[go: up one dir, main page]

JP2003322627A - Multilayer thin film analysis method and measurement device - Google Patents

Multilayer thin film analysis method and measurement device

Info

Publication number
JP2003322627A
JP2003322627A JP2002127696A JP2002127696A JP2003322627A JP 2003322627 A JP2003322627 A JP 2003322627A JP 2002127696 A JP2002127696 A JP 2002127696A JP 2002127696 A JP2002127696 A JP 2002127696A JP 2003322627 A JP2003322627 A JP 2003322627A
Authority
JP
Japan
Prior art keywords
rays
ray
sample
thin film
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002127696A
Other languages
Japanese (ja)
Inventor
Jun Kawai
潤 河合
Shingo Harada
真吾 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP2002127696A priority Critical patent/JP2003322627A/en
Publication of JP2003322627A publication Critical patent/JP2003322627A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

(57)【要約】 【課題】 試料表面に極く低角に白色X線を入射し、薄
膜や多層膜等の特定化に有用な多層膜構造を深さを選択
しながら決定できる多層薄膜分析方法および測定装置を
提供する。 【解決手段】 X線管3からゴニオメータ1内の被測定
試料2に極めて低角(表面すれすれ)で白色X線を入射
する。試料2は入射角度を調整するためのゴニオメータ
6により、白色X線の入射角(試料表面とX線との角
度)を±2°の範囲内で細かく変化させられる。試料2
に白色X線を入射角が0から1°まで、0.1°ステッ
プで入射し、照射されたX線を全反射させ、反射X線の
強度をシリコンドリフト検出器9で反射率を測定してエ
ネルギー分布を測定する。
(57) [Summary] Multi-layer thin-film analysis in which white X-rays are incident on a sample surface at an extremely low angle and a multilayer structure useful for specifying thin films and multilayer films can be determined while selecting a depth. Methods and measurement devices are provided. SOLUTION: White X-rays are incident from an X-ray tube 3 on a sample 2 to be measured in a goniometer 1 at an extremely low angle (the surface is very close). The goniometer 6 for adjusting the incident angle of the sample 2 can finely change the incident angle of white X-rays (the angle between the sample surface and the X-rays) within a range of ± 2 °. Sample 2
White X-rays are incident on the substrate at an incident angle of 0 ° to 1 ° in 0.1 ° steps, the irradiated X-rays are totally reflected, and the reflectivity of the reflected X-rays is measured by a silicon drift detector 9. To measure the energy distribution.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、薄膜や多層膜又は
均質面のキャラクタリゼーションに有用なX線反射率測
定方法及びその測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an X-ray reflectance measuring method and its measuring apparatus useful for characterization of a thin film, a multilayer film or a homogeneous surface.

【0002】[0002]

【従来の技術】X線分析法は、各種物質の成分の分析や
構造解析に広く利用されている。単色X線を平坦物体を
回転しながら照射し、反射されるX線の反射率を検出
し、これにより散乱されるX線の方向、強度を測定し
て、物体中の表面から数百ナノメートルまでの深さの多
層薄膜構造の分析を行う方法、即ち、X線反射率測定法
の原理はすでに知られており、一般的な方法として単色
X線を用いた、θ−2θ法の角度分散方式が市販されて
いる。
2. Description of the Related Art X-ray analysis methods are widely used for analysis of components of various substances and structural analysis. A monochromatic X-ray is radiated while rotating a flat object, the reflectance of the reflected X-ray is detected, and the direction and intensity of the X-ray scattered by this are measured to measure several hundred nanometers from the surface of the object. The method of analyzing a multi-layered thin film structure with a depth of up to, that is, the principle of the X-ray reflectance measurement method is already known, and as a general method, the angular dispersion of the θ-2θ method using monochromatic X-rays is used. The scheme is commercially available.

【0003】例えば、半導体デバイスの製造分野では、
基板上に多層薄膜を成膜する際に、単色X線を照射し、
多層薄膜の各界面から反射されるX線の干渉縞をX線照
射角度を変化させながら測定し、薄膜の構造を解析しな
がら高密度記憶素子、集積回路の製造工程の最適化が行
われている。
For example, in the field of manufacturing semiconductor devices,
When a multilayer thin film is formed on the substrate, it is irradiated with monochromatic X-rays,
The interference fringes of X-rays reflected from each interface of the multilayer thin film are measured while changing the X-ray irradiation angle, and the manufacturing process of the high density memory device and integrated circuit is optimized while analyzing the structure of the thin film. There is.

【0004】この角度依存型反射率測定法の概要を図7
に示す。図7(A)において、11はゴニオメータ(2
θ回転)、12被測定試料でありθ回転のゴニオメータ
13に配置されている。14はX線検出器、15は白色
X線を単色化するモノクロメータである。白色X線をモ
ノクロメータ15で単色化し、入射角度θと検出器φの
角度が等しくなるように、ゴニオメータ13の角度操作
を行い、試料12を回転させながら反射率の測定を行な
い、反射率のプロファイルを得ている。この結果と、図
7(B)に示すモデル計算の結果とのフイッテイングを
行うことにより、入射角度(照角,度)とX線反射率の
関係から、薄膜や多層膜のキャラクタリゼーションを行
っている。ここで、入射角度における入射角と照角の関
係は図7(C)に示すとおりである。
An outline of this angle-dependent reflectance measuring method is shown in FIG.
Shown in. In FIG. 7A, 11 is a goniometer (2
θ rotation), 12 samples to be measured, which are arranged in a θ rotation goniometer 13. Reference numeral 14 is an X-ray detector, and 15 is a monochromator for converting white X-rays into a single color. The white X-ray is monochromaticized by the monochromator 15, and the angle of the goniometer 13 is manipulated so that the incident angle θ and the angle of the detector φ are equal, and the reflectance is measured while rotating the sample 12. Got a profile. By performing a fitting between this result and the result of the model calculation shown in FIG. 7B, the thin film or the multilayer film is characterized from the relationship between the incident angle (illumination angle, degree) and the X-ray reflectance. There is. Here, the relationship between the incident angle and the illumination angle at the incident angle is as shown in FIG.

【0005】モデル計算の結果は次の計算式により求め
る。即ち、基板から順に第j層、第j+1層とした場
合、夫々の屈折率をnj,nj+1と置いて、入射角Θj
Θj+1 でX線を入射すると、その反射率rj と透過率t
j は次のようになる。
The result of model calculation is obtained by the following calculation formula. That is, the j layer from the substrate in this order, when the (j + 1) th layer, at a refractive index of each n j, and n j + 1, the incident angle theta j,
When an X-ray is incident at Θ j + 1 , its reflectance r j and transmittance t
j is as follows.

【数1】 rj =(njcosΘj −nj+1cosΘj+1)/ (njcosΘj +nj+1cosΘj+1) ・・(1) tj =2njcosΘj /(njcosΘj +nj+1cosΘj+1 ) ・・(2 ) 以上のrj とtj を用いて次の漸化式を計算して多層膜
全体の反射率を計算する。
## EQU1 ## r j = (n j cos Θ j −n j + 1 cos Θ j + 1 ) / (n j cos Θ j + n j + 1 cos Θ j + 1 ) ... (1) t j = 2 n j cos Θ j / (N j cos Θ j + n j + 1 cos Θ j + 1 ) (2) Using the above r j and t j , the following recurrence formula is calculated to calculate the reflectance of the entire multilayer film.

【0006】Ej+1 : 第j+1層の通過X線の電場強
度、Ej r: 第j層の反射X線の電場強度、λ:X線の
波長、dj:第j層の厚さ、i:虚数単位、π:円周率
とすると(入射角Θは実測の照角θとの関係から、Θ=
90°−θ)、
E j + 1 t : Electric field intensity of passing X-ray of j + 1 layer, E j r : Electric field intensity of reflected X-ray of j-th layer, λ: Wavelength of X-ray, d j : Thickness of j-th layer Where i is an imaginary unit and π is a circular constant (the incident angle Θ is Θ =
90 ° -θ),

【数2】 E(j+1) t =ajj tj /(1+a(j+1) 2(j+1)j) ・・(3 ) Ej r=aj 2jj t ・・(4) ここで、 aj =exp(−2πidjjsinΘj )/λ Xj =(rj+a(j+1) 2(j+1))/(1+a(j+1)
(j+1)j ) とし、E0 t =0,a0 =1,基板でXj =0として上
記漸化式を解く。
[Equation 2] E (j + 1) t = a j E jt t j / (1 + a (j + 1) 2 X (j + 1) r j ) ·· (3) E j r = a j 2 X in j E j t ·· (4) where, a j = exp (-2πid j n j sinΘ j) / λ X j = (r j + a (j + 1) 2 X (j + 1)) / (1 + a (j + 1) 2 X
(j + 1) r j ) and E 0 t = 0, a 0 = 1 and X j = 0 on the substrate, and the above recurrence formula is solved.

【0007】しかしながら、角度依存型反射率測定法で
は入射光を単色化するために入射光の強度が減衰し、試
料の回転は機械構造上複雑で、単色X線を得るためにも
複雑な分光器を必要とするため装置が大型となり、光軸
調整等の調整箇所が多く、秒単位での角度操作を行うた
めに高い角度分解能が要求される等の欠点があった。そ
して、この欠点を改良するため、白色X線で、半導体検
出器を用いるものが提案されている。
However, in the angle-dependent reflectance measurement method, the intensity of the incident light is attenuated to make the incident light monochromatic, and the rotation of the sample is complicated due to the mechanical structure, and a complicated spectral analysis is required to obtain a monochromatic X-ray. Since the apparatus is required, the apparatus becomes large in size, there are many adjustment points such as the optical axis adjustment, and there is a drawback that a high angular resolution is required to perform an angle operation in seconds. In order to improve this defect, a white X-ray that uses a semiconductor detector has been proposed.

【0008】所謂、近年、薄膜、多層薄膜の電子部品等
への利用が盛んであり、1層の膜厚はより薄膜になる傾
向があるため、ナノメータスケールでの薄膜の評価が必
須になってきた。この要請に応えるために、光学的平坦
面を有する基板に白色X線を試料表面に対して非常に浅
い角度で入射することにより生じる全反射現象を利用し
て、反射されるX線のエネルギー分布を半導体検出器に
よって計測して、薄膜と基板との屈折率を用いると実質
的に薄膜の解析が可能となるエネルギー分散型X線分光
器が開発されている。
In recent years, so-called thin films and multilayer thin films have been actively used for electronic parts and the like, and since the thickness of one layer tends to become thinner, it is indispensable to evaluate thin films on the nanometer scale. It was In order to meet this demand, the energy distribution of the reflected X-rays is utilized by utilizing the total reflection phenomenon that occurs when white X-rays are incident on a substrate having an optically flat surface at a very shallow angle with respect to the sample surface. An energy dispersive X-ray spectroscope has been developed which can measure a thin film by a semiconductor detector and substantially analyze the thin film by using the refractive indexes of the thin film and the substrate.

【0009】次に、図8にエネルギー分散型X線反射率
測定法の概要を示す。図8(A)において、21はゴニ
オメータ(2θ回転)、22は被測定試料でありθ回転
のゴニオメータ23に配置されている。24は半導体検
出器である。ここでは白色X線を試料22に入射し、入
射角度と検出器の角度をある位置に固定してX線のエネ
ルギー(波長)と強度を検出する。こうして、白色X線
を用いたエネルギー分散型の反射率の測定を行ない、図
8(B)に示すモデル計算と測定結果とのフイッテイン
グを行うことにより、薄膜や多層膜のキャラクタリゼー
ションを行っている。
Next, FIG. 8 shows an outline of the energy dispersive X-ray reflectance measuring method. In FIG. 8 (A), 21 is a goniometer (2θ rotation), 22 is a sample to be measured, which is arranged in a θ rotation goniometer 23. 24 is a semiconductor detector. Here, white X-rays are incident on the sample 22, the incident angle and the angle of the detector are fixed at a certain position, and the energy (wavelength) and intensity of the X-rays are detected. Thus, the energy dispersive reflectance is measured using white X-rays, and the model calculation shown in FIG. 8B and the fitting of the measurement results are performed to characterize the thin film or the multilayer film. .

【0010】従って、同じX線管を用いて、より高強度
の入射X線を得ることができ、薄膜成長等でのその場の
観察に有利であると共に、装置の単純化、光軸調整が簡
便、また、角度操作が必要ないという利点があるが、半
導体検出器は毎秒1万カウントを超えると検出器として
信頼できなくなるため、S/Nの点からフィルタが必要
となり、X線の光軸に特定のX線のエネルギーのみを選
択的に吸収させることを目的とした薄膜フィルターを挿
入しなければ実用とならなかった。X線の反射率は、ダ
イナミツクレンジで10000以上の測定が必要であ
り、フィルターを入れることによりX線強度が減少し、
回転陽極X線管などの高強度X線管を要し、薄膜フィル
ターによる微細構造が妨害して、これが測定を煩雑にし
精度の良い薄膜構造解析ができなかった。
Therefore, the same X-ray tube can be used to obtain incident X-rays of higher intensity, which is advantageous for in-situ observation such as thin film growth, and simplification of the apparatus and adjustment of the optical axis. It has the advantage that it is simple and does not require angle operation, but since a semiconductor detector becomes unreliable as a detector when it exceeds 10,000 counts per second, a filter is required in terms of S / N and the X-ray optical axis It was not practical unless a thin film filter intended to selectively absorb the energy of a specific X-ray was inserted thereinto. The reflectance of X-rays needs to be measured by a dynamic range of 10,000 or more, and the intensity of X-rays is reduced by inserting a filter.
A high-intensity X-ray tube such as a rotating anode X-ray tube is required, and the fine structure of the thin film filter interferes with the measurement, which complicates the measurement and prevents accurate thin film structure analysis.

【0011】[0011]

【発明が解決しようとする課題】上記したように、従来
の角度分散方法では、入射光を単色化するために入射光
の強度が減衰し、試料の回転は機械構造上複雑で、単色
X線を得るためにも複雑な分光器を必要とするため装置
が大型となり、光軸調整等の調整箇所が多く、秒単位で
の角度操作を行うために高い角度分解能が要求される等
の欠点があった。また、エネルギー分散型X線反射率測
定法では、表面から深い位置までの全多層膜構造の平均
を測定しているという欠点と、S/Nの点からフィルタ
が必ず必要となり、測定を煩雑にしていた。
As described above, in the conventional angle dispersion method, the intensity of the incident light is attenuated in order to make the incident light monochromatic, and the rotation of the sample is complicated due to the mechanical structure, and the monochromatic X-ray is used. In order to obtain a complicated spectroscope, the device becomes large in size, there are many adjustment points such as optical axis adjustment, and high angular resolution is required to perform angle operation in seconds. there were. In addition, the energy dispersive X-ray reflectivity measurement method has a drawback that the average of the entire multilayer film structure from the surface to the deep position is measured, and a filter is always required in terms of S / N, which makes the measurement complicated. Was there.

【0012】そこで本発明は、試料表面にすれすれに白
色X線を入射し、角度を変化させてエネルギー分散のX
線反射率を測定し、薄膜や多層膜等の腹厚、密度、平坦
性、原子の拡散等のキャラクタリゼーンョンに有用な多
層膜構造を深さを選択しながら決定することのできる多
層薄膜分析方法および測定装置を提供することを目的と
する。
Therefore, according to the present invention, white X-rays are incident on the surface of the sample in a gradual manner, and the angle is changed to change the energy dispersion of X-rays.
A multi-layer structure that can measure line reflectance and determine a multi-layer structure that is useful for characterizing a thin film or a multi-layer film such as abdominal thickness, density, flatness, and diffusion of atoms while selecting depth. An object of the present invention is to provide a thin film analysis method and a measuring device.

【0013】[0013]

【課題を解決するための手段】上記課題を解決するため
に、この発明の請求項1に係る多層薄膜分析方法は、層
状構造を持つ被測定試料の表面にX線を照射し、X線の
反射率を測定しエネルギー分布を測定する方法におい
て、被測定試料に表面すれすれの極めて低角の入射角
で、かつ入射角を変化させて白色X線を照射してX線を
全反射させ、反射X線の強度を検出してエネルギー分散
のX線反射率を測定する構成とした。
In order to solve the above-mentioned problems, the method for analyzing a multilayer thin film according to claim 1 of the present invention irradiates the surface of a sample to be measured having a layered structure with X-rays, In the method of measuring the reflectance and measuring the energy distribution, a white X-ray is irradiated at a very low angle of incidence on the sample to be measured and the angle of incidence is changed to totally reflect the X-ray, The X-ray intensity is detected to measure the energy dispersion X-ray reflectance.

【0014】この発明の請求項2に係る多層薄膜分析方
法は、層状構造を持つ被測定試料の表面にX線を照射
し、X線の反射率を測定しエネルギー分布を測定する方
法において、被測定試料に表面すれすれの極めて低角の
入射角で、かつ入射角を変化させて白色X線を照射して
X線を全反射させ、反射X線の強度を検出してエネルギ
ー分散のX線反射率を測定し、X線の入射角度を制御す
ることにより、被測定試料中の深さを選択し、所望の深
さ位置における元素の種類、密度に関する分析を行なう
構成とした。
The method for analyzing a multilayer thin film according to claim 2 of the present invention is a method for irradiating a surface of a sample to be measured having a layered structure with X-rays, measuring a reflectance of the X-rays and measuring an energy distribution. X-ray reflection of energy dispersal by detecting the intensity of the reflected X-rays by irradiating white X-rays at a very low angle of incidence on the measurement sample and changing the angle of incidence to irradiate white X-rays. By measuring the ratio and controlling the X-ray incidence angle, the depth in the sample to be measured is selected, and the type and density of the element at the desired depth position are analyzed.

【0015】この発明の請求項3に係る多層薄膜分析方
法は、層状構造を持つ被測定試料の表面にX線を照射
し、X線の反射率を測定しエネルギー分布を測定する方
法において、被測定試料に表面すれすれの極めて低角の
入射角で、かつ入射角を変化させて白色X線を照射して
X線を全反射させ、反射X線の強度を検出してエネルギ
ー分散のX線反射率を測定し、エネルギー分布の測定に
より、層状構造物の場合には、界面の平坦性や原子の拡
散に関する分析を行なう構成とした。
In the method for analyzing a multilayer thin film according to claim 3 of the present invention, the surface of a sample to be measured having a layered structure is irradiated with X-rays, the reflectance of the X-rays is measured, and the energy distribution is measured. X-ray reflection of energy dispersal by detecting the intensity of the reflected X-rays by irradiating white X-rays at a very low angle of incidence on the measurement sample and changing the angle of incidence to irradiate white X-rays. The rate was measured and the energy distribution was measured to analyze the flatness of the interface and the diffusion of atoms in the case of a layered structure.

【0016】これにより、薄膜や多層膜等の膜厚、密
度、平坦性、原子の拡散等のキャラクタリゼーンョンに
有用な多層膜構造を深さを選択しながら決定することの
できるので、多層膜の膜厚、密度、界面での相互拡散や
多層膜製造のプロセス評価・制御が可能となり、簡易な
方法でエネルギー分散型反射率測定が実現し、選択的に
深さ情報が得られナノ領域での解析に活用できる。
With this, it is possible to determine a multi-layered film structure which is useful for film thickness, density, flatness, atomic diffusion, etc. of thin film or multi-layered film while selecting depth. The film thickness, density of the multilayer film, interdiffusion at the interface, and process evaluation / control of the multilayer film production are possible, energy dispersive reflectance measurement is realized by a simple method, and depth information is selectively obtained. It can be used for analysis in the domain.

【0017】この発明の請求項4に係る多層薄膜分析測
定装置は、白色X線源と、X線ビームを絞るスリット
と、試料を傾けてX線の入射角を変えるゴニオメータ
と、入射X線と同一面内で反射X線を高ダイナミックレ
ンジで検出する検出器とからなる構成とした。
According to a fourth aspect of the present invention, there is provided a multi-layer thin film analysis and measurement apparatus which comprises a white X-ray source, a slit for narrowing the X-ray beam, a goniometer for tilting the sample to change the X-ray incident angle, and an incident X-ray. The detector is configured to detect reflected X-rays in the same plane with a high dynamic range.

【0018】この発明の請求項5に係る多層薄膜分析測
定装置は、白色X線源と、X線ビームを絞るスリット
と、試料を傾けてX線の入射角を変えるゴニオメータ
と、入射X線と同一面内で反射X線を高ダイナミックレ
ンジで検出するシリコンドリフト検出器とからなる構成
とした。
According to a fifth aspect of the present invention, there is provided a multi-layer thin film analysis and measurement apparatus, a white X-ray source, a slit for narrowing an X-ray beam, a goniometer for tilting a sample to change an X-ray incident angle, and an incident X-ray. A silicon drift detector for detecting reflected X-rays in the same plane with a high dynamic range is adopted.

【0019】これにより、検出器としてシリコンドリフ
ト検出器を用いて毎秒100万カウントを超えるX線の
計測が可能となり、半導体検出器のように液体窒素冷却
や、回転移動するためには複雑な機構を必要とせず、電
子冷却方式のため小型軽量で容易に回転移動できる。ま
た、精密な単色X線機構やフィルターを用いないので、
軽量、簡易、迅速に試料の深さ毎の元素組成、密度、界
面の平坦性、相互拡散を分析することができる。
This makes it possible to measure X-rays exceeding 1 million counts per second by using a silicon drift detector as a detector, which is a complicated mechanism for liquid nitrogen cooling and rotational movement like a semiconductor detector. Since it is not necessary, it is small and lightweight and can be easily rotated and moved due to the electronic cooling system. Also, because we do not use a precise monochromatic X-ray mechanism or filter,
It is possible to analyze the elemental composition, the density, the flatness of the interface, and the interdiffusion for each depth of the sample quickly, lightweight, and easily.

【0020】[0020]

【発明の実施の形態】以下、本発明の多層薄膜分析方法
および測定装置について図1〜図6を参照して説明す
る。本発明はX線表面進行波法を利用したX線反射率測
定法であるので、まず図1によりX線表面進行波を説明
する。
BEST MODE FOR CARRYING OUT THE INVENTION The multilayer thin film analysis method and measuring apparatus of the present invention will be described below with reference to FIGS. The present invention is an X-ray reflectivity measurement method using the X-ray surface traveling wave method, and therefore the X-ray surface traveling wave will be described first with reference to FIG.

【0021】図1に示すように、白色X線を薄膜試料表
面にすれすれの角度で入射させると、あるエネルギーよ
り小さいX線は反射し、それ以上のエネルギー値を持つ
X線は屈折して、試料中に侵入する。侵入したX線は更
に基板との界面で反射屈折を起こし、反射したX線は試
料表面の反射光と干渉を起こす。このような反射光や屈
折光は表面や界面にほぼ平行に存在する。従って、これ
らをX線表面進行波と称し、この進行波を用いた新規な
分析法をX線表面進行波法と呼ぶことができる。
As shown in FIG. 1, when white X-rays are incident on the surface of the thin film sample at a grazing angle, X-rays having a smaller energy than a certain amount are reflected, and X-rays having an energy value higher than that are refracted. Penetrate into the sample. The invading X-rays further cause reflection refraction at the interface with the substrate, and the reflected X-rays interfere with the reflected light on the sample surface. Such reflected light and refracted light exist substantially parallel to the surface and interface. Therefore, these are referred to as an X-ray surface traveling wave, and a novel analysis method using this traveling wave can be referred to as an X-ray surface traveling wave method.

【0022】次に、図2に本発明の測定装置の概要を示
す。図2において、1はゴニオメータ(2θ回転)、2
は被測定試料、3はX線管、4はX線ビームを絞るスリ
ット、5は発散スリット、6はゴニオメータ(θ回
転)、7は手動ステージ、8はホールスリット、9はシ
リコンドリフト検出器である。
Next, FIG. 2 shows an outline of the measuring apparatus of the present invention. In FIG. 2, 1 is a goniometer (2θ rotation), 2
Is a sample to be measured, 3 is an X-ray tube, 4 is a slit for narrowing the X-ray beam, 5 is a divergence slit, 6 is a goniometer (θ rotation), 7 is a manual stage, 8 is a hole slit, and 9 is a silicon drift detector. is there.

【0023】X線管3のターゲットにMoを用い、白色
X線を発生させる。試料2との間に0.15mmのソー
ラースリット4と0.1°の発散スリット5を配置す
る。試料2は入射角度を調整するためのゴニオメータ6
に配置し、上下の高さを調整できる手動のステージ7に
固定する。検出器はシリコンドリフト検出器(SDD:Si
licon Drift Detector)を使用し、検出器の角度が変更
できるように、ゴニオメータに固定した。検出器の前に
は1mmφのホールスリット8を配置している。ここ
で、シリコンドリフト検出器を用いることにより、毎秒
100万カウントを超えるX線の計測が可能となった。
Mo is used as the target of the X-ray tube 3 to generate white X-rays. A 0.15 mm solar slit 4 and a 0.1 ° divergence slit 5 are arranged between the sample 2. Sample 2 is a goniometer 6 for adjusting the incident angle.
And is fixed to a manual stage 7 whose vertical height can be adjusted. The detector is a silicon drift detector (SDD: Si
licon Drift Detector) was used and fixed to the goniometer so that the angle of the detector could be changed. A 1 mmφ hole slit 8 is arranged in front of the detector. Here, by using the silicon drift detector, it has become possible to measure X-rays exceeding 1 million counts per second.

【0024】入射角度と検出器の角度を調整するθ軸と
φ軸は、独立して変更できるようにパソコンにより制御
している。光軸調整は入射光に対して検出器9の位置出
しから行なう。まず検出器9を固定し、試料2のθ軸を
振ることにより試料2と入射光の平行を決める。そし
て、直接、検出器9に入射したときの強度の半分になる
ように手動ステージ7を操作して、試料の高さを調整す
る。この操作を数回繰り返し、θ軸とφ軸の相対的な0
°を決定する。ここで、θ軸及びφ軸ともに、半時計回
りが正の方向になっている。
The θ axis and φ axis for adjusting the incident angle and the detector angle are controlled by a personal computer so that they can be changed independently. The optical axis is adjusted from the position of the detector 9 with respect to the incident light. First, the detector 9 is fixed, and the θ axis of the sample 2 is shaken to determine the parallelism between the sample 2 and the incident light. Then, the height of the sample is adjusted by directly operating the manual stage 7 so that the intensity becomes half of that when the light enters the detector 9. This operation is repeated several times, and the relative 0
Determine °. Here, both the θ axis and the φ axis are positive in the counterclockwise direction.

【0025】本発明の実施態様で使用した被測定試料
は、図3に示すように、シリコン基板に38ÅのB4
と31ÅのMoを各30層有する多層膜である(Mo/B
4C)30/Siを用いた。
The measurement sample is used in the embodiment of the present invention, as shown in FIG. 3, B 4 C for 38Å silicon substrate
And 31Å Mo is a multilayer film having 30 layers each (Mo / B
4 C) 30 / Si was used.

【0026】X線管3から測定容器1内の被測定試料2
に極めて低角(表面すれすれ)で白色X線を入射する。
試料2は入射角度を調整するためのゴニオメータ6によ
り、白色X線の入射角(試料表面とX線との角度)を±
2°の範囲内で細かく変化させられる。試料2に白色X
線を入射角が0から1°まで、0.1°ステップで入射
し、照射されたX線を全反射させ、反射X線の強度をシ
リコンドリフト検出器9で反射率を測定してエネルギー
分布を測定した。
The sample to be measured 2 in the measuring container 1 from the X-ray tube 3
A white X-ray is made incident on a very low angle (smooth surface).
For the sample 2, the incident angle of white X-rays (angle between the sample surface and the X-rays) was adjusted by the goniometer 6 for adjusting the incident angle.
It can be finely changed within the range of 2 °. White X on sample 2
An X-ray is incident at a step of 0.1 ° from an incident angle of 0 to 1 °, the irradiated X-ray is totally reflected, and the intensity of the reflected X-ray is measured by measuring the reflectance with a silicon drift detector 9 to obtain an energy distribution. Was measured.

【0027】図4に(Mo/B4C)30/Siについて、
入射角度を0.1°毎に変化させながら測定を行って、
実測値とモデル計算値を比較した結果を示す。横軸はエ
ネルギー、縦軸は反射率を示し、左側は実測値であり、
右側はモデル計算の結果である。図から明らかなよう
に、ピーク値は殆んど同じエネルギ−の位置に存在し、
入射角度を大きくしていくに従って低エネルギー側へシ
フトしている。また、入射角度が小さくなる程このピー
ク値はブロードになる傾向が見られた。モデル計算では
2つ目3つ目のピークが現れているが、実測でも観測で
きた。
FIG. 4 shows (Mo / B 4 C) 30 / Si,
Measurement is performed while changing the incident angle every 0.1 °,
The result of comparing the measured value and the model calculated value is shown. The horizontal axis shows energy, the vertical axis shows reflectance, and the left side is the measured value.
The right side is the result of model calculation. As is clear from the figure, the peak values exist at almost the same energy positions,
It shifts to the lower energy side as the incident angle increases. The peak value tended to become broader as the incident angle became smaller. Although the second and third peaks appeared in the model calculation, they could be observed by actual measurement.

【0028】図5に(Mo/B4C)30/Siのフィッテ
ィングを示す。Mo・B4Cの周期構造を5層から20
層まで変化させながらモデル計算を行ったところ、図5
左に示すように、周期構造が少なくなるほどピーク値が
ブロードになる傾向が見られた。これは、入射角度を浅
くすれば、X線も侵入深さが浅くなり、試料表面だけで
反射が起こっているためと考えらる。従って、X線の被
測定試料への浸入深さは入射角度に依存するので、入射
角度を変えることで入射角度に応じた測定深さ(膜厚)
を選択して試料のキャラクタリゼーションができること
が理解できる。
FIG. 5 shows the fitting of (Mo / B 4 C) 30 / Si. 20 layers of Mo ・ B 4 C periodic structure
When the model calculation was performed while changing the layers,
As shown on the left, the peak value tended to become broader as the periodic structure decreased. This is considered to be because the shallower the incident angle, the shallower the penetration depth of X-rays and the reflection occurs only on the sample surface. Therefore, the depth of penetration of the X-ray into the sample to be measured depends on the incident angle. Therefore, by changing the incident angle, the measurement depth (film thickness) according to the incident angle can be changed.
It can be seen that can be selected to characterize the sample.

【0029】また、試料の膜厚を変化させて計算を行っ
たところ、図5に示すように、膜が厚くなるほど、ピー
ク値のエネルギーが左へシフトする傾向が見られた。こ
れにより、実際の膜厚を測定できることが理解できる。
Further, when the calculation was performed while changing the film thickness of the sample, as shown in FIG. 5, the energy of the peak value tended to shift to the left as the film became thicker. From this, it can be understood that the actual film thickness can be measured.

【0030】同様に、図6にも、(Mo/B4C)30/S
iのフイッティングを行った結果を示す。これによる
と、モデル計算と同様の傾向を示すエネルギー分散型の
反射率を測定することができることが明らかになった。
そして、エネルギーと角度情報が同時に得られる場合、
例えば、入射角0.2°では2層、即ち140Åのみの
表層の情報が得られた。入射角0.6°では5層、即ち
350Åの膜厚の情報が得られた。
Similarly, in FIG. 6, (Mo / B 4 C) 30 / S
The result of performing the fitting of i is shown. According to this, it became clear that it is possible to measure the energy dispersive reflectance, which has the same tendency as the model calculation.
And if energy and angle information are obtained at the same time,
For example, at an incident angle of 0.2 °, information of two layers, that is, a surface layer of only 140Å was obtained. At an incident angle of 0.6 °, information of 5 layers, that is, a film thickness of 350 Å was obtained.

【0031】本発明の多層薄膜分析方法および測定装置
によると、多層膜の膜厚測定(フリンジの位置の解析,
フーリエ変換など)、多層膜の表面から特定の深さまで
の層の膜厚測定(角度変化)、多層膜の密度の測定(反
射強度の解析)、多層膜界面の相互拡散の度合いの測定
(フリンジのシャープさ)、界面の酸化状態(密度か
ら)、多層膜製造プロセスの工程管理、多層膜製造プロ
セスの制御、工程のパラメータ決定、ナノメータ領域の
非破壊・迅速測定を行なうことができる。
According to the multilayer thin film analysis method and the measuring apparatus of the present invention, the thickness measurement of the multilayer film (the analysis of the position of the fringe,
Fourier transform, etc.), layer thickness measurement from the surface of the multilayer to a specific depth (angle change), multilayer density (reflection intensity analysis), measurement of the degree of mutual diffusion at the multilayer interface (fringe) Sharpness), oxidation state of interface (from density), process control of multilayer film manufacturing process, control of multilayer film manufacturing process, process parameter determination, and non-destructive / rapid measurement in nanometer range.

【0032】[0032]

【発明の効果】以上のように、本発明は試料表面にすれ
すれの低角で白色X線を入射し、角度を変化させてエネ
ルギー分散のX線反射率を測定し、薄膜や多層膜等の膜
厚、密度、平坦性、原子の拡散等のキャラクタリゼーン
ョンに有用な多層膜構造を深さを選択しながら決定する
ことのできる。これにより多層膜の膜厚、密度、界面で
の相互拡散や多層膜製造のプロセス評価・制御が可能と
なり、簡易な方法でエネルギー分散型反射率測定が実現
し、選択的に深さ情報が得られ、ナノ領域での解析に活
用が期待される。
As described above, according to the present invention, white X-rays are incident on the surface of the sample at a grazing low angle, the X-ray reflectance of energy dispersion is measured by changing the angle, and a thin film, a multilayer film or the like is measured. It is possible to determine a multi-layered film structure that is useful for characterizing such as film thickness, density, flatness, and diffusion of atoms while selecting depth. This makes it possible to evaluate and control the film thickness, density of the multilayer film, mutual diffusion at the interface, and the process of manufacturing the multilayer film.The energy dispersive reflectance measurement can be realized by a simple method, and depth information can be selectively obtained. It is expected to be utilized for analysis in the nano area.

【0033】また、検出器としてシリコンドリフト検出
器を用いることにより、毎秒100万カウントを超える
X線の計測が可能となり、半導体検出器のように液体窒
素冷却や、回転移動するためには複雑な機構を必要とせ
ず、電子冷却方式のため小型軽量で容易に回転移動でき
る。また、精密な単色X線機構やフィルターを用いない
ので、軽量、簡易、迅速に試料の深さ毎の元素組成、密
度、界面の平坦性、相互拡散を分析することができる。
Further, by using a silicon drift detector as a detector, it is possible to measure X-rays exceeding 1 million counts per second, which is complicated for liquid nitrogen cooling and rotational movement like a semiconductor detector. It does not require a mechanism, and because it is an electronic cooling system, it is small and lightweight and can be easily rotated. Further, since a precise monochromatic X-ray mechanism and a filter are not used, it is possible to quickly and easily analyze the elemental composition, density, interface flatness and mutual diffusion for each depth of the sample.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のX線表面進行波の説明図。FIG. 1 is an explanatory view of an X-ray surface traveling wave of the present invention.

【図2】本発明の多層薄膜分析測定装置の概要図。FIG. 2 is a schematic diagram of a multilayer thin film analysis and measurement apparatus of the present invention.

【図3】本発明の実施形態に使用の被測定試料構造。FIG. 3 is a measured sample structure used in an embodiment of the present invention.

【図4】被測定試料の実測値とモデル計算値の比較図。FIG. 4 is a comparison diagram of measured values and model calculated values of a measured sample.

【図5】被測定試料のフィッティング図。FIG. 5 is a fitting diagram of a sample to be measured.

【図6】他の被測定試料のフィッティング図。FIG. 6 is a fitting diagram of another measured sample.

【図7】従来の角度依存型反射率測定法の概要図。FIG. 7 is a schematic diagram of a conventional angle-dependent reflectance measuring method.

【図8】従来のエネルギー分散型X線反射率測定法の概
要図。
FIG. 8 is a schematic diagram of a conventional energy dispersive X-ray reflectance measurement method.

【符号の説明】[Explanation of symbols]

1,11,21 ゴニオメータ(2θ回転) 2,12,22 被測定試料 3 X線管 4 ソーラースリット 5 発散スリット 6,13,23 ゴニオメータ(θ回転) 7 手動ステージ 8 ホールスリット 9 シリコンドリフト検出器 14,24 X線検出器 15 モノクロメータ 1,11,21 Goniometer (2θ rotation) 2,12,22 Sample to be measured 3 X-ray tube 4 solar slit 5 Divergence slit 6,13,23 Goniometer (θ rotation) 7 Manual stage 8 hole slit 9 Silicon drift detector 14,24 X-ray detector 15 Monochromator

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2G001 AA01 AA09 BA15 CA01 DA01 GA01 GA08 GA13 JA01 JA06 JA07 JA11 KA01 KA20 MA05 PA14 SA01 SA07    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 2G001 AA01 AA09 BA15 CA01 DA01                       GA01 GA08 GA13 JA01 JA06                       JA07 JA11 KA01 KA20 MA05                       PA14 SA01 SA07

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 層状構造を持つ被測定試料の表面にX線
を照射し、X線の反射率を測定しエネルギー分布を測定
する方法において、被測定試料に表面すれすれの極めて
低角の入射角で、かつ入射角を変化させて白色X線を照
射してX線を全反射させ、反射X線の強度を検出してエ
ネルギー分散のX線反射率を測定することを特徴とする
請求項1記載の多層薄膜分析方法。
1. A method of irradiating an X-ray on a surface of a sample to be measured having a layered structure and measuring an X-ray reflectance to measure an energy distribution. The X-ray reflectance of energy dispersion is measured by detecting the intensity of the reflected X-rays by irradiating the white X-rays with different incident angles to totally reflect the X-rays. The multilayer thin film analysis method described.
【請求項2】 X線の入射角度を制御することにより、
被測定試料中の深さを選択し、所望の深さ位置における
元素の種類、密度に関する分析を行なうことを特徴とす
る請求項1記載の多層薄膜分析方法。
2. By controlling the incident angle of X-rays,
2. The method for analyzing a multilayer thin film according to claim 1, wherein the depth in the sample to be measured is selected and the type and density of the element at a desired depth position are analyzed.
【請求項3】 エネルギー分布の測定により、層状構造
物の場合には、界面の平坦性や原子の拡散に関する分析
を行なうことを特徴とする請求項1記載の多層薄膜分析
方法。
3. The method for analyzing a multilayer thin film according to claim 1, wherein in the case of a layered structure, the flatness of the interface and the diffusion of atoms are analyzed by measuring the energy distribution.
【請求項4】 白色X線源と、X線ビームを絞るスリッ
トと、試料を傾けてX線の入射角を変えるゴニオメータ
と、入射X線と同一面内で反射X線を高ダイナミックレ
ンジで検出する検出器とからなることを特徴とする多層
薄膜分析測定装置。
4. A white X-ray source, a slit that narrows the X-ray beam, a goniometer that changes the incident angle of the X-ray by tilting the sample, and a reflected X-ray with a high dynamic range in the same plane as the incident X-ray. A multi-layered thin film analysis and measurement apparatus comprising:
【請求項5】 前記検出器はシリコンドリフト検出器で
あることを特徴とする請求項4記載の多層薄膜分析測定
装置。
5. The multi-layer thin film analysis and measurement apparatus according to claim 4, wherein the detector is a silicon drift detector.
JP2002127696A 2002-04-26 2002-04-26 Multilayer thin film analysis method and measurement device Pending JP2003322627A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002127696A JP2003322627A (en) 2002-04-26 2002-04-26 Multilayer thin film analysis method and measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002127696A JP2003322627A (en) 2002-04-26 2002-04-26 Multilayer thin film analysis method and measurement device

Publications (1)

Publication Number Publication Date
JP2003322627A true JP2003322627A (en) 2003-11-14

Family

ID=29541685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002127696A Pending JP2003322627A (en) 2002-04-26 2002-04-26 Multilayer thin film analysis method and measurement device

Country Status (1)

Country Link
JP (1) JP2003322627A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10627547B2 (en) 2016-03-09 2020-04-21 Lg Chem, Ltd. Anti-reflective film

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10627547B2 (en) 2016-03-09 2020-04-21 Lg Chem, Ltd. Anti-reflective film
US10802178B2 (en) 2016-03-09 2020-10-13 Lg Chem, Ltd. Anti-reflective film
US10895667B2 (en) 2016-03-09 2021-01-19 Lg Chem, Ltd. Antireflection film
US10983252B2 (en) 2016-03-09 2021-04-20 Lg Chem, Ltd. Anti-reflective film
US11262481B2 (en) 2016-03-09 2022-03-01 Lg Chem, Ltd. Anti-reflective film
US11275199B2 (en) 2016-03-09 2022-03-15 Lg Chem, Ltd. Anti-reflective film

Similar Documents

Publication Publication Date Title
US10151713B2 (en) X-ray reflectometry apparatus for samples with a miniscule measurement area and a thickness in nanometers and method thereof
TWI444589B (en) Apparatus and method for analysis of a sample
Spesivtsev et al. Development of methods and instruments for optical ellipsometry at the Institute of Semiconductor Physics of the Siberian Branch of the Russian Academy of Sciences
JP4512382B2 (en) X-ray reflectivity measurement including small angle scattering measurement
US6408048B2 (en) Apparatus for analyzing samples using combined thermal wave and X-ray reflectance measurements
Ghim et al. Fast, precise, tomographic measurements of thin films
JP5743856B2 (en) Measuring device and measuring method
Fried et al. Expanded beam (macro-imaging) ellipsometry
US9080944B2 (en) Method and apparatus for surface mapping using in-plane grazing incidence diffraction
JP2004045369A (en) Method for evaluating orientation of polycrystalline material
US7751527B2 (en) Measurement method of layer thickness for thin film stacks
JP2003322627A (en) Multilayer thin film analysis method and measurement device
TW202118992A (en) X-ray reflectometry and method thereof for measuring three dimensional nanostructures on flat substrate
Maury et al. Interface characteristics of Mo/Si and B4C/Mo/Si multilayers using non-destructive X-ray techniques
JPS6217166B2 (en)
JP4951869B2 (en) Sample analysis method and analysis system
Flores-Camacho et al. Determination of the layered structure of baryta based heritage photographs by infrared ellipsometry
JP3619391B2 (en) Thin film evaluation equipment
Kenaz et al. Mapping single-shot angle-resolved spectroscopic micro-ellipsometry with sub-5 microns lateral resolution
JP2006105748A (en) Analysis method with beam injection
TW200530576A (en) X-ray reflectometry of thin film layers with enhanced accuracy
Itakura Imaging ellipsometry
WO2023203856A1 (en) Semiconductor inspecting device, semiconductor inspecting system, and semiconductor inspecting method
Chen et al. Measurement and analysis of surface profiles by inverse scattering method
Petrik et al. Optical characterization of laterally and vertically structured oxides and semiconductors

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060414

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060807

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060821

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20060915