[go: up one dir, main page]

JP2003338284A - Control valve type lead-acid battery - Google Patents

Control valve type lead-acid battery

Info

Publication number
JP2003338284A
JP2003338284A JP2002144239A JP2002144239A JP2003338284A JP 2003338284 A JP2003338284 A JP 2003338284A JP 2002144239 A JP2002144239 A JP 2002144239A JP 2002144239 A JP2002144239 A JP 2002144239A JP 2003338284 A JP2003338284 A JP 2003338284A
Authority
JP
Japan
Prior art keywords
control valve
battery
valve type
type lead
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002144239A
Other languages
Japanese (ja)
Other versions
JP4715075B2 (en
Inventor
Nobuyuki Takami
宣行 高見
Kazuhiro Sugie
一宏 杉江
Yasuyuki Yoshihara
靖之 吉原
Ayako Hirao
亜矢子 平尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002144239A priority Critical patent/JP4715075B2/en
Publication of JP2003338284A publication Critical patent/JP2003338284A/en
Application granted granted Critical
Publication of JP4715075B2 publication Critical patent/JP4715075B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

(57)【要約】 【課題】 制御弁式鉛蓄電池をSOCが中間状態のまま
で放置した場合に、充電受入性が低下し、回生充電効率
が低下すること。 【解決手段】 制御弁式鉛蓄電池の負極活物質中にビス
フェノールと芳香族アミノスルホン酸との縮合物を0.
2〜1.5質量%、硫酸バリウムを2〜5質量%添加す
る。
(57) [Problem] To provide a control valve type lead storage battery in which the charge acceptance is reduced and the regenerative charging efficiency is reduced when the SOC is left in an intermediate state. SOLUTION: A condensate of bisphenol and aromatic aminosulfonic acid is contained in a negative electrode active material of a control valve type lead-acid battery in a negative electrode active material.
2 to 1.5% by mass and 2 to 5% by mass of barium sulfate are added.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は制御弁式鉛蓄電池の
充電受入性に関するものである。 【0002】 【従来の技術】自動車用に用いる鉛蓄電池は、エンジン
始動やライトの点灯等に使用され、車両走行時には鉛蓄
電池の充電状態(以下、SOC)がほぼ満充電状態、す
なわち、ほぼ100%になるように、規定の充電電圧で
充電を行う。 【0003】近年、車両の燃費向上を目的として車両減
速時の回生エネルギーを蓄電池に充電することによって
エネルギーを有効利用する方法や、アイドルストップ
(車両運行中の車両停止時にエンジンを停止すること)
を行い、この間蓄電池から車両に搭載された各種電気負
荷に電力供給する方法、さらにはアイドルストップ後の
エンジン再始動とともに走行用モータを駆動して走行ア
シストを行うシステムが提案されている。 【0004】このようなシステムにおいては、回生エネ
ルギーを蓄電池に効率よく充電するために、蓄電池のS
OCを100%未満の中間状態に制御する必要がある。
また、回生エネルギーは短時間かつ高率電流で行われる
ため、蓄電池の充電受入性を向上させる必要がある。 【0005】従来から、蓄電池の充電受入性を向上させ
るために負極活物質にカーボン等の導電性物質を添加が
有効であることが知られている。しかしながら、特に電
解液量が制限された制御弁式鉛蓄電池においてSOCを
100%未満の中間状態のまま、長期間放置を行うと充
電受入性が低下し、回生効率が低下するという課題があ
った。 【0006】 【発明が解決しようとする課題】本発明は前記したよう
な電解液量が制限された制御弁式鉛蓄電池において、S
OCが中間状態で放置されても、充電受入性の低下を抑
制した、回生効率に優れた制御弁式鉛蓄電池を提供する
ことを目的とする。 【0007】 【課題を解決するための手段】前記した課題を解決する
ために、本発明の請求項1に係る発明は、負極活物質中
にビスフェノールと芳香族アミノスルホン酸との縮合物
を0.2〜1.5質量%、硫酸バリウムを2〜5質量%
添加したことを特徴とした制御弁式鉛蓄電池を示すもの
である。 【0008】 【発明の実施の形態】本発明の実施の形態による制御弁
式鉛蓄電池の構成を説明する。 【0009】本発明の制御弁式鉛蓄電池は負極活物質中
にビスフェノールと芳香族アミノスルホン酸との縮合物
を負極活物質質量当り0.2〜1.5質量%含む。この
縮合物として例えば特開平11−250913に記載さ
れたビスフェノールAとアミノベンゼンスルホン酸との
縮合物のナトリウム塩を用いることができる。 【0010】さらに本発明においては負極活物質中に負
極活物質質量あたり2〜5質量%の硫酸バリウムを添加
する。負極活物質への添加方法としては原料鉛粉に添加
して混合した後、常法にしたがって、水練りもしくは水
練りおよび硫酸練を行って活物質ペーストを作成し、集
電体の塗着して熟成乾燥を行えばよい。 【0011】なお、本発明は極板群のすべてが電解液に
浸漬しない酸素ガス吸収式の制御弁式鉛蓄電池に適用さ
れる。但し、極板群の一部が極板群から遊離した電解液
に接触した構成の制御弁式鉛蓄電池に適用することがで
きる。 【0012】本発明による制御弁式鉛蓄電池はSOCが
100%未満の状態で放置された場合によっても優れた
充電受入性を有している。SOCが100%未満の状態
において、活物質中には放電反応によって生成した硫酸
鉛が存在する。負極において放電反応によって生成した
硫酸鉛はただちに充電すれば容易に活物質である鉛に還
元されるものの、充電せずに長期間放置すると硫酸鉛が
より不活性な結晶性の高い硫酸鉛に変化する。このよう
な硫酸鉛は充電によっても容易に還元せず、結果として
充電受入性が低下すると推測される。 【0013】本発明においては負極に添加する硫酸バリ
ウム量を従来用いられている0.1〜0.5質量%から
多くし、2.0〜5.0質量%とすることによって放電
生成物である硫酸鉛結晶をより微細化する。またビスフ
ェノールと芳香族アミノスルホン酸との縮合物を0.2
〜1.5質量%添加することにより、硫酸鉛の不活性化
を抑制し、負極の充電受入性が改善されると推測でき
る。 【0014】 【実施例】負極活物質中に添加する硫酸バリウム量およ
びビスフェノールと芳香族アミノスルホン酸との縮合物
量を表1に示すように種々変化させて12V18Ah
(5HR)の制御弁式鉛蓄電池を作成した。なお、この
縮合物として日本製紙(株)製の商品名ビスパーズを用
いた。 【0015】 【表1】【0016】表1に示した各電池を25℃雰囲気中にお
いて5時間率電流(3.6A)で1.5時間放電を行う
ことによってSOCを70%とした。その後各電池につ
いて回生充電を想定した14.0V定電圧(充電最大電
流100A)で10秒間充電を行い、充電開始10秒後
の充電電気量(Q0)を測定した。 【0017】その後、各電池を14.0V定電圧充電
(充電最大電流18A)で充電することによって電池の
SOCを100%とした後、再度5時間率電流で1.5
時間放電を行ってSOCを70%とした。 【0018】SOCを70%とした各電池を25℃中雰
囲気下で72時間放置し、さらに14.0V定電圧(充
電最大電流100A)で10秒間充電を行った時の充電
電気量(Q1)を測定した。これら各電池のQ0およびQ
1の測定結果を表1に示す。 【0019】表1に示した結果から、各電池の初期状態
における充電電気量(Q0)は硫酸バリウム量およびビ
スフェノールと芳香族アミノスルホン酸との縮合物の添
加量によって若干変化するものの、顕著な変化は認めら
れない。 【0020】ところが25℃中で72時間放置後の充電
電気量(Q1)はこれら添加物の添加量によって大きく
変動する。特に硫酸バリウムの添加量を2.0〜5.0
質量%、ビスフェノールと芳香族アミノスルホン酸との
縮合物の添加量を0.2〜1.5質量%とした本発明例
の電池においては放置後の充電電気量(Q1)は初期状
態における充電電気量(Q0)から殆ど低下せず、充電
受入性の低下が抑制されていることがわかる。本発明例
を除く比較例の電池はその程度に差はあるものの、放置
によって充電電気量(Q1)に低下が認められ、充電受
入性が低下していることがわかる。 【0021】表1に示す各電池についてSOCが100
%の状態で放置を行った時の充電受入性の低下度合いを
評価した。表1に示した各電池を25℃雰囲気中におい
て5時間率電流(3.6A)で1.5時間放電を行うこ
とによってSOCを70%とした。その後各電池14.
0V定電圧(充電最大電流100A)で10秒間充電を
行った時の充電電気量(Q0)を測定した。 【0022】その後、各電池を14.0V定電圧充電
(充電最大電流18A)で充電することによって電池の
SOCを100%とした後、各電池を25℃中雰囲気下
で72時間放置した。その後各電池を5時間率電流で
1.5時間放電を行い、SOCを70%とした。 【0023】次に各電池14.0V定電圧(充電最大電
流100A)で10秒間充電を行った時の充電電気量
(Q2)を測定した。これら各電池のおよびQ2の測定結
果を表1に示す。 【0024】表1に示した結果からSOCを100%の
状態で放置した場合は殆どQ2のQ0に対する低下は認め
られない。したがって本発明の効果は特にSOCを中間
状態で制御する場合において顕著に得ることができる。 【0025】 【発明の効果】以上、説明したように、本発明によれば
制御弁式鉛蓄電池において、SOCが中間状態で制御さ
れる場合に発生する充電受入性の低下を顕著に抑制する
ことによって回生充電に好適な制御弁式鉛蓄電池を提供
できる。
Description: BACKGROUND OF THE INVENTION [0001] 1. Field of the Invention [0002] The present invention relates to a control valve type lead-acid battery, which is capable of accepting charge. 2. Description of the Related Art A lead-acid battery used for an automobile is used for starting an engine, turning on a light, and the like. When the vehicle is running, the state of charge (hereinafter referred to as SOC) of the lead-acid battery is almost fully charged, that is, almost 100. % And charge at a specified charging voltage. In recent years, a method of effectively utilizing energy by charging regenerative energy at the time of vehicle deceleration to a storage battery for the purpose of improving fuel efficiency of the vehicle, and an idle stop (stopping an engine when the vehicle stops while the vehicle is operating)
During this time, a method of supplying electric power from a storage battery to various electric loads mounted on a vehicle, and a system for restarting an engine after an idle stop and driving a traveling motor to assist the traveling are proposed. In such a system, in order to charge the storage battery efficiently with regenerative energy, the S
It is necessary to control the OC to an intermediate state of less than 100%.
In addition, since the regenerative energy is performed in a short time and at a high rate current, it is necessary to improve the charge acceptability of the storage battery. Conventionally, it has been known that it is effective to add a conductive material such as carbon to a negative electrode active material in order to improve the charge acceptability of a storage battery. However, especially in a control valve type lead-acid battery in which the amount of electrolyte is limited, if the battery is left for a long period of time while the SOC is in an intermediate state of less than 100%, there is a problem that the charge acceptability decreases and the regeneration efficiency decreases. . SUMMARY OF THE INVENTION The present invention relates to a control valve type lead-acid battery having a limited amount of electrolyte as described above.
It is an object of the present invention to provide a control valve-type lead-acid battery that is excellent in regenerative efficiency and that suppresses a decrease in charge acceptability even when OC is left in an intermediate state. [0007] In order to solve the above-mentioned problems, the invention according to claim 1 of the present invention provides a negative electrode active material in which a condensate of bisphenol and aromatic aminosulfonic acid is contained in the negative electrode active material. 0.2 to 1.5% by mass, 2-5% by mass of barium sulfate
It shows a control valve type lead storage battery characterized by being added. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The configuration of a control valve type lead-acid battery according to an embodiment of the present invention will be described. The control valve type lead-acid battery of the present invention contains a condensate of bisphenol and aromatic aminosulfonic acid in the negative electrode active material in an amount of 0.2 to 1.5% by mass based on the mass of the negative electrode active material. As the condensate, for example, a sodium salt of a condensate of bisphenol A and aminobenzenesulfonic acid described in JP-A-11-250913 can be used. Further, in the present invention, 2 to 5% by mass of barium sulfate is added to the anode active material per mass of the anode active material. As a method of adding to the negative electrode active material, after adding and mixing to the raw material lead powder, according to a conventional method, water kneading or water kneading and sulfuric acid kneading are performed to prepare an active material paste, and a current collector is applied. And aging and drying. The present invention is applied to an oxygen gas absorption type control valve type lead storage battery in which all of the electrode groups are not immersed in the electrolytic solution. However, the present invention can be applied to a control valve type lead storage battery in which a part of the electrode group is in contact with the electrolyte released from the electrode group. The control valve type lead-acid battery according to the present invention has excellent charge acceptability even when it is left in a state where the SOC is less than 100%. In a state where the SOC is less than 100%, lead sulfate generated by the discharge reaction exists in the active material. The lead sulfate generated by the discharge reaction at the negative electrode is easily reduced to lead, the active material when charged immediately, but when left uncharged for a long period of time, the lead sulfate changes to a more inactive, highly crystalline lead sulfate I do. It is presumed that such lead sulfate is not easily reduced even by charging, and as a result, charge acceptability decreases. In the present invention, the amount of barium sulfate added to the negative electrode is increased from the conventionally used 0.1 to 0.5% by mass to 2.0 to 5.0% by mass, whereby the discharge product can be reduced. Refine certain lead sulfate crystals. The condensate of bisphenol and aromatic aminosulfonic acid is 0.2
It can be assumed that the addition of about 1.5% by mass suppresses the inactivation of lead sulfate and improves the charge acceptability of the negative electrode. EXAMPLES The amount of barium sulfate and the amount of condensate of bisphenol and aromatic aminosulfonic acid added to the negative electrode active material were varied as shown in Table 1 to obtain 12V18Ah.
A (5HR) control valve type lead storage battery was prepared. The condensate used was Vizparz (trade name, manufactured by Nippon Paper Industries Co., Ltd.). [Table 1] Each battery shown in Table 1 was discharged in a 25 ° C. atmosphere at a current rate of 5 hours (3.6 A) for 1.5 hours to reduce the SOC to 70%. Thereafter, each battery was charged for 10 seconds at a constant voltage of 14.0 V (maximum charging current 100 A) assuming regenerative charging, and the amount of charge (Q 0 ) 10 seconds after the start of charging was measured. Thereafter, each battery was charged at a constant voltage of 14.0 V (maximum charging current: 18 A) to bring the SOC of the battery to 100%.
Discharging was performed for a time to reduce the SOC to 70%. The charged electricity quantity when each battery was 70% of SOC was left for 72 hours in an atmosphere in 25 ° C., which was 10 seconds charging in addition 14.0V constant voltage (maximum charging current 100A) (Q 1 ) Was measured. Q 0 and Q of each of these batteries
1 results are shown in Table 1. From the results shown in Table 1, although the amount of charge (Q 0 ) in the initial state of each battery slightly changes depending on the amount of barium sulfate and the amount of the condensate of bisphenol and aromatic aminosulfonic acid added, it is remarkable. No significant change is observed. However, the amount of charge (Q 1 ) after leaving at 25 ° C. for 72 hours greatly varies depending on the amount of these additives. In particular, the addition amount of barium sulfate is 2.0 to 5.0.
In the battery of the present invention in which the addition amount of the condensate of bisphenol and aromatic aminosulfonic acid was 0.2 to 1.5% by mass, the amount of charge (Q 1 ) after being left to stand was in the initial state. It can be seen that the charge amount (Q 0 ) hardly decreases and the decrease in charge acceptability is suppressed. Although the batteries of the comparative examples other than the examples of the present invention differed in the degree, the amount of charge (Q 1 ) was decreased by leaving the batteries, and it was found that the charge acceptability was reduced. The SOC of each battery shown in Table 1 is 100
%, The degree of decrease in charge acceptability when left unattended was evaluated. Each battery shown in Table 1 was discharged in a 25 ° C. atmosphere at a current rate of 5 hours (3.6 A) for 1.5 hours to reduce the SOC to 70%. Thereafter, each battery 14.
The amount of charge (Q 0 ) when charging was performed for 10 seconds at a constant voltage of 0 V (maximum charging current of 100 A) was measured. Thereafter, each battery was charged at 14.0 V constant voltage charging (maximum charging current: 18 A) to make the SOC of the battery 100%, and then each battery was allowed to stand at 25 ° C. in an atmosphere for 72 hours. Thereafter, each battery was discharged for 1.5 hours at a current rate of 5 hours to reduce the SOC to 70%. Next, the amount of charge (Q 2 ) when each battery was charged for 10 seconds at a constant voltage of 14.0 V (maximum charging current of 100 A) was measured. Measurements of and Q 2 of each battery are shown in Table 1. From the results shown in Table 1, when SOC is left at 100%, almost no decrease in Q 2 with respect to Q 0 is recognized. Therefore, the effect of the present invention can be remarkably obtained especially when SOC is controlled in an intermediate state. As described above, according to the present invention, in a control valve type lead-acid battery, it is possible to remarkably suppress a decrease in charge acceptability that occurs when the SOC is controlled in an intermediate state. As a result, a control valve type lead storage battery suitable for regenerative charging can be provided.

フロントページの続き (72)発明者 吉原 靖之 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 平尾 亜矢子 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 5H028 AA01 BB06 EE04 EE06 HH01 5H050 AA02 BA09 CB15 DA03 DA09 EA01 EA26 HA01 Continuation of front page    (72) Inventor Yasuyuki Yoshihara             Matsushita Electric, 1006 Kadoma, Kazuma, Osaka             Sangyo Co., Ltd. (72) Inventor Ayako Hirao             Matsushita Electric, 1006 Kadoma, Kazuma, Osaka             Sangyo Co., Ltd. F term (reference) 5H028 AA01 BB06 EE04 EE06 HH01                 5H050 AA02 BA09 CB15 DA03 DA09                       EA01 EA26 HA01

Claims (1)

【特許請求の範囲】 【請求項1】 負極活物質中にビスフェノールと芳香族
アミノスルホン酸との縮合物を0.2〜1.5質量%、
硫酸バリウムを2〜5質量%添加したことを特徴とした
制御弁式鉛蓄電池。
Claims: 1. A condensate of bisphenol and aromatic aminosulfonic acid in a negative electrode active material in an amount of 0.2 to 1.5% by mass,
A control valve type lead storage battery characterized by adding 2 to 5% by mass of barium sulfate.
JP2002144239A 2002-05-20 2002-05-20 Control valve type lead acid battery Expired - Fee Related JP4715075B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002144239A JP4715075B2 (en) 2002-05-20 2002-05-20 Control valve type lead acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002144239A JP4715075B2 (en) 2002-05-20 2002-05-20 Control valve type lead acid battery

Publications (2)

Publication Number Publication Date
JP2003338284A true JP2003338284A (en) 2003-11-28
JP4715075B2 JP4715075B2 (en) 2011-07-06

Family

ID=29703969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002144239A Expired - Fee Related JP4715075B2 (en) 2002-05-20 2002-05-20 Control valve type lead acid battery

Country Status (1)

Country Link
JP (1) JP4715075B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005124920A1 (en) * 2004-06-16 2005-12-29 Matsushita Electric Industrial Co., Ltd. Lead storage battery
JP2006196191A (en) * 2005-01-11 2006-07-27 Shin Kobe Electric Mach Co Ltd Lead acid battery
WO2012086008A1 (en) * 2010-12-21 2012-06-28 新神戸電機株式会社 Lead storage battery
JP2013041848A (en) * 2012-10-25 2013-02-28 Shin Kobe Electric Mach Co Ltd Lead battery
EP2544291A4 (en) * 2010-03-01 2015-10-21 Shin Kobe Electric Machinery lead-acid battery
US10096862B2 (en) 2013-11-29 2018-10-09 Gs Yuasa International Ltd. Lead-acid battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997037393A1 (en) * 1996-03-29 1997-10-09 Aisin Seiki Kabushiki Kaisha Lead storage battery
JPH11250913A (en) * 1998-03-02 1999-09-17 Aisin Seiki Co Ltd Lead-acid battery
JP2001307761A (en) * 2000-04-19 2001-11-02 Matsushita Electric Ind Co Ltd Sealed lead storage battery
JP2001307733A (en) * 2000-04-24 2001-11-02 Matsushita Electric Ind Co Ltd Sealed lead-acid battery
JP2002100395A (en) * 2000-09-22 2002-04-05 Yuasa Corp Control valve type lead storage battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997037393A1 (en) * 1996-03-29 1997-10-09 Aisin Seiki Kabushiki Kaisha Lead storage battery
JPH11250913A (en) * 1998-03-02 1999-09-17 Aisin Seiki Co Ltd Lead-acid battery
JP2001307761A (en) * 2000-04-19 2001-11-02 Matsushita Electric Ind Co Ltd Sealed lead storage battery
JP2001307733A (en) * 2000-04-24 2001-11-02 Matsushita Electric Ind Co Ltd Sealed lead-acid battery
JP2002100395A (en) * 2000-09-22 2002-04-05 Yuasa Corp Control valve type lead storage battery

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005124920A1 (en) * 2004-06-16 2005-12-29 Matsushita Electric Industrial Co., Ltd. Lead storage battery
JPWO2005124920A1 (en) * 2004-06-16 2008-04-17 松下電器産業株式会社 Lead acid battery
CN100446329C (en) * 2004-06-16 2008-12-24 松下电器产业株式会社 Lead storage battery
US7514177B2 (en) 2004-06-16 2009-04-07 Panasonic Corporation Lead storage battery
JP5079324B2 (en) * 2004-06-16 2012-11-21 パナソニック株式会社 Lead acid battery
JP2006196191A (en) * 2005-01-11 2006-07-27 Shin Kobe Electric Mach Co Ltd Lead acid battery
EP2544291A4 (en) * 2010-03-01 2015-10-21 Shin Kobe Electric Machinery lead-acid battery
WO2012086008A1 (en) * 2010-12-21 2012-06-28 新神戸電機株式会社 Lead storage battery
JP5126454B2 (en) * 2010-12-21 2013-01-23 新神戸電機株式会社 Lead acid battery
US9553335B2 (en) 2010-12-21 2017-01-24 Hitachi Chemical Company, Ltd. Lead-acid battery
JP2013041848A (en) * 2012-10-25 2013-02-28 Shin Kobe Electric Mach Co Ltd Lead battery
US10096862B2 (en) 2013-11-29 2018-10-09 Gs Yuasa International Ltd. Lead-acid battery

Also Published As

Publication number Publication date
JP4715075B2 (en) 2011-07-06

Similar Documents

Publication Publication Date Title
JP2008153128A (en) Negative electrode active material for secondary battery
JP2000149981A (en) Lead-acid battery, and additive therefor
JP2003123760A (en) Negative electrode for lead-acid battery
CN101095257A (en) Reduction of voltage loss caused by voltage cycling by use of a rechargeable electric storage device
JP4715075B2 (en) Control valve type lead acid battery
JP2003151617A (en) Lead-acid battery
JP2001313064A (en) Lead storage battery and its additive agent
JP5053382B2 (en) High power secondary battery system with asymmetrically charged cells
JP2008243493A (en) Lead acid storage battery
JP2001332264A (en) Small control valve type lead storage battery
JP4515902B2 (en) Lead acid battery
JP2002025630A (en) Power supply system for traveling vehicles
JP5017746B2 (en) Control valve type lead acid battery
JP2009266514A (en) Lead-acid battery
CN105206836B (en) A kind of rich solution start-stop lead-acid battery negative pole active substance and preparation method thereof
JP3707349B2 (en) Power supply system for traveling vehicles
CN102738461A (en) Preparation method for negative electrode lead paste of super lead acid storage battery
JP2004327299A (en) Sealed lead-acid storage battery
JP2003086254A (en) Hybrid secondary battery
JP2001286004A (en) Power supply system for traveling vehicles
JP2003346913A (en) Control method for lead storage battery
JP2003223894A (en) Paste active material for positive electrode and method for producing the same
JP4180819B2 (en) Lead-acid battery charging method
Vaculík et al. New Additive in NAM of Lead-Acid Battery Electrodes
JP2003346911A (en) Method for charging lead storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050112

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080909

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100310

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110314

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees