[go: up one dir, main page]

JP2003324070A - Method and device of manufacturing thin film - Google Patents

Method and device of manufacturing thin film

Info

Publication number
JP2003324070A
JP2003324070A JP2002128273A JP2002128273A JP2003324070A JP 2003324070 A JP2003324070 A JP 2003324070A JP 2002128273 A JP2002128273 A JP 2002128273A JP 2002128273 A JP2002128273 A JP 2002128273A JP 2003324070 A JP2003324070 A JP 2003324070A
Authority
JP
Japan
Prior art keywords
thin film
base material
gas
producing
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002128273A
Other languages
Japanese (ja)
Other versions
JP4158139B2 (en
Inventor
Naoyuki Takahashi
直行 高橋
Takato Nakamura
▲高▲遠 中村
正志 ▲高▼橋
Masashi Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Corp
Original Assignee
Suzuki Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Corp filed Critical Suzuki Motor Corp
Priority to JP2002128273A priority Critical patent/JP4158139B2/en
Publication of JP2003324070A publication Critical patent/JP2003324070A/en
Application granted granted Critical
Publication of JP4158139B2 publication Critical patent/JP4158139B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a high-grade thin film by an atomic layer deposition method under atmospheric pressure without using an expensive device such as a vacuum device or a valve and complicated processes. <P>SOLUTION: A method of manufacturing a thin film includes a process of forming a region 3 comprising a first raw material gas atmosphere, a region 4 comprising a second raw material gas atmosphere and a region 5 dividing an area between the two regions and comprising a purge gas atmosphere in a film forming reaction part 1; and a process of manufacturing a thin film by alternately supplying each raw material gas onto a base material across the region 5 of the purge gas atmosphere while moving the base material 10 to each region in the film forming reaction part 1. A thin film manufacturing device includes a base material support 11, a base material moving means, a gas supplying means A of the raw material gas containing a metal halide, a gas supplying means B of the raw material gas containing oxygen and a purging means C supplying a purge gas. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、大気圧下での原子
層堆積法による薄膜の製造方法および薄膜の製造装置に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film manufacturing method and a thin film manufacturing apparatus by an atomic layer deposition method under atmospheric pressure.

【0002】[0002]

【従来の技術】近年、半導体分野などでは、そのデバイ
スの性能や製造技術に対して非常に高度な要求がなされ
ており、薄膜作製には原子層レベルでの制御性が望まれ
ている。原子層堆積法は、1回の原料供給に対して、単
原子層で成長が飽和する自己停止機構という性質を利用
する薄膜成長法である。通常の薄膜作製法のように全て
の原料を同時に供給するのではなく、原子層に対応させ
て異なる原料ガスを交互に供給することで、ワーク(基
材)上での原料ガスの反応を単分子層レベルで制御し、
1層ごとに成長させることを特徴としている。従って、
物質と膜厚を原子層の精度で制御することができる。ま
た、基材表面で全て膜厚は均一で、表面の凹凸に沿って
均一に成長させることも可能である。このうち原子層エ
ピタキシ法は、薄膜を基材に対してエピタキシャル成長
させる方法であり、より高品質な単結晶薄膜を作製する
ことができることから、近年幅広く研究・実用化が進め
られている。
2. Description of the Related Art In recent years, in the field of semiconductors and the like, very high demands have been made on device performance and manufacturing technology, and controllability at the atomic layer level is desired for thin film production. The atomic layer deposition method is a thin film growth method that utilizes the property of a self-stopping mechanism in which the growth is saturated in a monoatomic layer with respect to one supply of raw material. Instead of supplying all the raw materials at the same time as in the normal thin film manufacturing method, different raw material gases are alternately supplied corresponding to the atomic layers, so that the reaction of the raw material gases on the work (base material) is simple. Control at the molecular layer level,
The feature is that each layer is grown. Therefore,
The substance and film thickness can be controlled with atomic layer accuracy. Further, the film thickness is uniform on the entire surface of the substrate, and it is possible to grow the film uniformly along the irregularities on the surface. Among them, the atomic layer epitaxy method is a method of epitaxially growing a thin film on a base material, and since a higher quality single crystal thin film can be produced, research and practical application have been widely promoted in recent years.

【0003】しかしながら、従来の原子層堆積法は、例
えば特開平5-234899や特開平5-29219などにみられるよ
うに、減圧あるいは高真空雰囲気下で行われていたた
め、高価で大がかりな真空系装置が必要であり、工業的
な生産には不向きであった。また、酸化物薄膜を作製す
る場合には、減圧下での処理であるため酸素欠陥が生じ
やすく、薄膜の品質を低下させる要因となっていた。さ
らに、酸素原料としてはH20や03が使用されており、三
次元的成長の促進による平滑性の問題や膜内にOH基が取
り込まれるなど、膜の品質に問題があった。
However, since the conventional atomic layer deposition method is carried out under a reduced pressure or high vacuum atmosphere as shown in, for example, Japanese Patent Laid-Open Nos. 5-234899 and 5-29219, an expensive and large-scale vacuum system is used. Equipment was required and was not suitable for industrial production. Further, when an oxide thin film is produced, since it is a process under reduced pressure, oxygen defects are likely to occur, which has been a factor of deteriorating the quality of the thin film. Furthermore, since H 2 0 and 0 3 are used as oxygen raw materials, there have been problems with the film quality such as the problem of smoothness due to promotion of three-dimensional growth and the incorporation of OH groups in the film.

【0004】また、原子層堆積法は、1原子層堆積させ
る毎に供給原料を切り替えなければならないが、例えば
特開平5-234899や特開平5-190455などにみられるよう
に、従来この供給原料の切り替えは各原料の供給経路内
に設置されたバルブの切り替えにより行われている。し
かしながら、この方法では、装置が複雑になるばかりで
なく、ガスの切り替えに時間がかかるため生産効率が低
くなるという問題があった。
Further, in the atomic layer deposition method, the feed material must be switched every time one atomic layer is deposited. However, as shown in, for example, Japanese Patent Laid-Open Nos. 5-234899 and 5-190455, this feed material is conventionally used. Is switched by switching the valve installed in the feed route of each raw material. However, this method has a problem that not only the apparatus becomes complicated, but also it takes time to switch the gas, so that the production efficiency becomes low.

【0005】他の方法としては、バリアガスによって異
なる原料ガスの間を空間的に遮蔽する方法が用いられて
いる。この方法では、ガスの切り替え時間を必要としな
いため、生産性が高いというメリットを有しているが、
バリアガスのみでは、異なる原料ガスが混ざり合って膜
質を低下させる問題があった。そのため、特公昭48-331
50では浄化する隔離室を設ける方法、特開平5-270997で
はガスの切り替えとバリアガスの手法を組み合わせた方
法を提案している。しかしながら、これら方法では装置
や工程が複雑化してしまうとともに、バリアガスのみで
異なる原料ガスの間を空間的に遮蔽する方法では、異な
る原料ガスが混ざり含つて膜質を低下させる問題が生じ
ていた。
As another method, a method of spatially shielding different source gases with a barrier gas is used. This method has the advantage of high productivity because it does not require gas switching time.
With only the barrier gas, there is a problem that different raw material gases are mixed and the film quality is deteriorated. Therefore, Japanese Patent Publication Sho-48-331
50 proposes a method of providing an isolation chamber for purification, and Japanese Patent Laid-Open No. 5-270997 proposes a method of combining gas switching and barrier gas techniques. However, in these methods, the apparatus and the process are complicated, and in the method of spatially shielding different raw material gases only with a barrier gas, there is a problem that different raw material gases are mixed and contained to deteriorate the film quality.

【0006】[0006]

【発明が解決しようとする課題】本発明者らは、上記問
題点に鑑み、真空装置やバルブなど高価な装置および複
雑な工程を用いることなく、大気圧下で原子層堆積法に
より高品位の薄膜を作製する方法を開発すべく、鋭意検
討した。その結果、本発明者らは、異なる原料ガス供給
部の間にパージガス供給部を設けてそれらを交互に配置
すること、さらに、基材支持台の外周部を基材上面より
突出させて、基材上に原料ガスあるいはパージガスの対
流領域を発生させること等により、かかる問題点が解決
されることを見い出した。本発明は、かかる見地より完
成されたものである。
SUMMARY OF THE INVENTION In view of the above problems, the inventors of the present invention have realized a high-quality atomic layer deposition method under atmospheric pressure without using expensive equipment such as vacuum equipment and valves and complicated steps. We have made extensive studies to develop a method for producing a thin film. As a result, the present inventors provided a purge gas supply unit between different raw material gas supply units and arranged them alternately, and further, the outer peripheral portion of the base material support was projected from the base material upper surface, It has been found that such a problem can be solved by generating a convection region of the source gas or the purge gas on the material. The present invention has been completed from this point of view.

【0007】[0007]

【課題を解決するための手段】すなわち、本発明は、大
気圧下での原子層堆積法による薄膜の製造方法におい
て、第1原料ガス雰囲気からなる領域と、第2原料ガス
雰囲気からなる領域と、該2つの領域間を分割するパー
ジガス雰囲気からなる領域と、を成膜反応部に形成する
工程、および、該成膜反応部内の各領域に基材を移動さ
せながら、パージガス雰囲気の領域を隔てて該基材上に
各原料ガスを交互に供給して薄膜を作製する工程、を含
むことを特徴とする薄膜の製造方法を提供するものであ
る。第1原料ガス雰囲気としては、例えば気化させた金
属ハロゲン化物を含む原料ガス雰囲気が好適に挙げられ
る。また、第2原料ガス雰囲気としては、例えば酸素を
含む原料ガス雰囲気が好適に挙げられる他、アンモニア
(NH3)を含む原料ガス雰囲気などが挙げられる。ここで
「交互に供給」とは、例えば、先ず金属ハロゲン化物を
含む原料ガス雰囲気領域にて金属ハロゲン化物を供給さ
れてから、パージガス雰囲気領域にてパージバスが供給
され、次いで、酸素を含む原料ガス雰囲気領域へ移動し
て酸素が供給された後は、また、パージガス雰囲気領域
を経て、金属ハロゲン化物を含む原料ガス雰囲気領域に
て金属ハロゲン化物が供給されることを示す。この方法
によれば、自己停止機構で制御された原子層レベルの薄
膜形成を行うことができる。また、ガスの切り替えが必
要ないため、工程が簡略化でき生産効率が高い。さら
に、基材上では原料ガスの混ざり合いがないため、良質
な薄膜を作製することができる。
That is, according to the present invention, in a method for producing a thin film by an atomic layer deposition method under atmospheric pressure, a region consisting of a first source gas atmosphere and a region consisting of a second source gas atmosphere are provided. A step of forming a purge gas atmosphere region dividing the two regions in a film forming reaction section, and separating the purge gas atmosphere area while moving the substrate to each area in the film forming reaction section. And a step of alternately supplying each raw material gas onto the base material to form a thin film, the present invention provides a method for producing a thin film. As the first source gas atmosphere, for example, a source gas atmosphere containing a vaporized metal halide is suitable. Further, as the second source gas atmosphere, for example, a source gas atmosphere containing oxygen is preferably cited, and in addition, ammonia is used.
Examples include a source gas atmosphere containing (NH 3 ). Here, "alternately supplying" means, for example, that the metal halide is first supplied in the source gas atmosphere region containing the metal halide, and then the purge bath is supplied in the purge gas atmosphere region, and then the source gas containing oxygen is supplied. After moving to the atmosphere region and being supplied with oxygen, it is shown that the metal halide is supplied in the source gas atmosphere region containing the metal halide through the purge gas atmosphere region. According to this method, it is possible to form a thin film at the atomic layer level controlled by the self-stopping mechanism. Further, since gas switching is not required, the process can be simplified and the production efficiency is high. Further, since the raw material gas is not mixed on the base material, a good quality thin film can be produced.

【0008】前記薄膜を作製する工程においては、供給
されたガスが基材上で対流する領域を形成することがよ
い。例えば原料ガスおよびパージガスを、基材表面に対
して略垂直方向より供給することにより、供給されたガ
スを基材上で対流させる態様が挙げられる。この態様に
よれば、垂直にガスを供給することによって、基材全面
に対して均一な対流を形成できるため、均質な薄膜を広
範囲に作製できる。前記薄膜を作製する工程において
は、前記各領域内に段階的に基材を移動させることがで
きる。ここで「段階的に」とは、各領域内で一定時間以
上基材を留まらせてからステップ的に移動することを意
味し、その時間は製造条件によって任意に定められる
が、例えば原料ガス雰囲気の領域では通常0.1秒以上
存在させることによって、それぞれ領域で単原子層を生
成させることができる。さらに本発明では、前記薄膜を
作製する工程の前段において、基材上にバッファー層を
設ける工程をさらに含むことができる。
In the step of producing the thin film, it is preferable to form a region where the supplied gas convects on the substrate. For example, there is a mode in which the source gas and the purge gas are supplied in a direction substantially perpendicular to the surface of the base material so that the supplied gas is convected on the base material. According to this aspect, by supplying the gas vertically, uniform convection can be formed over the entire surface of the substrate, so that a homogeneous thin film can be produced over a wide range. In the step of producing the thin film, the base material can be gradually moved into each of the regions. The term "stepwise" as used herein means that the base material is allowed to remain in each region for a certain period of time and then moves in a stepwise manner. The time is arbitrarily determined depending on the manufacturing conditions. In each region, a monoatomic layer can be generated in each region by allowing it to exist for 0.1 seconds or more. Further, the present invention can further include a step of providing a buffer layer on the base material in a stage before the step of producing the thin film.

【0009】また、本発明は、大気圧下での原子層堆積
法を用いた薄膜の製造装置であって、基材支持台と、該
基材支持台を成膜反応部内で移動させる基材移動手段
と、気化させた金属ハロゲン化物を含む原料ガスを成膜
反応部に供給するガス供給手段と、酸素を含む原料ガス
を成膜反応部に供給するガス供給手段と、該2つのガス
供給手段の間に設けられるとともに成膜反応部にパージ
ガスを供給する浄化手段と、を含むことを特徴とする薄
膜の製造装置を提供するものである。これにより、高価
な真空装置やガス供給バルブなどをもたない簡易かつ安
価な装置により、自己停止機構で制御された原子層レベ
ルの薄膜形成を行うことができる。
Further, the present invention is an apparatus for producing a thin film using an atomic layer deposition method under atmospheric pressure, comprising a base material support base and a base material for moving the base material support base in a film forming reaction section. A moving means, a gas supply means for supplying a source gas containing a vaporized metal halide to the film formation reaction section, a gas supply means for supplying a source gas containing oxygen to the film formation reaction section, and the two gas supplies A thin film manufacturing apparatus comprising: a purifying unit that is provided between the units and that supplies a purging gas to a film forming reaction unit. As a result, it is possible to form an atomic layer level thin film controlled by the self-stopping mechanism by a simple and inexpensive device that does not have an expensive vacuum device or gas supply valve.

【0010】ここで、前記基材支持台は、供給されたガ
スが基材上で対流する形状を有することが好ましい。例
えば、供給されたガスが基材上で対流するように、基材
支持台の外周部を基材上面より突出させる形状とする態
様が挙げられる。この態様によれば、原料ガスの混ざり
合いのない良質な原料ガスの対流領域を、容易に基材上
に形成できる。また、前記ガス供給手段および浄化手段
が、供給されたガスが基材上で対流するように、原料ガ
スおよびパージガスの供給を基材に対して略垂直方向よ
り供給する態様が挙げられる。
Here, it is preferable that the base support has a shape in which the supplied gas convects on the base. For example, there is a mode in which the outer peripheral portion of the base support is formed so as to protrude from the top surface of the base so that the supplied gas convects on the base. According to this aspect, it is possible to easily form the high-quality convection region of the raw material gas without mixing the raw material gases on the base material. Further, there may be mentioned a mode in which the gas supply means and the purification means supply the source gas and the purge gas in a substantially vertical direction with respect to the base material so that the supplied gas convects on the base material.

【0011】さらに、本発明は、前記いずれかの薄膜の
製造方法あるいは薄膜の製造装置により作製された薄膜
を提供するものである。本発明では、真空装置やバルブ
など高価な装置および複雑な工程を用いることなく、大
気圧下で原子層堆積法により薄膜原子層エピタキシによ
る金属酸化物薄膜を、供給される原料成分を単分子層ず
つ成長させることが可能である。以下、本発明の実施の
形態について、詳細に説明する。
Furthermore, the present invention provides a thin film produced by any one of the above-described thin film production methods or thin film production apparatuses. In the present invention, a metal oxide thin film formed by thin film atomic layer epitaxy by an atomic layer deposition method under atmospheric pressure without using an expensive device such as a vacuum device or a valve and a complicated process is used. It is possible to grow each. Hereinafter, embodiments of the present invention will be described in detail.

【0012】[0012]

【発明の実施の形態】本発明の薄膜製造方法では、2つ
の原料ガス雰囲気の領域間に、両領域を分割するパージ
ガス雰囲気からなる領域を成膜反応部に形成する。ここ
でパージガスは、原料ガスを供給後に、基材上に1原子
層より過剰に堆積した原料を排除する働きをする。ま
た、連続して異なる原料ガス供給部が存在するため、そ
れぞれの間にパージガス供給部を設けることにより、異
なる原料ガスが混合されるのを抑制するバリアガスの働
きをも担っている。原料ガスとして、一方の第1原料ガ
スは気化させた金属ハロゲン化物などを含む原料ガスで
あり、他方の第2原料ガスは酸素やアンモニアなどを含
む原料ガスである。ここで金属ハロゲン化物としては、
例えば塩化亜鉛(ZnCl2)などが挙げられる。
BEST MODE FOR CARRYING OUT THE INVENTION In the thin film manufacturing method of the present invention, a region consisting of a purge gas atmosphere that divides both regions is formed in the film formation reaction section between two regions of the source gas atmosphere. Here, the purge gas serves to remove the raw material deposited in excess of one atomic layer on the base material after the raw material gas is supplied. Further, since different raw material gas supply units are continuously present, a purge gas supply unit is provided between them to also serve as a barrier gas that suppresses mixing of different raw material gases. As the source gas, one first source gas is a source gas containing a vaporized metal halide or the like, and the other second source gas is a source gas containing oxygen or ammonia. Here, as the metal halide,
For example, zinc chloride (ZnCl 2 ) and the like can be mentioned.

【0013】本発明で薄膜を作製する工程では、成膜反
応部内の上記各領域に基材を移動させながら、基材上に
それぞれのガスを交互に供給する。この際、対流領域が
存在することにより、原料ガス供給時に、広範囲におい
て均一に膜の成長を促進し、パージガス供給時において
も、過剰な堆積物を効率よく浄化することができる。こ
のため、大気圧下での自己停止機構を伴う薄膜成長を簡
易な設備により実現することができる。この際、基材支
持台の外周部が基材上面より突出している長さtは、0
<t≦0.5lの範囲であることが望ましい。lは基材支
持部の基材を載せる部分の長さを示す。
In the step of forming a thin film according to the present invention, each gas is alternately supplied onto the base material while moving the base material to each of the above-mentioned regions in the film formation reaction section. At this time, due to the existence of the convection region, it is possible to uniformly promote the growth of the film in a wide range when the source gas is supplied, and it is possible to efficiently purify the excessive deposit even when the purge gas is supplied. Therefore, thin film growth accompanied by a self-stopping mechanism under atmospheric pressure can be realized with simple equipment. At this time, the length t of the outer peripheral portion of the base material support protruding from the top surface of the base material is 0.
It is desirable that t <0.5 l. l indicates the length of the portion of the base material supporting portion on which the base material is placed.

【0014】また本発明では、ガス供給量、成長温度、
成膜処理時間を制御することで、自己停止機構を伴う単
分子層毎の成長を、広い成膜条件で容易に行うことがで
きる。 それぞれのガス供給は、基材に対して垂直方向
より供給することが好ましい。これにより、基材全面に
対して効率の良い対流を発生させることができ、品質に
優れた薄膜を作製することができる。エピタキシャル成
長させる場合の基材には、目的となる薄膜材料と結晶構
造が同じで、格子定数が近いものが好ましいが、成膜前
に基材上に格子不整合度を緩和させるためのバッファー
層を設けることにより、結晶性の良いエピタキシャル薄
膜を作製することもできる。基材は加熱され、一定の温
度に保たれた状態で、原料ガスおよびパージガス供給部
内を移動する。また基材は、いずれの場合もそれぞれの
ガス供給部において、成膜処理時間としてある一定時間
保持されるものとする。
In the present invention, the gas supply amount, growth temperature,
By controlling the film formation processing time, it is possible to easily perform the growth of each monomolecular layer accompanied by the self-stopping mechanism under a wide range of film formation conditions. It is preferable to supply each gas in the direction perpendicular to the substrate. As a result, efficient convection can be generated over the entire surface of the base material, and a thin film of excellent quality can be manufactured. It is preferable that the substrate for epitaxial growth has the same crystal structure as the target thin film material and a lattice constant close to it, but a buffer layer for relaxing the degree of lattice mismatch is formed on the substrate before film formation. By providing it, an epitaxial thin film having good crystallinity can be manufactured. The base material moves in the source gas and purge gas supply section while being heated and kept at a constant temperature. In each case, the substrate is held in each gas supply unit for a certain period of time as film formation processing time.

【0015】以下、本発明を実施例によりさらに詳細に
説明するが、本発明はこれらの実施例によって何ら限定
されるものではない。例えば、基材の移動は、実施例の
ように往復運動の他、回転方向も含めた一方向への連続
移動であってもよい。また、キャリアガスおよびパージ
ガスとして窒素ガスを用いたが、アルゴン、ヘリウムな
どの不活性ガスも使用できる。
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples. For example, the movement of the base material may be continuous movement in one direction including the rotation direction in addition to the reciprocating movement as in the embodiment. Although nitrogen gas was used as the carrier gas and the purge gas, an inert gas such as argon or helium can also be used.

【0016】[0016]

【実施例】実施例1 図1,2に示す装置により、ZnC12と酸素ガスを原料とし
て、10mm×10mmのサファイア(0001)基板10上にZnO薄膜
を作製した。図1において、本装置の成膜反応部1は水平
型の石英反応管から構成されており、成膜反応部を取り
囲む電気炉2によって、成長温度が保持されている。こ
こで、成膜反応部は第1原子層形成部3(第1原料ガス雰
囲気の領域)と第2原子層形成部4(第2原料ガス雰囲気
の領域)の主に2つの領域から構成されており、両領域
の間にパージガス供給部5(パージガス雰囲気の領域)
が存在し、各領域を分離している。基材支持台の形状
は、図2に示すように基材支持台の外周部が基材上面よ
り突出している長さt=1mmとした。この状態で基材に
対してガスを供給すると、基材上で対流21が発生するた
め、基材上に対流領域22が形成される。
The EXAMPLES apparatus shown in Embodiment 1 FIGS. 1 and 2, as raw materials ZnC1 2 and oxygen gas, to produce a ZnO thin film on a sapphire (0001) substrate 10 of 10 mm × 10 mm. In FIG. 1, the film formation reaction section 1 of the present apparatus is composed of a horizontal quartz reaction tube, and the growth temperature is maintained by an electric furnace 2 surrounding the film formation reaction section. Here, the film formation reaction section is mainly composed of two regions, a first atomic layer forming unit 3 (a region of the first source gas atmosphere) and a second atomic layer forming unit 4 (a region of the second source gas atmosphere). Between the two areas, the purge gas supply unit 5 (the area of the purge gas atmosphere)
Exists and separates each area. As shown in FIG. 2, the shape of the base material support base was such that the outer peripheral portion of the base material support base was projected from the upper surface of the base material to a length t = 1 mm. When gas is supplied to the base material in this state, convection 21 occurs on the base material, so that a convection region 22 is formed on the base material.

【0017】原料の1つとなるZnC12は、原料供給部内の
原料ボート6上に設置され、電気ヒータにより所定の原
料温度(673K)に保持、ガス化される。ZnC12ガスは、窒
素ガスをキャリアガスとして、第1原料ガス供給口A(第
1原料ガス供給手段)から基材に吹き付けられ、第1原
子層形成部においてZn原子層を形成する。これを第1ス
テップとする。第2ステップとして、パージガス供給部
に移動した基材に対して、パージガス供給口C(パージ
ガス供給の浄化手段)より窒素ガスを吹き付けることに
より、1原子層より過剰に堆積したZn原料を除去する。
次に第3ステップとして、第2原子層形成部に移動した基
材に対して、原料ガス供給口B(第2原料ガス供給手
段)からもう1つの原料となる酸素ガスと窒素ガスを供
給して、酸素(O)原子層を形成する。この際窒素ガス
は、酸素濃度を調整するための希釈ガスとしての役割を
しており、この場合の窒素ガスは、成膜条件次第では用
いなくてもよい。最後に第4ステップとして、再びパー
ジガス供給部に移動した基材に対して、窒素ガスを吹き
付けることにより1原子層より過剰に堆積した0原料を除
去する。この第1ステップから第4ステップまでの工程を
行うことによって、ZnOの1分子層が形成され、これを1
サイクルとする。各ステップヘの基材の移動は、基材支
持台11の動きを制御することにより成される。実施例1
における成膜条件を表1に示す。ガス供給口のノズルは
6mmもしくは8mmのものを用いた。
[0017] one consisting ZnC1 2 of the raw material is placed on the raw material boat 6 in the raw material supply unit, held in a predetermined material temperature (673 K) by the electric heater, it is gasified. The ZnC1 2 gas is blown onto the base material from the first raw material gas supply port A (first raw material gas supply means) using nitrogen gas as a carrier gas to form a Zn atomic layer in the first atomic layer forming portion. This is the first step. As a second step, nitrogen gas is blown from the purge gas supply port C (purification means for purging gas supply) to the base material that has moved to the purge gas supply unit, thereby removing the Zn raw material excessively deposited from one atomic layer.
Next, as a third step, another source of oxygen gas and nitrogen gas is supplied from the source gas supply port B (second source gas supply means) to the base material that has moved to the second atomic layer forming portion. Form an oxygen (O) atomic layer. At this time, the nitrogen gas serves as a diluent gas for adjusting the oxygen concentration, and the nitrogen gas in this case may not be used depending on the film forming conditions. Finally, as the fourth step, nitrogen gas is blown to the base material that has moved to the purge gas supply unit again to remove the 0 raw material that has accumulated in excess of one atomic layer. By performing the steps from the first step to the fourth step, one molecular layer of ZnO is formed and
Cycle. The movement of the base material to each step is performed by controlling the movement of the base material support base 11. Example 1
Table 1 shows the film forming conditions in. The gas supply nozzle used had a diameter of 6 mm or 8 mm.

【0018】[0018]

【表1】 [Table 1]

【0019】原料ガスおよびパージガスは常時供給され
ており、排気ガスは排気口より排出される。また、装置
内の全圧力は、大気圧に保たれている。図3に、200サイ
クルで作製した薄膜のX線回折結果を示す。344度付近に
六方晶ZnO(0002)面の回折ピークのみ観察されることか
ら、サファイア(0001)基板上にZnO薄膜がエピタキシャ
ル成長していることがわかった。図4に、サイクル数と
作製したZnO薄膜の膜厚の関係を示す。サイクル数の増
加に伴い、膜厚が比例して増加していることがわかっ
た。この時、グラフの傾きから、1サイクル毎の成長膜
厚は0.256nmであった。ここで、六方晶ZnOの格子定数は
c=0.520661nmであり、1サイクル毎の成長膜厚は格子定
数cの1/2の値(c/2=0.26)とほぽ一致していた。よって、
自己停止機構により制御されて、ZnO薄膜が分子層毎に
形成されている。
The raw material gas and the purge gas are always supplied, and the exhaust gas is discharged from the exhaust port. Further, the total pressure in the device is kept at atmospheric pressure. FIG. 3 shows the X-ray diffraction result of the thin film produced by 200 cycles. Only the diffraction peak of the hexagonal ZnO (0002) plane was observed near 344 degrees, which indicated that the ZnO thin film was epitaxially grown on the sapphire (0001) substrate. FIG. 4 shows the relationship between the number of cycles and the film thickness of the ZnO thin film produced. It was found that the film thickness increased in proportion to the number of cycles. At this time, the growth film thickness per cycle was 0.256 nm from the inclination of the graph. Here, the lattice constant of hexagonal ZnO is
c = 0.520661 nm, and the grown film thickness per cycle was almost in agreement with the value of 1/2 of the lattice constant c (c / 2 = 0.26). Therefore,
A ZnO thin film is formed for each molecular layer under the control of a self-stopping mechanism.

【0020】実施例2 実施例1と同様に図1,2に示す装置により、成長温度を変
化させてZnO薄膜を作製した。成膜条件を表2に示す。図
5に、成長温度と1サイクル毎の成長膜厚の関係を示す。
成長温度723K〜823Kの範囲において、ZnO薄膜が自己停
止機構により分子層毎に成長していることがわかる。
Example 2 A ZnO thin film was produced by changing the growth temperature using the apparatus shown in FIGS. Table 2 shows film forming conditions. Figure
Figure 5 shows the relationship between the growth temperature and the growth film thickness for each cycle.
It can be seen that the ZnO thin film grows in each molecular layer by the self-terminating mechanism in the growth temperature range of 723K to 823K.

【0021】[0021]

【表2】 [Table 2]

【0022】参考例1 実施例1に対して、基材支持台の外周部が基材上面より
突出している長さtを変更して、ZnO薄膜を作製した。成
膜条件は表1と同様とした。表3に、比較例で作製した薄
膜の基材上面に対する薄膜成長領域の面積率、および薄
膜の成長状態の結果を示す。
Reference Example 1 A ZnO thin film was prepared by changing the length t in which the outer peripheral portion of the base material support was projected from the top surface of the base material as compared with Example 1. The film forming conditions were the same as in Table 1. Table 3 shows the result of the area ratio of the thin film growth region to the upper surface of the base material of the thin film prepared in Comparative Example and the growth state of the thin film.

【0023】[0023]

【表3】 [Table 3]

【0024】図6に示すようなt≦0の場合は、対流がな
いため基板上に供給したガスの反応が十分には行われて
いない。その結果、薄膜の成長面積が小さい上、原子層
堆積が不充分となり薄膜の結晶性などは低下傾向を示し
た。これに対し、0<tとすると、薄膜の成長面積が増
加し、薄膜の品質も向上した。一方、さらにtを増加し
ていくと、基板上でのガスの入れ替えがスムーズに行え
なくなるため、原子層堆積が不充分となり、薄膜の表面
粗さが大きくなり、結晶性も低下した。これらの結果か
ら、基材に対して均一に原子層堆積を行うためには、基
材支持台の外周部が基材上面より突出している長さt
が、0<t≦0.5lの範囲であることが最適であることが
わかった。
When t.ltoreq.0 as shown in FIG. 6, there is no convection and the reaction of the gas supplied onto the substrate is not sufficiently carried out. As a result, the growth area of the thin film was small, atomic layer deposition was insufficient, and the crystallinity of the thin film tended to decrease. On the other hand, when 0 <t, the growth area of the thin film was increased and the quality of the thin film was also improved. On the other hand, when t was further increased, the gas exchange on the substrate could not be performed smoothly, so the atomic layer deposition became insufficient, the surface roughness of the thin film increased, and the crystallinity decreased. From these results, in order to perform uniform atomic layer deposition on the base material, the length t at which the outer peripheral portion of the base material support protrudes from the top surface of the base material.
Was found to be optimal within the range of 0 <t ≦ 0.5l.

【0025】[0025]

【発明の効果】本発明によれば、真空装置やバルブなど
高価な装置および複雑な工程を用いることなく、大気圧
下で原子層堆積法により高品位の薄膜を作製する方法を
提供できる。すなわち、本発明によれば、高価な真空装
置やガス供給バルブなどをもたない簡易かつ安価な装置
により、自己停止機構で制御された原子層レベルの薄膜
形成を行うことができる。また、ガスの切り替えが必要
ないため、工程が簡略化でき生産効率が高い。さらに、
基材上では原料ガスの混ざり合いがないため、良質な薄
膜を作製することができる。
According to the present invention, it is possible to provide a method for producing a high-quality thin film by an atomic layer deposition method under atmospheric pressure without using expensive equipment such as vacuum equipment and valves and complicated steps. That is, according to the present invention, it is possible to perform atomic layer level thin film formation controlled by the self-stopping mechanism by a simple and inexpensive device having neither an expensive vacuum device nor a gas supply valve. Further, since gas switching is not required, the process can be simplified and the production efficiency is high. further,
Since the raw material gas is not mixed on the base material, a good quality thin film can be produced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明における薄膜の製造装置装置の概略図で
ある。
FIG. 1 is a schematic view of an apparatus for producing a thin film according to the present invention.

【図2】本発明における薄膜の製造装置装置の基板支持
部の要部拡大図である。
FIG. 2 is an enlarged view of a main part of a substrate supporting portion of a thin film manufacturing apparatus according to the present invention.

【図3】実施例1で作製したZnO薄膜の典型的なX線回折
結果を示すグラフである。
FIG. 3 is a graph showing typical X-ray diffraction results of the ZnO thin film produced in Example 1.

【図4】実施例1で作製したZnO薄膜のサイクル数と膜厚
の関係を示すグラフである。
FIG. 4 is a graph showing the relationship between the number of cycles and the film thickness of the ZnO thin film produced in Example 1.

【図5】実施例2で作製したZnO薄膜の成長温度と1サイ
クル毎の成長膜厚の関係
FIG. 5 shows the relationship between the growth temperature of the ZnO thin film prepared in Example 2 and the growth film thickness of each cycle.

【図6】参考例で用いた基板支持部の要部拡大図であ
る。
FIG. 6 is an enlarged view of a main part of a substrate supporting portion used in a reference example.

【符号の説明】[Explanation of symbols]

1: 成膜反応部 2: 電気炉 3: 第1原子層形成部(第1原料ガス雰囲気の領域) 4: 第2原子層形成部(第2原料ガス雰囲気の領域) 5: パージガス供給部(パージガス雰囲気の領域) 6: 原料ボート 7: 排気口 10: 基材 11: 基材支持台 21: ガスの対流 22: 基材上の対流領域 A: 第1原料ガス供給口(第1原料ガス供給手段) B: 第2原料ガス供給ロ(第2原料ガス供給手段) C: パージガス供給ロ(浄化手段) l:基材支持部長さ t:基材支持台の外周部が基材上面より突出している長
1: Film formation reaction part 2: Electric furnace 3: First atomic layer formation part (first source gas atmosphere region) 4: Second atomic layer formation part (second source gas atmosphere region) 5: Purge gas supply part ( Purge gas atmosphere area) 6: Raw material boat 7: Exhaust port 10: Substrate 11: Substrate support 21: Convection of gas 22: Convection area on the substrate A: First raw material gas supply port (first raw material gas supply) Means) B: Second raw material gas supply b (second raw material gas supply means) C: Purge gas supply b (purification means) l: Base material supporting portion length t: Outer peripheral portion of base material supporting base protrudes from base material upper surface Length

フロントページの続き Fターム(参考) 4K029 BA18 BA49 CA02 DA06 DB05 EA04 JA00 4K030 AA03 AA14 BA21 BA47 EA03 FA10 GA04 KA02 5F045 AA15 AB22 AC03 AC11 AF09 BB14 BB17 EC01 EE01 EF15 EM01 Continued front page    F-term (reference) 4K029 BA18 BA49 CA02 DA06 DB05                       EA04 JA00                 4K030 AA03 AA14 BA21 BA47 EA03                       FA10 GA04 KA02                 5F045 AA15 AB22 AC03 AC11 AF09                       BB14 BB17 EC01 EE01 EF15                       EM01

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 大気圧下での原子層堆積法による薄膜の
製造方法であって、第1原料ガス雰囲気からなる領域
と、第2原料ガス雰囲気からなる領域と、該2つの領域
間を分割するパージガス雰囲気からなる領域と、を成膜
反応部に形成する工程、および、 該成膜反応部内の各領域に基材を移動させながら、パー
ジガス雰囲気の領域を隔てて該基材上に各原料ガスを交
互に供給して薄膜を作製する工程、を含むことを特徴と
する薄膜の製造方法。
1. A method of manufacturing a thin film by an atomic layer deposition method under atmospheric pressure, comprising a region consisting of a first source gas atmosphere, a region consisting of a second source gas atmosphere, and dividing the two regions. A step of forming a purge gas atmosphere region in the film formation reaction section, and moving the base material to each area in the film formation reaction section while separating the purge gas atmosphere area on the base material. And a step of producing a thin film by alternately supplying gas.
【請求項2】 前記薄膜を作製する工程において、供給
されたガスが基材上で対流する領域を形成することを特
徴とする請求項1記載の薄膜の製造方法。
2. The method for producing a thin film according to claim 1, wherein in the step of producing the thin film, a region where the supplied gas convects is formed on the substrate.
【請求項3】 前記原料ガスおよびパージガスを、基材
表面に対して略垂直方向より供給することにより、供給
されたガスが基材上で対流することを特徴とする請求項
2記載の薄膜の製造方法。
3. The thin film according to claim 2, wherein the source gas and the purge gas are supplied in a direction substantially perpendicular to the surface of the base material so that the supplied gas convects on the base material. Production method.
【請求項4】 前記薄膜を作製する工程において、前記
各領域内にて段階的に基材を移動させることを特徴とす
る請求項1又は2に記載の薄膜の製造方法。
4. The method for producing a thin film according to claim 1, wherein in the step of producing the thin film, the base material is moved stepwise within each of the regions.
【請求項5】 前記薄膜を作製する工程の前段にて、基
材上にバッファー層を設ける工程をさらに含むことを特
徴とする請求項1〜4のいずれかに記載の薄膜の製造方
法。
5. The method for producing a thin film according to claim 1, further comprising a step of providing a buffer layer on the base material before the step of producing the thin film.
【請求項6】 大気圧下での原子層堆積法を用いた薄膜
の製造装置であって、 基材支持台と、該基材支持台を成膜反応部内で移動させ
る基材移動手段と、気化させた金属ハロゲン化物を含む
原料ガスを成膜反応部に供給するガス供給手段と、酸素
を含む原料ガスを成膜反応部に供給するガス供給手段
と、該2つのガス供給手段の間に設けられるとともに成
膜反応部にパージガスを供給する浄化手段と、を含むこ
とを特徴とする薄膜の製造装置。
6. An apparatus for producing a thin film using an atomic layer deposition method under atmospheric pressure, comprising a base material support base and a base material moving means for moving the base material support base in a film forming reaction section. Between the gas supply means for supplying the source gas containing the vaporized metal halide to the film formation reaction section, the gas supply means for supplying the source gas containing oxygen to the film formation reaction section, and the two gas supply means An apparatus for producing a thin film, comprising: a purifying unit that is provided and that supplies a purge gas to a film forming reaction unit.
【請求項7】 前記基材支持台が、供給されたガスが基
材上で対流する形状を有することを特徴とする請求項6
記載の薄膜の製造装置。
7. The base material support base has a shape in which a supplied gas is convected on the base material.
The thin film manufacturing apparatus described.
【請求項8】 前記基材支持台が、供給されたガスが基
材上で対流するように、基材支持台の外周部を基材上面
より突出させる形状としたことを特徴とする請求項6記
載の薄膜の製造装置。
8. The base material support base has a shape in which an outer peripheral portion of the base material support base is projected from an upper surface of the base material so that the supplied gas is convected on the base material. 6. The thin film manufacturing apparatus according to 6.
【請求項9】 前記ガス供給手段および浄化手段が、供
給されたガスが基材上で対流するように、原料ガスおよ
びパージガスの供給を基材に対して略垂直方向より供給
することを特徴とする請求項6〜8のいずれかに記載の
薄膜の製造装置。
9. The gas supply unit and the purifying unit supply the source gas and the purge gas in a substantially vertical direction with respect to the base material so that the supplied gas is convected on the base material. The thin film manufacturing apparatus according to any one of claims 6 to 8.
【請求項10】 請求項1〜5のいずれかに記載の製造
方法により作製されることを特徴とする薄膜。
10. A thin film manufactured by the manufacturing method according to claim 1.
JP2002128273A 2002-04-30 2002-04-30 Thin film manufacturing method and apparatus Expired - Fee Related JP4158139B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002128273A JP4158139B2 (en) 2002-04-30 2002-04-30 Thin film manufacturing method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002128273A JP4158139B2 (en) 2002-04-30 2002-04-30 Thin film manufacturing method and apparatus

Publications (2)

Publication Number Publication Date
JP2003324070A true JP2003324070A (en) 2003-11-14
JP4158139B2 JP4158139B2 (en) 2008-10-01

Family

ID=29542081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002128273A Expired - Fee Related JP4158139B2 (en) 2002-04-30 2002-04-30 Thin film manufacturing method and apparatus

Country Status (1)

Country Link
JP (1) JP4158139B2 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009042052A2 (en) * 2007-09-26 2009-04-02 Eastman Kodak Company Process for forming thin film encapsulation layers
JP2010010629A (en) * 2008-06-30 2010-01-14 Tokyo Univ Of Agriculture & Technology Homoepitaxial growth method, homoepitaxial crystal structure, homoepitaxial crystal growth apparatus, and semiconductor device
JP2010517292A (en) * 2007-01-26 2010-05-20 イーストマン コダック カンパニー Atomic layer deposition
JP2010541236A (en) * 2007-09-26 2010-12-24 イーストマン コダック カンパニー Method and deposition apparatus for thin film formation using a gas delivery head that spatially separates reactive gases and with movement of a substrate through the delivery head
US7887884B2 (en) * 2005-09-20 2011-02-15 Semiconductor Manufacturing International (Shanghai) Corporation Method for atomic layer deposition of materials using an atmospheric pressure for semiconductor devices
KR101099191B1 (en) * 2008-08-13 2011-12-27 시너스 테크놀리지, 인코포레이티드 Vapor deposition reactor and method for forming thin film using the same
US8257799B2 (en) 2009-02-23 2012-09-04 Synos Technology, Inc. Method for forming thin film using radicals generated by plasma
US8263502B2 (en) 2008-08-13 2012-09-11 Synos Technology, Inc. Forming substrate structure by filling recesses with deposition material
JP2012236761A (en) * 2012-07-06 2012-12-06 Tokyo Univ Of Agriculture & Technology Homoepitaxial crystal growth apparatus and semiconductor device
US8333839B2 (en) 2007-12-27 2012-12-18 Synos Technology, Inc. Vapor deposition reactor
US8470718B2 (en) 2008-08-13 2013-06-25 Synos Technology, Inc. Vapor deposition reactor for forming thin film
WO2013142344A1 (en) * 2012-03-20 2013-09-26 North Carolina State University Methods and apparatus for atmospheric pressure atomic layer deposition
WO2014017229A1 (en) * 2012-07-27 2014-01-30 東京エレクトロン株式会社 ZnO FILM PRODUCTION DEVICE, AND PRODUCTION METHOD
US8758512B2 (en) 2009-06-08 2014-06-24 Veeco Ald Inc. Vapor deposition reactor and method for forming thin film
US8771791B2 (en) 2010-10-18 2014-07-08 Veeco Ald Inc. Deposition of layer using depositing apparatus with reciprocating susceptor
US8822263B2 (en) 2008-06-30 2014-09-02 National University Corporation Tokyo University Of Agriculture And Technology Epitaxial growth method of a zinc oxide based semiconductor layer, epitaxial crystal structure, epitaxial crystal growth apparatus, and semiconductor device
US8840958B2 (en) 2011-02-14 2014-09-23 Veeco Ald Inc. Combined injection module for sequentially injecting source precursor and reactant precursor
US8851012B2 (en) 2008-09-17 2014-10-07 Veeco Ald Inc. Vapor deposition reactor using plasma and method for forming thin film using the same
US8871628B2 (en) 2009-01-21 2014-10-28 Veeco Ald Inc. Electrode structure, device comprising the same and method for forming electrode structure
US8877300B2 (en) 2011-02-16 2014-11-04 Veeco Ald Inc. Atomic layer deposition using radicals of gas mixture
US9163310B2 (en) 2011-02-18 2015-10-20 Veeco Ald Inc. Enhanced deposition of layer on substrate using radicals
CN110257803A (en) * 2019-07-22 2019-09-20 南昌工程学院 A kind of medium temperature quantum-well superlattice thick film thermoelectric material preparation method
JP2023506563A (en) * 2019-12-18 2023-02-16 江蘇菲沃泰納米科技股▲フン▼有限公司 Coating equipment and its coating method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63226917A (en) * 1987-03-17 1988-09-21 Fujitsu Ltd Semiconductor vapor phase processing equipment
JPH025515A (en) * 1988-06-24 1990-01-10 Fujitsu Ltd Metal organic vapor phase epitaxy equipment
JPH02221196A (en) * 1989-02-21 1990-09-04 Nec Corp Formation of thin film of iii-v compound semiconductor
JPH03173419A (en) * 1989-12-01 1991-07-26 Fujitsu Ltd Manufacturing method of semiconductor device
JPH05270997A (en) * 1992-03-19 1993-10-19 Fujitsu Ltd Atomic layer epitaxy apparatus and atomic layer epitaxy method
JPH07321045A (en) * 1994-05-20 1995-12-08 Sharp Corp Device and method for vapor deposition
JP2001254181A (en) * 2000-01-06 2001-09-18 Tokyo Electron Ltd Film depositing apparatus and film depositing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63226917A (en) * 1987-03-17 1988-09-21 Fujitsu Ltd Semiconductor vapor phase processing equipment
JPH025515A (en) * 1988-06-24 1990-01-10 Fujitsu Ltd Metal organic vapor phase epitaxy equipment
JPH02221196A (en) * 1989-02-21 1990-09-04 Nec Corp Formation of thin film of iii-v compound semiconductor
JPH03173419A (en) * 1989-12-01 1991-07-26 Fujitsu Ltd Manufacturing method of semiconductor device
JPH05270997A (en) * 1992-03-19 1993-10-19 Fujitsu Ltd Atomic layer epitaxy apparatus and atomic layer epitaxy method
JPH07321045A (en) * 1994-05-20 1995-12-08 Sharp Corp Device and method for vapor deposition
JP2001254181A (en) * 2000-01-06 2001-09-18 Tokyo Electron Ltd Film depositing apparatus and film depositing method

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7887884B2 (en) * 2005-09-20 2011-02-15 Semiconductor Manufacturing International (Shanghai) Corporation Method for atomic layer deposition of materials using an atmospheric pressure for semiconductor devices
CN1937175B (en) * 2005-09-20 2012-10-03 中芯国际集成电路制造(上海)有限公司 Method for depositing material atomic layer for semiconductor device by using atmosphere
JP2010517292A (en) * 2007-01-26 2010-05-20 イーストマン コダック カンパニー Atomic layer deposition
WO2009042052A3 (en) * 2007-09-26 2009-05-22 Eastman Kodak Co Process for forming thin film encapsulation layers
JP2010541159A (en) * 2007-09-26 2010-12-24 イーストマン コダック カンパニー Method for forming a thin film sealing layer
JP2010541236A (en) * 2007-09-26 2010-12-24 イーストマン コダック カンパニー Method and deposition apparatus for thin film formation using a gas delivery head that spatially separates reactive gases and with movement of a substrate through the delivery head
WO2009042052A2 (en) * 2007-09-26 2009-04-02 Eastman Kodak Company Process for forming thin film encapsulation layers
US8529990B2 (en) 2007-09-26 2013-09-10 Eastman Kodak Company Process for forming thin film encapsulation layers
US8333839B2 (en) 2007-12-27 2012-12-18 Synos Technology, Inc. Vapor deposition reactor
JP2010010629A (en) * 2008-06-30 2010-01-14 Tokyo Univ Of Agriculture & Technology Homoepitaxial growth method, homoepitaxial crystal structure, homoepitaxial crystal growth apparatus, and semiconductor device
US8822263B2 (en) 2008-06-30 2014-09-02 National University Corporation Tokyo University Of Agriculture And Technology Epitaxial growth method of a zinc oxide based semiconductor layer, epitaxial crystal structure, epitaxial crystal growth apparatus, and semiconductor device
KR101099191B1 (en) * 2008-08-13 2011-12-27 시너스 테크놀리지, 인코포레이티드 Vapor deposition reactor and method for forming thin film using the same
US8470718B2 (en) 2008-08-13 2013-06-25 Synos Technology, Inc. Vapor deposition reactor for forming thin film
US8263502B2 (en) 2008-08-13 2012-09-11 Synos Technology, Inc. Forming substrate structure by filling recesses with deposition material
US8851012B2 (en) 2008-09-17 2014-10-07 Veeco Ald Inc. Vapor deposition reactor using plasma and method for forming thin film using the same
US8871628B2 (en) 2009-01-21 2014-10-28 Veeco Ald Inc. Electrode structure, device comprising the same and method for forming electrode structure
US8257799B2 (en) 2009-02-23 2012-09-04 Synos Technology, Inc. Method for forming thin film using radicals generated by plasma
US8758512B2 (en) 2009-06-08 2014-06-24 Veeco Ald Inc. Vapor deposition reactor and method for forming thin film
US8771791B2 (en) 2010-10-18 2014-07-08 Veeco Ald Inc. Deposition of layer using depositing apparatus with reciprocating susceptor
US8840958B2 (en) 2011-02-14 2014-09-23 Veeco Ald Inc. Combined injection module for sequentially injecting source precursor and reactant precursor
US8877300B2 (en) 2011-02-16 2014-11-04 Veeco Ald Inc. Atomic layer deposition using radicals of gas mixture
US9163310B2 (en) 2011-02-18 2015-10-20 Veeco Ald Inc. Enhanced deposition of layer on substrate using radicals
WO2013142344A1 (en) * 2012-03-20 2013-09-26 North Carolina State University Methods and apparatus for atmospheric pressure atomic layer deposition
JP2012236761A (en) * 2012-07-06 2012-12-06 Tokyo Univ Of Agriculture & Technology Homoepitaxial crystal growth apparatus and semiconductor device
JP2014025123A (en) * 2012-07-27 2014-02-06 Tokyo Electron Ltd ZnO FILM PRODUCING DEVICE AND METHOD
WO2014017229A1 (en) * 2012-07-27 2014-01-30 東京エレクトロン株式会社 ZnO FILM PRODUCTION DEVICE, AND PRODUCTION METHOD
CN110257803A (en) * 2019-07-22 2019-09-20 南昌工程学院 A kind of medium temperature quantum-well superlattice thick film thermoelectric material preparation method
JP2023506563A (en) * 2019-12-18 2023-02-16 江蘇菲沃泰納米科技股▲フン▼有限公司 Coating equipment and its coating method
JP7543407B2 (en) 2019-12-18 2024-09-02 江蘇菲沃泰納米科技股▲フン▼有限公司 Coating equipment and coating method

Also Published As

Publication number Publication date
JP4158139B2 (en) 2008-10-01

Similar Documents

Publication Publication Date Title
JP4158139B2 (en) Thin film manufacturing method and apparatus
JP7244116B2 (en) nitride semiconductor substrate
JP3181171B2 (en) Vapor phase growth apparatus and vapor phase growth method
TW544775B (en) Chemical vapor deposition apparatus and chemical vapor deposition method
TWI512871B (en) Epitaxial chamber with cross flow
TWI503867B (en) Cvd method and cvd reactor
WO2000063956A1 (en) Method and apparatus for thin-film deposition, and method of manufacturing thin-film semiconductor device
JP2004525518A (en) Method and apparatus for growing submicron group III nitride structures using HVPE technology
JP7289357B2 (en) semiconductor film
JPH01290221A (en) Semiconductor vapor phase growth method
EP1193331B1 (en) Chemical vapor deposition apparatus and chemical vapor deposition method
JPH10265298A (en) Molecular beam epitaxy
JPH1174202A (en) Vapor growth device of gallium nitride iii-v compound semiconductor and gallium nitride iii-v compound semiconductor device and its manufacture
JP2008091617A (en) Mocvd apparatus and mocvd method
JPH03218621A (en) Method and device for selectively growing thin film
JP4702712B2 (en) Tubular SiC molded body and method for producing the same
JPH04226018A (en) Manufacture of semiconductor device
JP2006027976A (en) Method for producing nitride single crystal and producing apparatus therefor
JPH04238890A (en) Preparation of compound semiconductor single crystal
JPH0547668A (en) Crystal growth method for compound semiconductor
JP3574494B2 (en) Nitride compound semiconductor crystal growth method and growth apparatus
JPS63188933A (en) Method for vapor growth of gallium nitride compound semiconductor
JPH05217903A (en) Method and apparatus for vapor growth
JP4963353B2 (en) Method for producing silicon carbide mixed crystal
JP4014700B2 (en) Crystal thin film manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080620

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080703

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees