JP2003277188A - Large superconducting intermediates, large superconductors and methods of making them - Google Patents
Large superconducting intermediates, large superconductors and methods of making themInfo
- Publication number
- JP2003277188A JP2003277188A JP2002088010A JP2002088010A JP2003277188A JP 2003277188 A JP2003277188 A JP 2003277188A JP 2002088010 A JP2002088010 A JP 2002088010A JP 2002088010 A JP2002088010 A JP 2002088010A JP 2003277188 A JP2003277188 A JP 2003277188A
- Authority
- JP
- Japan
- Prior art keywords
- superconducting
- oxide
- phase
- raw material
- sized
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002887 superconductor Substances 0.000 title claims abstract description 19
- 238000000034 method Methods 0.000 title description 15
- 239000000543 intermediate Substances 0.000 title 1
- 239000013078 crystal Substances 0.000 claims abstract description 50
- 238000004519 manufacturing process Methods 0.000 claims abstract description 23
- 229910052574 oxide ceramic Inorganic materials 0.000 claims abstract description 15
- 239000011224 oxide ceramic Substances 0.000 claims abstract description 15
- 239000000463 material Substances 0.000 claims description 55
- 239000002994 raw material Substances 0.000 claims description 35
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 16
- 229910052760 oxygen Inorganic materials 0.000 claims description 16
- 239000001301 oxygen Substances 0.000 claims description 16
- 241000954177 Bangana ariza Species 0.000 claims description 12
- 238000000465 moulding Methods 0.000 claims description 9
- 229910052684 Cerium Inorganic materials 0.000 claims description 7
- 238000001816 cooling Methods 0.000 claims description 6
- 238000010438 heat treatment Methods 0.000 claims description 5
- 229910052697 platinum Inorganic materials 0.000 claims description 4
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 4
- 229910052703 rhodium Inorganic materials 0.000 claims description 3
- 239000013590 bulk material Substances 0.000 abstract description 15
- 229910010293 ceramic material Inorganic materials 0.000 abstract description 6
- 239000000843 powder Substances 0.000 description 35
- 239000012071 phase Substances 0.000 description 34
- 239000002243 precursor Substances 0.000 description 8
- 229910002480 Cu-O Inorganic materials 0.000 description 7
- 239000011812 mixed powder Substances 0.000 description 7
- 230000007704 transition Effects 0.000 description 6
- 239000000203 mixture Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 238000001354 calcination Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 239000002131 composite material Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 230000002542 deteriorative effect Effects 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 230000000153 supplemental effect Effects 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 230000002706 hydrostatic effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 238000013001 point bending Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 229910001404 rare earth metal oxide Inorganic materials 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
(57)【要約】
【課題】 複数の種結晶を用いて結晶成長させた広い面
積をもつ大型超電導バルク材料において、強度の高いセ
ラミックス材料との複合化された構造支持材付き大型超
電導バルク材料及びその製造方法を提供する。
【解決手段】 包晶温度が異なる超電導体層をTpの順に
立体的に少なくとも3層を積層し、多結晶酸化物セラミ
ックスが最も低いTpを有する層の下面と固着した構造を
特徴とする大型超電導中間体とこれを用いた大型超電導
体及びこれらの製造方法である。
(57) [PROBLEMS] A large superconducting bulk material having a large area grown by using a plurality of seed crystals, and a large superconducting bulk material with a structural support compounded with a high-strength ceramic material; The manufacturing method is provided. SOLUTION: A large superconducting structure characterized by a structure in which at least three superconducting layers having different peritectic temperatures are three-dimensionally stacked in the order of Tp, and a polycrystalline oxide ceramic is fixed to the lower surface of the layer having the lowest Tp. An intermediate, a large superconductor using the intermediate, and a method for producing the same.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、 90K級の臨界温度
を有する希土類系酸化物超電導体の大型材料及びその製
造法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a large-scale material for rare earth oxide superconductor having a critical temperature of 90 K class and a method for producing the same.
【0002】[0002]
【従来の技術】従来、本発明が対象とするREBa2Cu3Ox系
超電導バルク材料の製法としては、Quench and Melt Gr
owth法(特許登録第1869884号及び特許登録第2556401号)
で代表されるような溶融法が挙げられる。この方法は、
RE2BaCuO5相又は RE4Ba2Cu2O10相と、Ba-Cu-Oを主成分
とした液相が共存する温度領域まで一旦昇温し、 REBa2
Cu3Oxが生成する包晶温度直上迄冷却し、その温度から
徐冷を行うことにより結晶成長させ、核生成と結晶方位
の制御を行ない、大型のバルク材を得る方法である。こ
の製法を用いることによって、臨界電流密度(超電導特
性の一つで、単位断面積あたりに流せる電流密度)が高
く、比較的大型の超電導材料を得ることができる。 2. Description of the Related Art Conventionally, as a method for producing a REBa 2 Cu 3 O x type superconducting bulk material, which is the object of the present invention, Quench and Melt Gr
owth method (patent registration 1869884 and patent registration 2556401)
And a melting method represented by This method
Temporarily raise the temperature to a temperature range in which the RE 2 BaCuO 5 phase or RE 4 Ba 2 Cu 2 O 10 phase and the liquid phase containing Ba-Cu-O as the main component coexist, and then REBa 2
This is a method in which a large bulk material is obtained by cooling to just above the peritectic temperature at which Cu 3 O x is formed and gradually cooling from that temperature to grow crystals, control nucleation and crystal orientation. By using this manufacturing method, it is possible to obtain a relatively large-sized superconducting material having a high critical current density (one of the superconducting properties and the current density that can be passed per unit cross-sectional area).
【0003】一方、大型材料作製に複数個の種結晶を用
い、各々の種結晶から結晶成長させる方法は、個々の種
結晶から結晶成長すべき領域が狭くなるため、比較的短
期間で結晶成長が実現できる特徴をもつ。特に、特開 2
001-322897号公報の方法は、従来の複数個の種結晶を用
いた方法で課題となっていた「各々の種結晶から結晶成
長した領域間に排斥された偏析相」の除去を実現し、結
果として各々の種結晶から結晶成長した領域間の超電導
特性が改善され、全体としてより均一な超電導特性が得
られる特徴をもつ。On the other hand, in the method of using a plurality of seed crystals for producing a large-sized material and growing the crystals from each seed crystal, the region to be grown from each seed crystal becomes narrow, so that the crystal growth occurs in a relatively short period of time. Has a feature that can be realized. In particular, JP 2
The method of the 001-322897 publication realizes the removal of "segregated phases that are rejected between the regions grown from each seed crystal" which has been a problem in the conventional method using a plurality of seed crystals. As a result, the superconducting properties between the regions grown from the respective seed crystals are improved, and more uniform superconducting properties are obtained as a whole.
【0004】上記方法を用いることで、より広い面積
で、かつ均一な超電導特性をもつ試料製造が可能となっ
たが、サイズが大きい分、希望形状への加工の際等に超
電導材料中に割れが入りやすくなる等の問題があった。
RE-Ba-Cu-O超電導材料自体の材料強度はセラミックス材
料の中では強い方ではなく、強度改善のためAg元素を添
加する方法も知られているが、Ag元素添加のみでは大型
材料での強度改善は十分ではなかった。By using the above method, it is possible to manufacture a sample having a wider area and uniform superconducting properties. However, the large size causes cracks in the superconducting material during processing into a desired shape. There was a problem such as being easy to enter.
The material strength of RE-Ba-Cu-O superconducting material itself is not the strongest among ceramic materials, and it is also known to add Ag element to improve the strength. Strength improvement was not sufficient.
【0005】これに対して、他の強度の高い材料との組
み合わせ、つまり強度の高い構造支持材料と超電導材料
の複合材料化が考えられる。先述のような希望形状への
加工時に入る割れ等を回避するには、結晶成長直後にお
いて既に強度の高い構造支持材料と複合化されている必
要があり、このために結晶成長処理時に超電導前駆体と
構造支持材料とを同時に投入する方法が考えられる。し
かし、この場合RE-Ba-Cu-O超電導材料は、上記結晶成長
時に1000℃前後の高温状態になり、Ba元素やCu元素の酸
化物が液相として存在するため、反応性が高く、単純な
組み合わせでは構造支持材料と反応し、構造支持材料の
構成元素がRE-Ba-Cu-O超電導材料へ拡散することで、超
電導転移温度や臨界電流密度が低下する等の問題があっ
た。On the other hand, a combination with another material having high strength, that is, a composite material of a structural support material having high strength and a superconducting material can be considered. In order to avoid cracks and the like that occur during processing into the desired shape as described above, it is necessary to form a composite with a structural support material with high strength immediately after crystal growth. Therefore, the superconducting precursor during crystal growth treatment is required. It is possible to consider a method of simultaneously charging and the structural support material. However, in this case, the RE-Ba-Cu-O superconducting material is in a high temperature state of around 1000 ° C. during the above crystal growth, and since Ba element and Cu element oxides exist as a liquid phase, high reactivity and simple In such combinations, there was a problem that the superconducting transition temperature and the critical current density were lowered by reacting with the structure supporting material and diffusing the constituent elements of the structure supporting material into the RE-Ba-Cu-O superconducting material.
【0006】[0006]
【発明が解決しようとする課題】本発明は、複数の種結
晶を用いて結晶成長させ、結果としてより広い面積でか
つ均一な超電導特性をもつ大型超電導バルク材料におい
て、超電導転移温度や臨界電流密度等の超電導特性を劣
化させることなく強度の高いセラミックス材料との複合
化された構造支持材付き大型超電導バルク材料及びその
製造方法を提供することにある。DISCLOSURE OF THE INVENTION The present invention is to grow a crystal using a plurality of seed crystals, and as a result, in a large-sized superconducting bulk material having a wider area and uniform superconducting properties, the superconducting transition temperature and the critical current density. It is an object of the present invention to provide a large-sized superconducting bulk material with a structural support material that is composited with a ceramic material having high strength without deteriorating the superconducting characteristics such as the above, and a manufacturing method thereof.
【0007】[0007]
【課題を解決するための手段】本発明は、上記の問題を
解決するために、少なくとも 123相包晶温度(Tp)が異な
る3種類以上の酸化物超電導体で構成し、多結晶酸化物
セラミックスと最も低い Tpを有する酸化物超電導層と
が一部反応し、強固に固着しても、中間(最も高いTpよ
り低く、かつ最も低いTpよりも高い)の Tpをもつ酸化物
超電導層には構造支持材料の構成元素が拡散せず、その
超電導特性 (超電導転移温度や臨界電流密度)には影響
しない点と、特開2001-322897号公報の方法を発展させ
て、構造支持材料との間に最もTpの低い超電導層を配す
ることで超電導転移温度や臨界電流密度等の超電導特性
を劣化させることなく、強度の高いセラミックス材料と
の複合化された構造支持材付き大型超電導バルク材料を
得る手段を講じたものである。In order to solve the above-mentioned problems, the present invention comprises three or more kinds of oxide superconductors having different 123 phase peritectic temperatures (Tp), and a polycrystalline oxide ceramics. Partly reacts with the oxide superconducting layer with the lowest Tp, and even if they are firmly fixed, an oxide superconducting layer with an intermediate Tp (lower than the highest Tp and higher than the lowest Tp) The constituent elements of the structure supporting material do not diffuse, and their superconducting properties (superconducting transition temperature and critical current density) are not affected. By disposing the superconducting layer with the lowest Tp in the structure, a large-scale superconducting bulk material with a structural support material that is composited with a high-strength ceramic material can be obtained without degrading the superconducting properties such as superconducting transition temperature and critical current density. It is a measure taken.
【0008】本発明の第1の特徴は、REBa2Cu3Ox(REはY
を含む希土類元素の1種類又はその組み合わせ)系超電
導中間体であって、REBa2Cu3Ox相(123相)中に非超電導
相が微細に分散した組織を有する 123相の包晶温度(Tp)
が異なる複数の酸化物超電導体層をTpの順に立体的に少
なくとも3層を積層した構造を有し、最も高いTpを有す
る酸化物超電導層上に2個以上の種結晶が載置され、少
なくとも前記高Tp酸化物超電導層に排斥相を含有し、多
結晶酸化物セラミックスが最も低いTpを有する酸化物超
電導層の下面と固着した構造を特徴とする大型超電導中
間体である。The first feature of the present invention is that REBa 2 Cu 3 O x (RE is Y
One or a combination of rare earth elements containing a) superconducting intermediate of 123 phase having a structure in which a non-superconducting phase is finely dispersed in a REBa 2 Cu 3 O x phase (123 phase) (peritectic temperature ( Tp)
Has a structure in which a plurality of oxide superconducting layers different from each other are three-dimensionally stacked in the order of Tp, and two or more seed crystals are placed on the oxide superconducting layer having the highest Tp, A large-sized superconducting intermediate characterized in that the high Tp oxide superconducting layer contains a repulsive phase, and the polycrystalline oxide ceramics is fixed to the lower surface of the oxide superconducting layer having the lowest Tp.
【0009】本発明での非超電導相とは、 母相である
REBa2Cu3Ox(123)相中に 微細分散したRE2BaCuO5相又はR
E4Ba2Cu2O10相等のことを指す。また、REBa2Cu3Ox相(12
3相)の包晶温度(Tp)が異なる123相とは、RE組成を変化
させることで123相の包晶温度(Tp)を変化させ、Tpの異
なる組成粉末で構成された酸化物超電導体を指す。ま
た、立体的に積層した構造とは、層状に積層した場合
や、同心円状に構成された場合、もしくはこの組み合わ
せを指す。The non-superconducting phase in the present invention is a matrix phase.
REBa 2 Cu 3 O x (123) finely dispersed RE 2 BaCuO 5 phase or R
E 4 Ba 2 Cu 2 O 10 Refers to the phase. In addition, the REBa 2 Cu 3 O x phase (12
123 phase with a different peritectic temperature (Tp) of 3 phases means that the peritectic temperature (Tp) of the 123 phase is changed by changing the RE composition, and an oxide superconductor composed of composition powders with different Tp Refers to. In addition, the three-dimensionally laminated structure means a laminated structure, a concentric circular structure, or a combination thereof.
【0010】本発明の第2の特徴は、多結晶酸化物セラ
ミックスの室温から 800℃までの平均線膨張係数が10pp
m/℃以上20ppm/℃以下であることを特徴とする上記第1
の大型超電導中間体である。本発明の第3の特徴は、多
結晶酸化物セラミックスの主成分が、 MgO多結晶材料で
あることを特徴とする上記第1又は第2の大型超電導中
間体である。主成分がMgO多結晶材料であるとは、多結
晶酸化物セラミックス中にMgOが90%以上存在する材料
を意味する。The second feature of the present invention is that the average linear expansion coefficient of polycrystalline oxide ceramics from room temperature to 800 ° C. is 10 pp.
The above-mentioned first featured in that it is not less than m / ℃ and not more than 20 ppm / ℃
Is a large-scale superconducting intermediate. The third feature of the present invention is the above-mentioned first or second large-sized superconducting intermediate, characterized in that the main component of the polycrystalline oxide ceramics is a MgO polycrystalline material. The main component being MgO polycrystalline material means a material in which 90% or more of MgO is present in the polycrystalline oxide ceramics.
【0011】本発明の第4の特徴は、前記最も低いTpを
有する酸化物超電導層にYb元素が含まれることを特徴と
する上記第1〜第3のいずれかの大型超電導中間体であ
る。本発明の第5の特徴は、前記積層体が1〜30質量%
の Ag元素を含有する酸化物超電導体層を少なくとも1
層積層してなる上記第1〜第4のいずれかの大型超電導
中間体である。A fourth feature of the present invention is the large-scale superconducting intermediate body according to any one of the first to third features, wherein the oxide superconducting layer having the lowest Tp contains Yb element. The fifth feature of the present invention is that the laminate has 1 to 30% by mass.
At least one oxide superconducting layer containing Ag element
The large-scale superconducting intermediate body according to any one of the first to fourth aspects, which is formed by stacking layers.
【0012】本発明の第6の特徴は、前記積層体が、0.
001〜2.0質量%のRh元素、 0.05〜5.0質量%のPt元素、
又は0.05〜10.0質量%のCe元素の内の少なくとも1つの
元素を含有する酸化物超電導体層を少なくとも1層積層
してなる上記第1〜第5のいずれかの大型超電導中間体
である。本発明の第7の特徴は、上記第1〜6のいずれ
かに記載の大型超電導中間体の種結晶及び排斥相を含有
する酸化物超電導層を切除し、酸素富化熱処理をしてな
ることを特徴とする大型超電導体である。A sixth feature of the present invention is that the laminate has
001 to 2.0 mass% Rh element, 0.05 to 5.0 mass% Pt element,
Alternatively, the large-scale superconducting intermediate body according to any one of the first to fifth aspects, wherein at least one oxide superconducting layer containing at least one element of 0.05 to 10.0 mass% Ce element is laminated. A seventh feature of the present invention is that the oxide superconducting layer containing the seed crystal and the repulsion phase of the large-sized superconducting intermediate described in any one of the above 1 to 6 is cut off and subjected to oxygen enrichment heat treatment. Is a large-scale superconductor.
【0013】本発明の第8の特徴は、REBa2Cu3Ox(REはY
を含む希土類元素の1種類又はその組み合わせ)系超電
導体を構成する RE、Ba及びCu成分を含む原料成型体を
加熱し、最高温度が該成型体の REBa2Cu3Ox相(123相)の
包晶温度(Tp)以上とした後、冷却することにより 123相
中に非超電導相が微細に分散した酸化物超電導中間体を
作製する方法であって、 123相のTpが異なる原料成型体
をTpの順に立体的に少なくとも3層を積層した原料成型
積層体とし、多結晶酸化物セラミックスの上に最も低い
Tpを有する原料成型積層体とが接するように載置し、さ
らに最も高いTpを有する原料成型積層体上に複数個の種
結晶を載置してから、前記原料成型積層体を熱処理する
ことを特徴とした酸化物超電導中間体の作製方法であ
る。The eighth feature of the present invention is that REBa 2 Cu 3 O x (RE is Y
One or a combination of rare earth elements including) A superconducting material that composes a RE superconductor, Ba and Cu components is heated, and the maximum temperature is the REBa 2 Cu 3 O x phase (123 phase) of the compact. It is a method of producing an oxide superconducting intermediate in which a non-superconducting phase is finely dispersed in the 123 phase by cooling after the peritectic temperature (Tp) or higher of Is a raw material molding laminated body in which at least three layers are three-dimensionally laminated in the order of Tp, and is the lowest on the polycrystalline oxide ceramics.
It is placed so that the raw material forming laminate having Tp is in contact with the raw material forming laminate, and a plurality of seed crystals are placed on the raw material forming laminate having the highest Tp, and then the raw material forming laminate is heat treated. It is a method for producing a characteristic oxide superconducting intermediate.
【0014】本発明の第9の特徴は、前記多結晶酸化物
セラミックスの室温から 800℃までの平均線膨張係数が
10ppm/℃以上20ppm/℃以下であることを特徴とする上記
第8の大型超電導中間体の作製方法である。本発明の第
10の特徴は、前記多結晶酸化物セラミックスの主成分
が、 MgO多結晶材料であることを特徴とする上記第8又
は第9の大型超電導中間体の作製方法である。The ninth feature of the present invention is that the average linear expansion coefficient of the polycrystalline oxide ceramics from room temperature to 800 ° C.
The eighth method for producing a large-sized superconducting intermediate is characterized in that it is 10 ppm / ° C or more and 20 ppm / ° C or less. A tenth feature of the present invention is the eighth or ninth large-sized superconducting intermediate producing method, wherein the main component of the polycrystalline oxide ceramics is a MgO polycrystalline material.
【0015】本発明の第11の特徴は、前記最も低いTp
を有する酸化物超電導原料成型体にYb元素が含まれるこ
とを特徴とする上記第8〜10のいずれかの大型超電導
中間体の作製方法である。本発明の第12の特徴は、前
記積層体に1〜30質量%の Ag元素を含有する酸化物超電
導原料成型体を少なくとも1層積層している上記第8〜
第11のいずれかの大型超電導中間体の作製方法であ
る。The eleventh feature of the present invention is that the lowest Tp
The method for producing a large-sized superconducting intermediate according to any one of the above 8th to 10th aspects, characterized in that the oxide superconducting raw material molded body containing Yb element is included. A twelfth feature of the present invention is that the laminated body is laminated with at least one layer of an oxide superconducting raw material molded body containing 1 to 30 mass% of Ag element.
An eleventh method for producing a large-sized superconducting intermediate.
【0016】本発明の第13の特徴は、前記原料成型積
層体が、0.001〜2.0質量%のRh元素、0.05〜5.0質量%
のPt元素、又は 0.05〜10.0質量%のCe元素の内の少な
くとも1つの元素を含有する原料成型体を少なくとも1
層積層している上記第8〜第12のいずれかの大型超電
導中間体の作製方法である。A thirteenth feature of the present invention is that the raw material molding laminate comprises 0.001 to 2.0% by mass of Rh element and 0.05 to 5.0% by mass.
At least one raw material compact containing at least one of Pt element or 0.05 to 10.0 mass% Ce element.
The method for producing a large-sized superconducting intermediate body according to any one of the eighth to twelfth aspects, wherein the layers are laminated.
【0017】本発明の第14の特徴は、上記第8〜13
の作製方法から得られた大型超電導中間体から種結晶及
び排斥相を含有する酸化物超電導体層を切除した後、酸
素富化処理することを特徴とする大型超電導体の作製方
法である。The fourteenth feature of the present invention is the above eighth to thirteenth features.
A method for producing a large-sized superconductor, comprising removing an oxide superconductor layer containing a seed crystal and a repulsion phase from the large-sized superconducting intermediate obtained by the method described above, and then performing an oxygen enrichment treatment.
【0018】[0018]
【発明の実施の形態】本発明は、複数の種結晶を用いて
結晶成長させ、結果として、より広い面積でかつ均一な
超電導特性をもつ大型超電導バルク材料において、超電
導転移温度や臨界電流密度等の超電導特性を劣化させる
ことなく、強度の高いセラミックス材料との複合化され
た構造支持材付き大型超電導バルク材料及びその製造方
法である。本発明のポイントは、特開 2001-322897号公
報の方法を発展させて、大型超電導バルク材料と構造支
持材料との間に最もTpの低い超電導層を用いる点にあ
る。以下、この点について詳細に説明する。BEST MODE FOR CARRYING OUT THE INVENTION The present invention grows a crystal using a plurality of seed crystals, and as a result, in a large-sized superconducting bulk material having a wider area and uniform superconducting characteristics, the superconducting transition temperature, the critical current density, etc. Is a large-sized superconducting bulk material with a structural support material, which is composited with a ceramic material having high strength without deteriorating the superconducting characteristics and the manufacturing method thereof. The point of the present invention is to develop the method of Japanese Patent Laid-Open No. 2001-322897 and use a superconducting layer having the lowest Tp between a large-sized superconducting bulk material and a structure supporting material. Hereinafter, this point will be described in detail.
【0019】構造支持材料の上に、特開 2001-322897号
公報における原料成型積層体を載置し、結晶成長処置を
行なった場合、結晶成長時に1000℃前後の高温下に曝さ
れるため、超電導層と構造支持材料との界面で反応が生
じ、結果として超電導層に不純物元素が混入し、超電導
転移温度や臨界電流密度等の超電導特性を劣化させてし
まうことが散発していた。When the raw material molding laminate in JP-A-2001-322897 is placed on the structure supporting material and the crystal growth treatment is performed, it is exposed to a high temperature of about 1000 ° C. during crystal growth, A reaction occurs at the interface between the superconducting layer and the structure supporting material, and as a result, an impurity element is mixed in the superconducting layer, which deteriorates superconducting properties such as superconducting transition temperature and critical current density.
【0020】一方、本発明方法では、図1のように少な
くとも Tpの異なる3層で構成された酸化物超電導体を用
いるが、最も低いTpをもつ層の厚みを適当な厚み (100
μm以上が好ましい)をもたせることで、最も低い Tpを
もつ層は構造支持材料と反応しても、中間(最も高いTp
より低く、最も低いTpよりも高い)のTpをもつ層への不
純物元素混入は極めて低減させることができる。つま
り、最も低いTpをもつ層は中間のTpをもつ層の不純物元
素混入を防ぐ層として利用することになる。加えて超電
導材料としての機能は中間のTpをもつ層が担うため、最
も低いTpをもつ層は結晶成長させる必要は必ずしもな
く、多結晶化してもかまわない。また、構造支持材料と
の接着との観点から、最も低いTpをもつ層の密度は高い
方が好ましい。例えば、原料成型積層体として、最も低
いTpをもつ層、中間のTpをもつ層及び最も高いTpをもつ
層の3層を一体成型し、その後静水圧印加したものを、
構造支持材に載置し、結晶成長処理を行なうことで、結
晶成長後は最も低いTpをもつ層は高い密度を有し、かつ
構造支持材料との密着も図られる。On the other hand, in the method of the present invention, as shown in FIG. 1, an oxide superconductor composed of at least three layers having different Tp's is used, but the layer having the lowest Tp is set to an appropriate thickness (100).
μm or more is preferable), so that even if the layer having the lowest Tp reacts with the structural support material, the layer having the lowest Tp
Impurity element incorporation in layers with a lower (higher than the lowest Tp) Tp can be greatly reduced. That is, the layer having the lowest Tp is used as a layer for preventing the impurity element from being mixed into the layer having the intermediate Tp. In addition, since the layer having the intermediate Tp plays a role as a superconducting material, the layer having the lowest Tp does not necessarily have to be crystal-grown, and may be polycrystallized. Further, from the viewpoint of adhesion to the structural support material, it is preferable that the layer having the lowest Tp has a high density. For example, as a raw material molding laminate, one obtained by integrally molding three layers of a layer having the lowest Tp, a layer having an intermediate Tp, and a layer having the highest Tp, and then applying hydrostatic pressure,
By placing the layer on the structure supporting material and performing the crystal growth treatment, the layer having the lowest Tp after crystal growth has a high density and can be adhered to the structure supporting material.
【0021】一方、RE-Ba-Cu-O超電導材料は、大きな熱
膨張係数(REがYの場合、ab軸方向で13ppm/℃前後) をも
つため、構造支持材料もほぼ同程度の熱膨張係数である
必要がある。該超電導材料に比べて大幅に異なる熱膨張
係数をもつ構造支持材料を用いた場合、結晶成長時の 9
00℃〜1100℃程度の高温から室温まで冷却する際に、界
面で熱収縮の差による引張応力もしくは圧縮応力が該超
電導材料に働き、割れ等の亀裂を誘発する原因となる。
該超電導材料は引張条件よりも圧縮条件の方が強度(例
えば3点曲げ強度)は高い。そのため、構造支持材料の
熱膨張係数が該超電導材料の熱膨張係数に比べて幾分大
きくても、冷却時に該超電導材料へ圧縮応力が働くケー
スであることから、割れ等を誘発しにくい。このような
理由から、熱収縮が働く主な温度領域(室温(20℃)から8
00℃)で線膨張係数が10ppm/℃から20ppm/℃の範囲に限
定している。このような構造支持材料としては、MgOや
安定化ZrO2等が挙げられる。特に、緻密な MgO多結晶材
料は、安価で軽く、熱膨張係数も約13ppm/℃とRE-Ba-Cu
-O超電導材料に近い値をもつ点で優れており、構造支持
材料に適している。On the other hand, since the RE-Ba-Cu-O superconducting material has a large coefficient of thermal expansion (when RE is Y, around 13 ppm / ° C in the ab axis direction), the structural support materials also have substantially the same thermal expansion coefficient. Must be a coefficient. When a structural support material with a coefficient of thermal expansion significantly different from that of the superconducting material is used,
Upon cooling from a high temperature of about 00 ° C. to 1100 ° C. to room temperature, tensile stress or compressive stress due to the difference in heat shrinkage at the interface acts on the superconducting material and causes cracks such as cracks.
The superconducting material has higher strength (eg, three-point bending strength) under compression than under tension. Therefore, even if the coefficient of thermal expansion of the structural support material is somewhat larger than the coefficient of thermal expansion of the superconducting material, compressive stress acts on the superconducting material during cooling, so that cracking or the like is unlikely to occur. For this reason, the temperature range from the main temperature range (room temperature (20 ° C)) where heat shrinkage works
(00 ° C), the coefficient of linear expansion is limited to the range of 10ppm / ° C to 20ppm / ° C. Examples of such a structure supporting material include MgO and stabilized ZrO 2 . In particular, the dense MgO polycrystalline material is inexpensive and light, and has a thermal expansion coefficient of about 13 ppm / ° C, which is RE-Ba-Cu.
-O Excellent in having a value close to that of superconducting materials, making it suitable as a structural support material.
【0022】また、熱収縮による発生応力は最も低いTp
を有する酸化物超電導層が固化し、構造支持材料と固着
する温度Tpと室温との差に比例することから、最も低い
Tpを有する酸化物超電導層にYb元素(Tp=910±10℃)を用
いることで、Tpを効果的に低く押さえ、構造支持材料と
固着する温度も低温化させることで、結果として熱収縮
差による発生応力を低く押さえることができる。The stress generated by thermal contraction is the lowest Tp
It is the lowest because the oxide superconducting layer containing
By using Yb element (Tp = 910 ± 10 ℃) for the oxide superconducting layer having Tp, Tp is effectively kept low, and the temperature at which it is fixed to the structural support material is also lowered. It is possible to suppress the generated stress due to.
【0023】更に、超電導材料にAg元素を含有させるこ
とで添加量に応じて酸化物超電導体自体の強度向上が図
れ、亀裂等を抑制する効果がある。Ag元素添加量は 1〜
30質量%の範囲であって、これにより強度向上の効果が
発揮できる。また、熱処理時にAg元素は各酸化物超電導
層内を拡散しやすく、Ag元素の濃度によりTpも変化する
ため、安定した結晶成長を得るためには各酸化物超電導
層へのAg元素添加量は、各層とも同一質量%であること
が望ましい。Furthermore, by including Ag element in the superconducting material, the strength of the oxide superconductor itself can be improved according to the added amount, and cracks and the like can be suppressed. Ag element addition amount is 1 ~
Within the range of 30% by mass, the effect of improving strength can be exhibited. Further, during heat treatment, Ag element easily diffuses in each oxide superconducting layer, and Tp also changes depending on the concentration of Ag element, so to obtain stable crystal growth, the amount of Ag element added to each oxide superconducting layer is It is desirable that each layer has the same mass%.
【0024】また、Rh、Pt、Ce元素の添加について、以
下に説明する。これらの元素は、母相であるREBa2Cu3Ox
(123)相中にRE2BaCuO5相又はRE4Ba2Cu2O10相を微細分散
させ、超電導特性の1つである臨界電流密度を向上させ
る効果がある。添加の量はそれぞれ、RE2BaCuO5相又は
RE4Ba2Cu2O10相の微細化に効果が現れ始める濃度から、
これ以上添加しても効果があがらない濃度で限定してお
り、これによって超電導体内により大きな電流密度を流
すことが可能になる。即ち、添加効果が得られる量が、
Rh元素で0.001〜2.0質量%、Pt元素で0.05〜5.0質量
%、Ce元素で 0.05〜10.0質量%である。また、各元素
の拡散を考慮すると、各酸化物超電導層への元素添加量
は、各層とも同一質量%であることが望ましいが、最も
低いTpをもつ層は結晶成長させる必要が必ずしもないこ
とから、当該層のみに安価なCe元素を用いることもでき
る。The addition of Rh, Pt, and Ce elements will be described below. These elements are the parent phase REBa 2 Cu 3 O x.
The RE 2 BaCuO 5 phase or the RE 4 Ba 2 Cu 2 O 10 phase is finely dispersed in the (123) phase, which has the effect of improving the critical current density, which is one of the superconducting properties. The amount of addition is respectively the RE 2 BaCuO 5 phase or
From the concentration at which RE 4 Ba 2 Cu 2 O 10 phase refinement begins to appear,
The concentration is limited so that the effect will not be improved even if it is added more than this, which allows a larger current density to flow in the superconductor. That is, the amount at which the effect of addition is obtained is
The Rh element is 0.001 to 2.0 mass%, the Pt element is 0.05 to 5.0 mass%, and the Ce element is 0.05 to 10.0 mass%. Also, considering the diffusion of each element, it is desirable that the amount of element added to each oxide superconducting layer be the same mass% for each layer, but the layer with the lowest Tp does not necessarily have to undergo crystal growth. Alternatively, an inexpensive Ce element can be used only in the layer.
【0025】また、本方法では、複数の種結晶を用いる
ため、最も高いTpをもつ層には、各種結晶から成長した
結晶成長領域間に Ba-Cu-O化合物、Cu-O化合物、もしく
は偏析したRE2BaCuO5相又は RE4Ba2Cu2O10相等の非超電
導相が排斥される。この非超電導層は、各種結晶から成
長した結晶成長領域間の超電導結合を著しく阻害し、そ
の領域間を通過して流れる超電導電流も著しく低下す
る。そのため、結晶成長処理後に上記排斥相が析出する
超電導層をあらかじめ切除し、その後該超電導中間体に
酸素富化処理することで各種結晶から成長した結晶成長
領域間を通過して流れる超電導電流の大幅な低下をする
ことなく、より均一な超電導特性をもつ材料を得ること
ができる。Since a plurality of seed crystals are used in this method, a layer having the highest Tp has a Ba-Cu-O compound, a Cu-O compound, or segregation between crystal growth regions grown from various crystals. The non-superconducting phases such as the RE 2 BaCuO 5 phase or the RE 4 Ba 2 Cu 2 O 10 phase that have been removed are excluded. This non-superconducting layer remarkably hinders superconducting coupling between crystal growth regions grown from various crystals, and the superconducting current flowing through the regions is also significantly reduced. Therefore, the superconducting layer in which the above-mentioned repulsion phase precipitates after the crystal growth treatment is cut off in advance, and then the oxygen enrichment treatment is applied to the superconducting intermediate to significantly increase the superconducting current flowing between the crystal growth regions grown from various crystals. It is possible to obtain a material having more uniform superconducting properties without any significant decrease.
【0026】また、各超電導層の厚みに関して、以下に
述べる。結晶成長後結晶成長時の高温下においては、各
Tpの異なる超電導層の拡散が生じる。そのため、拡散し
た領域の一部ではTpが同一になる領域が生じる。それゆ
え厚みの下限に関しては、各Tpが異なる超電導層として
残存できる厚みが好ましい。例えば、RE成分を変えるこ
とでTpを変えた場合、各超電導層は100μm程度が下限と
して好ましい。また、各超電導層の厚みの比率として
は、本発明の請求項7もしくは14のように、最終的に
排斥相の生じた領域を切除することを考慮して、切除す
る超電導層の合計厚みが、切除後残存する超電導層の合
計厚みを超えないことが好ましい。The thickness of each superconducting layer will be described below. After crystal growth, at high temperature during crystal growth,
Diffusion of superconducting layers with different Tp occurs. Therefore, in some of the diffused regions, regions having the same Tp occur. Therefore, with respect to the lower limit of the thickness, a thickness that can remain as a superconducting layer having a different Tp is preferable. For example, when the Tp is changed by changing the RE component, the lower limit of each superconducting layer is preferably about 100 μm. Further, as the ratio of the thickness of each superconducting layer, the total thickness of the superconducting layers to be excised is considered in consideration of excising the region where the repulsion phase finally occurs as in claim 7 or 14 of the present invention. It is preferable that the total thickness of the superconducting layer remaining after cutting is not exceeded.
【0027】[0027]
【実施例】(実施例1)Dy2O3、BaO2、CuOの各原料粉体
を各元素のモル比(Dy:Ba:Cu)が(13:17:24)になるように
混合し、さらにこの混合粉に 0.5質量%のPt元素を添加
し、混合した原料粉末を作製した。これを 900℃で酸素
気流中で仮焼した。これを粉体1−Aとする。また、Dy
2O3、Ho2O3、BaO2、CuOの各原料粉体を各元素のモル比
(Dy:Ho:Ba:Cu)が(6.5:6.5:17:24)になるように混合し、
さらにこの混合粉に0.5質量%のPt元素を添加し、混合
した原料粉末を作製した。これを 900℃で酸素気流中で
仮焼した。これを粉体1−Bとする。更に、Yb2O3、BaO
2、CuOの各原料粉体を各元素のモル比 (Yb:Ba:Cu)が(1
3:17:24)になるように混合し、さらにこの混合粉に1.0
質量%のCe元素を酸化物として添加し、混合した原料粉
末を作製した。これを850℃で酸素気流中で仮焼した。
これを粉体1−Cとする。さらにSm2O3、BaO2、CuOの各
原料粉体を各元素のモル比 (Sm:Ba:Cu)が(13:17:24)に
なるように混合し、さらにこの混合粉に1.0質量%の Ce
元素を酸化物として添加し、混合した原料粉末を作製し
た。これを 920℃で酸素気流中で仮焼した。これを粉体
1−Dとする。[Example] (Example 1) Dy 2 O 3 , BaO 2 , and CuO raw material powders were mixed so that the molar ratio (Dy: Ba: Cu) of each element was (13:17:24). Then, 0.5 mass% of Pt element was further added to this mixed powder to prepare a mixed raw material powder. This was calcined at 900 ° C. in an oxygen stream. This is designated as Powder 1-A. Also, Dy
2 O 3 , Ho 2 O 3 , BaO 2 and CuO raw material powders, the molar ratio of each element
Mix so that (Dy: Ho: Ba: Cu) becomes (6.5: 6.5: 17: 24),
Furthermore, 0.5 mass% of Pt element was added to this mixed powder to prepare a mixed raw material powder. This was calcined at 900 ° C. in an oxygen stream. This is designated as Powder 1-B. Furthermore, Yb 2 O 3 and BaO
2, the molar ratio of the raw materials powders each element CuO (Yb: Ba: Cu) is (1
3:17:24) and then add 1.0 to this mixed powder.
Mass% Ce element was added as an oxide to prepare a mixed raw material powder. This was calcined at 850 ° C. in an oxygen stream.
This is designated as Powder 1-C. Furthermore, each raw material powder of Sm 2 O 3 , BaO 2 , and CuO was mixed so that the molar ratio (Sm: Ba: Cu) of each element was (13:17:24), and 1.0 mass of this mixed powder was further added. % Ce
An element was added as an oxide to prepare a mixed raw material powder. This was calcined at 920 ° C in an oxygen stream. This is designated as Powder 1-D.
【0028】次に粉体1−A、1−B、1−Cを用い
て、図2−aのように成型体を作製し、2ton/cm2で、直
径54mm、厚さ20mmの円柱状前駆体を作製した。この前駆
体に3mm角で厚み1mmのSm0.7Nd0.3Ba2Cu3Ox系超電導体種
結晶を図2−bのように配置し、アルミナ板上に粉体1-
Dを60mm角、厚さ8mm程度に敷き詰め、その上に構造支持
材として50mm角で厚み4mmの緻密質で純度99%のMgO板を
置き、更にその上に該円柱状前駆体を載置した。これを
大気中で 1045℃まで10時間で昇温し、4時間保持したの
ち、1010℃に2時間で降温した。その後、980℃まで 100
時間かけて徐冷し、結晶成長を行ない、24時間かけて室
温まで冷却した。この熱処理によって、円柱状前駆体の
直径は46mmに収縮し、かつ50mm角の構造支持材に固着し
ていることを確認した。Next, using the powders 1-A, 1-B, and 1-C, a molded body was prepared as shown in FIG. 2-a, and the columnar shape had a diameter of 54 mm and a thickness of 20 mm at 2 ton / cm 2. A precursor was prepared. A 3 mm square and 1 mm thick Sm 0.7 Nd 0.3 Ba 2 Cu 3 O x system superconducting seed crystal is placed on this precursor as shown in FIG. 2-b, and the powder 1-
D was laid out in 60 mm square and about 8 mm thick, and a 50 mm square 50 mm square dense 4 mm thick MgO plate with a purity of 99% was placed on it as a structural support material, and the columnar precursor was placed on it. . This was heated to 1045 ° C in the atmosphere in 10 hours, kept for 4 hours, and then cooled to 1010 ° C in 2 hours. After that, 100 up to 980 ℃
The mixture was gradually cooled over a period of time, crystal growth was performed, and the mixture was cooled down to room temperature over a period of 24 hours. By this heat treatment, it was confirmed that the diameter of the columnar precursor contracted to 46 mm and was fixed to the 50 mm square structural support material.
【0029】得られた超電導バルク材料には割れ等の亀
裂は見られなかった。その後、種結晶と粉体1−Aで構
成された層を切り取り、酸素気流中を 450℃まで24時間
で昇温し、400℃まで100時間かけて徐冷した後、10時間
かけて室温まで降温した。上記の酸素富化処理を行なっ
た超電導バルク材料を 77Kにおいて磁場中冷却し、外部
磁界を取り除いた後、補足磁束密度を測定したところ、
最高0.8Tの良好な値が得られた。No cracks such as cracks were found in the obtained superconducting bulk material. After that, the layer composed of the seed crystal and the powder 1-A was cut off, heated in an oxygen stream to 450 ° C in 24 hours, gradually cooled to 400 ° C in 100 hours, and then allowed to reach room temperature in 10 hours. The temperature dropped. When the superconducting bulk material that had been subjected to the oxygen enrichment treatment was cooled in a magnetic field at 77K and the external magnetic field was removed, the supplemental magnetic flux density was measured,
Good values up to 0.8T were obtained.
【0030】(実施例2)Gd2O3、BaO2、CuOの各原料粉
体を各元素のモル比(Gd:Ba:Cu)が(12:18:26)になるよう
に混合し、さらにこの混合粉に 0.5質量%のPt元素を添
加し、混合した原料粉末を作製した。これを 900℃で酸
素気流中で仮焼して得られた粉体に、10質量%のAg2O粉
を添加した。これを粉体2−Aとする。また、Dy2O3、G
d2O3、BaO2、CuOの各原料粉体を各元素のモル比 (Dy:G
d:Ba:Cu)が(6:6:18:26)になるように混合し、さらにこ
の混合粉に 0.5質量%のPt元素を添加し、混合した原料
粉末を作製した。これを900℃で酸素気流中で仮焼して
得られた粉体に、10質量%のAg2O粉を添加した。これを
粉体2−Bとする。 更に、Yb2O3、BaO2、CuOの各原料
粉体を各元素のモル比(Yb:Ba:Cu)が(12:18:26)になるよ
うに混合し、さらにこの混合粉に 0.5質量%のPt元素を
酸化物として添加し、混合した原料粉末を作製した。こ
れを850℃で酸素気流中で仮焼して得られた粉体に、10
質量%の Ag2O粉を添加した。これと粉体2−BとのRE
元素のモル比が等量になるよう秤量し、混合して得られ
た粉体を2−Cとする。(Example 2) Raw material powders of Gd 2 O 3 , BaO 2 and CuO were mixed so that the molar ratio (Gd: Ba: Cu) of each element was (12:18:26), Further, 0.5 mass% of Pt element was added to this mixed powder to prepare a mixed raw material powder. 10% by mass of Ag 2 O powder was added to the powder obtained by calcining this at 900 ° C. in an oxygen stream. This is designated as Powder 2-A. Also, Dy 2 O 3 , G
The raw material powders of d 2 O 3 , BaO 2 and CuO were mixed in the molar ratio (Dy: G
d: Ba: Cu) was mixed to be (6: 6: 18: 26), and 0.5 mass% of Pt element was further added to this mixed powder to prepare a mixed raw material powder. 10% by mass of Ag 2 O powder was added to the powder obtained by calcining this at 900 ° C. in an oxygen stream. This is designated as Powder 2-B. Further, Yb 2 O 3 , BaO 2 , CuO raw material powders were mixed so that the molar ratio of each element (Yb: Ba: Cu) was (12:18:26), and further 0.5 to this mixed powder. Mass% Pt element was added as an oxide to prepare a mixed raw material powder. The powder obtained by calcining this in an oxygen stream at 850 ° C
Mass% Ag 2 O powder was added. RE of this and powder 2-B
The powder obtained by weighing and mixing the elements so that the molar ratio of the elements is the same is designated as 2-C.
【0031】次に、粉体2−A、2−B、2−Cを用い
て、図3−aのように成型体を作製し、2ton/cm2で、縦
27mm、横77mm、厚さ15mmの角柱状前駆体を作製した。こ
の前駆体に3mm角で厚み1mmのSm0.7Nd0.3Ba2Cu3Ox系超電
導体種結晶を図3−bのように配置し、アルミナ板上に
アルミナ粉体を 60mm角、厚さ8mm程度に敷き詰め、その
上に構造支持材として縦30mm、横80mmで厚み4mmの緻密
質で純度99%のMgO板を置き、更にその上に該角柱状前
駆体を載置した。これを大気中で1058℃まで10時間で昇
温し、2時間保持したのち、1010℃に2時間で降温した。
その後、結晶成長のため 980℃まで100時間かけて徐冷
し、870℃まで50時間かけて冷却し、24時間かけて室温
まで冷却した。Next, using the powder 2-A, 2-B, 2-C, to prepare a molded body as in Fig. 3-a, in 2 ton / cm 2, a vertical
A prismatic precursor having a size of 27 mm, a width of 77 mm and a thickness of 15 mm was produced. A 3 mm square and 1 mm thick Sm 0.7 Nd 0.3 Ba 2 Cu 3 O x system superconducting seed crystal is placed in this precursor as shown in Fig. 3-b. Alumina powder is 60 mm square and 8 mm thick. A MgO plate having a length of 30 mm, a width of 80 mm and a thickness of 4 mm and a dense and 99% purity was placed on the surface as a structural support material, and the prismatic precursor was placed thereon. This was heated to 1058 ° C in the atmosphere in 10 hours, kept for 2 hours, and then cooled to 1010 ° C in 2 hours.
Then, for crystal growth, it was gradually cooled to 980 ° C over 100 hours, cooled to 870 ° C over 50 hours, and cooled to room temperature over 24 hours.
【0032】得られた超電導バルク材料には割れ等の亀
裂は見られなかった。その後、種結晶と粉体2−Aで構
成された層を切り取り、酸素気流中を 400℃まで24時間
で昇温し、400℃で100時間維持した後、10時間かけて室
温まで降温した。上記の酸素富化処理を行なった超電導
バルク材料を 77Kにおいて磁場中冷却し、外部磁界を取
り除いた後、補足磁束密度を測定したところ、最高0.6T
の良好な値が得られた。No cracks such as cracks were found in the obtained superconducting bulk material. After that, the layer composed of the seed crystal and the powder 2-A was cut out, the temperature was raised to 400 ° C. in an oxygen stream for 24 hours, maintained at 400 ° C. for 100 hours, and then lowered to room temperature over 10 hours. The superconducting bulk material that had been subjected to the above-mentioned oxygen enrichment treatment was cooled in a magnetic field at 77K, the external magnetic field was removed, and the supplemental magnetic flux density was measured.
A good value of was obtained.
【0033】[0033]
【発明の効果】本発明により、広い面積でかつ均一な超
電導特性をもち、割れ等の亀裂の入りにくい強度の高い
セラミックス材料との複合化された構造支持材付き大型
超電導バルク材料が実現できる効果が得られた。According to the present invention, it is possible to realize a large-sized superconducting bulk material with a structural support material, which has a large area and uniform superconducting properties, and is composited with a ceramic material having high strength that does not easily cause cracks such as cracks. was gotten.
【図1】本発明の構成図の一例FIG. 1 is an example of a configuration diagram of the present invention.
【図2】実施例1に使用した超電導体の概略図 (a)実施例1で使用した成型体の概略図 (b)実施例1で使用した種結晶の配置図2 is a schematic diagram of a superconductor used in Example 1. FIG. (A) Schematic view of the molded body used in Example 1 (B) Layout of seed crystals used in Example 1
【図3】実施例2に使用した超電導体の概略図 (a)実施例2で使用した成型体の概略図 (b)実施例2で使用した種結晶の配置図FIG. 3 is a schematic diagram of a superconductor used in Example 2. (A) Schematic view of the molded body used in Example 2 (B) Layout of seed crystals used in Example 2
───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G047 JA04 JB06 JC02 KB04 4G077 AA02 BC53 CA03 CA09 EC05 EC07 FJ03 JA06 JA08 JB07 5G321 AA02 AA04 CA05 CA24 DB28 ─────────────────────────────────────────────────── ─── Continued front page F-term (reference) 4G047 JA04 JB06 JC02 KB04 4G077 AA02 BC53 CA03 CA09 EC05 EC07 FJ03 JA06 JA08 JB07 5G321 AA02 AA04 CA05 CA24 DB28
Claims (14)
種類又はその組み合わせ)系超電導中間体であって、REB
a2Cu3Ox相(123相)中に非超電導相が微細に分散した組織
を有する 123相の包晶温度(Tp)が異なる複数の酸化物超
電導体層をTpの順に立体的に少なくとも3層を積層した
構造を有し、最も高い Tpを有する酸化物超電導層上に2
個以上の種結晶が載置され、少なくとも前記高 Tp酸化
物超電導層に排斥相を含有し、多結晶酸化物セラミック
スが最も低いTpを有する酸化物超電導層の下面と固着し
た構造を特徴とする大型超電導中間体。1. REBa 2 Cu 3 O x (RE is a rare earth element containing Y)
Type or combination thereof) system superconducting intermediate, REB
At least three oxide superconductor layers with different peritectic temperatures (Tp) of the 123 phase having a structure in which the non-superconducting phase is finely dispersed in the a 2 Cu 3 O x phase (123 phase) are at least three-dimensionally arranged in the order of Tp. It has a structure in which three layers are stacked, and 2 is formed on the oxide superconducting layer with the highest Tp.
One or more seed crystals are placed, at least the high Tp oxide superconducting layer contains a repulsive phase, and the polycrystalline oxide ceramics is characterized by being fixed to the lower surface of the oxide superconducting layer having the lowest Tp. Large superconducting intermediate.
ら 800℃までの平均線膨張係数が10ppm/℃以上20ppm/℃
以下であることを特徴とする請求項1に記載の大型超電
導中間体。2. The average linear expansion coefficient of the polycrystalline oxide ceramics from room temperature to 800 ° C. is 10 ppm / ° C. or more and 20 ppm / ° C.
The large-sized superconducting intermediate body according to claim 1, wherein:
が、 MgO多結晶材料であることを特徴とする請求項1又
は2に記載の大型超電導中間体。3. The large-sized superconducting intermediate body according to claim 1, wherein the main component of the polycrystalline oxide ceramics is MgO polycrystalline material.
にYb元素が含まれることを特徴とする請求項1〜3のい
ずれかに記載の大型超電導中間体。4. The large-scale superconducting intermediate according to claim 1, wherein the oxide superconducting layer having the lowest Tp contains Yb element.
有する酸化物超電導体層を少なくとも1層積層してなる
ことを特徴とする請求項1〜4のいずれかに記載の大型
超電導中間体。5. The large-sized product according to claim 1, wherein the laminate comprises at least one oxide superconductor layer containing 1 to 30% by mass of Ag element. Superconducting intermediate.
素、 0.05〜5.0質量%のPt元素、又は 0.05〜10.0質量
%のCe元素の内の少なくとも1つの元素を含有する酸化
物超電導体層を少なくとも1層積層してなることを特徴
とする請求項1〜5のいずれかに記載の大型超電導中間
体。6. The oxide superconducting material, wherein the laminated body contains at least one element of 0.001 to 2.0 mass% Rh element, 0.05 to 5.0 mass% Pt element, or 0.05 to 10.0 mass% Ce element. The large-sized superconducting intermediate body according to claim 1, wherein at least one body layer is laminated.
電導中間体の種結晶及び排斥相を含有する酸化物超電導
層を切除してから、酸素富化熱処理をしてなることを特
徴とする大型超電導体。7. The oxide superconducting layer containing the seed crystal and the repulsion phase of the large-sized superconducting intermediate according to claim 1, is excised and then subjected to oxygen enrichment heat treatment. And a large superconductor.
又はその組み合わせ)系超電導体を構成するRE、Ba及びC
u成分を含む原料成型体を加熱し、最高温度が該成型体
の REBa2Cu3Ox相(123相)の包晶温度(Tp)以上とした後、
冷却することにより 123相中に非超電導相が微細に分散
した酸化物超電導中間体を作製する方法であって、 123
相のTpが異なる原料成型体をTpの順に立体的に少なくと
も3層を積層した原料成型積層体とし、多結晶酸化物セ
ラミックスの上に最も低いTpを有する原料成型積層体が
接するように載置し、さらに最も高いTpを有する原料成
型積層体上に複数個の種結晶を載置してから、前記原料
成型積層体を熱処理することを特徴とした大型超電導中
間体の作製方法。8. RE, Ba and C constituting a REBa 2 Cu 3 O x (one kind of rare earth element including Y or combination thereof) type superconductor.
After heating the raw material molded body containing the u component, the maximum temperature after the peritectic temperature (Tp) of the REBa 2 Cu 3 O x phase (123 phase) of the molded body,
A method for producing an oxide superconducting intermediate in which a non-superconducting phase is finely dispersed in the 123 phase by cooling,
A raw material molded body in which the Tp of different phases is three-dimensionally stacked in the order of Tp is formed as a raw material molded laminated body, and the raw material molded body having the lowest Tp is placed on the polycrystalline oxide ceramic so as to be in contact therewith. Then, a method for producing a large-sized superconducting intermediate characterized by placing a plurality of seed crystals on the raw material molding laminate having the highest Tp, and then heat treating the raw material molding laminate.
ら 800℃までの平均線膨張係数が10ppm/℃以上20ppm/℃
以下であることを特徴とする請求項8記載の大型超電導
中間体の作製方法。9. The average linear expansion coefficient of the polycrystalline oxide ceramics from room temperature to 800 ° C. is 10 ppm / ° C. or more and 20 ppm / ° C. or more.
The method for producing a large-sized superconducting intermediate according to claim 8, wherein:
分が、 MgO多結晶材料であることを特徴とする請求項8
又は9に記載の大型超電導中間体の作製方法。10. The main component of the polycrystalline oxide ceramics is MgO polycrystalline material.
Alternatively, the method for producing a large-sized superconducting intermediate according to Item 9.
原料成型体にYb元素が含まれることを特徴とする請求項
8〜10のいずれかに記載の大型超電導中間体の作製方
法。11. The method for producing a large-sized superconducting intermediate according to claim 8, wherein the oxide superconducting raw material molded body having the lowest Tp contains Yb element.
含有する酸化物超電導原料成型体を少なくとも1層積層
していることを特徴とする請求項8〜11のいずれかに
記載の大型超電導中間体の作製方法。12. The oxide superconducting raw material molded body containing 1 to 30% by mass of an Ag element is laminated in at least one layer on the laminated body, according to any one of claims 8 to 11. Manufacturing method of large-scale superconducting intermediate.
量%のRh元素、0.05〜5.0質量%のPt元素、又は0.05〜1
0.0質量%のCe元素の内の少なくとも1つの元素を含有す
る原料成型体を少なくとも1層積層していることを特徴
とする請求項8〜12のいずれかに記載の大型超電導中
間体の作製方法。13. The raw material molding laminate comprises 0.001 to 2.0 mass% of Rh element, 0.05 to 5.0 mass% of Pt element, or 0.05 to 1
A method for producing a large-sized superconducting intermediate according to any one of claims 8 to 12, characterized in that at least one layer of a raw material molding containing at least one element of 0.0 mass% Ce element is laminated. .
製方法から得られた酸化物超電導中間体から、種結晶及
び排斥相を含有する酸化物超電導体層を切除した後、酸
素富化処理することを特徴とする大型超電導体の作製方
法。14. Oxygen enrichment after excising an oxide superconducting layer containing a seed crystal and a repulsion phase from the oxide superconducting intermediate obtained by the manufacturing method according to claim 8. A method for producing a large-sized superconductor characterized by performing a treatment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002088010A JP4105881B2 (en) | 2002-03-27 | 2002-03-27 | Large superconducting intermediates and large superconductors and their fabrication methods |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002088010A JP4105881B2 (en) | 2002-03-27 | 2002-03-27 | Large superconducting intermediates and large superconductors and their fabrication methods |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003277188A true JP2003277188A (en) | 2003-10-02 |
JP4105881B2 JP4105881B2 (en) | 2008-06-25 |
Family
ID=29234010
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002088010A Expired - Fee Related JP4105881B2 (en) | 2002-03-27 | 2002-03-27 | Large superconducting intermediates and large superconductors and their fabrication methods |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4105881B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11135711B2 (en) | 2018-03-16 | 2021-10-05 | Tiger Tool International Incorporated | Retaining ring plier systems and methods |
US12138759B2 (en) | 2020-03-13 | 2024-11-12 | Tiger Tool International Incorporated | Systems and methods for inserting and removing bushing assemblies |
-
2002
- 2002-03-27 JP JP2002088010A patent/JP4105881B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP4105881B2 (en) | 2008-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0486698B1 (en) | Oxide superconductor and production thereof | |
JP4113113B2 (en) | Oxide superconductor joining method and oxide superconductor joined body | |
US5571776A (en) | Single crystalline bulk oxide superconductor and process for producing same | |
JP2556401B2 (en) | Oxide superconductor and method for manufacturing the same | |
US7718573B2 (en) | Method for producing oxide superconductor, oxide superconductor and substrate material for supporting precursor of the same | |
JP4101903B2 (en) | Oxide superconducting bulk material and manufacturing method thereof | |
JPH1121126A (en) | Manufacturing method of oxide superconducting bulk | |
JP2003277188A (en) | Large superconducting intermediates, large superconductors and methods of making them | |
US5409892A (en) | Method of maufacturing superconductor of ceramics superconductive material | |
JP5098802B2 (en) | Bulk oxide superconducting material and manufacturing method thereof | |
JP4669998B2 (en) | Oxide superconductor and manufacturing method thereof | |
JP4071860B2 (en) | Superconducting bulk material and manufacturing method thereof | |
JPH0791057B2 (en) | Rare earth oxide superconductor | |
JP3195041B2 (en) | Oxide superconductor and manufacturing method thereof | |
JP4142801B2 (en) | Manufacturing method of oxide bulk superconductor | |
JP4967173B2 (en) | Hollow oxide superconductor and method for producing the same | |
JP2004161504A (en) | RE-Ba-Cu-O-based superconducting material precursor, RE-Ba-Cu-O-based superconducting material and method for producing the same | |
JPH05279033A (en) | Method for producing oxide superconductor having high critical current density | |
JP3174847B2 (en) | Superconducting whisker and manufacturing method thereof | |
JPH05279031A (en) | Rare earth oxide superconductor and its production | |
JP3471443B2 (en) | Manufacturing method of oxide superconductor material | |
JP3159764B2 (en) | Manufacturing method of rare earth superconductor | |
JP4109409B2 (en) | Large superconductor and method for producing the same | |
JPH08301694A (en) | Method for producing oxide superconducting material | |
JPH0791056B2 (en) | Method for producing oxide superconductor having new structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040901 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20050908 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20061211 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071009 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071205 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080318 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080328 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110404 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120404 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130404 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130404 Year of fee payment: 5 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130404 Year of fee payment: 5 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130404 Year of fee payment: 5 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130404 Year of fee payment: 5 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140404 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |