[go: up one dir, main page]

JP2006105748A - Analysis method with beam injection - Google Patents

Analysis method with beam injection Download PDF

Info

Publication number
JP2006105748A
JP2006105748A JP2004292043A JP2004292043A JP2006105748A JP 2006105748 A JP2006105748 A JP 2006105748A JP 2004292043 A JP2004292043 A JP 2004292043A JP 2004292043 A JP2004292043 A JP 2004292043A JP 2006105748 A JP2006105748 A JP 2006105748A
Authority
JP
Japan
Prior art keywords
sample
analysis
incident
region
analysis surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004292043A
Other languages
Japanese (ja)
Inventor
Toshiyuki Fujimoto
俊幸 藤本
Toshiyuki Takatsuji
利之 高辻
Yasushi Azuma
康史 東
Takamitsu Osawa
尊光 大澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2004292043A priority Critical patent/JP2006105748A/en
Publication of JP2006105748A publication Critical patent/JP2006105748A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

【課題】X線反射率法等のビーム入射を伴う分析方法において、分析面に平坦度の低い領域を有する試料の場合でも、高精度で分析ができるようにする。
【解決手段】試料3の分析面の最も平坦な領域を選定し、選定された領域にビームが所定角度で入射されるように試料3の位置を調整する。図5の場合、領域Dではなく、領域Eにビームを入射する。
【選択図】 図5
In an analysis method involving beam incidence such as an X-ray reflectivity method, even a sample having a region with low flatness on an analysis surface can be analyzed with high accuracy.
The flattened region of the analysis surface of the sample 3 is selected, and the position of the sample 3 is adjusted so that the beam is incident on the selected region at a predetermined angle. In the case of FIG. 5, the beam is incident not on the region D but on the region E.
[Selection] Figure 5

Description

この発明は、ビーム入射を伴う分析方法(試料の分析面に電磁波のビームを所定角度で入射して、前記分析面から反射あるいは発生した電磁波を検出し、この検出値に基づいて前記試料を分析する方法)に関する。   The present invention relates to an analysis method that involves beam incidence (an electromagnetic wave beam is incident on a sample analysis surface at a predetermined angle to detect an electromagnetic wave reflected or generated from the analysis surface, and the sample is analyzed based on the detected value. How to).

ビーム入射を伴う分析方法としては、X線反射率法、エリプソメトリー法、全反射螢光X線分析法等がある。
X線反射率法は、X線回折装置でX線反射率を測定し、この測定値から薄膜の膜厚や表面のラフネス等を計測する方法である。この方法では、X線を細いビーム状にして所定角度で試料面に入射し、試料面から入射角度と同じ角度で反射したX線を検出している。X線反射率法に関連する従来技術としては、例えば下記の特許文献1および2に記載された技術が挙げられる。
特開平11−337507号公報 特開2001−83108号公報
Examples of analysis methods that involve beam incidence include an X-ray reflectivity method, an ellipsometry method, and a total reflection fluorescent X-ray analysis method.
The X-ray reflectivity method is a method of measuring the X-ray reflectivity with an X-ray diffractometer and measuring the thickness of the thin film, the roughness of the surface, and the like from the measured values. In this method, X-rays are made into a thin beam and incident on a sample surface at a predetermined angle, and X-rays reflected from the sample surface at the same angle as the incident angle are detected. Examples of conventional techniques related to the X-ray reflectance method include techniques described in Patent Documents 1 and 2 below.
JP-A-11-337507 JP 2001-83108 A

X線反射率法等のビーム入射を伴う分析方法では、ビームの試料面への入射角度と試料面から反射あるいは発生したビームの検出角度を厳密に設定することが、正確な分析を行う上で重要である。しかしながら、ビームが入射された試料面の平坦度が低い(凹凸が大きい)と、見かけの入射角度(設定された基準面に対する入射角度)と実際の入射角度との差がビーム入射面内で大きくなる。よって、試料の分析面の平坦度が全ての領域で高い場合を除いて、高精度で分析を行うことはできない。
本発明は、X線反射率法等のビーム入射を伴う分析方法において、分析面に平坦度の低い領域を有する試料の場合でも、高精度で分析ができるようにすることを課題とする。
In the analysis method with beam incidence such as X-ray reflectivity method, it is necessary to set the incident angle of the beam to the sample surface and the detection angle of the beam reflected or generated from the sample surface for accurate analysis. is important. However, if the flatness of the sample surface on which the beam is incident is low (the unevenness is large), the difference between the apparent incident angle (incident angle with respect to the set reference surface) and the actual incident angle is large within the beam incident surface. Become. Therefore, unless the flatness of the analysis surface of the sample is high in all regions, the analysis cannot be performed with high accuracy.
An object of the present invention is to enable analysis with high accuracy even in the case of a sample having a region with low flatness on the analysis surface in an analysis method involving beam incidence such as an X-ray reflectivity method.

上記課題を解決するために、本発明は、試料の分析面に電磁波のビームを所定角度で入射して、前記分析面から反射あるいは発生した電磁波を検出し、この検出値に基づいて前記試料を分析する方法において、前記分析面の最も平坦な領域を選定し、選定された領域に前記ビームが所定角度で入射されるように前記試料の位置を調整することを特徴とするビーム入射を伴う分析方法を提供する。
本発明の分析方法によれば、試料の分析面の最も平坦な領域に電磁波のビームが所定角度で入射されるため、前記分析面の凹凸に起因して生じる、前記ビームの前記分析面に対する実際の入射角度の変化量が小さくなる。
In order to solve the above-mentioned problems, the present invention detects an electromagnetic wave reflected or generated from the analysis surface by making a beam of electromagnetic waves incident on the analysis surface of the sample at a predetermined angle, and removing the sample based on the detected value. In the analysis method, the flattest region of the analysis surface is selected, and the position of the sample is adjusted so that the beam is incident on the selected region at a predetermined angle. Provide a method.
According to the analysis method of the present invention, since the electromagnetic wave beam is incident at a predetermined angle on the flattest region of the analysis surface of the sample, the beam is actually generated with respect to the analysis surface due to the unevenness of the analysis surface. The amount of change in the incident angle becomes smaller.

前記分析面の最も平坦な領域を選定する方法としては、下記の(1) および(2) の方法が挙げられる。
(1) 前記分析面の形状を測定し、この測定値に基づいて選定する方法。
(2) 前記試料の分析面に電磁波のビームを所定角度で入射して、前記分析面から反射あるいは発生した電磁波を検出することを、試料に対するビームの入射角度を保持した状態で、前記分析面の全体に渡って行い、得られた検出結果に基づいて選定する方法。
Examples of a method for selecting the flattest region on the analysis surface include the following methods (1) and (2).
(1) A method of measuring the shape of the analysis surface and selecting based on the measured value.
(2) An electromagnetic wave beam is incident on the analysis surface of the sample at a predetermined angle, and an electromagnetic wave reflected or generated from the analysis surface is detected, while the incident angle of the beam with respect to the sample is maintained. This method is performed over the whole process and is selected based on the detection results obtained.

本発明によれば、試料の分析面に電磁波のビームを所定角度で入射して、前記分析面から反射あるいは発生した電磁波を検出し、この検出値に基づいて前記試料を分析する方法
において、前記分析面の最も平坦な領域にビームが所定角度で入射されるように前記試料の位置を調整することにより、分析面に平坦度の低い領域を有する試料の場合であっても高精度で分析を行うことができる。
According to the present invention, in a method of detecting an electromagnetic wave reflected or generated from the analysis surface by making an electromagnetic wave beam incident on the analysis surface of the sample at a predetermined angle, and analyzing the sample based on the detected value, By adjusting the position of the sample so that the beam is incident on the flattest area of the analysis surface at a predetermined angle, even a sample having a low flatness area on the analysis surface can be analyzed with high accuracy. It can be carried out.

以下、本発明の実施形態について説明する。
この実施形態では、X線反射率法に本発明の方法を適用した場合について説明する。
[第1実施形態]
第1実施形態の方法は、X線回折装置1とレーザー干渉計2を用いて実施することができる。この方法について図1および2を用いて説明する。図2は、図1をA方向から見た図に相当する。
Hereinafter, embodiments of the present invention will be described.
In this embodiment, a case where the method of the present invention is applied to the X-ray reflectivity method will be described.
[First Embodiment]
The method of the first embodiment can be performed using the X-ray diffractometer 1 and the laser interferometer 2. This method will be described with reference to FIGS. FIG. 2 corresponds to a view of FIG. 1 viewed from the A direction.

図1に示すように、X線回折装置1は、X線源11と、放物ミラー12と、第1のスリット13と、分光器14と、第2のスリット15と、第3のスリット16と、X線検出器17を備えている。試料3は、第2のスリット15と第3のスリット16との間の所定位置に設置される。
レーザー干渉計2は、レーザー21と、ビームスプリッター22と、光学部品23と、CCDカメラ24と、干渉縞解析装置25とを備えている。光学部品23は試料3にレーザーを照射して干渉縞を形成するための光学系であり、リファレンス23aとピエゾ素子23bとレンズ群(図示せず)を備えている。
As shown in FIG. 1, the X-ray diffraction apparatus 1 includes an X-ray source 11, a parabolic mirror 12, a first slit 13, a spectrometer 14, a second slit 15, and a third slit 16. And an X-ray detector 17. The sample 3 is placed at a predetermined position between the second slit 15 and the third slit 16.
The laser interferometer 2 includes a laser 21, a beam splitter 22, an optical component 23, a CCD camera 24, and an interference fringe analyzer 25. The optical component 23 is an optical system for forming an interference fringe by irradiating the sample 3 with a laser, and includes a reference 23a, a piezo element 23b, and a lens group (not shown).

試料3とレーザー干渉計2は図2に示すように配置されている。図2では、レーザー干渉計2の光学部品23以外の構成をまとめて面形状測定装置20として表示している。試料3の位置調整機構と面形状測定装置20は独立にテーブル4上に設置されている。
試料3の位置調整機構は、テーブル4上に固定された架台5と、架台5に取り付けられた回転テーブル6と、回転テーブル6から垂直上方に延びるブラケット7と、ブラケット7から面形状測定装置20に向けて水平に延びる微動機構8とで構成されている。回転テーブル6は、試料3を軸C1 を中心に回転させるテーブルである。この回転により試料3の分析面とX線とのなす角度(X線の入射角度)θが変化する。試料3を取り付ける試料ステージ9は微動機構8に固定されている。微動機構8は、試料ステージ9を介して試料3を、X方向、Y方向、Z方向、軸C2 を中心とする回転方向、および軸C3 を中心とする回転方向に移動させる。
The sample 3 and the laser interferometer 2 are arranged as shown in FIG. In FIG. 2, the configuration other than the optical component 23 of the laser interferometer 2 is collectively displayed as the surface shape measuring device 20. The position adjusting mechanism of the sample 3 and the surface shape measuring device 20 are installed on the table 4 independently.
The position adjustment mechanism of the sample 3 includes a gantry 5 fixed on the table 4, a rotary table 6 attached to the gantry 5, a bracket 7 extending vertically upward from the rotary table 6, and a surface shape measuring device 20 from the bracket 7. And a fine movement mechanism 8 extending horizontally toward the head. The rotary table 6 is a table that rotates the sample 3 around the axis C 1 . By this rotation, an angle (an X-ray incident angle) θ formed between the analysis surface of the sample 3 and the X-rays changes. A sample stage 9 to which the sample 3 is attached is fixed to the fine movement mechanism 8. The fine movement mechanism 8 moves the sample 3 through the sample stage 9 in the X direction, the Y direction, the Z direction, the rotation direction around the axis C 2 , and the rotation direction around the axis C 3 .

第1実施形態の方法で試料3のX線反射率を測定する際には、先ず、試料ステージ9に試料3を取り付けた後、試料3の分析面と光学部品23のリファレンス面が平行になるように、試料ステージ9に光学部品23を取り付ける。次に、レーザー干渉計2を起動させて、面形状測定装置20から光学部品23に向けてレーザーを入射し、試料3の分析面の形状を測定する。   When measuring the X-ray reflectivity of the sample 3 by the method of the first embodiment, first, after the sample 3 is attached to the sample stage 9, the analysis surface of the sample 3 and the reference surface of the optical component 23 are parallel to each other. As described above, the optical component 23 is attached to the sample stage 9. Next, the laser interferometer 2 is activated, a laser is incident from the surface shape measuring device 20 toward the optical component 23, and the shape of the analysis surface of the sample 3 is measured.

この測定結果は、干渉縞解析装置25に、例えば図3に示すような画像として表示される。この画像から分析面の最も平坦な領域を選定する。ここでは、領域Bを選定した。次に、この領域BにX線のビームが入射されるように、微動機構8を用いて試料3の位置を調整する。この状態で、通常の方法でθ−2θ走査を行ってX線反射率を測定する。
この方法によれば、試料3の分析面の最も平坦な領域BにX線のビームが所定角度θで入射されるように試料3の位置を調整することにより、このような調整をしない場合と比較して、高精度で分析を行うことができる。
This measurement result is displayed on the interference fringe analyzer 25 as an image as shown in FIG. 3, for example. From this image, the flattest area of the analysis surface is selected. Here, the region B is selected. Next, the position of the sample 3 is adjusted using the fine movement mechanism 8 so that the X-ray beam is incident on the region B. In this state, the X-2 reflectivity is measured by performing θ-2θ scanning by a normal method.
According to this method, such adjustment is not performed by adjusting the position of the sample 3 so that the X-ray beam is incident on the flattest region B of the analysis surface of the sample 3 at a predetermined angle θ. In comparison, analysis can be performed with high accuracy.

[第2実施形態]
第2実施形態の方法は、図1の構成からレーザー干渉計2を外し、試料3の位置調整機構として図4に示すものを用いて行うことができる。
図4の位置調整機構は、テーブル4上に固定された架台5と、架台5に取り付けられた回転テーブル6と、回転テーブル6から垂直上方に延びるブラケット7と、ブラケット7から水平に延びる微動機構8とで構成されている。回転テーブル6は、試料3を軸C1 を中心に回転させるテーブルである。この回転により試料3の分析面とX線とのなす角度(X線の入射角度)θが変化する。試料3は微動機構8に取り付けられる。微動機構8は、試料3を、X方向、Y方向、Z方向、軸C2 を中心とする回転方向、および軸C3 を中心とする回転方向に移動させる。
[Second Embodiment]
The method of the second embodiment can be performed by removing the laser interferometer 2 from the configuration of FIG. 1 and using the one shown in FIG.
The position adjustment mechanism shown in FIG. 4 includes a gantry 5 fixed on the table 4, a rotary table 6 attached to the gantry 5, a bracket 7 extending vertically upward from the rotary table 6, and a fine movement mechanism extending horizontally from the bracket 7. 8. The rotary table 6 is a table that rotates the sample 3 around the axis C 1 . By this rotation, an angle (an X-ray incident angle) θ formed between the analysis surface of the sample 3 and the X-rays changes. The sample 3 is attached to the fine movement mechanism 8. The fine movement mechanism 8 moves the sample 3 in the X direction, the Y direction, the Z direction, the rotation direction about the axis C 2 , and the rotation direction about the axis C 3 .

第2実施形態の方法で試料3のX線反射率を測定する際には、先ず、微動機構8に試料3を取り付けた後、回転テーブル6により入射角度θを全反射角度に保持し、X線検出器17を、試料3の分析面に対する角度が入射角度θと同じ角度となる位置に設置する。次に、この状態で、X線ビームを通常の反射率測定時よりも絞ってビーム断面を最小にし、微動機構8により試料3を上下左右に走査して、分析面全体に渡ってX線反射強度を測定する。   When measuring the X-ray reflectivity of the sample 3 by the method of the second embodiment, first, after attaching the sample 3 to the fine movement mechanism 8, the incident angle θ is held at the total reflection angle by the rotary table 6, and X The line detector 17 is installed at a position where the angle of the sample 3 with respect to the analysis surface is the same as the incident angle θ. Next, in this state, the X-ray beam is squeezed from the normal reflectance measurement to minimize the beam cross section, the sample 3 is scanned vertically and horizontally by the fine movement mechanism 8, and the X-ray reflection is performed over the entire analysis surface. Measure strength.

次に、得られたX線反射強度の測定結果から試料3の分析面の形状が推定できるため、X線反射強度の変化が少ない領域を分析面の最も平坦な領域として選定する。次に、この領域にX線のビームが入射されるように、微動機構8を用いて試料3の位置を調整する。この状態で、通常の方法でθ−2θ走査を行ってX線反射率を測定する。
この方法によれば、試料3の分析面の最も平坦な領域にX線のビームが所定角度θで入射されるように試料3の位置を調整することにより、このような調整をしない場合と比較して、高精度で分析を行うことができる。
Next, since the shape of the analysis surface of the sample 3 can be estimated from the measurement result of the obtained X-ray reflection intensity, an area where the change in the X-ray reflection intensity is small is selected as the flattest area of the analysis surface. Next, the position of the sample 3 is adjusted using the fine movement mechanism 8 so that the X-ray beam is incident on this region. In this state, the X-2 reflectivity is measured by performing θ-2θ scanning by a normal method.
According to this method, the position of the sample 3 is adjusted so that the X-ray beam is incident on the flattest region of the analysis surface of the sample 3 at a predetermined angle θ. Thus, analysis can be performed with high accuracy.

ここで、試料3の分析面が図5(a)に等高線で示す形状である場合に、D1 −D2 に沿った領域Dに、基準面Sに対する角度θでビームを入射した状態を図5(b)に、E1 −E2 に沿った領域Eに同じ角度θでビームを入射した状態を図5(c)に示す。図5(b)では、試料3のビーム照射面が平坦でないため、ビーム面内で実際の入射角度α1 ,α2 に大きな差がある(θ<α1 ≪α2 )。 Here, when the analysis surface of the sample 3 has a shape indicated by contour lines in FIG. 5A, a state in which a beam is incident on the region D along D 1 -D 2 at an angle θ with respect to the reference surface S is illustrated. FIG. 5B shows a state where the beam is incident on the region E along E 1 -E 2 at the same angle θ in FIG. 5B. In FIG. 5B, since the beam irradiation surface of the sample 3 is not flat, there is a large difference between the actual incident angles α 1 and α 2 within the beam surface (θ <α 1 << α 2 ).

これに対して、図5(c)では、試料3のビーム照射面が平坦に近いため、ビーム面内で実際の入射角度β1 ,β2 の差が小さい。図5(c)では、また、領域Eが試料3の基準面Sとほぼ平行なため、実際の入射角度β1 ,β2 と基準面Sに対する入射角度θとのさも小さい。
したがって、領域Dにビームを照射した場合と領域Eにビームを照射した場合とでは、領域Eにビームを照射した場合の方が、入射角度θと実際の入射角度の差が小さいため、より正確な測定を行うことができる。なお、照射面が基準面Sに対して傾斜していても平面度が高ければ、その傾斜角に対応させた位置にX線検出器を配置することで、平面度が低い場合よりも正確な測定をすることができる。
On the other hand, in FIG. 5C, since the beam irradiation surface of the sample 3 is almost flat, the difference between the actual incident angles β 1 and β 2 in the beam surface is small. In FIG. 5C, since the region E is substantially parallel to the reference surface S of the sample 3, the actual incident angles β 1 and β 2 and the incident angle θ with respect to the reference surface S are small.
Therefore, when the beam is applied to the region D and when the beam is applied to the region E, the difference between the incident angle θ and the actual incident angle is smaller when the region E is irradiated with the beam. Measurements can be made. Even if the irradiation surface is inclined with respect to the reference surface S, if the flatness is high, an X-ray detector is arranged at a position corresponding to the inclination angle, so that the flatness is more accurate than when the flatness is low. You can make measurements.

第1実施形態の方法と第2実施形態の方法を比較すると、第1実施形態の方法の方が、レーザー干渉計を用いて試料の分析面の形状を測定していることから、分析面の最も平坦な領域の選定の確度が高くなる。そのため、分析精度がより高くなるが、レーザー干渉計を用いる分だけ設備コストが高くなる。すなわち、第2実施形態の方法は、第1実施形態の方法よりも設備コストを抑えることができる。   Comparing the method of the first embodiment and the method of the second embodiment, the method of the first embodiment measures the shape of the analysis surface of the sample using a laser interferometer. The accuracy of selecting the flattest region is increased. Therefore, although the analysis accuracy is higher, the facility cost is increased by the amount of using the laser interferometer. That is, the method of 2nd Embodiment can hold down facility cost rather than the method of 1st Embodiment.

また、第1実施形態では図2に示すように、リファレンスを含む光学部品23を試料ステージ9に固定しているため、試料3の分析面と光学部品23のリファレンス面の平行が振動によって変化することが防止される。第1実施形態の方法は、回転テーブル6にリファレンスを含む光学部品23を取り付けて、試料3の分析面と光学部品23のリファレンス面を平行に保持してもよく、このようにした方が試料3の付け外しや光軸の調整等がし
易い。しかし、このようにした場合、試料3の分析面と光学部品23のリファレンス面の平行が振動によって変化しやすいため、X線源11を架台5を載せたステージ4とは別のステージに設置する等の振動対策を行うことが好ましい。
In the first embodiment, as shown in FIG. 2, since the optical component 23 including the reference is fixed to the sample stage 9, the parallelism between the analysis surface of the sample 3 and the reference surface of the optical component 23 changes due to vibration. It is prevented. In the method of the first embodiment, the optical component 23 including the reference may be attached to the turntable 6 so that the analysis surface of the sample 3 and the reference surface of the optical component 23 may be held in parallel. 3 is easy to attach and detach and adjust the optical axis. However, in this case, since the parallel of the analysis surface of the sample 3 and the reference surface of the optical component 23 is easily changed by vibration, the X-ray source 11 is installed on a stage different from the stage 4 on which the mount 5 is mounted. It is preferable to take measures such as vibration.

また、この実施形態では、X線反射率法に本発明の方法を適用した場合について説明しているが、本発明の方法は、X線反射率法に限らず、エリプソメトリー法、全反射螢光X線分析法、その他のビーム入射を伴う分析方法(試料の分析面に電磁波のビームを所定角度で入射して、前記分析面から反射あるいは発生した電磁波を検出し、この検出値に基づいて前記試料を分析する方法)に適用可能である。   In this embodiment, the case where the method of the present invention is applied to the X-ray reflectivity method is described. However, the method of the present invention is not limited to the X-ray reflectivity method, and the ellipsometry method, Optical X-ray analysis method and other analysis methods involving beam incidence (electromagnetic wave beam is incident on the analysis surface of the sample at a predetermined angle, and electromagnetic waves reflected or generated from the analysis surface are detected. Based on the detected value It is applicable to the method of analyzing the sample.

本発明の方法をX線反射率法に適用した場合の実施形態を説明するための模式図である。It is a schematic diagram for demonstrating embodiment at the time of applying the method of this invention to a X-ray reflectivity method. 第1実施形態の方法が実施可能な装置を示す概略構成図である。It is a schematic block diagram which shows the apparatus which can implement the method of 1st Embodiment. 第1実施形態の方法でレーザー干渉計の干渉縞解析装置で得られた、試料の分析面の画像を示す図である。It is a figure which shows the image of the analysis surface of a sample obtained with the interference fringe analyzer of the laser interferometer by the method of 1st Embodiment. 第2実施形態の方法が実施可能な装置を示す概略構成図である。It is a schematic block diagram which shows the apparatus which can implement the method of 2nd Embodiment. 本発明の作用を説明する図である。It is a figure explaining the effect | action of this invention.

符号の説明Explanation of symbols

1 X線回折装置
11 X線源
12 放物ミラー
13 第1のスリット
14 分光器
15 第2のスリット
16 第3のスリット
17 X線検出器
2 レーザー干渉計
20 面形状測定装置
21 レーザー
22 ビームスプリッター
23 光学部品
24 CCDカメラ
25 干渉縞解析装置
23a リファレンス
23b ピエゾ素子
3 試料
4 テーブル
5 架台
6 回転テーブル
7 ブラケット
8 微動機構
9 試料ステージ
DESCRIPTION OF SYMBOLS 1 X-ray-diffraction apparatus 11 X-ray source 12 Parabolic mirror 13 1st slit 14 Spectroscope 15 2nd slit 16 3rd slit 17 X-ray detector 2 Laser interferometer 20 Surface shape measuring device 21 Laser 22 Beam splitter DESCRIPTION OF SYMBOLS 23 Optical component 24 CCD camera 25 Interference fringe analyzer 23a Reference 23b Piezo element 3 Sample 4 Table 5 Mount 6 Rotating table 7 Bracket 8 Fine moving mechanism 9 Sample stage

Claims (3)

試料の分析面に電磁波のビームを所定角度で入射して、前記分析面から反射あるいは発生した電磁波を検出し、この検出値に基づいて前記試料を分析する方法において、
前記分析面の最も平坦な領域を選定し、選定された領域に前記ビームが所定角度で入射されるように前記試料の位置を調整することを特徴とするビーム入射を伴う分析方法。
In a method of detecting an electromagnetic wave reflected or generated from the analysis surface by entering an electromagnetic wave beam at a predetermined angle on the analysis surface of the sample, and analyzing the sample based on the detected value,
An analysis method involving beam incidence, wherein the flattest region of the analysis surface is selected, and the position of the sample is adjusted so that the beam is incident on the selected region at a predetermined angle.
前記分析面の形状を測定し、この測定値に基づいて前記分析面の最も平坦な領域を選定する請求項1記載の分析方法。   The analysis method according to claim 1, wherein the shape of the analysis surface is measured, and the flattest region of the analysis surface is selected based on the measured value. 前記試料の分析面に電磁波のビームを所定角度で入射して、前記分析面から反射あるいは発生した電磁波を検出することを、試料に対するビームの入射角度を保持した状態で、前記分析面の全体に渡って行い、得られた検出結果に基づいて前記分析面の最も平坦な領域を選定する請求項1記載の分析方法。   An electromagnetic wave beam is incident on the analysis surface of the sample at a predetermined angle, and an electromagnetic wave reflected or generated from the analysis surface is detected, while the incident angle of the beam with respect to the sample is maintained. The analysis method according to claim 1, wherein the analysis is carried out across the board and the flattest area of the analysis surface is selected based on the obtained detection result.
JP2004292043A 2004-10-05 2004-10-05 Analysis method with beam injection Pending JP2006105748A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004292043A JP2006105748A (en) 2004-10-05 2004-10-05 Analysis method with beam injection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004292043A JP2006105748A (en) 2004-10-05 2004-10-05 Analysis method with beam injection

Publications (1)

Publication Number Publication Date
JP2006105748A true JP2006105748A (en) 2006-04-20

Family

ID=36375670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004292043A Pending JP2006105748A (en) 2004-10-05 2004-10-05 Analysis method with beam injection

Country Status (1)

Country Link
JP (1) JP2006105748A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014106079A (en) * 2012-11-27 2014-06-09 Showa Denko Kk Total reflection fluorescence x-ray analysis method and total reflection fluorescence x-ray analysis device
JP2014202620A (en) * 2013-04-05 2014-10-27 学校法人福岡大学 Film sample for surface analysis and film sample sampling jig, and sampling method
JP2014238295A (en) * 2013-06-06 2014-12-18 パルステック工業株式会社 Diffraction ring formation system and x-ray diffraction measurement system
CN106767572A (en) * 2017-01-10 2017-05-31 中国科学院烟台海岸带研究所 A kind of method for observing spilled oil on water surface oil film roughness

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11316201A (en) * 1998-01-30 1999-11-16 Rigaku Industrial Co Method for inspecting surface of sample and x-ray analyser used therein
JP2004191376A (en) * 2002-12-06 2004-07-08 Jordan Valley Applied Radiation Ltd Beam centering method and angle calibration method for x-ray reflectometer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11316201A (en) * 1998-01-30 1999-11-16 Rigaku Industrial Co Method for inspecting surface of sample and x-ray analyser used therein
JP2004191376A (en) * 2002-12-06 2004-07-08 Jordan Valley Applied Radiation Ltd Beam centering method and angle calibration method for x-ray reflectometer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014106079A (en) * 2012-11-27 2014-06-09 Showa Denko Kk Total reflection fluorescence x-ray analysis method and total reflection fluorescence x-ray analysis device
JP2014202620A (en) * 2013-04-05 2014-10-27 学校法人福岡大学 Film sample for surface analysis and film sample sampling jig, and sampling method
JP2014238295A (en) * 2013-06-06 2014-12-18 パルステック工業株式会社 Diffraction ring formation system and x-ray diffraction measurement system
CN106767572A (en) * 2017-01-10 2017-05-31 中国科学院烟台海岸带研究所 A kind of method for observing spilled oil on water surface oil film roughness

Similar Documents

Publication Publication Date Title
TWI518315B (en) Method and apparatus for x-ray analysis
JP5009563B2 (en) Sample inspection method and apparatus
US6753972B1 (en) Thin film thickness measuring method and apparatus, and method and apparatus for manufacturing a thin film device using the same
NL2010298C2 (en) Device for noncontact determination of edge profile at a thin disk-shaped object.
US7502101B2 (en) Apparatus and method for enhanced critical dimension scatterometry
CN107850555B (en) Interferometric roll-off measurement using static fringe patterns
KR101242520B1 (en) Enhancement of x-ray reflectometry by measurement of diffuse reflections
JP2008177579A (en) Dynamic wafer stress management system
JP2000009437A (en) Method and apparatus for measuring thin film thickness, method for manufacturing thin film device using the same, and apparatus for manufacturing the same
KR20070056947A (en) Optical system to detect the characteristics of the sample
US9080944B2 (en) Method and apparatus for surface mapping using in-plane grazing incidence diffraction
JP3919775B2 (en) X-ray reflectivity measuring method and apparatus
JP4909480B2 (en) Layer and surface property optical measurement method and apparatus
JP2006105748A (en) Analysis method with beam injection
JP2009109387A (en) Sample analysis apparatus and sample analysis method
JP4367820B2 (en) X-ray reflectivity measuring device
JPWO2014038601A1 (en) Coating surface roughness distribution measuring device
JP2008076283A (en) Method for adjusting optical axis of substrate inspection device, and optical axis adjusting sample
JP4260683B2 (en) Ellipsometer, polarization state acquisition method and light intensity acquisition method
US12366445B2 (en) Measuring apparatus and method for roughness and/or defect measurement on a surface
US20240183655A1 (en) Measuring apparatus and method for roughness and/or defect measurement on a surface
JP2003121129A (en) Apparatus and method for measurement of shape
JP2952284B2 (en) X-ray optical system evaluation method
JP3856500B2 (en) X-ray thin film thickness analysis method and analyzer
JP2000292376A (en) Crystal thickness measuring method and crystal thickness measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100309