JP2003315129A - Thermal flow meter - Google Patents
Thermal flow meterInfo
- Publication number
- JP2003315129A JP2003315129A JP2002119741A JP2002119741A JP2003315129A JP 2003315129 A JP2003315129 A JP 2003315129A JP 2002119741 A JP2002119741 A JP 2002119741A JP 2002119741 A JP2002119741 A JP 2002119741A JP 2003315129 A JP2003315129 A JP 2003315129A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- resistance
- flow rate
- ambient temperature
- measuring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Measuring Volume Flow (AREA)
Abstract
(57)【要約】
【課題】 周囲温度の変化にかかわることなく、且つ広
い流量範囲で高精度な流量計測を行い得る熱式流量計測
装置を提供する。
【解決手段】 ヒータ素子を間にして、流体の通流方向
に第1および第2の測温抵抗素子を設けた流量センサの
ヒータ素子の発熱温度を、上記第1および第2の測温抵
抗素子の測温温度の平均値がヒータ素子に設けられた周
囲温度測温抵抗素子で測温される周囲温度上昇よりもさ
らに高くなるように、ヒータ制御手段が制御すること
で、広い流量計測範囲で高精度な流量計測を可能とし、
かつヒータ制御手段は、周囲温度の変化に応じて、上記
発熱温度と周囲温度との差を制御し、温度変化による流
量センサ感度変化を軽減して周囲温度の変化にかかわる
ことなく高精度な流量計測を行う。
(57) [Problem] To provide a thermal type flow measurement device capable of performing high-accuracy flow measurement in a wide flow range without being affected by a change in ambient temperature. SOLUTION: The heat generation temperature of a heater element of a flow sensor provided with first and second resistance temperature sensors in a flow direction of a fluid with a heater element interposed therebetween is set to the first and second resistance temperature sensors. The heater control means controls the average value of the measured temperature of the element to be higher than the rise in the ambient temperature measured by the ambient temperature resistance element provided in the heater element. Enables high-precision flow measurement,
In addition, the heater control means controls the difference between the heat generation temperature and the ambient temperature in accordance with the change in the ambient temperature, reduces the change in the flow rate sensor sensitivity due to the temperature change, and provides a high-precision flow rate regardless of the ambient temperature change Perform measurement.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、周囲温度の変化に
かかわることなく、且つ広い流量範囲で高精度な流量計
測を行い得る熱式流量計測装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermal type flow rate measuring device capable of performing highly accurate flow rate measurement in a wide flow rate range regardless of changes in ambient temperature.
【0002】[0002]
【従来の技術】熱式流量計測装置を構成する流量センサ
は、たとえば図5に示すようにシリコン基板B上に設け
た発熱抵抗体からなるヒータ素子Rhを間にして、流体
の通流方向Fに測温抵抗体からなる一対の温度センサR
u、Rdを設けた素子構造を有する。この熱式流量計測
装置は、上記ヒータ素子Rhに供給される電流によって
発せられる熱で生じる前記流体の通流方向Fにおける温
度分布(以下「ヒータ周辺温度分布」という)が前記流
体の流速によって変化することを利用し、温度センサR
u,Rdの温度による抵抗値変化から、前記流体の流量
を検出するように構成される。2. Description of the Related Art A flow rate sensor which constitutes a thermal type flow rate measuring apparatus has a heater element Rh formed of a heating resistor provided on a silicon substrate B as shown in FIG. A pair of temperature sensors R consisting of resistance temperature detectors
It has an element structure in which u and Rd are provided. In this thermal type flow rate measuring device, the temperature distribution in the flow direction F of the fluid (hereinafter referred to as "heater peripheral temperature distribution") generated by the heat generated by the current supplied to the heater element Rh changes depending on the flow velocity of the fluid. By utilizing the temperature sensor R
The flow rate of the fluid is detected from the change in resistance value of u and Rd depending on the temperature.
【0003】具体的なヒータ周辺温度分布は、流体の流
量Qがゼロの場合には、通流方向下流側の温度は通流方
向上流側の温度と同一となり、流体の流量Qがゼロでな
い場合には、下流側の温度が上流側の温度よりも高くな
る。そこで熱式流量計測装置は、通流下流側の温度セン
サRdと通流上流側の温度センサRuとの測温結果か
ら、下流側と上流側との温度差を流量センサの出力とし
て検出し流量Qを計測するものである。なお、図5中R
rは前記ヒータ素子Rhから離れた位置に設けられた周
囲温度測温抵抗素子をなす温度センサであり、周囲温度
(計測対象である流体の温度)の計測に用いられる。As for the specific temperature distribution around the heater, when the flow rate Q of the fluid is zero, the temperature on the downstream side in the flow direction is the same as the temperature on the upstream side in the flow direction, and when the flow rate Q of the fluid is not zero. In addition, the temperature on the downstream side becomes higher than the temperature on the upstream side. Therefore, the thermal type flow rate measuring device detects the temperature difference between the downstream side and the upstream side as the output of the flow rate sensor from the temperature measurement results of the temperature sensor Rd on the downstream side of the flow passage and the temperature sensor Ru on the upstream side of the flow passage. It measures Q. In addition, R in FIG.
Reference numeral r is a temperature sensor that forms an ambient temperature measuring resistance element provided at a position distant from the heater element Rh, and is used to measure the ambient temperature (the temperature of the fluid to be measured).
【0004】こうした熱式流量計測装置では、ヒータ素
子Rhと周囲温度との温度差((ヒータ素子Rhの温
度)−(周囲温度)、以下「(ヒータ温度−周囲温度)
DT」と表示する)を常に一定に保つようにヒータ素子
Rhを駆動・制御するものがある。しかし、こうした熱
式流量計測装置では、図6の流量計測特性に示すよう
に、周囲温度が高くなるほど、流量センサの出力は低下
する(流量センサの感度は低下する)ことが知られてい
る(図6中の温度は周囲温度を示す)。また、流量Qの
増加と共に、ヒータ素子Rhの発した熱が流体と共に流
量センサ外に流出する。このため、流量Qの増加と共
に、上記温度センサRd、Ru間の温度差の増加率は減
少し、流量計測特性を表す曲線は流量Qの増加と共にそ
の傾斜が小さくなり、ついには飽和する。そうすると高
流量領域における流量計測の精度が低下することのみな
らず、熱式流量計測装置の流量計測範囲が狭くなる。In such a thermal type flow rate measuring device, the temperature difference between the heater element Rh and the ambient temperature ((temperature of the heater element Rh)-(ambient temperature), hereinafter "(heater temperature-ambient temperature)"
There is one that drives and controls the heater element Rh so as to always keep constant (denoted as "DT"). However, in such a thermal type flow rate measuring device, as shown in the flow rate measuring characteristic of FIG. 6, it is known that the output of the flow rate sensor decreases (the sensitivity of the flow rate sensor decreases) as the ambient temperature rises ( The temperature in FIG. 6 indicates the ambient temperature). Further, as the flow rate Q increases, the heat generated by the heater element Rh flows out of the flow rate sensor together with the fluid. Therefore, as the flow rate Q increases, the rate of increase in the temperature difference between the temperature sensors Rd and Ru decreases, and the curve representing the flow rate measurement characteristic decreases in slope with the increase in the flow rate Q and finally saturates. This not only lowers the accuracy of flow rate measurement in the high flow rate region, but also narrows the flow rate measurement range of the thermal type flow rate measuring device.
【0005】他方、(ヒータ温度−周囲温度)DTを大
きくするほど、ヒータ周辺温度分布の通流方向Fに対す
る変化は大きくなり、流量センサの感度が向上する。そ
こで実公平7−51618号公報に開示されるように、
周囲温度が高くなるほど、図7(a)の実線に示すよう
に、(ヒータ温度−周囲温度)DTを大きくし、流量セ
ンサの感度が温度上昇で低下することを軽減する熱式流
量計測装置が提供されている。On the other hand, as the (heater temperature-ambient temperature) DT is increased, the change in the heater ambient temperature distribution with respect to the flow direction F is increased, and the sensitivity of the flow rate sensor is improved. Therefore, as disclosed in Japanese Utility Model Publication No. 7-51618,
As shown in the solid line in FIG. 7A, the higher the ambient temperature, the larger the heater temperature-ambient temperature DT, and the thermal type flow rate measuring device that reduces the decrease in the sensitivity of the flow rate sensor due to the temperature rise. It is provided.
【0006】[0006]
【発明が解決しようとする課題】しかし、周囲温度が高
くなるほど(ヒータ温度−周囲温度)DTを大きくして
も、周囲温度の上昇に伴う流量センサの感度低下を軽減
できるだけであり、流量Qの増加に伴って流量計測特性
曲線の傾斜が小さくなることを軽減することはできな
い。However, as the ambient temperature rises (heater temperature-ambient temperature) DT is increased, it is possible to reduce the decrease in the sensitivity of the flow sensor due to the rise in ambient temperature, and the flow rate Q It cannot be reduced that the slope of the flow rate measurement characteristic curve becomes smaller with the increase.
【0007】そのため、上述の熱式流量計測装置は、広
い流量計測範囲で温度変化に対して流量センサの感度の
変化を減少することができず、図7(b)に示すよう
に、たとえば上記流量Qxにおいてのみ各温度の流量計
測特性曲線を重ね得るにすぎないのであり、広い流量範
囲で周囲温度の影響を軽減して高精度な流量計測を行う
ことができない、という問題がある。そして、図7
(b)に示すように、上記流量Qxを境界点とし、流量
がQxより多いときには温度上昇によるセンサ感度の変
化が低下し、流量がQxより少ないときには温度上昇に
よるセンサ感度の変化が増加するような流量計測特性曲
線の温度補償は、一般に複雑化して困難か或いはコスト
アップを招来する、という問題もある。Therefore, the above-mentioned thermal type flow rate measuring device cannot reduce the change in the sensitivity of the flow rate sensor with respect to the temperature change in a wide flow rate measuring range, and as shown in FIG. Since the flow rate measurement characteristic curves of the respective temperatures can be overlapped only at the flow rate Qx, there is a problem that it is not possible to reduce the influence of the ambient temperature in a wide flow rate range and perform highly accurate flow rate measurement. And FIG.
As shown in (b), with the flow rate Qx as a boundary point, when the flow rate is higher than Qx, the change in the sensor sensitivity due to the temperature increase decreases, and when the flow rate is lower than Qx, the change in the sensor sensitivity due to the temperature increase increases. There is also a problem in that temperature compensation of a large flow rate measurement characteristic curve is generally complicated and difficult or costly.
【0008】また、上述の熱式流量計測装置の例として
家庭用のガスメータがあるが、家庭用のガスメータで
は、ガス料金の公平性の観点から、如何なる時間帯で如
何なる量のガスが消費されても、消費されたガスの真の
量(真のガス流量に対応)に応じた真のガス料金を基準
として、消費者が支払った実際の料金の誤差を所定の誤
差範囲(百分率)内におさめることが要求されている。[0008] Further, although there is a household gas meter as an example of the above-mentioned thermal type flow rate measuring device, in the household gas meter, from a viewpoint of fairness of gas charges, what amount of gas is consumed in any time zone. Also, the error of the actual charge paid by the consumer is kept within a predetermined error range (percentage) based on the true gas charge according to the true amount of gas consumed (corresponding to the true gas flow rate). Is required.
【0009】しかし、一般の流量計では流量計測のフル
スパンを基準として、流量計測の精度を規定するので
(以下「%FS」という)、フルスパン以下の流量で
は、真の流量に対する許容誤差が増加する。たとえば1
%FSの精度の流量計で、フルスパンの10%の流量に
おいて許容される誤差はフルスパンの流量の1%、すな
わち(1%)/(10%)=10%の誤差が許容される
ことになる。そうすると、家庭用ガスメータでは、少量
のガスを長時間にわたって消費する消費者のガス消費量
計測の精度が低下し、上記ガス料金の公平性維持から好
ましくない。However, in a general flow meter, since the accuracy of the flow rate measurement is defined with reference to the full span of the flow rate measurement (hereinafter referred to as "% FS"), the allowable error with respect to the true flow rate increases at the flow rate of less than the full span. . For example 1
With a flow meter with an accuracy of% FS, an allowable error at a flow rate of 10% of full span is 1% of a full span flow rate, that is, an error of (1%) / (10%) = 10% is allowed. . Then, in the household gas meter, the accuracy of measuring the gas consumption amount of the consumer who consumes a small amount of gas for a long time is deteriorated, which is not preferable from the viewpoint of maintaining the fairness of the gas charge.
【0010】本発明は、上記問題を解決するためになさ
れたものであり、周囲温度の変化にかかわることなく、
且つ広い流量範囲で高精度な流量計測を行い得る熱式流
量計測装置を提供することを目的とする。The present invention has been made in order to solve the above-mentioned problems, and it is
Moreover, it is an object of the present invention to provide a thermal type flow rate measuring device capable of performing highly accurate flow rate measurement in a wide flow rate range.
【0011】[0011]
【課題を解決するための手段】上記目的を達成するた
め、本発明の請求項1に記載の熱式流量計測装置は、ヒ
ータ素子、このヒータ素子を間にして流体の通流方向に
それぞれ設けられた第1および第2の測温抵抗素子、お
よびその周囲温度を検出する周囲温度測温抵抗素子を備
えた流量センサと、周囲温度測温抵抗素子による測温温
度の変化に応じて、第1および第2の測温抵抗素子によ
る測温温度の平均値を周囲温度測温抵抗素子による測温
温度上昇よりもさらに高く維持するようにヒータ温度を
制御するヒータ制御手段と、第1の測温抵抗素子と第2
の測温抵抗素子との測温温度差から流量センサを通流す
る流体の流量を計測する流量計測手段とを備える。In order to achieve the above object, a thermal type flow rate measuring device according to claim 1 of the present invention is provided with a heater element and a heater element provided in the fluid flow direction. A first flow rate sensor having the first and second resistance temperature measuring elements and an ambient temperature resistance measuring element for detecting the ambient temperature thereof; The heater control means for controlling the heater temperature so as to maintain the average value of the temperature measured by the first and second temperature measuring resistance elements higher than the temperature increase by the ambient temperature measuring resistance element, and the first temperature measuring means. Temperature resistance element and second
Flow rate measuring means for measuring the flow rate of the fluid flowing through the flow rate sensor from the temperature difference between the temperature measuring resistance element and the temperature measuring resistance element.
【0012】上記ヒータ制御手段は、周囲温度測温抵抗
素子による周囲温度の測温結果に基づき、(ヒータ温度
−周囲温度)DTを周囲温度の上昇よりも大きくするこ
とによって、温度上昇に伴う流量センサの感度低下を軽
減することができる。また、上記ヒータ制御手段は、第
1および第2の測温抵抗素子の測温温度の平均値の計測
結果から、周囲温度が一定の場合に、通流する流体の流
量が増加しても、ヒータ素子の駆動を制御することによ
って、第1および第2の測温抵抗素子の測温温度の平均
値を一定値に維持することができる。したがって、周囲
温度が一定の場合に、流量Qの増加に伴い流量センサか
ら流出する熱量が増加しても、第1の測温抵抗素子およ
び第2の測温抵抗素子に与える上記熱量流出の影響が軽
減される。そうすると、流量Qの増加と共に、ヒータ素
子Rhの発した熱が流体と共に流量センサ外に流出する
ために生じる温度センサRd、Ru間の温度差の増加率
の減少が軽減されて、流量Qの増加に伴って流量計測特
性曲線の傾斜が小さくなることが改善され、高流量領域
における流量計測特性を表す曲線の飽和も軽減される。The heater control means makes the (heater temperature-ambient temperature) DT larger than the increase in the ambient temperature based on the result of measuring the ambient temperature by the ambient temperature resistance measuring element, so that the flow rate accompanying the rise in temperature is increased. It is possible to reduce the decrease in the sensitivity of the sensor. Further, the heater control means, based on the measurement result of the average value of the temperature measurement temperatures of the first and second temperature measurement resistance elements, when the ambient temperature is constant, even if the flow rate of the flowing fluid increases, By controlling the driving of the heater element, the average value of the temperature measured by the first and second temperature measuring resistance elements can be maintained at a constant value. Therefore, when the ambient temperature is constant, even if the amount of heat flowing out from the flow rate sensor increases as the flow rate Q increases, the influence of the amount of heat flowing out on the first temperature measuring resistance element and the second temperature measuring resistance element is affected. Is reduced. Then, as the flow rate Q increases, the decrease in the increase rate of the temperature difference between the temperature sensors Rd and Ru caused by the heat generated by the heater element Rh flowing out of the flow rate sensor together with the fluid is reduced, and the flow rate Q increases. As a result, the inclination of the flow rate measurement characteristic curve is reduced, and the saturation of the curve representing the flow rate measurement characteristic in the high flow rate region is also reduced.
【0013】すなわち、上記ヒータ制御手段は、温度上
昇に伴う流量センサの感度低下を軽減すると共に、流量
Qの増加に伴って流量計測特性曲線の傾斜が小さくなる
ことを軽減するので、周囲温度の変化にかかわることな
く、且つ広い流量範囲で高精度な流量計測を行い得る熱
式流量計測装置が実現される。また、特定の流量を境界
点として行う複雑或いはコストアップを招来する温度補
償を必要としない。That is, the heater control means reduces the decrease in the sensitivity of the flow rate sensor due to the temperature rise and the decrease in the slope of the flow rate measurement characteristic curve as the flow rate Q increases. A thermal type flow rate measuring device is realized which is capable of performing highly accurate flow rate measurement in a wide flow rate range regardless of changes. Further, there is no need to perform temperature compensation which is complicated or costs up because a specific flow rate is used as a boundary point.
【0014】請求項2に記載の熱式流量計測装置は、第
1および第2の測温抵抗素子との直列回路、並びに/ま
たは周囲温度測温抵抗素子に並列接続された抵抗温度係
数設定用の抵抗素子を備える。したがって、周囲温度測
温抵抗素子とこの周囲温度測温抵抗素子に並列接続され
る抵抗温度係数設定用の抵抗素子(以下「第1の抵抗素
子」)との合成抵抗の抵抗温度係数、および/または第
1および第2の測温抵抗素子との直列回路とこれら測温
抵抗素子に並列接続される抵抗温度係数設定用の抵抗素
子(以下「第2の抵抗素子」)との合成抵抗の抵抗温度
係数を、それぞれ任意に設定することができる。According to a second aspect of the present invention, there is provided a thermal type flow rate measuring device for setting a resistance temperature coefficient, which is connected in parallel with a series circuit including the first and second temperature measuring resistance elements and / or an ambient temperature measuring resistance element. Of the resistance element. Therefore, the resistance temperature coefficient of the combined resistance of the ambient temperature resistance measuring element and the resistance element for resistance temperature coefficient setting (hereinafter referred to as “first resistance element”) connected in parallel to the ambient temperature measuring resistance element, and / Alternatively, the resistance of the combined resistance of the series circuit of the first and second temperature measuring resistance elements and the resistance element for setting the temperature coefficient of resistance (hereinafter “second resistance element”) connected in parallel to these temperature measuring resistance elements The temperature coefficient can be set arbitrarily.
【0015】かくして、上記各抵抗温度係数の設定によ
り、第1および第2の測温抵抗素子による測温温度の平
均値を周囲温度測温抵抗素子による測温温度よりも所定
温度だけ高く維持するようにヒータ温度を制御するヒー
タ制御手段は、周囲温度が上昇した場合に、周囲温度測
温抵抗素子による測温温度計測に基づき(ヒータ温度−
周囲温度)DTを周囲温度の上昇よりも大きくする制御
をすることができ、温度上昇に伴う流量センサの感度低
下を軽減することができる。Thus, by setting the resistance temperature coefficients, the average value of the temperature measured by the first and second temperature measuring resistance elements is maintained higher than the temperature measured by the ambient temperature temperature measuring resistance element by a predetermined temperature. When the ambient temperature rises, the heater control means for controlling the heater temperature as described above is based on the measurement of the temperature measured by the ambient temperature resistance measuring element (heater temperature-
The ambient temperature) DT can be controlled to be larger than the increase in the ambient temperature, and the decrease in the sensitivity of the flow sensor due to the increase in the temperature can be reduced.
【0016】請求項3に記載の熱式流量計測装置は、周
囲温度測温抵抗素子と第1の抵抗素子との並列接続の合
成抵抗の抵抗温度係数が、直列接続された第1および第
2の測温抵抗素子と第2の抵抗素子との並列接続の合成
抵抗の抵抗温度係数よりも大きいことを特徴とする。し
たがって、上記各抵抗素子の抵抗温度係数を正の値とす
れば、周囲温度が上昇すると、直列接続された第1およ
び第2の測温抵抗素子側の抵抗値増加に対して、周囲温
度測温抵抗素子側の抵抗値増加の方が大きくなる。これ
ら抵抗値増加の相違(周囲温度測温抵抗素子側の抵抗値
増加の方が大きいこと)を電圧として検出することによ
り、ヒータ制御手段は、上記ヒータ素子に印加される電
圧を増加することができ、周囲温度が上昇した場合に、
(ヒータ温度−周囲温度)DTを周囲温度の上昇よりも
大きくすることが可能となり、流量センサの感度低下を
軽減することができる。According to a third aspect of the thermal type flow rate measuring device, the resistance temperature coefficient of the combined resistance of the parallel connection of the ambient temperature measuring resistance element and the first resistance element is the first and the second. Is larger than the temperature coefficient of resistance of the combined resistance of the temperature measuring resistance element and the second resistance element connected in parallel. Therefore, if the resistance temperature coefficient of each resistance element is set to a positive value, when the ambient temperature rises, the ambient temperature measurement is performed against the increase in the resistance value on the first and second temperature measurement resistance element sides connected in series. The increase in the resistance value on the temperature resistance element side is larger. The heater control means can increase the voltage applied to the heater element by detecting the difference in the increase in the resistance value (the increase in the resistance value on the side of the ambient temperature measuring resistance element being larger) as the voltage. Yes, if the ambient temperature rises,
(Heater temperature-ambient temperature) DT can be made larger than the increase in ambient temperature, and the decrease in the sensitivity of the flow sensor can be reduced.
【0017】[0017]
【発明の実施の形態】以下、図面を参照して、本発明の
実施形態に係る熱式流量計測装置を説明する。図1は本
発明に係る熱式流量計測装置の一実施形態の概略要部構
成図である。この熱式流量計測装置1は、図5に示す構
造を有する流量センサ10と、ヒータ制御手段をなす増
幅器11およびトランジスタ12と、流量計測手段をな
す第1のブリッジ回路を有しており、この第1のブリッ
ジ回路は上流側の温度センサRu(流量センサ10が備
える第1の測温抵抗素子)、下流側の温度センサRd
(流量センサ10が備える第2の測温抵抗素子)、抵抗
Raおよび抵抗Rbからなる。BEST MODE FOR CARRYING OUT THE INVENTION A thermal type flow rate measuring device according to an embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic configuration diagram of an essential part of an embodiment of a thermal type flow rate measuring device according to the present invention. This thermal type flow rate measuring device 1 has a flow rate sensor 10 having the structure shown in FIG. 5, an amplifier 11 and a transistor 12 which are heater control means, and a first bridge circuit which is a flow rate measurement means. The first bridge circuit includes an upstream temperature sensor Ru (first temperature measuring resistance element included in the flow rate sensor 10) and a downstream temperature sensor Rd.
(Second temperature measuring resistance element included in the flow sensor 10), a resistance Ra and a resistance Rb.
【0018】上記流量計測手段をなす第1のブリッジ回
路は、温度センサRu、Rdの直列回路と、抵抗Ra、
Rbの直列回路とを並列接続してなり、温度センサRd
と抵抗Rbが接続された該第1のブリッジ回路の一端側
は接地され、該第1のブリッジ回路の他端側は抵抗R1
を介して電源線Vcに接続されている。そして、抵抗R
aと抵抗Rbとの接続点N1および温度センサRuと温
度センサRdとの接続点N2が該第1のブリッジ回路の
出力となっている。接続点N1の電位は抵抗Ra、Rb
の分圧比で決定され、一方接続点N2の電位は各温度セ
ンサRu、Rdの各抵抗値によって決定される。The first bridge circuit, which constitutes the flow rate measuring means, includes a series circuit of temperature sensors Ru and Rd, a resistor Ra,
Rb series circuit is connected in parallel, temperature sensor Rd
And one end of the first bridge circuit to which the resistor Rb is connected are grounded, and the other end of the first bridge circuit is connected to the resistor R1.
Is connected to the power supply line Vc via. And the resistance R
The connection point N1 between a and the resistance Rb and the connection point N2 between the temperature sensor Ru and the temperature sensor Rd are outputs of the first bridge circuit. The potential at the connection point N1 is the resistances Ra and Rb.
Of the temperature sensors Ru and Rd, and the potential of the connection point N2 is determined by the resistance value of each of the temperature sensors Ru and Rd.
【0019】たとえば抵抗Ra、Rbの抵抗値を等しく
設定した場合、温度センサRu、Rdの抵抗値が等しい
ときには、該第1のブリッジ回路は平衡して、接続点N
1、N2間の電位差はゼロ(V)となる。他方、温度セ
ンサRu、Rdの抵抗値が等しくないときには、該第1
のブリッジ回路は平衡せず、接続点N1、N2間に電位
差が生じる。こうして接続点N1、N2間の電位差から
温度センサRu、Rdの各測温温度の差を検出でき、接
続点N1、N2は流量センサ出力端子となる。For example, when the resistance values of the resistors Ra and Rb are set equal, and when the resistance values of the temperature sensors Ru and Rd are equal, the first bridge circuit is balanced and the connection point N
The potential difference between 1 and N2 is zero (V). On the other hand, when the resistance values of the temperature sensors Ru and Rd are not equal, the first sensor
The bridge circuit is not balanced, and a potential difference occurs between the connection points N1 and N2. In this way, the difference between the temperature measurement temperatures of the temperature sensors Ru and Rd can be detected from the potential difference between the connection points N1 and N2, and the connection points N1 and N2 are flow sensor output terminals.
【0020】熱式流量計測装置1はさらに第2のブリッ
ジ回路によって、前記第1および第2の測温抵抗素子の
測温温度の平均値と前記周囲温度測温抵抗素子の測温温
度との差を測定し、この測定結果に基づきヒータ制御手
段が(ヒータ温度−周囲温度)DTを制御すべくヒータ
素子Rhを駆動するものとなっている。上記第2のブリ
ッジ回路は、第1のブリッジ回路(なお該第1のブリッ
ジ回路には後述する抵抗Rxが並列接続される)と抵抗
R1との直列回路が、周囲温度測温抵抗素子Rr(なお
周囲温度測温抵抗素子Rrには後述する抵抗Ryが並列
接続される)と抵抗R2との直列回路に並列接続されて
なり、周囲温度測温抵抗素子Rrと前記第1のブリッジ
回路の一端側が接続される該第2のブリッジ回路の一端
側は接地され、抵抗R1およびR2が接続される該第2
のブリッジ回路の他端側は電源線Vcに接続されてい
る。The thermal type flow rate measuring device 1 further uses a second bridge circuit to divide the average value of the temperature measured by the first and second resistance temperature measuring elements and the temperature measured by the ambient temperature resistance measuring element. The heater control means drives the heater element Rh to control the DT (heater temperature-ambient temperature) DT based on the measured difference. In the second bridge circuit, a series circuit of a first bridge circuit (a resistor Rx described later is connected in parallel to the first bridge circuit) and a resistor R1 is an ambient temperature measuring resistance element Rr ( A resistance Ry, which will be described later, is connected in parallel to the ambient temperature measuring resistance element Rr) and a resistor R2 connected in parallel in a series circuit, and the ambient temperature measuring resistance element Rr and one end of the first bridge circuit are connected. One end of the second bridge circuit to which the side is connected is grounded, and the second side to which the resistors R1 and R2 are connected
The other end of the bridge circuit is connected to the power supply line Vc.
【0021】第1のブリッジ回路と抵抗R1との接続点
N3、および周囲温度測温抵抗素子Rrと抵抗R2との
接続点N4が第2のブリッジ回路の出力であり、接続点
N3は増幅器11の非反転入力端子に接続され、接続点
N4は増幅器11の反転入力端子に接続されている。増
幅器11はエミッタが電源線Vcに接続されたトランジ
スタ12(PNPトランジスタ)を介してヒータ素子R
hを駆動する。該第2のブリッジは接続点N3、N4の
電位が等しいときに平衡する(この平衡状態が維持され
るように増幅器11とトランジスタ12がヒータ素子R
hを駆動する)。The connection point N3 between the first bridge circuit and the resistor R1 and the connection point N4 between the ambient temperature measuring resistance element Rr and the resistor R2 are the outputs of the second bridge circuit, and the connection point N3 is the amplifier 11. Of the amplifier 11 and the connection point N4 is connected to the inverting input terminal of the amplifier 11. The amplifier 11 has a heater element R via a transistor 12 (PNP transistor) whose emitter is connected to the power supply line Vc.
drive h. The second bridge is balanced when the potentials at the connection points N3 and N4 are equal (the amplifier 11 and the transistor 12 are connected to the heater element R so that this balanced state is maintained).
drive h).
【0022】ここで接続点N3は、温度センサRu、R
dの測温温度の合計値に対応した抵抗値により電位が定
まり、この電位が増幅器11の非反転入力端子に入力さ
れる。この場合、温度センサRu、Rdの測温温度の合
計値は温度センサRu、Rdの測温温度の平均値の2倍
であり、増幅器11の非反転入力端子側の利得と増幅器
11の反転入力端子側の利得との関係を適宜設定するこ
とで、温度センサRu、Rdの測温温度の合計値を温度
センサRu、Rdの測温温度の平均値として扱うことが
できる。The connection point N3 is a temperature sensor Ru, R.
The potential is determined by the resistance value corresponding to the total value of the measured temperature of d, and this potential is input to the non-inverting input terminal of the amplifier 11. In this case, the total value of the temperature measurement temperatures of the temperature sensors Ru and Rd is twice the average value of the temperature measurement temperatures of the temperature sensors Ru and Rd, and the gain on the non-inverting input terminal side of the amplifier 11 and the inverting input of the amplifier 11 are By appropriately setting the relationship with the gain on the terminal side, the total value of the temperature measurement temperatures of the temperature sensors Ru and Rd can be treated as the average value of the temperature measurement temperature of the temperature sensors Ru and Rd.
【0023】なおヒータ制御手段はコンデンサCによる
負帰還でその動作の安定化が計られ、増幅器11の出力
端子とトランジスタ12のベース間には、抵抗R3が直
列に介在してトランジスタ12のベース電流を制限して
いる。そして、第2のブリッジ回路においては、(ヒー
タ温度−周囲温度)DTを周囲温度の上昇よりも大きく
増加させるため、周囲温度測温抵抗素子Rrと抵抗Ry
とを並列接続した該並列接続の合成抵抗の抵抗温度係数
(以下「Rr側温度係数」と表示する)は、温度センサ
Ru、Rdの直列回路と抵抗Rxとを並列接続した該並
列接続の合成抵抗の抵抗温度係数(以下「Rud側温度
係数」と表示する)よりも、大きな抵抗温度係数を有し
ている。The operation of the heater control means is stabilized by the negative feedback of the capacitor C, and the resistor R3 is interposed in series between the output terminal of the amplifier 11 and the base of the transistor 12 to cause the base current of the transistor 12 to flow. Is restricted. In the second bridge circuit, the (heater temperature-ambient temperature) DT is increased more than the increase in the ambient temperature. Therefore, the ambient temperature measuring resistance element Rr and the resistance Ry are increased.
The temperature coefficient of resistance of the combined resistance of the parallel connection (hereinafter referred to as “Rr-side temperature coefficient”) is a combination of the parallel connection of the series circuit of the temperature sensors Ru and Rd and the resistance Rx. The resistance temperature coefficient is larger than the resistance temperature coefficient of resistance (hereinafter referred to as “Rud side temperature coefficient”).
【0024】たとえば、20℃における周囲温度測温抵
抗素子Rrの抵抗値と抵抗Ryの抵抗値が等しく、周囲
温度測温抵抗素子Rrの抵抗温度係数がα1であり抵抗
Ryの抵抗温度係数がゼロならば、Rr側温度係数は
(α1)/2になるが如くに、Rr側温度係数とRud
側温度係数とを任意に設定することができる。なお抵抗
Ra、Rbの抵抗値は、いずれも温度センサRu、Rd
の抵抗値よりも充分高い抵抗値であり、Rud側温度係
数に影響を与えないものとする。For example, at 20 ° C., the resistance value of the ambient temperature measuring resistance element Rr and the resistance value of the resistance Ry are equal, the resistance temperature coefficient of the ambient temperature measuring resistance element Rr is α1, and the resistance temperature coefficient of the resistance Ry is zero. Then, the Rr-side temperature coefficient becomes (α1) / 2, so that the Rr-side temperature coefficient and the Rud
The side temperature coefficient can be set arbitrarily. The resistance values of the resistors Ra and Rb are the same as those of the temperature sensors Ru and Rd.
The resistance value is sufficiently higher than the resistance value of 1 and does not affect the Rud side temperature coefficient.
【0025】次に流量Qの増加に伴い流量計測特性曲線
の傾斜減少を軽減する作用について説明する。流量Qが
ゼロでたとえば周囲温度が20℃の場合には、図2
(a)に示すように、ヒータ素子Rhが発する熱による
ヒータ周辺温度分布は、ヒータ素子Rhが配置された位
置(図中Hと表示する)を中心に対象に分布し、温度セ
ンサRu、Rdが配置された位置(図中それぞれU、D
と表示する)の温度は等しく、たとえば30℃で同一と
なるとする。そしてこのとき(ヒータ温度−周囲温度)
DTは45℃で上記位置U,Dの温度を30℃に維持し
ており、位置Hの温度は65℃であるとする。Next, the operation of reducing the decrease in the slope of the flow rate measurement characteristic curve as the flow rate Q increases will be described. When the flow rate Q is zero and the ambient temperature is 20 ° C., for example, FIG.
As shown in (a), the heater ambient temperature distribution due to the heat generated by the heater element Rh is distributed around the position where the heater element Rh is arranged (indicated by H in the figure), and the temperature sensors Ru, Rd Position where is placed (U and D respectively in the figure)
(Displayed as) is the same, and is the same at 30 ° C., for example. And at this time (heater temperature-ambient temperature)
It is assumed that the temperature of the positions U and D is maintained at 30 ° C. and the temperature of the position H is 65 ° C. at 45 ° C.
【0026】上記ヒータ周辺温度分布が維持されると
き、周囲温度測温抵抗素子Rrは20℃に対応した抵抗
値であり、温度センサRu、Rdの直列抵抗が、温度セ
ンサRu、Rdの合計温度が60℃(平均値は30℃)
に対応した抵抗値において、第2のブリッジ回路は平衡
し、この平衡状態が維持されるようにヒータ素子Rhは
増幅器11とトランジスタ12で駆動されている。When the heater ambient temperature distribution is maintained, the ambient temperature measuring resistance element Rr has a resistance value corresponding to 20 ° C., and the series resistance of the temperature sensors Ru and Rd is the total temperature of the temperature sensors Ru and Rd. Is 60 ° C (average value is 30 ° C)
In the resistance value corresponding to, the second bridge circuit is balanced, and the heater element Rh is driven by the amplifier 11 and the transistor 12 so that this balanced state is maintained.
【0027】上述のように流量Qがゼロの状態では、温
度センサRu、Rdの各抵抗値は等しいので第1のブリ
ッジ回路は平衡し、流量センサ出力端子(接続点N1と
接続点N2間)の電位差がゼロになり、熱式流量計測装
置1は、流量Qがゼロであることを計測することにな
る。次に、周囲温度が上述20℃で一定の場合におい
て、流量がQ1に増加したときのヒータ制御手段の作用
について説明する。As described above, when the flow rate Q is zero, the resistance values of the temperature sensors Ru and Rd are equal, so the first bridge circuit is balanced and the flow sensor output terminal (between the connection point N1 and the connection point N2). The electric potential difference becomes zero, and the thermal type flow rate measuring device 1 measures that the flow rate Q is zero. Next, the operation of the heater control means when the flow rate increases to Q1 when the ambient temperature is constant at 20 ° C. will be described.
【0028】このとき、仮に(ヒータ温度−周囲温度)
DTが上述の45℃で一定であるとすると、ヒータが発
する熱は通流する流体によってセンサ素子外部に流出す
る。そうすると、図2(b)に示すように位置U、Dの
合計温度が低下する。たとえば位置Uの温度は27℃と
なり位置Dの温度は29℃となって、温度センサRd,
Ruの測温温度の合計値は56℃で平均値は28℃とな
るが如きである。At this time, tentatively (heater temperature-ambient temperature)
Assuming that DT is constant at 45 ° C., the heat generated by the heater flows out of the sensor element by the flowing fluid. Then, as shown in FIG. 2B, the total temperature of the positions U and D decreases. For example, the temperature at the position U is 27 ° C., the temperature at the position D is 29 ° C., and the temperature sensor Rd,
It seems that the total value of the measured temperature of Ru is 56 ° C. and the average value is 28 ° C.
【0029】上記位置U、Dの合計値の低下(平均値の
低下)は接続点N3の電位を低下させ、増幅器11の出
力電圧が低下してトランジスタ12のコレクタ電流を増
加させヒータ素子Rhの発熱が増加する。そして、図2
(c)に示すように、たとえば位置Uの温度は28℃と
なり位置Dの温度は32℃となって位置U、Dの温度の
合計値が60℃(平均値30℃)に上昇することで接続
点N3に生じる電位と、周囲温度測温抵抗素子Rrの測
温温度20℃に対応して接続点N4に生じる電位とが一
致して、前記第2のブリッジ回路が平衡する。すなわ
ち、流体の流量Qの変化に対して、位置U、Dの温度の
平均値を一定値に維持すべく(ヒータ温度−周囲温度)
DTを制御している。The reduction of the total value of the positions U and D (decrease of the average value) lowers the potential of the connection point N3, lowers the output voltage of the amplifier 11 and increases the collector current of the transistor 12, and increases the collector current of the heater element Rh. Fever increases. And FIG.
As shown in (c), for example, the temperature at the position U becomes 28 ° C., the temperature at the position D becomes 32 ° C., and the total value of the temperatures at the positions U and D rises to 60 ° C. (average value 30 ° C.). The potential generated at the connection point N3 and the potential generated at the connection point N4 corresponding to the measured temperature of the ambient temperature measuring resistance element Rr of 20 ° C. match and the second bridge circuit is balanced. That is, in order to maintain the average value of the temperatures at the positions U and D at a constant value with respect to the change in the flow rate Q of the fluid (heater temperature-ambient temperature).
It controls the DT.
【0030】かくして、熱式流量計測装置1では、流量
センサ10における位置U、Dの温度の平均値が30℃
に維持される。そうすると、流量Qの増加と共に、ヒー
タ素子Rhの発した熱が流体と共に流量センサ外に流出
するために生じる温度センサRd、Ru間の温度差の増
加率の減少が軽減されるので、図3(a)に示すように
高流量領域において、流量計測特性曲線の傾斜が小さく
なることが軽減され、且つ高流量領域における流量計測
特性を表す曲線の飽和も軽減される。Thus, in the thermal type flow rate measuring device 1, the average value of the temperatures at the positions U and D in the flow rate sensor 10 is 30 ° C.
Maintained at. Then, as the flow rate Q increases, the decrease in the increase rate of the temperature difference between the temperature sensors Rd and Ru caused by the heat generated by the heater element Rh flowing out of the flow rate sensor together with the fluid is reduced. As shown in a), in the high flow rate region, the inclination of the flow rate measurement characteristic curve is reduced, and the saturation of the curve representing the flow rate measurement characteristic in the high flow rate region is also reduced.
【0031】次に、周囲温度が上昇した場合における、
流量センサの感度低下を軽減する作用について説明す
る。ここで、第2のブリッジ回路は、前述のようにRr
側温度係数がRud側温度係数よりも、大きく設定され
ている。仮に図1に示す熱式流量計測装置1で、Rr側
温度係数とRud側温度係数とが等しい場合には、周囲
温度上昇に対する第2のブリッジ回路の接続点N3の電
位上昇と、温度センサRu、Rdの測温温度の平均値上
昇による接続点N4の電位上昇とが等しくなるように第
2のブリッジ回路が平衡する。したがって周囲温度の上
昇によって、温度センサRu、Rdの測温温度の平均値
を、周囲温度の上昇に等しくするように、ヒータ制御手
段がヒータ素子Rhを駆動する。すなわち、(ヒータ温
度−周囲温度)DTは周囲温度の上昇に等しくなる。Next, when the ambient temperature rises,
The operation of reducing the decrease in the sensitivity of the flow sensor will be described. Here, the second bridge circuit is Rr as described above.
The side temperature coefficient is set to be larger than the Rud side temperature coefficient. If the Rr-side temperature coefficient and the Rud-side temperature coefficient are equal in the thermal type flow rate measuring device 1 shown in FIG. , Rd is balanced so that the increase in the average value of the measured temperature of Rd and the increase in the potential of the connection point N4 are equal. Therefore, the heater control means drives the heater element Rh so that the average value of the temperature measured by the temperature sensors Ru and Rd becomes equal to the increase in the ambient temperature due to the increase in the ambient temperature. That is, (heater temperature-ambient temperature) DT becomes equal to the increase in ambient temperature.
【0032】しかし、図1に示す熱式流量計測装置1で
は、Rr側温度係数がRud側温度係数よりも大きい。
そうすると、上記の場合に比べて、周囲温度が上昇した
ときに、接続点N4の電位上昇が接続点N3の電位上昇
よりも大きくなる。このとき、第2のブリッジ回路が平
衡するためには、周囲温度上昇よりも温度センサRu、
Rdの測温温度の平均値の上昇が大きくなければなら
ず、ヒータ制御手段が周囲温度の上昇よりもさらに(ヒ
ータ温度−周囲温度)DTを増加させるように作用する
ことになる。こうして(ヒータ温度−周囲温度)DTが
周囲温度の上昇よりも大きくなるので、周囲温度の上昇
に伴う流量センサ10の感度低下が軽減される。However, in the thermal type flow rate measuring device 1 shown in FIG. 1, the Rr side temperature coefficient is larger than the Rud side temperature coefficient.
Then, as compared with the case described above, when the ambient temperature rises, the potential increase at the connection point N4 becomes larger than the potential increase at the connection point N3. At this time, in order to balance the second bridge circuit, the temperature sensor Ru,
The increase in the average value of the measured temperature of Rd must be large, and the heater control means acts to increase (heater temperature-ambient temperature) DT more than the increase in ambient temperature. In this way, (heater temperature-ambient temperature) DT becomes larger than the increase in the ambient temperature, so that the decrease in the sensitivity of the flow sensor 10 due to the increase in the ambient temperature is reduced.
【0033】かくして、示す熱式流量計測装置1は、流
量Qの増加に伴って流量計測特性曲線の傾斜が小さくな
ることが軽減され、高流量領域における流量計測特性を
表す曲線の飽和も軽減され、且つ図3(b)に示すよう
に、周囲温度の上昇に伴う流量センサ10の感度低下が
軽減されるので、周囲温度の変化にかかわることなく、
且つ広い流量範囲で高精度な流量計測を行うことができ
る。Thus, in the thermal type flow rate measuring device 1 shown, the inclination of the flow rate measurement characteristic curve becomes smaller as the flow rate Q increases, and the saturation of the curve showing the flow rate measurement characteristic in the high flow rate region is also reduced. Moreover, as shown in FIG. 3B, the decrease in the sensitivity of the flow sensor 10 due to the increase in the ambient temperature is reduced, so that the flow rate sensor 10 is not affected by the change in the ambient temperature.
In addition, highly accurate flow rate measurement can be performed in a wide flow rate range.
【0034】なお図4は熱式流量計測装置1の流速に対
する感度(流速計測特性)の実測例を示すものであり、
流速が0〜16m/秒の範囲で良好な感度が得られ、且
つ(−20℃〜60℃)の温度範囲で上記流速範囲で感
度誤差が良好に軽減されている。ここで流体の流量は、
流量計測部位における流体通流部の断面積と流速の積で
あるので、流速計測範囲が広いことは流量計測範囲が広
いことと同意義である。FIG. 4 shows an example of actual measurement of the sensitivity (flow velocity measurement characteristic) of the thermal type flow rate measuring device 1 with respect to the flow velocity.
Good sensitivity is obtained in the flow velocity range of 0 to 16 m / sec, and sensitivity error is well reduced in the flow velocity range in the temperature range of (-20 ° C to 60 ° C). Where the flow rate of the fluid is
Since it is the product of the cross-sectional area of the fluid flow portion and the flow velocity at the flow rate measurement site, a wide flow velocity measurement range is synonymous with a wide flow rate measurement range.
【0035】なお、周囲温度測温抵抗素子側の抵抗温度
係数設定用の抵抗素子と第1および第2の測温抵抗素子
側の抵抗温度係数設定用の抵抗素子は、必ずしも2つと
も使用する必要はなく、何れか一方の使用により、第2
のブリッジ回路出力に基づき、ヒータ制御手段が、周囲
温度の上昇よりもさらに(ヒータ温度−周囲温度)DT
を増加させるように制御できるものであればよい。The resistance element for setting the resistance temperature coefficient on the ambient temperature measuring resistance element side and the resistance element for setting the resistance temperature coefficient on the first and second temperature measuring resistance element sides are always used. There is no need to use either one, and the second
On the basis of the bridge circuit output of the above, the heater control unit causes the heater temperature to increase more than the increase in the ambient temperature (heater temperature-ambient temperature) DT.
What is necessary is that it can be controlled so as to increase.
【0036】また、第1および第2の測温抵抗素子の直
列回路並びに周囲温度測温抵抗素子と、増幅器の入力端
子(非反転入力端子、反転入力端子)との接続を、上述
した実施形態と逆の関係に接続し、第1および第2の測
温抵抗素子の直列回路側の抵抗温度係数を、周囲温度測
温抵抗素子側の抵抗温度係数よりも大きくしても同様の
作用効果が得られる。The series circuit of the first and second temperature measuring resistance elements and the connection between the ambient temperature measuring resistance element and the input terminal (non-inverting input terminal, inverting input terminal) of the amplifier are as described above. If the resistance temperature coefficient on the series circuit side of the first and second resistance temperature detectors is made larger than the resistance temperature coefficient on the ambient temperature resistance measurement element side, the same effect can be obtained. can get.
【0037】さらに、ヒータ制御手段をマイクロプロセ
ッサ等で構成することもできる。たとえば、第2のブリ
ッジ回路の出力(接続点N3,N4間のアナログ電圧出
力)をアナログ・ディジタル変換し、上記第2のブリッ
ジ回路の出力をゼロ(V)にするように、マイクロプロ
セッサ等が所定のプログラムに従ってディジタル・アナ
ログ変換器を介しヒータ素子Rhを駆動するが如くであ
る。Further, the heater control means may be constituted by a microprocessor or the like. For example, a microprocessor or the like may convert the output of the second bridge circuit (an analog voltage output between the connection points N3 and N4) into an analog-digital signal and set the output of the second bridge circuit to zero (V). It seems that the heater element Rh is driven via a digital-analog converter according to a predetermined program.
【0038】このように、本発明は上述した実施形態に
限定されるものではなく、その趣旨を逸脱しない範囲で
変形して実施することができる。As described above, the present invention is not limited to the above-described embodiments, but can be modified and carried out without departing from the spirit of the present invention.
【0039】[0039]
【発明の効果】以上説明したように、本発明の請求項1
に記載の熱式流量計測装置によれば、流量センサの上流
側温度センサと下流側温度センサの測温温度の平均値を
維持するように上記各センサの間に配置されたヒータ素
子の発熱を制御するので、流量Qの増加に伴って流量計
測特性曲線の傾斜が小さくなることが軽減され、高流量
領域における流量計測特性を表す曲線の飽和も軽減され
る。As described above, according to the first aspect of the present invention.
According to the thermal type flow rate measuring device described in (1), the heat generated by the heater element disposed between the respective sensors is maintained so as to maintain the average value of the temperature measured by the upstream temperature sensor and the downstream temperature sensor of the flow rate sensor. Since the control is performed, the inclination of the flow rate measurement characteristic curve is reduced as the flow rate Q increases, and the saturation of the curve indicating the flow rate measurement characteristic in the high flow rate region is also reduced.
【0040】またヒータ制御手段が、上流側温度センサ
と下流側温度センサの測温温度の平均値と周囲温度測温
抵抗素子の測温温度との温度差に応じてヒータ素子の駆
動を制御するので、(ヒータ温度−周囲温度)DTを周
囲温度の上昇よりも大きくすることができ、周囲温度上
昇による流量センサの感度低下が軽減される。すなわち
周囲温度の変化にかかわることなく、且つ広い流量範囲
で高精度な流量計測が可能となり、また、特定の流量を
境界点として行う複雑或いはコストアップを招来する温
度補償を必要としない。さらに、家庭用ガスメータにお
いては、如何なる流量でも高精度でガスの流量を計測で
き、ガス料金の公平性が容易に維持される、といった効
果が発揮される。Further, the heater control means controls the drive of the heater element in accordance with the temperature difference between the average value of the measured temperature of the upstream temperature sensor and the downstream temperature sensor and the measured temperature of the ambient temperature resistance measuring element. Therefore, the (heater temperature-ambient temperature) DT can be made larger than the increase in the ambient temperature, and the decrease in the sensitivity of the flow sensor due to the increase in the ambient temperature is reduced. That is, highly accurate flow rate measurement can be performed over a wide flow rate range regardless of changes in the ambient temperature, and temperature compensation that requires a specific flow rate as a boundary point and that causes complexity or cost increase is not required. Further, in the gas meter for home use, the flow rate of gas can be measured with high accuracy at any flow rate, and the fairness of the gas fee can be easily maintained.
【0041】請求項2に記載の熱式流量計測装置によれ
ば、周囲温度測温抵抗素子と第1の抵抗素子との合成抵
抗の抵抗温度係数、および上流側温度センサと下流側温
度センサとの直列回路と第2の抵抗素子との合成抵抗の
抵抗温度係数を任意に設定することができる。したがっ
て上記各抵抗温度係数の設定により、周囲温度が上昇し
た場合に、ヒータ制御手段は(ヒータ温度−周囲温度)
DTを周囲温度の上昇よりも大きくすることができ、流
量センサの感度低下を軽減する熱式流量計測装置が実現
される。According to the thermal type flow rate measuring device of the second aspect, the resistance temperature coefficient of the combined resistance of the ambient temperature measuring resistance element and the first resistance element, and the upstream side temperature sensor and the downstream side temperature sensor. The temperature coefficient of resistance of the combined resistance of the series circuit and the second resistance element can be arbitrarily set. Therefore, when the ambient temperature rises due to the setting of each resistance temperature coefficient, the heater control means (heater temperature-ambient temperature)
The DT can be made larger than the increase in the ambient temperature, and the thermal type flow rate measuring device that reduces the decrease in the sensitivity of the flow rate sensor is realized.
【0042】請求項3の熱式流量計測装置によれば、周
囲温度測温抵抗素子と前記第1の抵抗素子との合成抵抗
の抵抗温度係数が、上流側温度センサと前記第2の抵抗
素子との合成抵抗の抵抗温度係数よりも大きく設定され
る。したがって、周囲温度が上昇したとき、周囲温度測
温抵抗素子側は、上流側温度センサと下流側温度センサ
との直列抵抗側に対して、抵抗値変化が大きい。したが
って、周囲温度が上昇した場合に、ヒータ制御手段は
(ヒータ温度−周囲温度)DTを周囲温度の上昇よりも
大きくすることができ、流量センサの感度低下を軽減す
る熱式流量計測装置が実現される。According to the thermal type flow rate measuring device of the third aspect, the resistance temperature coefficient of the combined resistance of the ambient temperature measuring resistance element and the first resistance element is the upstream temperature sensor and the second resistance element. It is set to be larger than the temperature coefficient of resistance of the combined resistance of and. Therefore, when the ambient temperature rises, the resistance change on the ambient temperature measuring resistance element side is larger than that on the series resistance side of the upstream temperature sensor and the downstream temperature sensor. Therefore, when the ambient temperature rises, the heater control means can make the (heater temperature-ambient temperature) DT larger than the rise in the ambient temperature, and a thermal type flow rate measuring device that reduces the decrease in the sensitivity of the flow rate sensor is realized. To be done.
【図1】本発明に係る熱式流量計測装置の一実施形態の
概略要部構成図である。FIG. 1 is a schematic configuration diagram of an essential part of an embodiment of a thermal type flow rate measuring device according to the present invention.
【図2】熱式流量計測装置におけるヒータ周辺温度分布
の例を示すグラフである。FIG. 2 is a graph showing an example of a heater surrounding temperature distribution in the thermal type flow rate measuring device.
【図3】図1の熱式流量計測装置における流量計測特性
の例を示すグラフである。FIG. 3 is a graph showing an example of flow rate measurement characteristics in the thermal type flow rate measurement device of FIG.
【図4】本発明に係る熱式流量計測装置の流速計測特性
の実測例を示すグラフである。FIG. 4 is a graph showing an actual measurement example of flow velocity measurement characteristics of the thermal type flow rate measuring device according to the present invention.
【図5】流量センサの要部概略構成を示す図である。FIG. 5 is a diagram showing a schematic configuration of a main part of a flow sensor.
【図6】(ヒータ温度−周囲温度)DTを一定に制御す
る従来の熱式流量計測装置における流量計測特性の例を
示すグラフである。FIG. 6 is a graph showing an example of flow rate measurement characteristics in a conventional thermal type flow rate measurement apparatus that controls (heater temperature-ambient temperature) DT to be constant.
【図7】周囲温度が高くなるほど(ヒータ温度−周囲温
度)DTを大きくする従来の熱式流量計測装置における
流量計測特性の例を示すグラフである。FIG. 7 is a graph showing an example of flow rate measurement characteristics in a conventional thermal type flow rate measurement apparatus in which DT is increased as the ambient temperature becomes higher (heater temperature-ambient temperature).
1 熱式流量計測装置 10 流量センサ 11 増幅器(ヒータ制御手段) 12 トランジスタ(ヒータ制御手段) Rh ヒータ素子 Rr 周囲温度測温抵抗素子 Ru 温度センサ(第1の測温抵抗素子) Rd 温度センサ(第2の測温抵抗素子) Rx 抵抗(抵抗温度係数設定用の抵抗素子) Ry 抵抗(抵抗温度係数設定用の抵抗素子) 1 Thermal flow meter 10 Flow rate sensor 11 Amplifier (heater control means) 12 transistors (heater control means) Rh heater element Rr Ambient temperature resistance measuring element Ru temperature sensor (first resistance temperature detector) Rd temperature sensor (second resistance temperature detector) Rx resistance (resistive element for setting temperature coefficient of resistance) Ry resistance (resistive element for setting temperature coefficient of resistance)
───────────────────────────────────────────────────── フロントページの続き (72)発明者 日比 秀則 東京都渋谷区渋谷2丁目12番19号 株式会 社山武内 (72)発明者 新川 宏一郎 東京都渋谷区渋谷2丁目12番19号 株式会 社山武内 (72)発明者 瀬尾 雅己 東京都渋谷区渋谷2丁目12番19号 株式会 社山武内 Fターム(参考) 2F030 CC13 CD15 CE01 2F035 EA05 EA09 ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Hidenori Hibi 2-12-19 Shibuya, Shibuya-ku, Tokyo Stock market Takeyama (72) Inventor Koichiro Shinkawa 2-12-19 Shibuya, Shibuya-ku, Tokyo Stock market Takeyama (72) Inventor Masao Seo 2-12-19 Shibuya, Shibuya-ku, Tokyo Stock market Takeyama F term (reference) 2F030 CC13 CD15 CE01 2F035 EA05 EA09
Claims (3)
流体の通流方向にそれぞれ設けられた第1および第2の
測温抵抗素子、およびその周囲温度を検出する周囲温度
測温抵抗素子を備えた流量センサと、 前記周囲温度測温抵抗素子による測温温度の変化に応じ
て、前記第1および第2の測温抵抗素子による測温温度
の平均値を、前記周囲温度測温抵抗素子による測温温度
上昇よりもさらに高く維持するように、前記ヒータ温度
を制御するヒータ制御手段と、 前記第1の測温抵抗素子と前記第2の測温抵抗素子との
測温温度差から前記流量センサを通流する流体の流量を
計測する流量計測手段とを備えたことを特徴とする熱式
流量計測装置。1. A heater element, first and second temperature measuring resistance elements respectively provided in the fluid flow direction with the heater element interposed therebetween, and an ambient temperature temperature measuring resistance element for detecting an ambient temperature thereof. An average value of the temperature measured by the first and second temperature measuring resistance elements is calculated according to a change in the temperature measured by the flow rate sensor and the ambient temperature measuring resistance element. The heater control means for controlling the heater temperature so as to keep the temperature measurement temperature higher than the temperature measurement temperature rise by the temperature measurement temperature difference between the first temperature measurement resistance element and the second temperature measurement resistance element. A thermal type flow rate measuring device comprising: a flow rate measuring means for measuring a flow rate of a fluid flowing through the flow rate sensor.
いて、 前記第1および第2の測温抵抗素子との直列回路、並び
に/または前記周囲温度測温抵抗素子に並列接続された
抵抗温度係数設定用の抵抗素子を備えたことを特徴とす
る熱式流量計測装置。2. The thermal type flow rate measuring device according to claim 1, wherein a resistance connected in parallel to the series circuit with the first and second resistance temperature measuring elements and / or the ambient temperature resistance measuring element. A thermal type flow rate measuring device comprising a resistance element for setting a temperature coefficient.
囲温度測温抵抗素子に並列接続された前記抵抗温度係数
設定用の抵抗素子との合成抵抗の抵抗温度係数が、前記
第1および第2の測温抵抗素子の直列回路とこの直列回
路に並列接続された前記抵抗温度係数設定用の抵抗素子
との合成抵抗の抵抗温度係数よりも大きいことを特徴と
する請求項2に記載の熱式流量計測装置。3. The resistance temperature coefficient of the combined resistance of the ambient temperature measuring resistance element and the resistance element for setting the resistance temperature coefficient connected in parallel to the ambient temperature measuring resistance element has a resistance temperature coefficient of the first and second resistance elements. The heat resistance according to claim 2, wherein the resistance temperature coefficient of the combined resistance of the series circuit of the two temperature measuring resistance elements and the resistance element for setting the resistance temperature coefficient connected in parallel to the series circuit is larger than the resistance temperature coefficient. Flow meter.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002119741A JP4052378B2 (en) | 2002-04-22 | 2002-04-22 | Thermal flow meter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002119741A JP4052378B2 (en) | 2002-04-22 | 2002-04-22 | Thermal flow meter |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003315129A true JP2003315129A (en) | 2003-11-06 |
JP4052378B2 JP4052378B2 (en) | 2008-02-27 |
Family
ID=29536209
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002119741A Expired - Fee Related JP4052378B2 (en) | 2002-04-22 | 2002-04-22 | Thermal flow meter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4052378B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006208112A (en) * | 2005-01-26 | 2006-08-10 | Hitachi Ltd | Thermal flow meter |
JP2006226796A (en) * | 2005-02-17 | 2006-08-31 | Yokogawa Electric Corp | Thermal flow meter |
JP2013534991A (en) * | 2010-06-28 | 2013-09-09 | クムヤン インディ.シーオー., エルティーディー. | Calorimetric flow sensing system for sensing the flow of piston cooling oil in marine internal combustion engines |
-
2002
- 2002-04-22 JP JP2002119741A patent/JP4052378B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006208112A (en) * | 2005-01-26 | 2006-08-10 | Hitachi Ltd | Thermal flow meter |
JP2006226796A (en) * | 2005-02-17 | 2006-08-31 | Yokogawa Electric Corp | Thermal flow meter |
JP2013534991A (en) * | 2010-06-28 | 2013-09-09 | クムヤン インディ.シーオー., エルティーディー. | Calorimetric flow sensing system for sensing the flow of piston cooling oil in marine internal combustion engines |
Also Published As
Publication number | Publication date |
---|---|
JP4052378B2 (en) | 2008-02-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2631481B2 (en) | Mass flow meter and its measurement method | |
JPH086268Y2 (en) | Thermal flow meter | |
CN100472182C (en) | flow measuring device | |
JPH0690062B2 (en) | Thermal flow velocity detector | |
JP3726261B2 (en) | Thermal flow meter | |
JP2003315129A (en) | Thermal flow meter | |
JP2006201077A (en) | Thermal air flow meter | |
JP3675721B2 (en) | Thermal air flow meter | |
JP3706283B2 (en) | Flow sensor circuit | |
JPS6053814A (en) | Airflow-rate measuring device | |
JPH0449893B2 (en) | ||
JPH0663800B2 (en) | Heater temperature control circuit | |
JP2879256B2 (en) | Thermal flow meter | |
JP3577902B2 (en) | Thermal flow sensor | |
JP4435351B2 (en) | Thermal flow meter | |
JP3019009U (en) | Mass flow meter | |
JPH03248018A (en) | Heat-sensitive type flowmeter | |
JPH01245119A (en) | Hot-wire type flow rate measuring instrument | |
JP4904008B2 (en) | Thermal flow meter | |
JPS5826346Y2 (en) | Karman vortex flow meter or current meter | |
JPH11351930A (en) | Heating resistor type air flow meter | |
JPH10332454A (en) | Heat sensitive type flow-velocity detector | |
JPH0434315A (en) | Heater controller for flowmeter | |
JPS6013446B2 (en) | Gas flow measuring device | |
JPS62250312A (en) | Flow speed sensor driving circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041224 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070402 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070516 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070711 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071003 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071025 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20071121 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7426 Effective date: 20071127 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20071127 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101214 Year of fee payment: 3 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101214 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111214 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121214 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131214 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |