[go: up one dir, main page]

JPH0791056B2 - Method for producing oxide superconductor having new structure - Google Patents

Method for producing oxide superconductor having new structure

Info

Publication number
JPH0791056B2
JPH0791056B2 JP1019818A JP1981889A JPH0791056B2 JP H0791056 B2 JPH0791056 B2 JP H0791056B2 JP 1019818 A JP1019818 A JP 1019818A JP 1981889 A JP1981889 A JP 1981889A JP H0791056 B2 JPH0791056 B2 JP H0791056B2
Authority
JP
Japan
Prior art keywords
phase
superconductor
oxide superconductor
bacuo
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1019818A
Other languages
Japanese (ja)
Other versions
JPH02204322A (en
Inventor
剛 森本
準一郎 加瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP1019818A priority Critical patent/JPH0791056B2/en
Priority to US07/471,650 priority patent/US5084436A/en
Publication of JPH02204322A publication Critical patent/JPH02204322A/en
Publication of JPH0791056B2 publication Critical patent/JPH0791056B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、新規な組織を有するイットリウム系の酸化物
超電導体の製造方法に関するものである。
The present invention relates to a method for producing an yttrium-based oxide superconductor having a novel structure.

[従来の技術] 従来、LnBa2Cu3O7-y(LnはY,La,Nd,Sm,Eu,Gd,Dy,Ho,Er,
Tm,Yb,Luからなる群から選ばれた1種以上、yは酸素欠
陥量、以下123相という)の組成式で表わされる超電導
体(以下イットリウム系超電導体ともいう)が知られて
いる。イットリウム系超電導体の製造方法としては、上
記の組成を有する結晶粉末を合成した後、これを成形し
焼結させる方法がある。他にも、ゾルゲル法や溶融凝固
法にて製造することが知られている。
[Conventional Technology] Conventionally, LnBa 2 Cu 3 O 7-y (Ln is Y, La, Nd, Sm, Eu, Gd, Dy, Ho, Er,
There is known a superconductor (hereinafter also referred to as yttrium-based superconductor) represented by a composition formula of at least one selected from the group consisting of Tm, Yb, and Lu, y is an oxygen deficiency amount, and hereinafter referred to as 123 phase. As a method of manufacturing the yttrium-based superconductor, there is a method of synthesizing a crystal powder having the above composition, and then molding and sintering the crystal powder. In addition, it is known to manufacture by a sol-gel method or a melt coagulation method.

[発明が解決しようとする課題] これらの方法により製造された超電導体は、第3図のよ
うにいずれも多結晶体であり、それぞれの結晶粒が無秩
序な方向に配列し、かつ粒界に、123相以外の粒界相を
含んだ組織となっている。第3図はLnがイットリウムの
場合で、粒界相には、123相以外の結晶相や非晶質相、
また多くの場合気孔が含まれている。ところが、イット
リウム系超電導体は、結晶粒内で電流が流れやすい方向
が決っているため、向きが異なる結晶粒子間の粒界では
電流が流れにくいという欠点を有している。
[Problems to be Solved by the Invention] The superconductors manufactured by these methods are all polycrystals as shown in FIG. 3, and the respective crystal grains are arranged in a disordered direction and at the grain boundaries. , The structure contains grain boundary phases other than 123 phase. Fig. 3 shows the case where Ln is yttrium and the grain boundary phase has a crystalline phase other than 123 phase, an amorphous phase,
In many cases, pores are included. However, the yttrium-based superconductor has a drawback that current does not easily flow at grain boundaries between crystal grains having different directions because the direction in which the current easily flows is determined in the crystal grains.

さらには、粒界相は超電導体ではないので、それが絶縁
層として作用する。そのため、従来の多結晶のイットリ
ウム系超電導体では、高い臨界電流密度を示すものが得
られていない。
Furthermore, since the grain boundary phase is not a superconductor, it acts as an insulating layer. Therefore, no conventional polycrystalline yttrium-based superconductor has a high critical current density.

このような粒界部を起因とする臨界電流密度の低下は、
磁場中においてより顕著に見られる現象であることが知
られている。超電導体の応用分野としては、線材または
テープ材料をコイル状に加工し、強力な磁場を作る電磁
石としての利用が中心に考えられている。そこで、イッ
トリウム系超電導体の実用化には、粒界を抑制した組織
を作ることにより、強磁場中で高い臨界電流密度を有す
る材料を作製することが必要と考えられている。
The decrease in the critical current density due to such a grain boundary portion is
It is known that this phenomenon is more prominent in a magnetic field. As a field of application of the superconductor, it is mainly considered to use a wire material or a tape material as a coil to form a strong magnetic field. Therefore, in order to put the yttrium-based superconductor into practical use, it is considered necessary to produce a material having a high critical current density in a strong magnetic field by producing a structure in which grain boundaries are suppressed.

イットリウム系超電導体は、約1000℃以上の温度で分解
溶融し、Ln2BaCuO5結晶(以下211相という)と液相に分
離する。したがって123相と同じ組成の融液を冷却する
と、まず211相が析出するので、通常の方法では123相の
単結晶や配向性多結晶体は得られない。
The yttrium-based superconductor decomposes and melts at a temperature of about 1000 ° C or higher, and separates into a Ln 2 BaCuO 5 crystal (hereinafter referred to as 211 phase) and a liquid phase. Therefore, when the melt having the same composition as the 123 phase is cooled, the 211 phase is precipitated first, and thus the 123 phase single crystal or oriented polycrystal cannot be obtained by the usual method.

これに対してJinらは、YBa2Cu3O7-y結晶を加熱溶融し
て、Y2BaCuO5相とY−Ba−Cu−O系の液相が共存してい
る部分溶融状態とした後、若干の温度勾配下で凝固させ
る方法を報告している。(Physical Review B,Vol.37,7
850(1988)) しかしながら得られた凝固物は第2図に示したように、
YBa2Cu3O7-y相以外に、Y2BaCuO5相およびその他の粒界
相(CuO,BaCuO2,非晶質相)を含むものであり、YBa2Cu3
O7-y相もある程度配向しているものの、依然として結晶
粒子相がある角度をもって接しているものであった。
On the other hand, Jin et al. Heat-melted a YBa 2 Cu 3 O 7-y crystal to a partially molten state in which a Y 2 BaCuO 5 phase and a Y-Ba-Cu-O-based liquid phase coexisted. Later, a method of solidifying under a slight temperature gradient was reported. (Physical Review B, Vol.37,7
850 (1988)) However, as shown in FIG.
Besides YBa 2 Cu 3 O 7-y phase, which contains a Y 2 BaCuO 5 phase and other grain boundary phase (CuO, BaCuO 2, the amorphous phase), YBa 2 Cu 3
Although the O 7-y phase was also oriented to some extent, the crystal grain phase was still in contact at an angle.

[課題を解決するための手段] 本発明者は、臨界電流密度が高く、かつ磁場の印加によ
っても臨界電流密度の低下の少ないイットリウム系超電
導体を得ることを目的として種々、検討を行った結果、
超電導体を新規な組織にすることにより前記目的が達成
することを見出した。かくして、本発明は、LnBa2Cu3O
7-yの組成式で表わされる板状の結晶が層状に重なり合
い、その中にLn2BaCuO5の組成式で表わされる結晶が島
状に分散している組織を有する酸化物超電導体の製造方
法であって、Ln2BaCuO5の固相と、Ln−Ba−Cu−O系の
液相が共存している部分溶融状態から、100℃/cm以上の
温度勾配、2mm/h以下の結晶成長速度の一方向凝固法に
より冷却結晶化する酸化物超電導体の製造方法を提供す
るものである。
[Means for Solving the Problems] As a result of various investigations, the present inventor has conducted various studies for the purpose of obtaining an yttrium-based superconductor having a high critical current density and having a small decrease in the critical current density even when a magnetic field is applied. ,
It has been found that the above object can be achieved by making the superconductor a new structure. Thus, the present invention provides LnBa 2 Cu 3 O.
A method for producing an oxide superconductor having a structure in which plate-like crystals represented by the composition formula of 7-y are layered and the crystals represented by the composition formula of Ln 2 BaCuO 5 are dispersed in islands therein. That is, from a partially molten state in which a solid phase of Ln 2 BaCuO 5 and a liquid phase of the Ln-Ba-Cu-O system coexist, a temperature gradient of 100 ° C / cm or more and a crystal growth of 2 mm / h or less. The present invention provides a method for producing an oxide superconductor that is cooled and crystallized by a unidirectional solidification method at a high speed.

本発明の製造方法により得られる超電導体の組織は、12
3相をマトリックスとするものである。この123相は、c
軸と垂直な方向に板状に成長した結晶であり、全体とし
て多結晶ではあるが、この板状結晶がそれぞれのc軸の
向きをそろえて層状に重なっている。c軸と垂直な方向
にも結晶は単結晶的に完全に連続ではないが、ここの粒
界においても、c軸の面がそろっているので、この粒界
部は磁界の印加に対しても超電状態がこわれにくい。
The structure of the superconductor obtained by the manufacturing method of the present invention is 12
It uses three phases as a matrix. This 123 phase is c
It is a crystal that grows in a plate shape in a direction perpendicular to the axis and is a polycrystal as a whole, but the plate crystals are layered and aligned in the respective c-axis directions. Although the crystal is not completely continuous as a single crystal even in the direction perpendicular to the c-axis, even at the grain boundaries here, the planes of the c-axis are aligned, so that this grain boundary part is not affected by the application of a magnetic field. Superelectric state is hard to break.

この超電導体では、上記の123相の間に、粒状の211相が
島状に分散している。211相は配向しておらず、また各
々の結晶が連続していない。したがってこの211相は、
超電導の経路を妨げるものではない。
In this superconductor, granular 211 phases are dispersed like islands between the above 123 phases. The 211 phase is not oriented and the crystals are not continuous. So this 211 phase is
It does not interfere with the superconducting path.

この超電導体は、123相および211相以外の結晶相または
非晶質相が実質的に存在していない。超電導特性を劣化
させるものではない限り、ごく部分的にこのような相が
含まれていることは差し支えない。
This superconductor is substantially free of crystalline or amorphous phases other than 123 phase and 211 phase. As long as it does not deteriorate the superconducting property, it may be possible to contain such a phase only partially.

本発明においては、上記一般式において、LnはY,La,Nd,
Sm,Eu,Gd,Dy,Ho,Er,Tm,Yb,Luからなる群から選ばれた1
種以上である。
In the present invention, in the above general formula, Ln is Y, La, Nd,
1 selected from the group consisting of Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, Lu
More than a seed.

本発明の製造方法を、以下、具体的に述べる。前述のよ
うに、イットリウム系超電導体は約1000℃以上の温度で
分解溶融し、211相の固相とLn−Ba−Cu−O系の液相が
共存している部分溶融状態となる。この状態から温度勾
配をつけて次のような条件のもとで一方向に凝固結晶化
させることが必要である。すなわち、温度勾配100℃/cm
以上、結晶化速度2mm/h以下であることが必要である。
結晶化速度が1mm/hである場合は更に好ましい。
The production method of the present invention will be specifically described below. As described above, the yttrium-based superconductor decomposes and melts at a temperature of about 1000 ° C. or higher, and becomes a partially melted state in which the 211-phase solid phase and the Ln-Ba-Cu-O-based liquid phase coexist. It is necessary to make a temperature gradient from this state and solidify and crystallize in one direction under the following conditions. That is, a temperature gradient of 100 ° C / cm
As described above, it is necessary that the crystallization rate is 2 mm / h or less.
It is more preferable that the crystallization rate is 1 mm / h.

このとき、結晶化は次のようにして進行する。部分溶融
状態では、配向していない211相と、Ln−Ba−Cu−O系
の融液が共存している。ここから、温度勾配下で冷却を
行うと、分解溶融温度で211相と融液とから123相が析出
する。123相は上記の条件のもとでは、結晶のc軸が温
度勾配に対して垂直で、かつ多結晶体ではあるけれど相
互にc軸が平行な板状結晶が層状に重なった組織とな
る。そしてこの時211相は完全には123相に変化せず、一
部は未反応のまま123相の層状組織中に取り残され、粒
状の結晶が島状に分散した組織となる。
At this time, crystallization proceeds as follows. In the partially melted state, the unoriented 211 phase and the Ln-Ba-Cu-O-based melt coexist. From here, if cooling is carried out under a temperature gradient, 123 phases will precipitate from the 211 phase and the melt at the decomposition and melting temperature. Under the above conditions, the 123 phase has a structure in which the c-axes of the crystals are perpendicular to the temperature gradient and the plate-like crystals that are polycrystals but have the c-axes parallel to each other are layered. At this time, the 211 phase does not completely change to the 123 phase, and some of the 211 phase remains unreacted in the 123 phase lamellar structure, resulting in a structure in which granular crystals are dispersed in an island shape.

211相は超電導性を示さないが、それぞれの粒子が独立
しており、電流の経路を妨げることがなく、超電導特性
にさして悪い影響を与えない。融液はすべて123相の形
成に消費され、凝固物に123相、211相以外の結晶相ある
いは非晶質相は表われない。
The 211 phase does not exhibit superconductivity, but each particle is independent, does not interfere with the current path, and does not adversely affect the superconducting properties. All of the melt is consumed to form the 123 phase, and the solid phase does not show any crystalline or amorphous phase other than the 123 and 211 phases.

上述のような部分溶融状態を作るには、123相の焼結体
を分解溶融温度以上、液相温度以下の温度に加熱するの
が好ましい。この状態から、一方向に凝固させると123
相と211相が共存する組織が形成される。この場合もと
の組成からBaおよびCuが減少していることになる。これ
は、おもに融液部を通って結晶成長方向前面へBaおよび
Cuが排出されているためと考えられる。また、一部は揮
散しているものと考えられる。これは、この凝固物の結
晶組織が、結晶成長速度に大きく依存することとも関係
があるものと思われる。すなわち、結晶成長速度が2mm/
hより大きい場合においては、CuおよびBa成分の拡散が
間に合わず、どうしても第2図に示したように、CuOあ
るいはBaCuO相が123相の粒界に析出してしまい、本発明
の製造方法で得られるような組織を有する超電導体は得
られない。結晶成長速度が1mm/h以下であれば、この意
味でもさらに好ましい。
In order to create the above-described partially molten state, it is preferable to heat the 123-phase sintered body to a temperature not lower than the decomposition melting temperature but not higher than the liquidus temperature. From this state, solidify in one direction to 123
A structure in which the phase and the 211 phase coexist is formed. In this case, it means that Ba and Cu are reduced from the original composition. This is mainly due to Ba and
This is probably because Cu is being emitted. In addition, it is considered that a part of it is volatilized. It is considered that this is also related to the fact that the crystal structure of this solidified material largely depends on the crystal growth rate. That is, the crystal growth rate is 2 mm /
If it is larger than h, diffusion of Cu and Ba components will not be in time, and as shown in FIG. A superconductor having such a structure cannot be obtained. If the crystal growth rate is 1 mm / h or less, it is more preferable in this sense as well.

[実施例] 実施例1 Y:Ba:Cuの原子比が1:2:3となるような酸化物の仮焼粉末
を作り、その粉末を金型プレスにより70mm×40mm×2mm
に成形し、930℃の酸素気流中で10時間焼成を行ない、Y
Ba2Cu3O7-yの焼結体を得た。この焼結体をダイヤモンド
カッターを用いて2mm幅に切り出し、底面が一辺約2mmの
正方形で高さが70mm弱の角柱状の焼結体を得た。
[Example] Example 1 A calcined powder of an oxide having an atomic ratio of Y: Ba: Cu of 1: 2: 3 was prepared, and the powder was pressed by a die press to 70 mm x 40 mm x 2 mm.
And then baked in an oxygen stream at 930 ° C for 10 hours.
A sintered body of Ba 2 Cu 3 O 7-y was obtained. This sintered body was cut out to a width of 2 mm using a diamond cutter to obtain a square columnar sintered body having a square bottom surface of about 2 mm on each side and a height of a little less than 70 mm.

次に、この角注状焼結体の上部を把持し、第4図に示し
たような温度分布を有する縦型の管状抵抗加熱炉内に吊
して、炉内の最高温度1090℃に保ったまま、下から酸素
ガスを流しつつ、0.7mm/hの速度で下から上に移動させ
た。この時、部分溶融状態においても、この試料は全体
の形を崩さず、特別のささえは不要であった。
Next, the upper portion of this square-cast sintered body was gripped and hung in a vertical tubular resistance heating furnace having a temperature distribution as shown in Fig. 4, and the maximum temperature inside the furnace was maintained at 1090 ° C. While keeping it flowing, oxygen gas was made to flow from the bottom, and it was moved from the bottom to the top at a speed of 0.7 mm / h. At this time, even in the partially melted state, this sample did not lose its overall shape and no special support was required.

この結果得られた凝固物をさらに酸素雰囲気中で900℃
まで加熱を行ない、30℃/hで徐冷し、酸素を十分に吸い
込ませた。
The resulting solidified product is further heated at 900 ° C in an oxygen atmosphere.
The mixture was heated up to 30 ° C./h and slowly cooled to absorb oxygen sufficiently.

この凝固物を、光学顕微鏡、走査型電子顕微鏡およびX
線元素分析装置を用いて観察したところ、第1図に示し
たような板状のYBa2Cu3O7-y結晶粒子が層状に重なり合
い、その中に粒状のY2BaCuO5結晶が島状に独立して分析
した組織を有していることが確認された。また、この凝
固物を0.90mm×0.15mm×10mmの長さに切断し、直流四端
子法により超電導特性を測定した。零抵抗を示す臨界温
度は84Kで、77K、1Tの磁場中における臨界電流密度は40
00A/cm2であった。
This coagulated product was analyzed with an optical microscope, a scanning electron microscope, and an X-ray.
Observation with a line element analyzer revealed that plate-shaped YBa 2 Cu 3 O 7-y crystal grains as shown in Fig. 1 were layered, and granular Y 2 BaCuO 5 crystals were island-shaped. It was confirmed that the organization had an independently analyzed organization. Further, this solidified product was cut into a length of 0.90 mm × 0.15 mm × 10 mm, and the superconducting property was measured by the DC four-terminal method. The critical temperature showing zero resistance is 84K, and the critical current density in the magnetic field of 77K, 1T is 40K.
It was 00A / cm 2 .

[発明の効果] 本発明の超電導体は、123相の配向性が高く、それ以外
の相として島状に分散した粒状の211相のみを含むの
で、臨界電流密度が高く、かつ磁場を印加した際にも、
臨界電流密度の低下が少ない。
[Effects of the Invention] The superconductor of the present invention has a high orientation of the 123 phase and contains only the granular 211 phase dispersed in an island shape as the other phase, so that the critical current density is high and a magnetic field is applied. When
Decrease in critical current density is small.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明実施例の超電導体の組織を示す模式図
である。第2図は、従来の一方向凝固法によって得られ
たイットリウム系超電導体の組織を示す模式図である。
第3図は、焼結体のイットリウム系超電導体の組織を示
す模式図である。第4図、本発明実施例において用いた
電気炉の温度分布を示す図である。第4図で、縦軸は温
度、横軸は炉内の位置を、最高温度を示す部分からの距
離で表わす。+は、最高温度部より上方、−は下方を示
す。
FIG. 1 is a schematic diagram showing the structure of a superconductor according to an embodiment of the present invention. FIG. 2 is a schematic diagram showing the structure of the yttrium-based superconductor obtained by the conventional unidirectional solidification method.
FIG. 3 is a schematic diagram showing the structure of the yttrium-based superconductor of the sintered body. FIG. 4 is a diagram showing the temperature distribution of the electric furnace used in the examples of the present invention. In FIG. 4, the vertical axis represents the temperature, and the horizontal axis represents the position in the furnace by the distance from the portion showing the maximum temperature. + Is above the maximum temperature part, and-is below.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 39/12 ZAA C ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location H01L 39/12 ZAA C

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】LnBa2Cu3O7-y(LnはY,La,Nd,Sm,Eu,Gd,Dy,
Ho,Er,Tm,Yb,Luからなる群から選ばれた1種以上、yは
酸素欠陥量)の組成式で表わされる板状の結晶が層状に
重なり合い、その中にLn2BaCuO5の組成式で表わされる
粒状の結晶が島状に分散している組織を有する酸化物超
電導体の製造方法であって、Ln2BaCuO5の固相と、Ln−B
a−Cu−O系の液相が共存している部分溶融状態から、1
00℃/cm以上の温度勾配、2mm/h以下の結晶成長速度の一
方向凝固法により冷却結晶化する酸化物超電導体の製造
方法。
1. LnBa 2 Cu 3 O 7-y (Ln is Y, La, Nd, Sm, Eu, Gd, Dy,
One or more selected from the group consisting of Ho, Er, Tm, Yb, and Lu, and y is an oxygen deficiency amount) plate-like crystals represented by the composition formula are layered, and the composition of Ln 2 BaCuO 5 A method for producing an oxide superconductor having a structure in which granular crystals represented by the formula are dispersed in an island shape, wherein a solid phase of Ln 2 BaCuO 5 and Ln-B
From the partially molten state in which an a-Cu-O liquid phase coexists,
A method for producing an oxide superconductor, which is cooled and crystallized by a unidirectional solidification method with a temperature gradient of 00 ° C / cm or more and a crystal growth rate of 2 mm / h or less.
JP1019818A 1989-01-31 1989-01-31 Method for producing oxide superconductor having new structure Expired - Fee Related JPH0791056B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1019818A JPH0791056B2 (en) 1989-01-31 1989-01-31 Method for producing oxide superconductor having new structure
US07/471,650 US5084436A (en) 1989-01-31 1990-01-29 Oriented superconductor containing a dispersed non-superconducting phase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1019818A JPH0791056B2 (en) 1989-01-31 1989-01-31 Method for producing oxide superconductor having new structure

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP6286830A Division JP2692614B2 (en) 1994-11-21 1994-11-21 Oxide superconductor with new structure

Publications (2)

Publication Number Publication Date
JPH02204322A JPH02204322A (en) 1990-08-14
JPH0791056B2 true JPH0791056B2 (en) 1995-10-04

Family

ID=12009899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1019818A Expired - Fee Related JPH0791056B2 (en) 1989-01-31 1989-01-31 Method for producing oxide superconductor having new structure

Country Status (1)

Country Link
JP (1) JPH0791056B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2518969B2 (en) * 1989-05-02 1996-07-31 新日本製鐵株式会社 Oxide superconductor and method for manufacturing the same
JP2709000B2 (en) * 1992-04-16 1998-02-04 株式会社日立製作所 Superconductor and method of manufacturing the same
JP4714867B2 (en) * 2005-09-21 2011-06-29 国立大学法人長岡技術科学大学 Oxygen sensor

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Appl.Phys.Lett.,Vol.52,No.24,P.2074−2076(1988)
Phys.Rev.B,Vol.37,No.13,P.7850−7853(1988)

Also Published As

Publication number Publication date
JPH02204322A (en) 1990-08-14

Similar Documents

Publication Publication Date Title
JP2672334B2 (en) Superconductor manufacturing method
US5084436A (en) Oriented superconductor containing a dispersed non-superconducting phase
EP0634379B1 (en) Joined product of of superconductive oxide materials and its manufacture
US4921834A (en) Flux method of growing oxide superconductors
Bykov et al. Crystallization of high temperature superconductors from nonstoichiometric melts
EP0423375B1 (en) Oxide superconductor and method of producing the same
EP0456116B1 (en) Oxide superconductor and process for its production
US5571776A (en) Single crystalline bulk oxide superconductor and process for producing same
JP2556401B2 (en) Oxide superconductor and method for manufacturing the same
Tretyakov et al. Chemical design of metal-oxide superconductors
JPH0791056B2 (en) Method for producing oxide superconductor having new structure
JP2692614B2 (en) Oxide superconductor with new structure
JP2874278B2 (en) Oxide superconductor and manufacturing method thereof
JP2518043B2 (en) Method for producing ceramics by melt solidification method
JPH0791057B2 (en) Rare earth oxide superconductor
US5126321A (en) Preparation of Bi-Sr-Ca-Cu-O superconductors from oxide-glass precursors
JP3330962B2 (en) Manufacturing method of oxide superconductor
JP3174847B2 (en) Superconducting whisker and manufacturing method thereof
JP3195041B2 (en) Oxide superconductor and manufacturing method thereof
JP3621750B2 (en) Manufacturing method of oxide superconducting material
JP3889139B2 (en) Oxide superconductor containing silver and method for producing the same
JP4071860B2 (en) Superconducting bulk material and manufacturing method thereof
JP3623829B2 (en) Method for producing RE-Ba-Cu-O-based oxide superconductor
Licci et al. Growth and characterization of single crystals of high Tc superconductors and related phases
JP4951790B2 (en) Manufacturing method of oxide superconductivity

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees