[go: up one dir, main page]

JP2003277731A - Abrasive particles and abrasives - Google Patents

Abrasive particles and abrasives

Info

Publication number
JP2003277731A
JP2003277731A JP2002085830A JP2002085830A JP2003277731A JP 2003277731 A JP2003277731 A JP 2003277731A JP 2002085830 A JP2002085830 A JP 2002085830A JP 2002085830 A JP2002085830 A JP 2002085830A JP 2003277731 A JP2003277731 A JP 2003277731A
Authority
JP
Japan
Prior art keywords
polishing
particles
abrasive
weight
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002085830A
Other languages
Japanese (ja)
Inventor
Kazuhiro Nakayama
和洋 中山
Yuichiro Taguma
雄一郎 田熊
Akira Nakajima
昭 中島
Michio Komatsu
通郎 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
Catalysts and Chemicals Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Catalysts and Chemicals Industries Co Ltd filed Critical Catalysts and Chemicals Industries Co Ltd
Priority to JP2002085830A priority Critical patent/JP2003277731A/en
Publication of JP2003277731A publication Critical patent/JP2003277731A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1436Composite particles, e.g. coated particles
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • C09K3/1463Aqueous liquid suspensions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

(57)【要約】 【課題】 金属に対する研磨速度を大きく変えるこ
となく、金属酸化物に対する研磨速度を抑制し、研磨面
の平滑性を高める。 【解決手段】 研磨用粒子を構成する無機酸化物粒子と
しては、シリカ、アルミナ、ジルコニア、チタニア、セ
リアなどの無機酸化物、シリカ・アルミナ、シリカ・ジ
ルコニアなどの複合無機酸化物からなる粒子が好適であ
る。表面処理された研磨用粒子の表面には有機官能基
(R)が存在するので、シリカ等の金属酸化物絶縁膜等
に対する研磨速度を抑制することができ、このとき銅等
の金属基板に対する研磨速度は大きく変化しない。
(57) [Summary] [PROBLEMS] To suppress the polishing rate for metal oxides and increase the smoothness of the polished surface without greatly changing the polishing rate for metals. SOLUTION: As the inorganic oxide particles constituting the polishing particles, particles composed of inorganic oxides such as silica, alumina, zirconia, titania and ceria, and composite inorganic oxides such as silica-alumina and silica-zirconia are preferable. It is. Since an organic functional group (R) exists on the surface of the surface-treated polishing particles, the polishing rate for a metal oxide insulating film such as silica can be suppressed, and at this time, polishing for a metal substrate such as copper can be performed. Speed does not change much.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の技術分野】本発明は、無機酸化物粒子を表面処
理した研磨用粒子および該研磨用粒子を含む研磨材に関
し、特に半導体集積回路における金属配線層の形成等に
おいて有用な研磨用粒子および該研磨用粒子を含む研磨
材に関する。
TECHNICAL FIELD The present invention relates to abrasive particles obtained by surface-treating inorganic oxide particles and an abrasive containing the abrasive particles, and particularly to abrasive particles useful in the formation of a metal wiring layer in a semiconductor integrated circuit and the like. The present invention relates to an abrasive containing the abrasive particles.

【0002】[0002]

【発明の技術的背景】コンピューター、各種電子機器に
は各種の集積回路が用いられており、これらの小型化、
高性能化に伴い回路の高密度化と高性能化が進んでい
る。従来、例えば半導体集積回路ではその集積度を高め
るために多層配線が用いられており、このような多層配
線は、通常、シリコンなどの基板上に、第1絶縁膜とし
ての熱酸化膜を形成した後、アルミニウム膜などからな
る第1配線層を形成し、この上にCVD法あるいはプラ
ズマCVD法等によって、シリカ膜、窒化ケイ素膜など
の層間絶縁膜を被着させ、この層間絶縁膜上に、該層間
絶縁膜を平坦化するためのシリカ絶縁膜をSOG法によ
り形成し、このシリカ絶縁膜上に必要に応じてさらに第
2絶縁膜を被着させた後、第2配線層を形成することに
よって、製造されている。上記アルミニウム膜からなる
配線は、多層配線を形成する際のスパッタリング時にア
ルミニウム等の配線が酸化されて抵抗値が増大して導電
不良を起こすことがあった。また、配線幅を小さくする
ことができないためにより高密度の集積回路を形成する
には限界があった。さらに、近年クロック線やデータバ
ス線のような長距離配線では、チップサイズ増大に伴い
配線抵抗が増大し、配線遅延(電気信号の伝播遅延時
間:RC遅延時間=抵抗×容量)の増大が問題となって
いる。このため配線をより低抵抗の材料に置き換えてい
く必要が生じている。
BACKGROUND OF THE INVENTION Various integrated circuits are used in computers and various electronic devices.
With higher performance, higher density and higher performance of circuits are advancing. Conventionally, for example, in a semiconductor integrated circuit, multi-layer wiring is used to increase the degree of integration, and such multi-layer wiring is usually formed by forming a thermal oxide film as a first insulating film on a substrate such as silicon. Then, a first wiring layer made of an aluminum film or the like is formed, and an interlayer insulating film such as a silica film or a silicon nitride film is deposited on the first wiring layer by a CVD method or a plasma CVD method. Forming a silica insulating film for flattening the interlayer insulating film by the SOG method, further depositing a second insulating film on the silica insulating film as necessary, and then forming a second wiring layer. Is manufactured by. In the wiring made of the aluminum film, the wiring made of aluminum or the like may be oxidized during the sputtering when forming the multilayer wiring, and the resistance value may increase to cause a conductive failure. Further, there is a limit to forming a high-density integrated circuit because the wiring width cannot be reduced. Further, in recent years, in long-distance wiring such as clock lines and data bus lines, the wiring resistance increases as the chip size increases, and wiring delay (electrical signal propagation delay time: RC delay time = resistance x capacitance) increases. Has become. Therefore, it is necessary to replace the wiring with a material having a lower resistance.

【0003】従来のAlやAl合金による配線に代えて
Cu配線を行うことも提案されており、例えば、基板上
の絶縁膜に予め配線溝を形成した後、電解メッキ法、C
VD法等によりCu配線を形成する方法が公知である。
この銅等の配線パターン形成においては、ドライエッチ
プロセスによる加工が困難なため、化学機械研磨方法
(以下、CMPと言うこともある。)を用いたダマシン
プロセスが適用されており、基板上の絶縁膜に予め配線
溝を形成し、電解メッキ法やCVD法等により銅を配線
溝に埋め込んだ後、CMPにより上端面を研磨し、平坦
化して配線を形成している。例えば、シリコンウェハー
等の基材上に配線層間膜(絶縁膜)を成膜し、その配線
層間膜(絶縁膜)上に金属配線用の溝パターンを形成
し、必要に応じてスパッタリング法などによってTaN
等のバリアメタル層を形成し、ついで金属配線用の銅を
CVD法等により成膜する。ここで、TaN等のバリア
メタル層を設けた場合には層間絶縁膜への銅や不純物な
どの拡散や浸食に伴う層間絶縁膜の絶縁性の低下などを
防止することができ、また層間絶縁膜と銅の接着性を高
めることができる。
It has been proposed to use Cu wiring instead of the conventional wiring made of Al or Al alloy. For example, after forming a wiring groove in an insulating film on a substrate in advance, electrolytic plating, C
A method of forming Cu wiring by the VD method or the like is known.
In forming a wiring pattern of copper or the like, a damascene process using a chemical mechanical polishing method (hereinafter, also referred to as CMP) is applied because processing by a dry etching process is difficult, and insulation on a substrate is applied. A wiring groove is formed in advance in the film, copper is embedded in the wiring groove by an electrolytic plating method, a CVD method, or the like, and then an upper end surface is polished by CMP and flattened to form a wiring. For example, a wiring interlayer film (insulating film) is formed on a substrate such as a silicon wafer, a groove pattern for metal wiring is formed on the wiring interlayer film (insulating film), and if necessary, a sputtering method or the like is used. TaN
A barrier metal layer such as is formed, and then copper for metal wiring is formed by the CVD method or the like. Here, when a barrier metal layer such as TaN is provided, it is possible to prevent the insulation property of the interlayer insulating film from being deteriorated due to the diffusion or erosion of copper or impurities into the interlayer insulating film, and to prevent the interlayer insulating film from being formed. And the adhesion of copper can be increased.

【0004】次いで、溝内以外に成膜された不要な銅及
びバリアメタル(犠牲層ということがある。)をCMP
により研磨して除去するとともに上部表面を可能な限り
平坦化して、溝内にのみ金属膜を残して銅の配線・回路
パターンを形成する。CMPは、一般的に回転機構を有
する円形プラテン上に研磨パッドを搭載し、研磨パッド
の中心上部から研磨材を滴下供給した状態で被研磨材を
回転させ、加重を掛けながら研磨パッドに接触させるこ
とによって、共面の上部部分の銅及びバリアメタルを研
磨して除去するものである。CMPで使用される研磨材
は、通常、シリカ、アルミナ等の金属酸化物からなる平
均粒子径が200nm程度の球状の研磨用粒子と、配線
・回路用金属の研磨速度を早めるための酸化剤、有機酸
等の添加剤及び純水などの溶媒から構成されている。
Then, unnecessary copper and a barrier metal (sometimes referred to as a sacrificial layer) formed outside the groove are subjected to CMP.
Then, the upper surface is planarized as much as possible, and the copper wiring / circuit pattern is formed by leaving the metal film only in the groove. In CMP, a polishing pad is generally mounted on a circular platen having a rotating mechanism, and the material to be polished is rotated while the abrasive is dropped and supplied from the upper center of the polishing pad, and the polishing pad is brought into contact with the polishing pad while applying a load. By doing so, the copper and the barrier metal in the upper portion of the coplanar surface are polished and removed. Abrasives used in CMP are usually spherical polishing particles made of metal oxides such as silica and alumina and having an average particle diameter of about 200 nm, and an oxidizer for increasing the polishing rate of wiring / circuit metals. It is composed of additives such as organic acids and solvents such as pure water.

【0005】被研磨材の表面には下地の絶縁膜に形成し
た配線用の溝パターンに起因した段差(凹凸)が存在す
るので、主に凸部を研磨除去しながら共面まで研磨し、
平坦な研磨面とすることが求められている。しかしなが
ら、凸部の金属部分を完全に研磨して除去した後、直ち
に前記共面で研磨を停止することは困難で、実際に研磨
を停止する間に金属部分の研磨面および新たに露出した
金属酸化物からなる絶縁膜部分の研磨が進行して共面以
下まで研磨(過研磨)され、このため配線の厚みが減少
することによって配線抵抗が増加し、前記配線遅延が生
じたり、集積回路等の生産効率が低下する問題があっ
た。このような事情から金属部分の研磨速度を変えるこ
となく、絶縁膜部分の研磨速度を抑制することが求めら
れている。
Since there is a step (unevenness) on the surface of the material to be polished due to the wiring groove pattern formed in the underlying insulating film, the coplanar surface is polished mainly while removing the convex portion by polishing.
It is required to have a flat polished surface. However, it is difficult to stop polishing on the coplanar surface immediately after the metal portion of the convex portion is completely polished and removed, and the polishing surface of the metal portion and the newly exposed metal are stopped while actually polishing. The insulating film portion made of oxide progresses to be polished (over-polished) to a level below the coplanar surface. Therefore, the wiring resistance is increased due to the reduction of the wiring thickness, the wiring delay occurs, the integrated circuit, etc. There was a problem that the production efficiency of the. Under such circumstances, it is required to suppress the polishing rate of the insulating film portion without changing the polishing rate of the metal portion.

【0006】[0006]

【発明の目的】本発明は、金属に対する研磨速度を大き
く変えることなく、金属酸化物に対する研磨速度を抑制
し、さらに研磨面の平滑性を向上することのできる研磨
用粒子および該研磨用粒子を含む研磨材を提供すること
を目的とする。
It is an object of the present invention to provide a polishing particle and a polishing particle which can suppress the polishing rate for a metal oxide and can improve the smoothness of a polished surface without largely changing the polishing rate for a metal. It is intended to provide an abrasive containing the same.

【0007】[0007]

【発明の概要】本発明の研磨用粒子は、無機酸化物粒子
が下記一般式で表される加水分解性有機ケイ素化合物で
表面処理されてなることを特徴とするものである。但
し、一般式中、n:1、2または3であり、R:炭素数
1〜10の非置換または置換炭化水素基であって、nが
2または3のときには互いに同一であっても異なってい
てもよい。X:炭素数1〜4のアルコキシ基、シラノー
ル基、ハロゲン、または水素である。 Rn SiX4-n 前記研磨用粒子は平均粒子径が5〜300nmの範囲に
あり、前記加水分解性有機ケイ素化合物をRn SiO
(4-n)/2 として0. 01〜5重量%の範囲で含有するこ
とが好ましい。本発明の研磨材は、水系分散媒に前記研
磨用粒子が2〜50重量%の範囲で分散してなることを
特徴とする。
SUMMARY OF THE INVENTION The polishing particles of the present invention are characterized in that inorganic oxide particles are surface-treated with a hydrolyzable organosilicon compound represented by the following general formula. However, in the general formula, n is 1, 2 or 3, R is an unsubstituted or substituted hydrocarbon group having 1 to 10 carbon atoms, and when n is 2 or 3, they may be the same or different. May be. X: an alkoxy group having 1 to 4 carbon atoms, a silanol group, halogen, or hydrogen. R n SiX 4-n wherein abrasive particles are in the range the average particle size of 5 to 300 nm, the hydrolyzable organosilicon compound R n SiO
It is preferable that the content of (4-n) / 2 is 0.01 to 5% by weight. The abrasive of the present invention is characterized in that the polishing particles are dispersed in an aqueous dispersion medium in the range of 2 to 50% by weight.

【0008】[0008]

【発明の具体的説明】1.先ず、本発明の研磨用粒子に
ついて具体的に説明する。無機酸化物粒子 本発明の研磨用粒子を構成する無機酸化物粒子は、従来
研磨用粒子として用いられる粒子であれば特に制限はな
く、例えば、シリカ、アルミナ、ジルコニア、チタニ
ア、セリアなどの無機酸化物、シリカ・アルミナ、シリ
カ・ジルコニアなどの複合無機酸化物からなる粒子が好
適である。無機酸化物粒子の形状にも特に制限はなく、
球状粒子、棒状粒子、鎖状粒子等の他、多面体の粒子を
用いることもできが、特に、球状粒子は研磨面にスクラ
ッチ(傷)が生成することが少ないので好ましい。球状
粒子の平均粒子径は概ね5〜300nm、特に10〜1
00nmの範囲にあることが好ましい。
DETAILED DESCRIPTION OF THE INVENTION 1. First, the polishing particles of the present invention will be specifically described. Inorganic Oxide Particles The inorganic oxide particles constituting the polishing particles of the present invention are not particularly limited as long as they are particles conventionally used as polishing particles, for example, inorganic oxides such as silica, alumina, zirconia, titania and ceria. Particles composed of a complex inorganic oxide such as a substance, silica / alumina, or silica / zirconia are suitable. The shape of the inorganic oxide particles is not particularly limited,
In addition to spherical particles, rod-shaped particles, chain-shaped particles and the like, polyhedral particles can be used. In particular, spherical particles are preferable because scratches (scratches) are not generated on the polished surface. The average particle diameter of the spherical particles is generally 5 to 300 nm, especially 10 to 1
It is preferably in the range of 00 nm.

【0009】加水分解性有機ケイ素化合物 本発明に係る研磨用粒子の表面処理材としては下記一般
式で表される加水分解性有機ケイ素化合物が用いられ
る。但し、下記一般式において、n:1、2または3で
あり、R:炭素数1〜10の非置換または置換炭化水素
基であって、nが2または3のときには互いに同一であ
っても異なっていてもよい。X:炭素数1〜4のアルコ
キシ基、シラノール基、ハロゲン、または水素である。 Rn SiX4-n 上記一般式で表される加水分解性有機基含有ケイ素化合
物としては、具体的に、メチルトリメトキシシラン、ジ
メチルジメトキシシラン、フェニルトリメトキシシラ
ン、ジフェニルジメトキシシラン、メチルトリエトキシ
シラン、ジメチルジエトキシシラン、フェニルトリエト
キシシラン、ジフェニルジエトキシシラン、イソブチル
トリメトキシシラン、ビニルトリメトキシシラン、ビニ
ルトリエトキシシラン、ビニルトリス(βメトキシエト
キシ)シラン、3,3,3−トリフルオロプロピルトリ
メトキシシラン、メチル−3,3,3−トリフルオロプ
ロピルジメトキシシラン、β−(3,4エポキシシクロ
ヘキシル)エチルトリメトキシシラン、γ−グリシドキ
シトリプロピルトリメトキシシラン、γ−グリシドキシ
プロピルメチルジエトキシシラン、γ−グリシドキシプ
ロピルトリエトキシシラン、γ−メタクリロキシプロピ
ルメチルジメトキシシラン、γ−メタクリロキシプロピ
ルトリメトキシシラン、γ−メタクリロキシプロピルメ
チルジエトキシシラン、γ−メタクリロキシプロピルト
リエトキシシラン、N−β(アミノエチル)γ−アミノ
プロピルメチルジメトキシシラン、N−β(アミノエチ
ル)γ−アミノプロピルトリメトキシシラン、N−β
(アミノエチル)γ−アミノプロピルトリエトキシシラ
ン、γ−アミノプロピルトリメトキシシラン、γ−アミ
ノプロピルトリエトキシシラン、N−フェニル−γ−ア
ミノプロピルトリメトキシシラン、γ−メルカプトプロ
ピルトリメトキシシラン、トリメチルシラノール、メチ
ルトリクロロシラン、メチルジクロロシラン、ジメチル
ジクロロシラン、トリメチルクロロシラン、フェニルト
リクロロシラン、ジフェニルジクロロシラン、ビニルト
リクロルシラン、トリメチルブロモシラン、ジエチルシ
ラン等が挙げられる。
Hydrolyzable Organosilicon Compound As the surface treatment material for the polishing particles according to the present invention, a hydrolyzable organosilicon compound represented by the following general formula is used. However, in the following general formula, n: 1, 2 or 3, R: an unsubstituted or substituted hydrocarbon group having 1 to 10 carbon atoms, and when n is 2 or 3, they may be the same or different. May be. X: an alkoxy group having 1 to 4 carbon atoms, a silanol group, halogen, or hydrogen. R n SiX 4-n Specific examples of the hydrolyzable organic group-containing silicon compound represented by the above general formula include methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, diphenyldimethoxysilane, and methyltriethoxysilane. , Dimethyldiethoxysilane, phenyltriethoxysilane, diphenyldiethoxysilane, isobutyltrimethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris (βmethoxyethoxy) silane, 3,3,3-trifluoropropyltrimethoxy Silane, methyl-3,3,3-trifluoropropyldimethoxysilane, β- (3,4epoxycyclohexyl) ethyltrimethoxysilane, γ-glycidoxytripropyltrimethoxysilane, γ-glycidoxypropyl Tyldiethoxysilane, γ-glycidoxypropyltriethoxysilane, γ-methacryloxypropylmethyldimethoxysilane, γ-methacryloxypropyltrimethoxysilane, γ-methacryloxypropylmethyldiethoxysilane, γ-methacryloxypropyltriethoxy Silane, N-β (aminoethyl) γ-aminopropylmethyldimethoxysilane, N-β (aminoethyl) γ-aminopropyltrimethoxysilane, N-β
(Aminoethyl) γ-aminopropyltriethoxysilane, γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, trimethylsilanol , Methyltrichlorosilane, methyldichlorosilane, dimethyldichlorosilane, trimethylchlorosilane, phenyltrichlorosilane, diphenyldichlorosilane, vinyltrichlorosilane, trimethylbromosilane, diethylsilane and the like.

【0010】このような加水分解性有機基含有ケイ素化
合物は、研磨用粒子中にRn SiO (4-n)/2 として0.
01〜5重量%、さらには0. 05〜3重量%の範囲で
含有することが好ましい。当該含有量が0. 01重量%
未満の場合は、研磨用粒子表面の有機官能基(R)が少
ないために金属酸化物絶縁膜や金属窒化物絶縁膜等に対
する研磨速度を抑制することができず、配線の厚みが減
少し(エロージョンと言うことがある)、配線抵抗が増
加したり、集積回路等の生産効率が低下することがあ
る。また、金属や金属酸化物の研磨面のスクラッチの生
成を抑制する効果が得られないことがある。一方、前記
含有量に関して5重量%を越えて担持させることは、加
水分解性有機ケイ素化合物の分子量や研磨用粒子の平均
粒子径にもよるが、殆ど不可能であり、担持できたとし
ても金属に対する研磨速度を大きく変えることがなく、
前記絶縁膜に対する研磨速度の抑制効果、およびスクラ
ッチの生成を抑制する効果がさらに向上することもな
い。
Siliconization containing such hydrolyzable organic groups
The compound is R in the polishing particles.nSiO (4-n) / 2As 0.
In the range of 01-5% by weight, and more preferably 0.05-5% by weight
It is preferable to contain. The content is 0.01% by weight
When it is less than 1, the amount of organic functional groups (R) on the surface of the polishing particles is small.
Therefore, it is not suitable for metal oxide insulation film and metal nitride insulation film.
It is impossible to control the polishing speed, and the wiring thickness is reduced.
Wiring resistance increases a little (sometimes called erosion)
May decrease the production efficiency of integrated circuits.
It In addition, scratches on the polished surface of metals and metal oxides
The effect of suppressing growth may not be obtained. Meanwhile, the above
Loading above 5% by weight with respect to the content
Molecular weight of water-decomposable organosilicon compounds and average of polishing particles
Although it depends on the particle size, it is almost impossible and
However, without significantly changing the polishing rate for metal,
A polishing rate suppressing effect on the insulating film, and a scraper.
The effect of suppressing the generation of
Yes.

【0011】本発明の研磨用粒子は、平均粒子径が5〜
300nm、さらには10〜100nmの範囲にあるこ
とが好ましい。平均粒子径が5nm未満の場合は、研磨
材中における研磨用粒子の安定性が不充分となることが
あり、また粒子径が小さ過ぎて充分な研磨速度が得られ
ないことがある。平均粒子径が300nmを越えると、
被研磨材(金属基板、金属酸化物絶縁膜基板等)の種類
にもよるがスクラッチが生成し、充分な平滑性が得られ
ないことがある。
The polishing particles of the present invention have an average particle size of 5 to 5.
It is preferably 300 nm, more preferably 10 to 100 nm. If the average particle size is less than 5 nm, the stability of the polishing particles in the polishing material may be insufficient, and the particle size may be too small to obtain a sufficient polishing rate. If the average particle size exceeds 300 nm,
Depending on the type of material to be polished (metal substrate, metal oxide insulating film substrate, etc.), scratches may be generated and sufficient smoothness may not be obtained.

【0012】本発明の研磨用粒子は、その表面に有機官
能基(R)が存在するので、シリカ等の金属酸化物絶縁
膜等に対する研磨速度を抑制することができ、このとき
銅等の金属基板に対する研磨速度は大きく変化しないの
で、その結果、前記した過研磨が抑制され、このため配
線の厚みを維持することができ、配線抵抗が増加するこ
とがない。
Since the polishing particles of the present invention have an organic functional group (R) on the surface thereof, the polishing rate for a metal oxide insulating film such as silica can be suppressed, and at this time, a metal such as copper can be used. Since the polishing rate for the substrate does not change significantly, as a result, the above-mentioned overpolishing is suppressed, and thus the thickness of the wiring can be maintained and the wiring resistance does not increase.

【0013】研磨用粒子の製造方法 本発明の研磨用粒子を製造するには、前記無機酸化物粒
子の表面を前記加水分解性有機ケイ素化合物で被覆でき
れば良く、従来公知の加水分解性有機ケイ素化合物によ
る表面処理方法を採用することができる。例えば、無機
酸化物粒子分散液に加水分解性有機ケイ素化合物を加
え、必要に応じて酸または塩基等の加水分解触媒の存在
下で、無機酸化物粒子と加水分解性有機ケイ素化合物を
接触させ、加水分解性有機ケイ素化合物を加水分解する
ことによって得ることができる。このとき、加水分解性
有機ケイ素化合物は加水分解によりシラノール基を生成
し、このシラノール基と無機酸化物粒子表面のOH基と
が水素結合等により結合する。上記無機酸化物粒子と加
水分解性有機ケイ素化合物との混合割合は、前記加水分
解性有機ケイ素化合物を前記した所定含有量とする研磨
用粒子が得られるものとする。
Method for Producing Abrasive Particles In order to produce the abrasive particles of the present invention, it is sufficient that the surface of the inorganic oxide particles can be coated with the hydrolyzable organosilicon compound. The surface treatment method according to can be adopted. For example, a hydrolyzable organosilicon compound is added to the inorganic oxide particle dispersion liquid, and in the presence of a hydrolysis catalyst such as an acid or a base, if necessary, the inorganic oxide particles are brought into contact with the hydrolyzable organosilicon compound, It can be obtained by hydrolyzing a hydrolyzable organosilicon compound. At this time, the hydrolyzable organosilicon compound produces a silanol group by hydrolysis, and the silanol group and the OH group on the surface of the inorganic oxide particles are bonded by a hydrogen bond or the like. The mixing ratio of the inorganic oxide particles and the hydrolyzable organosilicon compound is such that polishing particles having the above-mentioned predetermined content of the hydrolyzable organosilicon compound can be obtained.

【0014】2.次に本発明の研磨材について詳述す
る。本発明の研磨材において、水系分散媒とは、水分散
媒の他、メチルアルコール、エチルアルコール、イソプ
ロピルアルコールなどのアルコール類や、エーテル類、
エステル類、ケトン類等の水溶性の有機溶媒と水との混
合溶媒をいう。本発明の研磨材において研磨用粒子の濃
度が2重量%未満の場合は、研磨用粒子の濃度が低過ぎ
て充分な研磨速度が得られず、研磨用粒子の濃度が50
重量%を越えると、研磨材の安定性が不充分となり、ま
た研磨剤を供給する工程で乾燥物が生成して付着するこ
とがあり、これがスクラッチ発生の原因となることがあ
る。
2. Next, the abrasive of the present invention will be described in detail. In the abrasive of the present invention, the aqueous dispersion medium, in addition to the aqueous dispersion medium, alcohols such as methyl alcohol, ethyl alcohol, isopropyl alcohol, and ethers,
It refers to a mixed solvent of water and a water-soluble organic solvent such as esters and ketones. In the abrasive of the present invention, when the concentration of the polishing particles is less than 2% by weight, the concentration of the polishing particles is too low to obtain a sufficient polishing rate, and the concentration of the polishing particles is 50%.
When the content exceeds the weight%, the stability of the abrasive becomes insufficient, and a dried product may be produced and adhered in the step of supplying the abrasive, which may cause scratches.

【0015】本発明の研磨材には、金属の研磨速度の向
上等を目的として、さらに被研磨材の種類に応じて過酸
化水素、過酢酸、過酸化尿素など、またはこれらの混合
物を添加することができる。また、複数種の被研磨材の
研磨速度を調整するために、硫酸、硝酸、リン酸、フッ
酸等の酸、あるいはこれら酸のナトリウム塩、カリウム
塩、アンモニウム塩およびこれらの混合物などを添加し
て用いることができる。その他の添加剤として、例え
ば、金属被研磨材表面に不動態層あるいは溶解抑制層を
形成して基材の浸食を防止するためにイミダゾール、ベ
ンゾトリアゾール、ベンゾチアゾールなどを用いること
ができる。また、上記不動態層を攪乱するためにクエン
酸、乳酸、酢酸、シュウ酸などの錯体形成材を用いるこ
ともできる。研磨材スラリーの分散性や安定性を向上さ
せるためにカチオン系、アニオン系、ノニオン系、両性
系の界面活性剤を適宜選択して添加することができる。
さらに、上記各添加剤の効果を高めるなどのために、必
要に応じて酸または塩基を添加して研磨材スラリーのp
Hを約2〜11、好ましくは4〜9、さらに好ましくは
5〜8に調節してもよい。
To the polishing material of the present invention, hydrogen peroxide, peracetic acid, urea peroxide or the like or a mixture thereof is added depending on the type of the material to be polished for the purpose of improving the polishing rate of metal. be able to. Further, in order to adjust the polishing rate of a plurality of materials to be polished, acids such as sulfuric acid, nitric acid, phosphoric acid, and hydrofluoric acid, or sodium salts, potassium salts, ammonium salts of these acids, and mixtures thereof are added. Can be used. As other additives, for example, imidazole, benzotriazole, benzothiazole or the like can be used in order to form a passivation layer or a dissolution suppressing layer on the surface of the material to be polished to prevent erosion of the substrate. Further, a complex-forming material such as citric acid, lactic acid, acetic acid or oxalic acid can be used to disturb the passivation layer. In order to improve the dispersibility and stability of the abrasive slurry, cationic, anionic, nonionic and amphoteric surfactants can be appropriately selected and added.
Further, in order to enhance the effect of each of the above additives, an acid or a base is added as necessary to add p of the abrasive slurry.
H may be adjusted to about 2-11, preferably 4-9, more preferably 5-8.

【0016】[0016]

【発明の効果】本発明の研磨用粒子によれば、表面が加
水分解性有機ケイ素化合物で処理され、無機酸化物粒子
表面の水酸基(OH基)が少なく、かつ表面に有機官能
基を有しているので、金属に対する研磨速度を大きく変
えることなく金属酸化物絶縁膜、金属窒化物絶縁膜等に
対する研磨速度を抑制することができ、金属酸化物絶縁
膜等の過研磨(エロージョン)を抑制することができ
る。このため集積回路の回路抵抗を増加させることもな
く、さらに金属、金属酸化物の研磨面にスクラッチが生
じることがなく、平滑性を向上させることができる。本
発明の研磨材によれば、半導体集積回路の形成等におけ
る研磨において、金属に対する研磨速度を大きく変える
ことなく金属酸化物絶縁膜、金属窒化物絶縁膜等に対す
る研磨速度を抑制し、過研磨(エロージョン)を抑制す
ることができ、このため得られる集積回路の回路抵抗を
増加させることもなく、さらに研磨後の表面は平滑性、
平坦性に優れているので効率的に積層した集積回路を得
ることができる。
According to the abrasive particles of the present invention, the surface is treated with a hydrolyzable organosilicon compound, the number of hydroxyl groups (OH groups) on the surface of the inorganic oxide particles is small, and the surface has an organic functional group. Therefore, it is possible to suppress the polishing rate for the metal oxide insulating film, the metal nitride insulating film, etc. without largely changing the polishing rate for the metal, and suppress overpolishing (erosion) of the metal oxide insulating film, etc. be able to. Therefore, the circuit resistance of the integrated circuit is not increased, scratches are not generated on the polished surface of the metal or metal oxide, and the smoothness can be improved. According to the abrasive of the present invention, in polishing in the formation of a semiconductor integrated circuit or the like, the polishing rate for a metal oxide insulating film, a metal nitride insulating film, etc. is suppressed without significantly changing the polishing rate for a metal, and overpolishing ( Erosion), which does not increase the circuit resistance of the resulting integrated circuit, and the surface after polishing is smooth,
Since the flatness is excellent, it is possible to obtain an integrated circuit that is efficiently stacked.

【0017】[0017]

【実施例1】研磨用粒子(A)の分散液 金属酸化物粒子としてシリカ粒子分散ゾル(触媒化成工
業(株)製:カタロイドSI−45P、平均粒子径45
nm、SiO2 濃度40. 2重量%)1000gを超純
水3020gで希釈してSiO2 濃度10重量%のシリ
カ粒子分散液を調製した。これを撹拌しながら60℃に
昇温し、これにメチルトリメトキシシラン(MTMS)
12. 6gとエタノール107. 4gとの混合液を60
分間で添加し、ついでさらに60分間熟成した。熟成
後、限外濾過膜にて濃縮し、固形分濃度20重量%の研
磨用粒子(A)の分散液を得た。このときの研磨用粒子
(A)中の加水分解性有機ケイ素化合物の含有量はCH
3 SiO3/2 として1. 55重量%であった。研磨用粒
子(A)の組成と性状を表1に示す。
Example 1 Dispersion liquid of polishing particles (A) Silica particle dispersion sol as metal oxide particles (manufactured by Catalysts & Chemicals Industry Co., Ltd .: Cataloid SI-45P, average particle diameter 45)
nm, SiO 2 concentration 40.2% by weight) was diluted with 3020 g of ultrapure water to prepare a silica particle dispersion having an SiO 2 concentration of 10% by weight. While stirring this, the temperature was raised to 60 ° C., and methyltrimethoxysilane (MTMS) was added to this.
A mixture of 12.6 g and 107.4 g of ethanol was added to 60
It was added in minutes and then aged for a further 60 minutes. After aging, the mixture was concentrated with an ultrafiltration membrane to obtain a dispersion liquid of polishing particles (A) having a solid content concentration of 20% by weight. At this time, the content of the hydrolyzable organosilicon compound in the polishing particles (A) is CH.
It was 1.55 % by weight as 3 SiO 3/2 . Table 1 shows the composition and properties of the polishing particles (A).

【0018】研磨材および研磨試験 (1)研磨材 研磨用粒子(A)の分散液500gに、濃度30重量%
の過酸化水素水333g、蓚酸アンモニウム5gおよび
水162gを混合して、粒子濃度10重量%、過酸化水
素10重量%、蓚酸アンモニウム0. 5重量%の研磨材
(A)を調製した。
Abrasive and polishing test (1) Abrasive Abrasive particles (A) dispersion 500 g, concentration 30% by weight
Was mixed with 333 g of hydrogen peroxide solution, 5 g of ammonium oxalate and 162 g of water to prepare an abrasive (A) having a particle concentration of 10% by weight, hydrogen peroxide of 10% by weight, and ammonium oxalate of 0.5% by weight.

【0019】(2)研磨用基板 絶縁膜として、窒化ケイ素からなる絶縁膜(厚さ0. 2
μm)の表面に、シリカからなる絶縁膜(厚さ0. 4μ
m)が積層され、さらに窒化ケイ素からなる絶縁膜(厚
さ0. 2μm)が順次形成されたシリコンウェーハー
(8インチウェーハー)基板上にポジ型フォトレジスト
を塗布し、0. 3μmのラインアンドスペースの露光処
理を行った。次いでテトラメチルアンモニウムハイドラ
イド(TMAH)の現像液で露光部分を除去した。次
に、CF4 とCHF3 の混合ガスを用いて、下層の絶縁
膜にパターンを形成した後、O2 プラズマによりレジス
トを除去し、幅(WC )が0. 3μmで、深さが0. 6
μmの配線溝を形成した。次に、配線溝を形成した基板
にCVD法で薄層の銅(Cu)を製膜をし、さらに電解
メッキ法で製膜を行い絶縁膜上の銅層(犠牲層)の合計
厚が0. 2μmの銅の製膜を行い、研磨用基板を準備し
た。
(2) An insulating film made of silicon nitride (having a thickness of 0.2
Insulating film made of silica (thickness 0.4 μm)
m) is laminated, and a positive type photoresist is applied on a silicon wafer (8 inch wafer) substrate on which an insulating film (thickness 0.2 μm) made of silicon nitride is sequentially formed, and a line and space of 0.3 μm is applied. Exposure processing was performed. Then, the exposed portion was removed with a developer of tetramethylammonium hydride (TMAH). Next, a mixed gas of CF 4 and CHF 3 is used to form a pattern on the lower insulating film, and then the resist is removed by O 2 plasma to obtain a width (W C ) of 0.3 μm and a depth of 0 μm. .6
A wiring groove of μm was formed. Next, a thin layer of copper (Cu) is formed by a CVD method on the substrate in which the wiring groove is formed, and further, a film is formed by an electrolytic plating method so that the total thickness of the copper layer (sacrificial layer) on the insulating film is 0. A 2 μm copper film was formed to prepare a polishing substrate.

【0020】(3)研磨試験 研磨用基板を研磨装置(ナノファクター(株)製:NF
300)にセットし、基板加重5psi、テーブル回転
速度50rpm、スピンドル速度60rpmの条件で、
上記研磨剤(A)60ml/分を使用し絶縁膜上の犠牲
層(厚さ0. 2μm)がなくなるまで研磨を行った。研
磨後の絶縁膜部の厚さ、銅層の厚さを測定し、銅層の厚
さから銅層の研磨速度を求め、絶縁膜部の厚さから過研
磨(エロージョン、即ち、絶縁部の厚さの減少)の程度
を評価し、さらに銅層および絶縁膜部の研磨面の平滑性
(スクラッチの有無)を観察し、結果を表2に示した。
研磨面の平滑性の評価は、研磨後の銅層および絶縁膜部
の表面を光学顕微鏡で観察し、次の基準で評価した。 ○:傷、筋等(スクラッチ)が認められず、表面が平滑
である。 △:傷、筋等(スクラッチ)が僅かに認められるが、表
面は平滑である。 ×:傷、筋等(スクラッチ)が多く認められ、表面が粗
い。 過研磨の評価は、形成当初の絶縁膜の厚さの減少を測定
し、以下の基準で評価した。 ○:厚さの減少が10nm未満である。 △:厚さの減少が10〜30nm未満である。 ×:厚さの減少が30nm以上である。
(3) Polishing Test Polishing substrate is polished by a polishing apparatus (Nano Factor Co., Ltd .: NF
300), the substrate load is 5 psi, the table rotation speed is 50 rpm, and the spindle speed is 60 rpm.
The polishing agent (A) was used at 60 ml / min, and polishing was performed until the sacrificial layer (thickness: 0.2 μm) on the insulating film was removed. The thickness of the insulating film portion after polishing, the thickness of the copper layer is measured, the polishing rate of the copper layer is obtained from the thickness of the copper layer, and the overpolishing (erosion, that is, the insulating portion The degree of decrease (thickness) was evaluated, and the smoothness (presence or absence of scratches) of the polished surface of the copper layer and the insulating film portion was observed, and the results are shown in Table 2.
The smoothness of the polished surface was evaluated by observing the surfaces of the copper layer and the insulating film portion after polishing with an optical microscope and the following criteria. ◯: No scratches, streaks, etc. (scratches) were observed, and the surface was smooth. Δ: Scratches and streaks (scratches) are slightly observed, but the surface is smooth. X: Many scratches, streaks, etc. (scratches) were observed, and the surface was rough. The evaluation of overpolishing was performed by measuring the decrease in the thickness of the insulating film at the beginning of formation and evaluating it according to the following criteria. ◯: Reduction in thickness is less than 10 nm. Δ: The decrease in thickness is 10 to less than 30 nm. X: The decrease in thickness is 30 nm or more.

【0021】[0021]

【実施例2】研磨用粒子(B)分散液と研磨用粒子
(B) 実施例1において、メチルトリメトキシシラン(MTM
S)2. 45gとエタノール117. 5gとの混合液を
60分間で添加した以外は実施例1と同様にして固形分
濃度20重量%の研磨用粒子(B)の分散液を得た。研
磨用粒子(B)中の加水分解性有機ケイ素化合物の含有
量はCH3 SiO3/2 として0. 3重量%であった。研
磨用粒子(B)の分散液を用いた以外は実施例1と同様
にして研磨材(B)を調製し、これを用い実施例1と同
様の方法で研磨用基板を研磨した。研磨試験の結果を表
2に示した。
Example 2 Abrasive particle (B) dispersion and abrasive particles
(B ) In Example 1, methyltrimethoxysilane (MTM
S) A dispersion of polishing particles (B) having a solid content concentration of 20% by weight was obtained in the same manner as in Example 1 except that a mixed solution of 2.45 g of ethanol and 117.5 g of ethanol was added over 60 minutes. The content of the hydrolyzable organosilicon compound in the polishing particles (B) was 0.3% by weight as CH 3 SiO 3/2 . An abrasive material (B) was prepared in the same manner as in Example 1 except that the dispersion liquid of abrasive particles (B) was used, and this was used to polish a polishing substrate in the same manner as in Example 1. The results of the polishing test are shown in Table 2.

【0022】[0022]

【実施例3】研磨用粒子(C)分散液と研磨用粒子
(C) 実施例1において、メチルトリメトキシシラン(MTM
S)24. 5gとエタノール95. 5gとの混合液を6
0分間で添加した以外は実施例1と同様にして固形分濃
度20重量%の研磨用粒子(C)の分散液を得た。研磨
用粒子(C)中の加水分解性有機ケイ素化合物の含有量
はCH3 SiO3/2 として3. 0重量%であった。研磨
用粒子(C)の分散液を用いた以外は実施例1と同様に
して研磨材(C)を調製し、これを用い実施例1と同様
の方法で研磨用基板を研磨した。研磨試験の結果を表2
に示した。
Example 3 Abrasive Particle (C) Dispersion Liquid and Abrasive Particles
(C ) In Example 1, methyltrimethoxysilane (MTM
S) 6 mL of a mixture of 24.5 g and 95.5 g of ethanol
A dispersion liquid of polishing particles (C) having a solid content concentration of 20% by weight was obtained in the same manner as in Example 1 except that the addition was carried out for 0 minutes. The content of the hydrolyzable organosilicon compound in the polishing particles (C) was 3.0% by weight as CH 3 SiO 3/2 . An abrasive (C) was prepared in the same manner as in Example 1 except that the dispersion liquid of abrasive particles (C) was used, and this was used to polish a polishing substrate in the same manner as in Example 1. The results of the polishing test are shown in Table 2.
It was shown to.

【0023】[0023]

【実施例4】研磨用粒子(D)分散液と研磨用粒子
(D) 実施例2において、加水分解性有機ケイ素化合物として
γ−グリシドキシプロピルトリメトキシシラン(信越化
学(株)製:KBM−403)5. 65gとエタノール
114. 35gとの混合液を60分間で添加した以外は
実施例2と同様にして固形分濃度20重量%の研磨用粒
子(D)の分散液を得た。研磨用粒子(D)中の加水分
解性有機ケイ素化合物の含有量はC5 102 SiO
3/2 として1. 0重量%であった。研磨用粒子(D)の
分散液を用いた以外は実施例1と同様にして研磨材
(D)を調製し、これを用い実施例1と同様の方法で研
磨用基板を研磨した。研磨試験の結果を表2に示した。
Example 4 Abrasive Particle (D) Dispersion Liquid and Abrasive Particles
(D ) In Example 2, a mixed solution of 5.65 g of γ-glycidoxypropyltrimethoxysilane (KBM-403 manufactured by Shin-Etsu Chemical Co., Ltd.) and 114.35 g of ethanol was used as the hydrolyzable organosilicon compound. A dispersion of polishing particles (D) having a solid content concentration of 20% by weight was obtained in the same manner as in Example 2 except that the addition was performed in minutes. The content of the hydrolyzable organosilicon compound in the polishing particles (D) is C 5 H 10 O 2 SiO.
It was 1.0% by weight as 3/2 . An abrasive (D) was prepared in the same manner as in Example 1 except that the dispersion liquid of abrasive particles (D) was used, and this was used to polish a polishing substrate in the same manner as in Example 1. The results of the polishing test are shown in Table 2.

【0024】[0024]

【実施例5】研磨用粒子(E)分散液と研磨用粒子
(E) 実施例4において、γ−グリシドキシプロピルトリメト
キシシラン17. 1gとエタノール102. 9gとの混
合液を60分間で添加した以外は実施例4と同様にして
固形分濃度20重量%の研磨用粒子(E)の分散液を得
た。研磨用粒子(E)中の加水分解性有機ケイ素化合物
の含有量はC5 102 SiO3/2 として3. 0重量%
であった。研磨用粒子(E)の分散液を用いた以外は実
施例1と同様にして研磨材(E)を調製し、これを用い
実施例1と同様の方法で研磨用基板を研磨した。研磨試
験の結果を表2に示した。
Example 5 Abrasive Particle (E) Dispersion Liquid and Abrasive Particles
(E ) In the same manner as in Example 4 except that a mixed solution of 17.1 g of γ-glycidoxypropyltrimethoxysilane and 102.9 g of ethanol was added over 60 minutes, the solid content concentration was 20% by weight. A dispersion of polishing particles (E) was obtained. The content of the hydrolyzable organosilicon compound in the polishing particles (E) was 3.0% by weight as C 5 H 10 O 2 SiO 3/2 .
Met. An abrasive (E) was prepared in the same manner as in Example 1 except that the dispersion liquid of abrasive particles (E) was used, and this was used to polish a polishing substrate in the same manner as in Example 1. The results of the polishing test are shown in Table 2.

【0025】[0025]

【実施例6】研磨用粒子(F)分散液と研磨用粒子
(F) 実施例1において、無機酸化物粒子としてシリカ粒子分
散ゾル(触媒化成工業(株)製:カタロイドSI−80
P、平均粒子径80nm、SiO2 濃度40.5重量
%)993gを用いた以外は実施例1と同様にして固形
分濃度20重量%の研磨用粒子(F)の分散液を得た。
研磨用粒子(F)中の加水分解性有機ケイ素化合物の含
有量はCH3 SiO3/2 として1. 48重量%であっ
た。研磨用粒子(F)の分散液を用いた以外は実施例1
と同様にして研磨材(F)を調製し、これを用い実施例
1と同様の方法で研磨用基板を研磨した。研磨試験の結
果を表2に示した。
Example 6 Abrasive Particle (F) Dispersion Liquid and Abrasive Particles
(F ) In Example 1, silica particles dispersed sol as an inorganic oxide particle (Cataloid SI-80 manufactured by Catalysts & Chemicals Industry Co., Ltd.)
P, average particle diameter 80 nm, SiO 2 concentration 40.5% by weight) was used in the same manner as in Example 1 to obtain a dispersion of polishing particles (F) having a solid content concentration of 20% by weight.
The content of the hydrolyzable organosilicon compound in the polishing particles (F) was 1.48 % by weight as CH 3 SiO 3/2 . Example 1 except that a dispersion of abrasive particles (F) was used
An abrasive (F) was prepared in the same manner as in (1), and the polishing substrate was polished in the same manner as in Example 1 using this. The results of the polishing test are shown in Table 2.

【0026】[0026]

【実施例7】研磨用粒子(G)分散液と研磨用粒子
(G) 実施例1において、無機酸化物粒子としてテトラメトキ
シシランを加水分解して得たシリカ粒子分散ゾル(平均
粒子径24nm、濃度20重量%)1990gを純水で
希釈して固形分濃度10重量%のシリカ粒子分散液を調
製して用いた以外は実施例1と同様にして、固形分濃度
20重量%の研磨用粒子(G)の分散液を得た。研磨用
粒子(G)中の加水分解性有機ケイ素化合物の含有量は
CH3 SiO3/2 として1. 55重量%であった。研磨
用粒子(G)の分散液を用いた以外は実施例1と同様に
して研磨材(G)を調製し、これを用い実施例1と同様
の方法で研磨用基板を研磨した。研磨試験の結果を表2
に示した。
Example 7 Abrasive Particle (G) Dispersion Liquid and Abrasive Particles
(G ) In Example 1, 1990 g of silica particle-dispersed sol (average particle size 24 nm, concentration 20% by weight) obtained by hydrolyzing tetramethoxysilane as inorganic oxide particles was diluted with pure water to obtain a solid content concentration of 10 A dispersion of polishing particles (G) having a solid content concentration of 20% by weight was obtained in the same manner as in Example 1 except that a silica particle dispersion of 1% by weight was prepared and used. The content of the hydrolyzable organosilicon compound in the polishing particles (G) was 1.55 % by weight as CH 3 SiO 3/2 . An abrasive (G) was prepared in the same manner as in Example 1 except that the dispersion liquid of abrasive particles (G) was used, and this was used to polish a polishing substrate in the same manner as in Example 1. The results of the polishing test are shown in Table 2.
It was shown to.

【0027】[0027]

【比較例1】研磨用粒子(H)分散液と研磨用粒子
(H) 無機酸化物粒子としてシリカ粒子分散ゾル(触媒化成工
業(株)製:カタロイドSI−45P、平均粒子径45
nm、SiO2 濃度40. 2重量%)を超純水で希釈し
て固形分(SiO2 )濃度20重量%の研磨用粒子
(H)の分散液を得た。研磨用粒子(H)の分散液を用
いた以外は実施例1と同様にして研磨材(H)を調製
し、これを用い実施例1と同様の方法で研磨用基板を研
磨した。研磨試験の結果を表2に示した。
Comparative Example 1 Abrasive Particle (H) Dispersion Liquid and Abrasive Particles
(H ) Silica particle dispersed sol as an inorganic oxide particle (Catalyst Kasei Kogyo KK: Cataloid SI-45P, average particle size 45)
nm, SiO 2 concentration 40.2% by weight) was diluted with ultrapure water to obtain a dispersion of polishing particles (H) having a solid content (SiO 2 ) concentration of 20% by weight. An abrasive (H) was prepared in the same manner as in Example 1 except that the dispersion liquid of abrasive particles (H) was used, and this was used to polish a polishing substrate in the same manner as in Example 1. The results of the polishing test are shown in Table 2.

【0028】[0028]

【比較例2】研磨用粒子(I)分散液と研磨用粒子
(I) 無機酸化物粒子としてシリカ粒子分散ゾル(触媒化成工
業(株)製:カタロイドSI−80P、平均粒子径80
nm、SiO2 濃度40. 5重量%)を超純水で希釈し
て固形分(SiO2 )濃度20重量%の研磨用粒子
(I)の分散液を得た。研磨用粒子(I)の分散液を用
いた以外は実施例1と同様にして研磨材(I)を調製
し、これを用い実施例1と同様の方法で研磨用基板を研
磨した。研磨試験の結果を表2に示した。
Comparative Example 2 Abrasive Particle (I) Dispersion Liquid and Abrasive Particles
(I ) Silica particle-dispersed sol as an inorganic oxide particle (Catalyst Kasei Co., Ltd .: Cataloid SI-80P, average particle diameter 80)
nm, SiO 2 concentration 40.5% by weight) was diluted with ultrapure water to obtain a dispersion of polishing particles (I) having a solid content (SiO 2 ) concentration of 20% by weight. Abrasive (I) was prepared in the same manner as in Example 1 except that the dispersion liquid of abrasive particles (I) was used, and this was used to polish a polishing substrate in the same manner as in Example 1. The results of the polishing test are shown in Table 2.

【0029】[0029]

【比較例3】研磨用粒子(J)分散液と研磨用粒子
(J) 無機酸化物粒子としてテトラメトキシシランを加水分解
して得たシリカ粒子分散ゾル(平均粒子径24nm、濃
度20重量%)をそのまま研磨用粒子(J)の分散液と
して用いた。研磨用粒子(J)の分散液を用いた以外は
実施例1と同様にして研磨材(J)を調製し、これを用
い実施例1と同様の方法で研磨用基板を研磨した。研磨
試験の結果を表2に示した。
Comparative Example 3 Abrasive Particle (J) Dispersion Liquid and Abrasive Particles
(J 2 ) As the inorganic oxide particles, silica particle-dispersed sol (average particle diameter 24 nm, concentration 20% by weight) obtained by hydrolyzing tetramethoxysilane was used as it was as a dispersion liquid of polishing particles (J). An abrasive (J) was prepared in the same manner as in Example 1 except that the dispersion liquid of abrasive particles (J) was used, and this was used to polish a polishing substrate in the same manner as in Example 1. The results of the polishing test are shown in Table 2.

【0030】[0030]

【表1】 [Table 1]

【0031】[0031]

【表2】 研 磨 特 性 研 磨 速 度 スクラッチ 過研磨 絶縁膜(I) 銅層(C) (C)/(I) 絶縁膜 銅層 絶縁膜 (Å/min)(Å/min) 実施例1 120 4100 34 ○ ○ ○ 実施例2 140 4100 29 ○ ○ ○ 実施例3 110 4000 36 ○ ○ ○ 実施例4 140 3800 27 ○ ○ ○ 実施例5 140 3900 28 ○ ○ ○ 実施例6 120 2800 23 ○ ○ △ 実施例7 40 1100 28 ○ ○ ○ 比較例1 180 4100 23 △ △ △ 比較例2 160 2800 18 △ △ × 比較例3 50 1100 22 △ △ △[Table 2] Polishing property Polishing speed Scratch overpolishing Insulation film (I ) Copper layer (C ) ( C) / (I) Insulation film Copper layer Insulation film (Å / min) (Å / min) Example 1 120 4100 34 ○ ○ ○ Example 2 140 4100 29 ○ ○ ○ Example 3 110 4000 36 ○ ○ ○ Example 4 140 3800 27 ○ ○ ○ Example 5 140 3900 28 ○ ○ ○ Example 6 120 2800 23 ○ ○ △ Example 7 40 1100 28 ○ ○ ○ Comparative Example 1 180 4100 23 △ △ △ Comparative Example 2 160 2800 18 △ △ × Comparative Example 3 50 1100 22 △ △ △

フロントページの続き (72)発明者 中島 昭 福岡県北九州市若松区北湊町13−2 触媒 化成工業株式会社若松工場内 (72)発明者 小松 通郎 福岡県北九州市若松区北湊町13−2 触媒 化成工業株式会社若松工場内 Fターム(参考) 3C058 AA07 CA01 CB01 DA02 DA12Continued front page    (72) Inventor Akira Nakajima             13-2 Kitaminato-cho, Wakamatsu-ku, Kitakyushu, Fukuoka             Kasei Industry Co., Ltd. Wakamatsu factory (72) Inventor Toshiro Komatsu             13-2 Kitaminato-cho, Wakamatsu-ku, Kitakyushu, Fukuoka             Kasei Industry Co., Ltd. Wakamatsu factory F term (reference) 3C058 AA07 CA01 CB01 DA02 DA12

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 無機酸化物粒子が下記一般式で表される
加水分解性有機ケイ素化合物で表面処理されてなること
を特徴とする研磨用粒子。 Rn SiX4-n 〔但し、n:1、2または3であり、R:炭素数1〜1
0の非置換または置換炭化水素基であって、nが2また
は3のときには互いに同一であっても異なっていてもよ
い。X:炭素数1〜4のアルコキシ基、シラノール基、
ハロゲン、または水素である。〕
1. Polishing particles, wherein the inorganic oxide particles are surface-treated with a hydrolyzable organosilicon compound represented by the following general formula. R n SiX 4-n [where n is 1, 2 or 3, R is carbon number 1 to 1
0 is an unsubstituted or substituted hydrocarbon group, and when n is 2 or 3, they may be the same or different from each other. X: an alkoxy group having 1 to 4 carbon atoms, a silanol group,
Halogen or hydrogen. ]
【請求項2】 平均粒子径が5〜300nmの範囲にあ
り、前記加水分解性有機ケイ素化合物をRn SiO
(4-n)/2 として0. 01〜5重量%の範囲で含有する請
求項1記載の研磨用粒子。
2. The average particle diameter is in the range of 5 to 300 nm, and the hydrolyzable organosilicon compound is R n SiO 2.
The polishing particles according to claim 1, which are contained in the range of 0.01 to 5% by weight as (4-n) / 2 .
【請求項3】 水系分散媒に請求項1または請求項2に
記載の研磨用粒子が2〜50重量%の範囲で分散してな
る研磨材。
3. A polishing material comprising the polishing particles according to claim 1 or 2 dispersed in an aqueous dispersion medium in a range of 2 to 50% by weight.
JP2002085830A 2002-03-26 2002-03-26 Abrasive particles and abrasives Pending JP2003277731A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002085830A JP2003277731A (en) 2002-03-26 2002-03-26 Abrasive particles and abrasives

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002085830A JP2003277731A (en) 2002-03-26 2002-03-26 Abrasive particles and abrasives

Publications (1)

Publication Number Publication Date
JP2003277731A true JP2003277731A (en) 2003-10-02

Family

ID=29232644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002085830A Pending JP2003277731A (en) 2002-03-26 2002-03-26 Abrasive particles and abrasives

Country Status (1)

Country Link
JP (1) JP2003277731A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006032966A (en) * 2004-07-15 2006-02-02 Samsung Electronics Co Ltd Cerium oxide abrasive particles and composition comprising the abrasive particles
JP2006060217A (en) * 2004-08-16 2006-03-02 Samsung Electronics Co Ltd Cerium oxide abrasive particles and manufacturing method thereof, slurry composition for CMP and manufacturing method thereof, and substrate polishing method using them
WO2006122492A1 (en) * 2005-05-17 2006-11-23 Anji Microelectronics (Shanghai) Co., Ltd Polishing slurry
CN1297620C (en) * 2005-05-10 2007-01-31 山东师范大学 Anti-skid intensifier for smooth brick masonry surface and method for preparing same
WO2015040979A1 (en) * 2013-09-20 2015-03-26 株式会社フジミインコーポレーテッド Polishing composition
JP2017135387A (en) * 2007-09-21 2017-08-03 キャボット マイクロエレクトロニクス コーポレイション Polishing composition and method of using abrasive particles treated with aminosilane
JP2019196467A (en) * 2018-05-11 2019-11-14 日立化成株式会社 Cmp abrasive and method for producing the same, and cmp polishing method
TWI757349B (en) * 2016-11-07 2022-03-11 日商日揮觸媒化成股份有限公司 Silica-based particles for polishing and abrasives

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62285976A (en) * 1986-06-03 1987-12-11 Mitsubishi Chem Ind Ltd Abrasive composition
WO1989012082A1 (en) * 1988-06-03 1989-12-14 Mitsubishi Monsanto Chemical Company Abrasive composition for silicon wafer
JPH0845934A (en) * 1994-07-27 1996-02-16 Sony Corp Wiring layer surface polishing slurry and manufacture of semiconductor device using the slurry
JP2000053946A (en) * 1998-08-05 2000-02-22 Showa Denko Kk Abrasive material composition
JP2000114211A (en) * 1998-08-05 2000-04-21 Showa Denko Kk Abrasive composition for polishing of lsi device and polishing method
JP2000160139A (en) * 1998-12-01 2000-06-13 Fujimi Inc Grinding composition and grinding method using the same
WO2001004226A2 (en) * 1999-07-07 2001-01-18 Cabot Microelectronics Corporation Cmp composition containing silane modified abrasive particles
JP2001019941A (en) * 1999-07-09 2001-01-23 Nihon Micro Coating Co Ltd Production of organic solvent-dispersed abrasive grain
WO2001057919A1 (en) * 2000-02-04 2001-08-09 Showa Denko K. K. Polishing composite for use in lsi manufacture and method of manufacturing lsi
JP2001269857A (en) * 2000-03-24 2001-10-02 Fujitsu Ltd Polishing composition

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62285976A (en) * 1986-06-03 1987-12-11 Mitsubishi Chem Ind Ltd Abrasive composition
WO1989012082A1 (en) * 1988-06-03 1989-12-14 Mitsubishi Monsanto Chemical Company Abrasive composition for silicon wafer
JPH0845934A (en) * 1994-07-27 1996-02-16 Sony Corp Wiring layer surface polishing slurry and manufacture of semiconductor device using the slurry
JP2000053946A (en) * 1998-08-05 2000-02-22 Showa Denko Kk Abrasive material composition
JP2000114211A (en) * 1998-08-05 2000-04-21 Showa Denko Kk Abrasive composition for polishing of lsi device and polishing method
JP2000160139A (en) * 1998-12-01 2000-06-13 Fujimi Inc Grinding composition and grinding method using the same
WO2001004226A2 (en) * 1999-07-07 2001-01-18 Cabot Microelectronics Corporation Cmp composition containing silane modified abrasive particles
JP2001019941A (en) * 1999-07-09 2001-01-23 Nihon Micro Coating Co Ltd Production of organic solvent-dispersed abrasive grain
WO2001057919A1 (en) * 2000-02-04 2001-08-09 Showa Denko K. K. Polishing composite for use in lsi manufacture and method of manufacturing lsi
JP2001269857A (en) * 2000-03-24 2001-10-02 Fujitsu Ltd Polishing composition

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006032966A (en) * 2004-07-15 2006-02-02 Samsung Electronics Co Ltd Cerium oxide abrasive particles and composition comprising the abrasive particles
JP2006060217A (en) * 2004-08-16 2006-03-02 Samsung Electronics Co Ltd Cerium oxide abrasive particles and manufacturing method thereof, slurry composition for CMP and manufacturing method thereof, and substrate polishing method using them
CN1297620C (en) * 2005-05-10 2007-01-31 山东师范大学 Anti-skid intensifier for smooth brick masonry surface and method for preparing same
WO2006122492A1 (en) * 2005-05-17 2006-11-23 Anji Microelectronics (Shanghai) Co., Ltd Polishing slurry
US7947195B2 (en) 2005-05-17 2011-05-24 Anji Microelectronics (Shanghai) Co., Ltd. Polishing slurry
JP2017135387A (en) * 2007-09-21 2017-08-03 キャボット マイクロエレクトロニクス コーポレイション Polishing composition and method of using abrasive particles treated with aminosilane
CN105555901A (en) * 2013-09-20 2016-05-04 福吉米株式会社 Polishing composition
US20160288289A1 (en) * 2013-09-20 2016-10-06 Fujimi Incorporated Polishing composition
EP3048152A4 (en) * 2013-09-20 2016-10-19 Fujimi Inc Polishing composition
JPWO2015040979A1 (en) * 2013-09-20 2017-03-02 株式会社フジミインコーポレーテッド Polishing composition
WO2015040979A1 (en) * 2013-09-20 2015-03-26 株式会社フジミインコーポレーテッド Polishing composition
TWI757349B (en) * 2016-11-07 2022-03-11 日商日揮觸媒化成股份有限公司 Silica-based particles for polishing and abrasives
JP2019196467A (en) * 2018-05-11 2019-11-14 日立化成株式会社 Cmp abrasive and method for producing the same, and cmp polishing method
JP7031485B2 (en) 2018-05-11 2022-03-08 昭和電工マテリアルズ株式会社 CMP polishing agent and its manufacturing method, and CMP polishing method

Similar Documents

Publication Publication Date Title
EP1081200B1 (en) Chemical mechanical polishing method using an aqueous dispersion composition for use in manufacture of semiconductor devices
JP4278020B2 (en) Abrasive particles and method for producing abrasives
US8574330B2 (en) Chemical mechanical polishing aqueous dispersion and chemical mechanical polishing method for semiconductor device
JP4510374B2 (en) Polishing composition for metal CMP
KR100504359B1 (en) Polishing composite for use in lsi manufacture and method of manufacturing lsi
KR100682420B1 (en) Manufacturing method of water dispersion and semiconductor device for chemical mechanical polishing
TWI506127B (en) A method for chemical mechanical polishing a substrate
JP2001518948A (en) Planarizing composition for removing metal film
CN103042464B (en) Method for chemical mechanical polishing tungsten
JP2004502824A (en) Silane-containing polishing composition for CMP
JP2004512681A (en) Chemical mechanical polishing slurry and polishing method
WO2007077886A1 (en) Metal polishing liquid and method for polishing film to be polished
EP1805274A2 (en) Aqueous slurry containing metallate-modified silica particles
JP2002261053A (en) ACID GRINDING SLURRY FOR CHEMICAL MECHANICAL POLISHING OF SiO2 SEPARATION LAYER
WO2009071351A1 (en) A method for chemically-mechanically polishing patterned surfaces composed of metallic and nonmetallic patterned regions
JP2004055861A (en) Abrasive and polishing method
US6652612B2 (en) Silica particles for polishing and a polishing agent
JPH0786216A (en) Manufacture of semiconductor device
JP2003051469A (en) Slurry composition for cmp, patterning method, and semiconductor device
JP5585220B2 (en) CMP polishing liquid and polishing method using this CMP polishing liquid
JP2003277731A (en) Abrasive particles and abrasives
JP2006352096A (en) Chemical mechanical polishing aqueous dispersion, chemical mechanical polishing method, and kit for preparing chemical mechanical polishing aqueous dispersion
JP2009094450A (en) Polishing liquid for polishing aluminum film, and polishing method of substrate
JP2006080406A (en) Polishing composition
JP2002184734A (en) Method for manufacturing semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070605

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071009