device
AU2004207180C1 (en) * 2003-02-01 2010-03-25 Aloys Wobben Method for the erection of a wind energy plant and wind energy plant
US20040261531A1 (en) * 2003-06-30 2004-12-30 General Electric Canada Inc. Method and system for analyzing hydraulic turbine vibrations
DE10331160A1 (en) * 2003-07-10 2005-02-03 Könnemann, Frank Gravitational force impact generator for wind turbine rotor blade testing has impact body incorporated within rotor blade for providing impact force during blade rotation
DE102005017054B4 (en) * 2004-07-28 2012-01-05 Igus - Innovative Technische Systeme Gmbh Method and device for monitoring the condition of rotor blades on wind turbines
ES2386895T3 (en) * 2005-07-28 2012-09-05 General Electric Company Freeze detection system for a wind turbine
US8021110B2 (en) * 2007-01-05 2011-09-20 General Electric Company Tonal emission control for wind turbines
WO2008113354A1 (en) * 2007-03-16 2008-09-25 Vestas Wind Systems A/S Method for condition monitoring a rotor of a wind energy plant
CN101675325A (en) * 2007-03-29 2010-03-17 维斯塔斯风力系统有限公司 Be used to check the method for at least one spinner blade of wind turbine and the check system that is used at least one spinner blade of wind turbine
DE102007020423A1 (en) * 2007-04-27 2008-10-30 Daubner & Stommel GbR Bau-Werk-Planung (vertretungsberechtigter Gesellschafter: Matthias Stommel, 27777 Ganderkesee) Method for operating a wind turbine and wind turbine
DE102007027849A1 (en) * 2007-06-13 2008-12-18 Repower Systems Ag Method for operating a wind energy plant
US7895018B2 (en) 2007-08-10 2011-02-22 General Electric Company Event monitoring via combination of signals
CN101918710B (en) * 2007-11-07 2013-10-16 维斯塔斯风力系统集团公司 Diagnosis of pitch and load defects
US20100268395A1 (en) * 2007-12-11 2010-10-21 Vestas Wind Systems A/S System and method for detecting performance
US20090153656A1 (en) * 2007-12-12 2009-06-18 General Electric Corporation Wind turbine maintenance system
CN101556168B (en) * 2008-04-11 2012-05-09 株式会社东芝 Equipment operating data monitoring device
DE102008026842B3 (en) * 2008-06-05 2010-02-18 Repower Systems Ag Method and arrangement for monitoring the operation of a wind energy plant
ITMI20081122A1 (en) 2008-06-19 2009-12-20 Rolic Invest Sarl WIND GENERATOR PROVIDED WITH A COOLING SYSTEM
DK2166422T3 (en) * 2008-09-17 2017-10-23 Siemens Ag Procedure for alarm mask generation and condition monitoring of wind turbines
US7881888B2 (en) * 2008-09-30 2011-02-01 Vestas Wind Systems A/S Logical scheme for severe fault detection
US8050887B2 (en) 2008-12-22 2011-11-01 General Electric Company Method and system for determining a potential for icing on a wind turbine blade
DE102009004385B4 (en) 2009-01-12 2010-11-25 Repower Systems Ag Method and device for monitoring a wind turbine
WO2010097485A1 (en) * 2009-02-27 2010-09-02 Gamesa Innovation & Technology, S.L. Methods for locating damage to wind turbine blades
WO2010098815A1 (en) * 2009-02-28 2010-09-02 Ener2 Llc Wind turbine
US7896613B2 (en) * 2009-06-03 2011-03-01 General Electric Company System and method for wind turbine noise control and damage detection
EP2476033B1 (en) * 2009-09-08 2019-06-19 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Model-based method for monitoring the condition of rotor blades
US8277183B2 (en) * 2009-09-30 2012-10-02 General Electric Company Systems and methods for monitoring wind turbine operation
US8215907B2 (en) * 2009-09-30 2012-07-10 General Electric Company Method and apparatus for controlling acoustic emissions of a wind turbine
EP2320287A1 (en) * 2009-11-05 2011-05-11 Siemens Aktiengesellschaft Monitoring system and method for monitoring the state of a technical installation
IT1399201B1 (en) 2010-03-30 2013-04-11 Wilic Sarl AEROGENERATOR AND METHOD OF REMOVING A BEARING FROM A AIRCONDITIONER
IT1399511B1 (en) 2010-04-22 2013-04-19 Wilic Sarl ELECTRIC GENERATOR FOR A VENTILATOR AND AEROGENER EQUIPPED WITH THIS ELECTRIC GENERATOR
US8043054B2 (en) 2010-08-25 2011-10-25 General Electric Company Method and system for monitoring wind turbine
ITMI20110378A1 (en) 2011-03-10 2012-09-11 Wilic Sarl ROTARY ELECTRIC MACHINE FOR AEROGENERATOR
ITMI20110375A1 (en) 2011-03-10 2012-09-11 Wilic Sarl WIND TURBINE
ITMI20110377A1 (en) 2011-03-10 2012-09-11 Wilic Sarl ROTARY ELECTRIC MACHINE FOR AEROGENERATOR
US8849587B1 (en) 2011-03-14 2014-09-30 Neal Fredrick Lightle System and method for remotely monitoring the health of a transformer
US8433425B2 (en) 2011-04-29 2013-04-30 General Electric Company Method, system and computer program product for dynamic rule engine for a wind turbine farm
EP2535579B1 (en) 2011-06-14 2020-01-22 Siemens Gamesa Renewable Energy A/S Method for acoustically monitoring a wind turbine, acoustic monitoring system for a wind turbine and re-equipment kit
DE102011085107B4 (en) 2011-10-24 2013-06-06 Wobben Properties Gmbh Method for controlling a wind energy plant
US9453500B2 (en) 2013-03-15 2016-09-27 Digital Wind Systems, Inc. Method and apparatus for remote feature measurement in distorted images
US9330449B2 (en) 2013-03-15 2016-05-03 Digital Wind Systems, Inc. System and method for ground based inspection of wind turbine blades
US9194843B2 (en) 2013-03-15 2015-11-24 Digital Wind Systems, Inc. Method and apparatus for monitoring wind turbine blades during operation
US9395337B2 (en) 2013-03-15 2016-07-19 Digital Wind Systems, Inc. Nondestructive acoustic doppler testing of wind turbine blades from the ground during operation
CN103811015B (en) * 2014-01-16 2016-07-06 浙江工业大学 A kind of punch press noise power Power estimation improved method based on Burg method
JP6282148B2 (en) * 2014-03-17 2018-02-21 Dmg森精機株式会社 Machine Tools
US9194250B1 (en) * 2014-05-07 2015-11-24 General Electric Company Embedded wireless sensors for turbomachine component defect monitoring
DE102014210152A1 (en) * 2014-05-28 2015-12-03 Robert Bosch Gmbh Evaluation system and method for operating such an evaluation system
US11255310B2 (en) * 2016-11-14 2022-02-22 Vestas Wind Systems A/S Wind turbine noise analysis and control
DE102016125803A1 (en) * 2016-12-28 2018-06-28 Fritz Studer Ag Machine tool, in particular grinding machine, and method for determining an actual state of a machine tool
CN109751196B (en) * 2017-11-03 2020-05-29 北京金风科创风电设备有限公司 Wind turbine identification method and device
CN111788387B (en) * 2017-12-29 2023-09-05 维斯塔斯风力系统集团公司 Method and device for monitoring a wind turbine
CN108301989B (en) * 2018-01-31 2019-11-15 湖南优利泰克自动化系统有限公司 A kind of Wind turbines failure logging method
CN109209783A (en) * 2018-09-18 2019-01-15 远景能源(江苏)有限公司 A kind of method and device of the lightning damage based on noise measuring blade
EP3832132B1 (en) 2019-12-06 2023-06-07 Wobben Properties GmbH Mobile maintenance device, movable mounting device and method
CN111306008B (en) * 2019-12-31 2022-03-11 远景智能国际私人投资有限公司 Fan blade detection method, device, equipment and storage medium
CN111535999B (en) * 2020-05-22 2021-08-24 三一重能有限公司 Fan falling object monitoring method, device and system and storage medium
EP3916223A1 (en) 2020-05-29 2021-12-01 Siemens Gamesa Renewable Energy A/S Object detection in an interior of a turbine hub
EP4317680A1 (en) * 2022-08-05 2024-02-07 Christoph Lucks Method for detecting an imbalance in a wind turbine and for generating electricity by means of a wind turbine
EP4542029A1 (en) 2023-10-16 2025-04-23 Wereover GmbH Computer implemented method and computing system for monitoring the blades of a wind turbine

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2751228A1 (en) 1977-11-16 1979-05-17 Lawson Tancred H Sons & Co Sir Wind driven electricity generator - has hydraulic pumps driven by wind wheel, in turn driving hydraulic motor driven generators selectively connected according to wind speed
US4198866A (en) * 1978-09-07 1980-04-22 Vsesojuzny Nauchno-Issledovatelsky Institut Po Razrabotke Nerazrushajuschikh Metodov I Sredstv Knotrolya Kachestva Materialov"VNIINK" Method and device for ultrasonic inspection of materials
WO1981003702A1 (en) * 1980-06-19 1981-12-24 Boekels & Co H Method and device for the acoustic supervision of machines and/or plants
FR2486654A1 (en) * 1980-07-08 1982-01-15 Cgr DEVICE FOR ACTIVATION OF ACOUSTIC TRANSMITTING MEASURING DEVICE BY DETECTING THE SUBSTANTIAL NOISE
ES493471A0 (en) * 1980-07-17 1982-06-01 Martinez Parra Jose ELECTRIC CENTRAL AIR SYSTEM, DRIVEN BY THE APPROVEMENT OF THE WIND FORCE
DE3112122A1 (en) * 1981-03-27 1982-10-07 Robert Bosch Gmbh, 7000 Stuttgart Method and device for vehicle diagnosis
NL8103812A (en) 1981-08-14 1983-03-01 Berg Hendrik Van Den METHOD FOR MATCHING DEMAND FOR ELECTRIC ENERGY WITH THE SUPPLY OF ELECTRIC ENERGY SUPPLIERS AND CIRCUIT APPLIED THEREFOR.
IE57014B1 (en) 1983-03-25 1992-03-11 Wyeth John & Brother Ltd Benzoquinolizines
US5082421A (en) * 1986-04-28 1992-01-21 Rolls-Royce Plc Active control of unsteady motion phenomena in turbomachinery
US4967550A (en) * 1987-04-28 1990-11-06 Rolls-Royce Plc Active control of unsteady motion phenomena in turbomachinery
US4904996A (en) * 1988-01-19 1990-02-27 Fernandes Roosevelt A Line-mounted, movable, power line monitoring system
AT391385B (en) 1988-12-23 1990-09-25 Elin Union Ag CONTROL AND CONTROL SYSTEM FOR A WIND TURBINE
US4996880A (en) * 1989-03-23 1991-03-05 Electric Power Research Institute, Inc. Operating turbine resonant blade monitor
DE3941290A1 (en) * 1989-12-14 1991-06-20 Bochumer Eisen Heintzmann METHOD FOR MONITORING AND CONTROLLING OPERATING PROCEDURES IN A MINING UNDERGROUND OPERATION AND MONITORING AND CONTROL DEVICE THEREFOR
US5210704A (en) * 1990-10-02 1993-05-11 Technology International Incorporated System for prognosis and diagnostics of failure and wearout monitoring and for prediction of life expectancy of helicopter gearboxes and other rotating equipment
US5162659A (en) * 1991-03-06 1992-11-10 Northwest Airlines, Inc. Method and apparatus for noncontact inspection of engine blades
JPH0520884A (en) 1991-07-12 1993-01-29 Toshiba Corp Semiconductor memory
ES2132244T3 (en) * 1992-08-10 1999-08-16 Dow Deutschland Inc PROCEDURE TO DETECT FOILING OF AN AXIAL COMPRESSOR.
JPH07209035A (en) 1994-01-11 1995-08-11 Toshiba Corp Watching device for state of apparatus
IT1269818B (en) * 1994-05-23 1997-04-15 Ansaldo Gie Srl EQUIPMENT AND DIAGNOSTIC PROCEDURE FOR MONITORING THE EFFICIENCY OF ROTATING ELECTRIC GENERATORS, SUCH AS TURBO ALTERNATORS
JPH10507259A (en) * 1994-08-31 1998-07-14 ハネウエル・インコーポレーテッド Remote power self-contained structure monitor
FR2728536A1 (en) * 1994-12-22 1996-06-28 Eurocopter France PALIERIER SYSTEM WITH GRADIENT OF EFFORT FOR HELICOPTER
DE19534404A1 (en) * 1995-09-16 1997-03-20 En Umwelt Beratung E V I Wind power installation technical state monitoring method
DE19545008C5 (en) 1995-12-02 2004-07-22 Reilhofer Kg Process for monitoring periodically operating machines
US5845230A (en) 1996-01-30 1998-12-01 Skf Condition Monitoring Apparatus and method for the remote monitoring of machine condition
DE29609242U1 (en) * 1996-05-23 1996-08-14 WIND-consult Ingenieurgesellschaft für umweltschonende Energiewandlung mbH, 18211 Bargeshagen Measuring device for testing and measuring the tower and rotor of wind turbines
DE19620906C2 (en) 1996-05-24 2000-02-10 Siemens Ag Wind farm
DE19745007A1 (en) * 1996-10-22 1998-04-23 Bosch Gmbh Robert Device and method for evaluating the noise of electrical machines or devices
DE19712034A1 (en) * 1997-03-21 1998-09-24 Deutsch Zentr Luft & Raumfahrt Flexible leading edge profile for aerofoil
DE19731918B4 (en) * 1997-07-25 2005-12-22 Wobben, Aloys, Dipl.-Ing. Wind turbine
JP3518838B2 (en) 1997-09-04 2004-04-12 株式会社東芝 Sound monitoring device
DE19743694C2 (en) * 1997-10-02 2001-11-15 Aloys Wobben Rotor blade and wind turbine with one rotor blade
US5942690A (en) * 1997-11-25 1999-08-24 Shvetsky; Arkady Apparatus and method for ultrasonic inspection of rotating machinery while the machinery is in operation
AU2046499A (en) * 1998-01-14 1999-08-02 Dancontrol Engineering A/S Method for measuring and controlling oscillations in a wind turbine
DE19852229C2 (en) * 1998-11-12 2002-10-31 Stn Atlas Elektronik Gmbh Method and device for detecting damage to rail vehicles
US6231306B1 (en) * 1998-11-23 2001-05-15 United Technologies Corporation Control system for preventing compressor stall
US6278197B1 (en) * 2000-02-05 2001-08-21 Kari Appa Contra-rotating wind turbine system
US20030066934A1 (en) * 2001-09-06 2003-04-10 Bolonkin Alexander Alexandrovich Method of utilization a flow energy and power installation for it

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009544880A (en) * 2006-07-21 2009-12-17 リパワー システムズ エージー Wind power generator operation method
US8169097B2 (en) 2006-07-21 2012-05-01 Repower Systems Ag Method for operating a wind energy installation
WO2011111730A1 (en) * 2010-03-12 2011-09-15 Ntn株式会社 Abrasion detection device, wind power generator equipped therewith, and abrasion detection method
JP2011208635A (en) * 2010-03-12 2011-10-20 Ntn Corp Abrasion detector, wind turbine generator provided with the same, and method for detecting abrasion
US8881583B2 (en) 2010-03-12 2014-11-11 Ntn Corporation Abrasion sensing device, wind turbine generation apparatus including the same, and abrasion sensing method
WO2011151875A1 (en) * 2010-05-31 2011-12-08 三菱重工業株式会社 Wind power generator provided with in-rotor contaminant detection device, and method for driving wind power generator
CN102341596A (en) * 2010-05-31 2012-02-01 三菱重工业株式会社 Wind turbine generator having a detection unit for detecting foreign object inside rotor and operating method thereof
US8292568B2 (en) 2010-05-31 2012-10-23 Mitsubishi Heavy Industries, Ltd. Wind turbine generator having a detection unit for detecting foreign object inside rotor and operating method thereof
JPWO2011151875A1 (en) * 2010-05-31 2013-07-25 三菱重工業株式会社 WIND POWER GENERATOR HAVING ROTOR FOREIGN-BODY DETECTOR AND METHOD FOR OPERATING WIND POWER GENERATOR
KR101302891B1 (en) 2010-05-31 2013-09-06 미츠비시 쥬고교 가부시키가이샤 Wind turbine generator having a detection unit for detecting foreign object inside rotor and operating method thereof

Also Published As

Publication number Publication date
US7072784B2 (en) 2006-07-04
ES2357418T3 (en) 2011-04-26
AU6690000A (en) 2001-05-10
CY1111610T1 (en) 2015-10-07
CA2386114A1 (en) 2001-04-12
KR20020045607A (en) 2002-06-19
JP3629465B2 (en) 2005-03-16
EP1222391A1 (en) 2002-07-17
EP1222391B1 (en) 2011-01-19
DE19948194C2 (en) 2001-11-08
ATE496218T1 (en) 2011-02-15
US20040236538A1 (en) 2004-11-25
DE50016063D1 (en) 2011-03-03
PT1222391E (en) 2011-03-09
KR100544013B1 (en) 2006-01-20
WO2001025631A1 (en) 2001-04-12
CA2386114C (en) 2003-10-21
DK1222391T3 (en) 2011-04-18
DE19948194A1 (en) 2001-04-26
US6785637B1 (en) 2004-08-31

Similar Documents

Publication Publication Date Title
JP2003511657A (en) How to monitor wind power facilities
CN106655522B (en) A kind of main station system suitable for electric grid secondary equipment operation management
US7677869B2 (en) Monitoring and data processing equipment for wind turbines and predictive maintenance system for wind power stations
CN111965415A (en) Wide-area real-time monitoring system and method for broadband oscillation of power grid
CN109611288A (en) A kind of wind-powered electricity generation operation platform based on big data
EP1531376B1 (en) Monitoring and data processing equipment for wind turbines and predictive maintenance system for wind power stations
CN114415581B (en) Mechanical equipment operation and maintenance method and system
CN116260119B (en) Circuit breaker protection method and system for circuit data identification
US9581141B2 (en) Early detection of wind turbine degradation using acoustical monitoring
CN117078017A (en) An intelligent decision-making analysis system for power grid equipment monitoring
CN102183697A (en) System for monitoring noise and vibration of power transformer
CN115163426B (en) Fan fault detection method and system based on AI auscultation, and fan safety system
CN110445830A (en) A kind of petrochemical industry Key generating unit equipment remote intelligent monitoring system
CN117553859A (en) Intelligent detection system and detection method for high-low voltage power distribution cabinet
CN119514085A (en) A multi-objective grid analysis method for distribution network planning
CN208506574U (en) Wind turbine equipment safety information automatic propelling device
CN118154157A (en) Wind power operation and maintenance platform based on big data
CN115618303B (en) Automatic dispatch monitoring and fault locating system based on information fusion technology
CN206957877U (en) A kind of fan safe monitoring platform based on fiber grating sensing technology
Zhou Design of equipment fault diagnosis system based on audio analysis technology
JP2900864B2 (en) Automatic setting method of alarm value and reference value in rotating equipment vibration monitoring and diagnosis system
CN219176495U (en) Automatic alarm device for monitoring lightning stroke of wind generating set
CN222704124U (en) A Fault Diagnosis System for Hydro-generator Sets
CN118130972B (en) Communication cable data management method and device
CN118467997A (en) Electrical Fault Alarm Model of Three-Phase Asynchronous Motor Based on Vibration Analysis

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041213

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3629465

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071217

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081217

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091217

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101217

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111217

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121217

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121217

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term