[go: up one dir, main page]

JP2003270358A - Snow accumulation sensor using optical fiber, snow gauge, and snow accumulation measurement method - Google Patents

Snow accumulation sensor using optical fiber, snow gauge, and snow accumulation measurement method

Info

Publication number
JP2003270358A
JP2003270358A JP2002071499A JP2002071499A JP2003270358A JP 2003270358 A JP2003270358 A JP 2003270358A JP 2002071499 A JP2002071499 A JP 2002071499A JP 2002071499 A JP2002071499 A JP 2002071499A JP 2003270358 A JP2003270358 A JP 2003270358A
Authority
JP
Japan
Prior art keywords
optical fiber
snow
support member
optical
pulse tester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002071499A
Other languages
Japanese (ja)
Other versions
JP4056038B2 (en
Inventor
Kazuhiko Fujihashi
一彦 藤橋
Masaru Okutsu
大 奥津
Hiroyuki Komatsu
宏至 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2002071499A priority Critical patent/JP4056038B2/en
Publication of JP2003270358A publication Critical patent/JP2003270358A/en
Application granted granted Critical
Publication of JP4056038B2 publication Critical patent/JP4056038B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01WMETEOROLOGY
    • G01W1/00Meteorology
    • G01W1/14Rainfall or precipitation gauges

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Atmospheric Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Environmental Sciences (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To measure a snow accumulation amount by means of a sensor using no electrical component. <P>SOLUTION: This snow accumulation sensor 10 is constructed by spirally winding an optical fiber 2 around a supporting member 1. In the longitudinal direction of the optical fiber 2, a temperature is changed in a position 12 matching a boundary face 5 between the snow 3 and the air 4, and in the position 21, a deflection having a temperature change and linearity is generated. When a light pulse from a light pulse tester 8 is incident on one end of the optical fiber 2, a wavelength of backscattered radiation is shifted in proportion to the deflection amount. Therefore, the backscattered radiation is measured by radiating light pulse from the light pulse tester 8 to the optical fiber 2, and from the temperature change position 12 and a parameter of the spiral shape part, a snow accumulation amount is computed by a signal processing device 9. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は光ファイバを利用し
て積雪量を計測する技術、特に、積雪センサ、積雪計お
よび積雪計測法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for measuring the amount of snowfall using an optical fiber, and more particularly to a snowfall sensor, a snowfall meter and a snowfall measurement method.

【0002】[0002]

【従来の技術】従来は、赤外線や超音波を利用した電気
式センサにより、積雪量の計測を行っている。
2. Description of the Related Art Conventionally, the amount of snow is measured by an electric sensor using infrared rays or ultrasonic waves.

【0003】[0003]

【発明が解決しようとする課題】電気式センサを用いて
積雪量を計測する場合、下記のような問題点がある。 (1) 天候や高圧電線等の外的要因に対して、影響を受け
易く弱い。 (2) 費用がかかる。 (3) 多点計測を行う場合、積雪計測システムが煩雑にな
る。 (4) 各センサ毎に電源が必要である。
When the amount of snow is measured using an electric sensor, there are the following problems. (1) It is easily affected by external factors such as weather and high-voltage power lines, and is weak. (2) Costly. (3) When performing multipoint measurement, the snow cover measurement system becomes complicated. (4) A power supply is required for each sensor.

【0004】本発明は従来技術の上記問題点に鑑みてな
されたものであり、電気式センサを使用せず、光ファイ
バを利用することで、積雪量計測が可能な技術の提供を
課題とする。
The present invention has been made in view of the above problems of the prior art, and an object of the present invention is to provide a technique capable of measuring the amount of snow covered by using an optical fiber without using an electric sensor. .

【0005】[0005]

【課題を解決するための手段】第1発明から第5発明は
光ファイバを利用した積雪センサであり、第6発明は光
ファイバを利用した積雪計であり、第7発明は光ファイ
バを利用した積雪計測法である。
The first to fifth inventions are snow sensor using an optical fiber, the sixth invention is a snow meter using an optical fiber, and the seventh invention is an optical fiber. It is a snow measurement method.

【0006】第1発明の積雪センサは、支持部材と、前
記支持部材にらせん状または直線状の形状をなして上下
方向に支持された光ファイバとを備え、前記光ファイバ
は積雪計測のために光パルス試験器に接続されることを
特徴とする。第2発明は、第1発明の積雪センサにおい
て、前記支持部材は棒状であり、前記支持部材に前記光
ファイバがらせん状に巻き付けられていることを特徴と
する。第3発明は、第1発明または第2発明の積雪セン
サにおいて、前記支持部材の熱伝導率が前記光ファイバ
の熱伝導率より低いことを特徴とする。第4発明は、第
1発明から第3発明いずれかの積雪センサにおいて、前
記光ファイバは一定間隔毎に、熱伝導率の異なる材料で
被覆されていることを特徴とする。第5発明は、第1発
明から第4発明いずれかの積雪センサにおいて、前記光
ファイバの外面に雪氷の付着を防止する材料が塗布され
ていることを特徴とする。
A snow accumulation sensor according to a first aspect of the present invention comprises a support member and an optical fiber vertically supported by the support member in a spiral or linear shape. The optical fiber is used for measuring snow accumulation. It is characterized in that it is connected to an optical pulse tester. A second invention is characterized in that, in the snow accumulation sensor according to the first invention, the support member is rod-shaped, and the optical fiber is spirally wound around the support member. A third invention is characterized in that, in the snow accumulation sensor of the first invention or the second invention, the thermal conductivity of the support member is lower than the thermal conductivity of the optical fiber. A fourth invention is characterized in that, in the snow accumulation sensor according to any one of the first invention to the third invention, the optical fiber is coated with a material having a different thermal conductivity at regular intervals. A fifth invention is characterized in that, in the snow accumulation sensor according to any of the first invention to the fourth invention, a material for preventing adhesion of snow and ice is applied to an outer surface of the optical fiber.

【0007】第6発明の積雪計は、第1発明から第5発
明いずれかの積雪センサと、前記積雪センサの前記光フ
ァイバの一端に接続された光パルス試験器と、前記光パ
ルス試験器に接続された信号処理装置とを備え、前記光
パルス試験器は前記光ファイバに光パルスを入射し、ブ
リルアン散乱光あるいはラマン散乱光を受光して前記光
ファイバ内の温度分布に関連する情報を計測し、前記信
号処理装置は前記温度分布に関連する情報から積雪量を
算定するように構成されていることを特徴とする。
A snow meter of a sixth invention comprises a snow sensor according to any of the first to fifth inventions, an optical pulse tester connected to one end of the optical fiber of the snow sensor, and the optical pulse tester. And a signal processing device connected thereto, wherein the optical pulse tester inputs an optical pulse to the optical fiber, receives Brillouin scattered light or Raman scattered light, and measures information related to temperature distribution in the optical fiber. However, the signal processing device is configured to calculate the snowfall amount from the information related to the temperature distribution.

【0008】第7発明の積雪計測法は、らせん状または
直線状の形状をなす光ファイバを積雪計測対象地点にて
上下方向に配置し、前記光ファイバの一端に光パルス試
験器から光パルスを入射して前記光ファイバ内の温度分
布に関連する情報を求め、前記温度分布に関連する情報
から積雪量を算定することを特徴とする。
In the snow cover measuring method of the seventh invention, an optical fiber having a spiral or linear shape is vertically arranged at a snow cover measuring point, and an optical pulse tester applies an optical pulse to one end of the optical fiber. It is characterized in that the incident light is used to obtain information related to the temperature distribution in the optical fiber, and the amount of snow is calculated from the information related to the temperature distribution.

【0009】[0009]

【発明の実施の形態】以下、図面を参照して、本発明の
実施の形態を説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings.

【0010】図1に、本発明の実施の形態に係る積雪セ
ンサおよび積雪計の構成を示す。図1中、1は支持部
材、2は光ファイバ、3は雪中、4は気中、5は境界
面、6は被覆(高熱伝導率)、7は被覆(低熱伝導
率)、8は光パルス試験器、9は信号処理装置、10は
積雪センサ、11は積雪計、12は温度変化位置、13
は塗料(雪氷付着防止)を示している。
FIG. 1 shows the construction of a snow sensor and snow gauge according to an embodiment of the present invention. In FIG. 1, 1 is a support member, 2 is an optical fiber, 3 is in snow, 4 is in the air, 5 is a boundary surface, 6 is a coating (high thermal conductivity), 7 is a coating (low thermal conductivity), and 8 is light. A pulse tester, 9 is a signal processing device, 10 is a snow sensor, 11 is a snow meter, 12 is a temperature change position, 13
Indicates paint (prevention of snow and ice adhesion).

【0011】積雪センサ10は、主として、支持部材1
と光ファイバ2で構成される。図1に示す例では、支持
部材1は棒状であり、この支持部材1に光ファイバ2を
らせん状の形状をなして上下方向に巻く付けることで、
上下方向に支持している。積雪センサ10は積雪量の計
測対象地点にて、光ファイバ2のらせん状部分を上下方
向(通常は垂直)に配置して建てられる。光ファイバ2
の一端は光パルス試験器8に接続される。図1では、ら
せん状部分のうち上側が光パルス試験器8に接続されて
いるが、光パルス試験器8に接続される側はらせん状部
分のうち上下いずれでも良い。
The snow sensor 10 is mainly composed of the support member 1.
And the optical fiber 2. In the example shown in FIG. 1, the support member 1 has a rod shape, and the optical fiber 2 is wound around the support member 1 in a spiral shape in the vertical direction.
Supports vertically. The snow cover sensor 10 is built by arranging the spiral portion of the optical fiber 2 in the vertical direction (usually vertical) at the measurement target point of the snow cover amount. Optical fiber 2
Is connected to the optical pulse tester 8. In FIG. 1, the upper side of the spiral portion is connected to the optical pulse tester 8, but the side connected to the optical pulse tester 8 may be either the upper side or the lower side of the spiral portion.

【0012】積雪計11は、積雪センサ10と、光パル
ス試験器8と、信号処理装置9で構成される。光パルス
試験器8は光ファイバ2に光パルスを入射し、光ファイ
バ2から後方散乱光分布に関連する情報を計測するよう
に構成されている。信号処理装置9は光パルス試験器8
に接続されており、光パルス試験器8で計測した光ファ
イバ2内の温度分布に関連する情報から、積雪量を算定
するように構成されている。
The snow cover meter 11 comprises a snow cover sensor 10, an optical pulse tester 8 and a signal processing device 9. The optical pulse tester 8 is configured to inject an optical pulse into the optical fiber 2 and measure information related to the backscattered light distribution from the optical fiber 2. The signal processing device 9 is an optical pulse tester 8
And is configured to calculate the amount of snow from the information related to the temperature distribution in the optical fiber 2 measured by the optical pulse tester 8.

【0013】ここで、光ファイバ2を利用した積雪計測
の原理を説明する。光ファイバ2の長手方向の温度分布
に関して、雪中3と気中4との境界面5に相当する位置
12で、温度が変化する。その理由は、降雪時には雪中
3の温度の方が気中4よりも高く、融雪時には気中4の
温度の方が雪中3よりも高いというように、雪中3と気
中4で温度が異なるからである。
Here, the principle of snowfall measurement using the optical fiber 2 will be described. Regarding the temperature distribution in the longitudinal direction of the optical fiber 2, the temperature changes at the position 12 corresponding to the boundary surface 5 between the snow 3 and the air 4. The reason is that the temperature in snow 3 is higher than in air 4 during snowfall, and the temperature in air 4 is higher than in air 3 during snowmelt. Because they are different.

【0014】従って、光ファイバ2内の温度分布に関連
する情報を計測することにより、光ファイバ2内の温度
変化位置(長手方向に関して温度が変化した位置)12
を知ることができる。
Therefore, by measuring the information relating to the temperature distribution in the optical fiber 2, the temperature change position (the position where the temperature changes in the longitudinal direction) 12 in the optical fiber 2 is measured.
You can know.

【0015】そして、光ファイバ2のらせん状部分の既
知の形状パラメータ(例えばらせんのピッチやらせんの
半径(または直径)、光ファイバの下端位置など)を用
いることにより、温度変化位置12から、境界面5の高
さ、つまり積雪量を算定することができる。例えば、通
常、温度変化位置12は、光パルス試験器8側を起点に
した光ファイバ2の長手方向距離として計測されるの
で、図1のようにらせん部分の上側から光ファイバ2が
光パルス試験器8に接続されている場合は、光ファイバ
2の全長(既知)から温度変化位置12を減算した長さ
と、らせん状部分の形状パラメータから、積雪量を計算
すれば良い。逆に、温度変化位置12が光ファイバ2の
先端(光パルス試験器8とは反対側)を起点にした長手
方向距離として計測される場合は、温度変化位置12そ
のもと、らせん状部分の形状パラメータから、積雪量を
計算すれば良い。一方、光パルス試験器8側を起点にし
た光ファイバ2の長手方向距離として計測される場合で
も、図1とは反対にらせん部分の下側から光ファイバ2
が光パルス試験器8に接続されている場合は、光ファイ
バ2の光パルス試験器8側かららせん部分下側までの長
さ(既知)を温度変化位置12から減算した長さと、ら
せん状部分の形状パラメータから、積雪量を計算するこ
とができる。図1とは反対にらせん部分の下側から光フ
ァイバ2が光パルス試験器8に接続されている場合で
も、逆に、温度変化位置12が光ファイバ2の先端(光
パルス試験器8とは反対側)を起点にした長手方向距離
として計測される場合は、光ファイバ2の全長から温度
変化位置12および光パルス試験器8側かららせん部分
下側までの長さを減算した長さと、らせん状部分の形状
パラメータから、積雪量を計算するこができる。
Then, by using the known shape parameters of the spiral portion of the optical fiber 2 (for example, the pitch of the spiral, the radius (or diameter) of the spiral, the lower end position of the optical fiber, etc.), the boundary from the temperature change position 12 can be calculated. The height of the surface 5, that is, the amount of snow can be calculated. For example, the temperature change position 12 is usually measured as the distance in the longitudinal direction of the optical fiber 2 starting from the optical pulse tester 8 side, so that the optical fiber 2 is tested from the upper side of the spiral portion as shown in FIG. In the case of being connected to the vessel 8, the amount of snow cover may be calculated from the length obtained by subtracting the temperature change position 12 from the total length (known) of the optical fiber 2 and the shape parameter of the spiral portion. On the contrary, when the temperature change position 12 is measured as a longitudinal distance from the tip of the optical fiber 2 (on the side opposite to the optical pulse tester 8), the temperature change position 12 and the spiral portion The amount of snow cover may be calculated from the shape parameters. On the other hand, even when measured as the distance in the longitudinal direction of the optical fiber 2 with the optical pulse tester 8 side as the starting point, the optical fiber 2 is measured from the lower side of the spiral portion, contrary to FIG.
Is connected to the optical pulse tester 8, the length (known) from the optical pulse tester 8 side of the optical fiber 2 to the lower side of the spiral portion is subtracted from the temperature change position 12 and the spiral portion. The amount of snow can be calculated from the shape parameters of. Contrary to FIG. 1, even when the optical fiber 2 is connected to the optical pulse tester 8 from the lower side of the spiral portion, conversely, the temperature change position 12 is the tip of the optical fiber 2 (the optical pulse tester 8 When measured as the distance in the longitudinal direction starting from the (opposite side), the length obtained by subtracting the length from the temperature change position 12 and the optical pulse tester 8 side to the lower side of the spiral portion from the total length of the optical fiber 2 and the spiral. The amount of snowfall can be calculated from the shape parameters of the shaped part.

【0016】光ファイバ2内の温度分布に関連する情報
は、光パルス試験器8により求めることができる。その
理由は、光ファイバ2には温度変化位置12で、伸びま
たは圧縮ひずみが生じ、そのひずみ量は温度変化に対し
て線形性を有すること、および、光ファイバ2に光パル
スを入射したときにひずみ発生位置(つまり温度変化位
置13)で後方散乱光が生じ、その波長シフト(または
周波数シフト)量はひずみに比例することであり、光パ
ルスの入射から後方散乱光の到達までの時間と、光ファ
イバ2中の光パルスの速度(既知)によって、温度変化
位置(ひずみ発生位置)12を計測することができる。
Information relating to the temperature distribution in the optical fiber 2 can be obtained by the optical pulse tester 8. The reason is that elongation or compression strain occurs in the optical fiber 2 at the temperature change position 12, and the amount of strain has linearity with respect to temperature change, and when an optical pulse is incident on the optical fiber 2. The backscattered light is generated at the strain generation position (that is, the temperature change position 13), and the wavelength shift (or frequency shift) amount is proportional to the strain, and the time from the incidence of the light pulse to the arrival of the backscattered light, The temperature change position (strain generation position) 12 can be measured by the velocity (known) of the optical pulse in the optical fiber 2.

【0017】したがって、光ファイバ2内の温度分布に
関連する情報としては、後方散乱光分布に関連する情報
から得られ、例えば波長シフト(または周波数シフト)
情報に限らず、ひずみ情報、あるいは、温度情報そのも
のがあり、そのうちどれを信号処理装置9が用いるかは
光パルス試験器8が有する機能による。
Therefore, the information related to the temperature distribution in the optical fiber 2 is obtained from the information related to the backscattered light distribution, for example, wavelength shift (or frequency shift).
There is not only information but strain information or temperature information itself, and which of them is used by the signal processing device 9 depends on the function of the optical pulse tester 8.

【0018】光パルス試験器8の計測出力が後方散乱光
の波長シフト(または周波数シフト)情報であれば、信
号処理装置9は光パルスの速度と光パルスの入射から後
方散乱光の到達までの時間によって温度変化位置12を
計算し、光ファイバ2のらせん状部分の既知の形状パラ
メータを用いてことにより、積雪量を算定する。
If the measurement output of the optical pulse tester 8 is the wavelength shift (or frequency shift) information of the backscattered light, the signal processing device 9 determines the speed of the light pulse and the time from the incidence of the light pulse to the arrival of the backscattered light. The temperature change position 12 is calculated according to time, and the amount of snow is calculated by using the known shape parameter of the spiral portion of the optical fiber 2.

【0019】光パルス試験器8の計測出力がひずみ情報
であれば、信号処理装置9はひずみ情報からひずみ発生
位置を特定して温度変化位置12とし、光ファイバ2の
らせん状部分の既知の形状パラメータを用いてことによ
り、積雪量を算定する。
If the measurement output of the optical pulse tester 8 is strain information, the signal processing device 9 identifies the strain generation position from the strain information and sets it as the temperature change position 12, and the known shape of the spiral portion of the optical fiber 2. Calculate the amount of snowfall by using the parameters.

【0020】光パルス試験器8の計測出力が温度情報そ
のものであれば、信号処理装置9は温度情報から温度変
化位置12を特定し、光ファイバ2のらせん状部分の既
知の形状パラメータを用いてことにより、積雪量を算定
する。
If the measurement output of the optical pulse tester 8 is the temperature information itself, the signal processing device 9 identifies the temperature change position 12 from the temperature information and uses the known shape parameter of the spiral portion of the optical fiber 2. Therefore, the amount of snow cover is calculated.

【0021】いずれの場合も、予め実験等で求めたしき
い値と、波長シフト(または周波数シフト)量、ひずみ
量あるいは温度変化量と比較することで、雪中3と気中
4との境界面5に相当する温度変化位置12であるかど
うか、判定すると良い。
In any case, by comparing the threshold value obtained in advance by experiments with the wavelength shift (or frequency shift) amount, the strain amount or the temperature change amount, the boundary between snow 3 and air 4 It may be determined whether or not the temperature change position 12 corresponds to the surface 5.

【0022】光パルス試験器8として、例えば、光・損
失統合型パルス試験器(以下、B−OTDR)を用いる
ことができる。B−OTDRは、光ファイバ2中に入射
した光パルスの光ファイバ2のひずみ(伸びまたは圧
縮)に比例するブリルアン散乱光の波長シフト量を検出
することによりひずみ量を計測し、ひずみ発生位置(温
度変化位置12)をブリルアン散乱光の到達までの時間
によって計測するものである。
As the optical pulse tester 8, for example, an optical / loss integrated pulse tester (hereinafter, B-OTDR) can be used. The B-OTDR measures the strain amount by detecting the wavelength shift amount of the Brillouin scattered light that is proportional to the strain (expansion or compression) of the optical fiber 2 incident on the optical fiber 2, and measures the strain generation position ( The temperature change position 12) is measured by the time until the arrival of Brillouin scattered light.

【0023】温度分布に関連する情報を測定する際に利
用可能な後方散乱光は、ブリルアン散乱光およびラマン
散乱光であり、B−OTDRに限らず、これらを計測可
能な光パルス試験器を用いることができる。
The backscattered light that can be used when measuring the information related to the temperature distribution is Brillouin scattered light and Raman scattered light, and is not limited to B-OTDR, but an optical pulse tester capable of measuring these is used. be able to.

【0024】本例では光パルス試験器8と信号処理装置
9が別体になっているが、両者の機能を兼ね備えた機器
を用いることもできる。
In this example, the optical pulse tester 8 and the signal processing device 9 are separate bodies, but a device having both functions can be used.

【0025】上述したように、本例では、光ファイバ2
を棒状の支持部材1にらせん状に貼り付けて積雪センサ
10とし、光ファイバ2の一端に光パルス試験器8を接
続して後方散乱光を計測し、光ファイバ2の温度変化位
置12から信号処理装置9で積雪量を算定することによ
り、下記の効果がある。 (1) 積雪センサ10では、稼働部や電気的な部品を用い
ない光ファイバ2自身を測定部として用いるため、外的
要因の影響、例えば雷・高圧電線等の誘導による影響を
受けず、故障が少なく、厳しい屋外環境下における信頼
性の高い積雪計測が可能になる。 (2) 積雪センサ10は、支持部材1に光ファイバ2を巻
き付けたものであるから、構造が簡易であり、安価に製
造することができる。 (3) 1本の光ファイバ2が積雪センサ10と光パルス試
験器8への伝送部を構成しているので、積雪計測システ
ムの構成が簡素化する。また、遠隔監視が可能であり、
また、多点計測の場合、1本の光ファイバ2上に複数の
積雪センサ10を直列に配置した構成がとれるので、さ
らに積雪計測システムの構成を簡素化することが可能で
ある。これは、複数の積雪センサ10の各光ファイバ2
を直列接続することと等価である。1本の光ファイバ2
上に複数の積雪センサ10を直列配置した場合でも、複
数の積雪センサ10における個々の温度変化位置12を
区別して計測でき、段落[0015]で述べた手法を個
々の積雪センサ10毎に適用することにより、積雪セン
サ10を設置した個々の積雪計測対象地点での積雪量を
温度変化位置12から算定することができる。 (4) 積雪センサ10には電源(給電)が不要である。 (5) メンテナンス等の稼働・維持管理コストを削減でき
る。
As described above, in this example, the optical fiber 2
Is attached to a rod-shaped support member 1 in a spiral shape to form a snow cover sensor 10. An optical pulse tester 8 is connected to one end of the optical fiber 2 to measure backscattered light, and a signal is output from a temperature change position 12 of the optical fiber 2. The following effects can be obtained by calculating the amount of snow covered by the processing device 9. (1) Since the snow sensor 10 uses the optical fiber 2 itself that does not use an operating part or electrical parts as a measuring part, it is not affected by external factors, for example, the influence of induction of lightning, high-voltage wires, etc. It is possible to measure snowfall with high reliability in a severe outdoor environment. (2) Since the snow sensor 10 has the optical fiber 2 wound around the support member 1, it has a simple structure and can be manufactured at low cost. (3) Since one optical fiber 2 constitutes the snow cover sensor 10 and the transmission part to the optical pulse tester 8, the structure of the snow cover measurement system is simplified. Also, remote monitoring is possible,
Further, in the case of multi-point measurement, a configuration in which a plurality of snow cover sensors 10 are arranged in series on one optical fiber 2 can be taken, so that the structure of the snow cover measurement system can be further simplified. This is the optical fiber 2 of the snow cover sensor 10.
Is equivalent to connecting in series. 1 optical fiber 2
Even when a plurality of snow sensors 10 are arranged in series above, individual temperature change positions 12 of the plurality of snow sensors 10 can be measured separately, and the method described in paragraph [0015] is applied to each snow sensor 10. As a result, the amount of snowfall at each snowfall measurement target point where the snowfall sensor 10 is installed can be calculated from the temperature change position 12. (4) The snow sensor 10 does not require a power source (power supply). (5) Operation / maintenance costs such as maintenance can be reduced.

【0026】本発明は、光ファイバ2内の温度変化位置
13が雪中3と気中4との境界面5の温度変化に対応す
ることに着目して積雪量を計測するものであるから、境
界面5したがって温度変化位置12をできるだけ明確に
することが好ましい。そのために以下に述べる工夫をし
ている。
In the present invention, the amount of snow is measured by focusing on the fact that the temperature change position 13 in the optical fiber 2 corresponds to the temperature change of the boundary surface 5 between the snow 3 and the air 4. It is preferable to make the boundary surface 5 and thus the temperature change position 12 as clear as possible. Therefore, the following measures are taken.

【0027】第1に、光ファイバ2を、一定間隔毎に、
熱伝導率の異なる材料で被覆していす。これにより、光
ファイバ2の雪中3での温度と、気中4での温度との差
が明確になる。図1において、2種類の被覆6、7のう
ち、被覆6(細い実線および破線で示す部分)は高熱伝
導率の材料を用いた被覆であり、被覆7(太い実線およ
び破線で示す部分)は低熱伝導率の材料を用いた被覆で
ある。本例では、らせんの4回おきに1回、低熱伝導率
の被覆7を施しているがこれに限定されるものではな
い。
First, the optical fiber 2 is fixed at regular intervals.
It is coated with materials with different thermal conductivity. Thereby, the difference between the temperature of the optical fiber 2 in the snow 3 and the temperature of the optical fiber 4 in the air 4 becomes clear. In FIG. 1, of the two types of coatings 6 and 7, coating 6 (portion indicated by thin solid line and broken line) is a coating using a material having high thermal conductivity, and coating 7 (portion indicated by thick solid line and broken line) is It is a coating using a material having a low thermal conductivity. In this example, the coating 7 having a low thermal conductivity is applied once every four spirals, but the invention is not limited to this.

【0028】第2に、支持部材1として、熱伝導率が特
に低い材料を用いている。言い換えれば、支持部材1の
熱伝導率がすくなくとも光ファイバ2の熱伝導率よりも
低くなるようにしている。これにより、支持部材1から
光ファイバ2への熱伝達を妨げ、温度変化位置12が不
明確になることを防止することができる。なお、上述し
た2種類の被覆6、7間での熱伝導率の高低関係は相対
的なもので良く、光ファイバ2の熱伝導率よりも被覆6
の熱伝導率の方が高く、被覆7の熱伝導率の方が低いこ
とは必ずしも必要ではない。
Secondly, the support member 1 is made of a material having a particularly low thermal conductivity. In other words, the thermal conductivity of the support member 1 is at least lower than that of the optical fiber 2. As a result, heat transfer from the support member 1 to the optical fiber 2 can be hindered, and the temperature change position 12 can be prevented from becoming unclear. It should be noted that the above-mentioned relationship of thermal conductivity between the two types of coatings 6 and 7 may be relative, and the coating 6 may have a higher thermal conductivity than that of the optical fiber 2.
It is not always necessary that the thermal conductivity of the coating 7 is higher and the thermal conductivity of the coating 7 is lower.

【0029】第3に、支持部材1に光ファイバ2を巻き
付けた後、超撥水材等、雪氷の付着を防止する材料から
なる塗料13を、少なくとも光ファイバ2の外面に塗布
している。この塗料13は積雪センサ10全体に塗布し
ても良い。
Thirdly, after the optical fiber 2 is wound around the support member 1, a coating material 13 made of a material such as a super water repellent material which prevents snow and ice from adhering is applied to at least the outer surface of the optical fiber 2. The paint 13 may be applied to the entire snow sensor 10.

【0030】さらに、本例では、光ファイバ2の片方の
一端を支持部材1の下端に位置させて、一定ピッチで下
から上へ、支持部材2の表面にらせん状に1層巻き付け
ることで、支持部材1により光ファイバ2を上下方向に
支持している。光ファイバ2のもう片方の一端は、積雪
計測のために光パルス試験器8に接続される。前述した
が、これとは逆に、光ファイバ2の片方の一端を支持部
材1の上端付近に位置させて、一定ピッチで上から下
へ、支持部材2の表面にらせん状に1層巻き付けること
で、支持部材1により光ファイバ2を上下方向に支持
し、光ファイバ2のもう片方の一端を、積雪計測のため
に光パルス試験器8に接続するようにしても良い。
Further, in this example, one end of the optical fiber 2 is positioned at the lower end of the support member 1 and one layer is spirally wound around the surface of the support member 2 from bottom to top at a constant pitch. The support member 1 supports the optical fiber 2 in the vertical direction. The other end of the optical fiber 2 is connected to the optical pulse tester 8 for snowfall measurement. As described above, conversely, one end of the optical fiber 2 is positioned near the upper end of the support member 1 and one layer is spirally wound around the surface of the support member 2 from top to bottom at a constant pitch. Then, the optical fiber 2 may be supported in the vertical direction by the support member 1, and the other end of the optical fiber 2 may be connected to the optical pulse tester 8 for snowfall measurement.

【0031】そして、支持部材1の表面に一定ピッチの
らせん状案内溝を形成し、この案内溝内を利用して、光
ファイバ2を一定ピッチで支持部材1に巻き付けてい
る。
Then, a spiral guide groove having a constant pitch is formed on the surface of the support member 1, and the optical fiber 2 is wound around the support member 1 at a constant pitch by utilizing the inside of the guide groove.

【0032】図示した積雪センサ10では支持部材1が
断面円形の棒状であるが、原理的には断面形状が限定さ
れるものではなく、板状などであっても良い。
In the illustrated snow accumulation sensor 10, the support member 1 has a rod shape with a circular cross section, but the cross sectional shape is not limited in principle, and may be a plate shape or the like.

【0033】また、光ファイバ2を一定ピッチでらせん
状に支持部材1に巻き付けたが、ピッチは必ずしも一定
である必要はない。ピッチが一定でなくても光ファイバ
2のらせん状部分の形状パラメータが既知であることか
ら、温度変化位置12から積雪量を計測可能である。
Although the optical fiber 2 is spirally wound around the support member 1 at a constant pitch, the pitch does not necessarily have to be constant. Since the shape parameter of the spiral portion of the optical fiber 2 is known even if the pitch is not constant, the snow amount can be measured from the temperature change position 12.

【0034】さらに、光ファイバ2は支持部材1に上下
方向に支持されればよく、らせん状に巻き付けることに
限定されるものではない。例えば、光ファイバ2を上下
方向に直線状の形状をなして支持部材1に支持させるこ
とも可能である。
Further, the optical fiber 2 may be supported by the supporting member 1 in the vertical direction, and is not limited to spirally winding. For example, the optical fiber 2 can be supported by the support member 1 by forming a linear shape in the vertical direction.

【0035】即ち、光パルス試験器8としてB−OTD
R(光・損失統合型パルス試験器)を使用する場合は、
温度変化位置12を計測する場合の分解能が1m程度で
あるので、光ファイバ2を支持部材1にらせん状に巻き
付けることにより、積雪量を1mよりずっと小さい分解
能で計測することができる。
That is, the optical pulse tester 8 is a B-OTD.
When using R (optical / loss integrated pulse tester),
Since the resolution for measuring the temperature change position 12 is about 1 m, the amount of snow can be measured with a resolution much smaller than 1 m by spirally winding the optical fiber 2 around the support member 1.

【0036】しかし、温度変化位置12を例えば10c
m程度と小さい分解能で計測できる光パルス試験器を使
用する場合は、光ファイバ2が直線状であっても、積雪
量を例えば10cm程度の小さい分解能で計測すること
ができる。
However, the temperature change position 12 is set to, for example, 10c.
When an optical pulse tester capable of measuring with a resolution as small as about m is used, even if the optical fiber 2 is linear, the amount of snow can be measured with a resolution as small as about 10 cm.

【0037】したがって、2種類の被覆6、7を一定間
隔毎に施す場合も、温度変化位置12の計測分解能に応
じて間隔を定めることができ、らせんの例えば1回おき
に1回、低熱伝導率の被覆7を施すことができる。
Therefore, even when the two types of coatings 6 and 7 are applied at regular intervals, the intervals can be determined according to the measurement resolution of the temperature change position 12, and the low thermal conductivity can be obtained, for example, once every other spiral. A rate of coating 7 can be applied.

【0038】同様に、光ファイバ2が直線状の場合で
も、温度変化位置12の計測分解能に応じて、2種類の
被覆6、7を一定間隔毎に施すことができる。
Similarly, even when the optical fiber 2 is linear, two kinds of coatings 6 and 7 can be applied at regular intervals depending on the measurement resolution of the temperature change position 12.

【0039】[0039]

【発明の効果】以上の説明から判るように、本発明によ
れば、下記の効果がある。 (1) 積雪センサに電気部品を使用しないことにより、天
候等の影響を受けず、メンテナンス等の稼働・維持管理
コストが削減される。また、安価であるため、従来と同
等の費用で、より多点計測が可能になり、積雪量分布の
包括的な把握が容易になる。 (2) さらに、1本の光ファイバで、積雪センサと、積雪
センサから光パルス試験器への伝送部を構成することが
でき、多点計測においても積雪計測システムが簡素化す
る。 (3) 積雪センサに電源が不要である。
As can be seen from the above description, the present invention has the following effects. (1) By not using electrical parts for the snow sensor, it will not be affected by the weather and the operation and maintenance costs for maintenance will be reduced. Moreover, since it is cheap, it is possible to measure more points at the same cost as the conventional one, and it becomes easy to comprehensively understand the snow amount distribution. (2) Further, the snow cover sensor and the transmission unit from the snow cover sensor to the optical pulse tester can be configured with one optical fiber, and the snow cover measurement system can be simplified even in multipoint measurement. (3) The snow sensor does not need a power supply.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態を示す図。FIG. 1 is a diagram showing an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 支持部材 2 光ファイバ 3 雪中 4 気中 5 境界面 6 被覆(高熱伝導率) 7 被覆(低熱伝導率) 8 光パルス試験器 9 信号処理装置 10 積雪センサ 11 積雪計 12 温度変化位置 13 塗料(雪氷付着防止) 1 Support member 2 optical fiber 3 in the snow 4 aerial 5 boundary 6 coating (high thermal conductivity) 7 coating (low thermal conductivity) 8 Optical pulse tester 9 Signal processing device 10 Snow sensor 11 snow gauge 12 Temperature change position 13 Paint (prevention of snow and ice adhesion)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小松 宏至 東京都千代田区大手町二丁目3番1号 日 本電信電話株式会社内 Fターム(参考) 2F014 AA07 AB01 AB02 CA10 FA10   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Hiroshi Komatsu             2-3-1, Otemachi, Chiyoda-ku, Tokyo             Inside Telegraph and Telephone Corporation F term (reference) 2F014 AA07 AB01 AB02 CA10 FA10

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 支持部材と、前記支持部材にらせん状ま
たは直線状の形状をなして上下方向に支持された光ファ
イバとを備え、前記光ファイバは積雪計測のために光パ
ルス試験器に接続されることを特徴とする積雪センサ。
1. A support member and an optical fiber vertically supported by the support member in a spiral shape or a linear shape, the optical fiber being connected to an optical pulse tester for snow cover measurement. A snow sensor characterized by being processed.
【請求項2】 請求項1において、前記支持部材は棒状
であり、前記支持部材に前記光ファイバがらせん状に巻
き付けられていることを特徴とする積雪センサ。
2. The snow sensor according to claim 1, wherein the support member is rod-shaped, and the optical fiber is spirally wound around the support member.
【請求項3】 請求項1または2に記載の積雪センサに
おいて、前記支持部材の熱伝導率が前記光ファイバの熱
伝導率より低いことを特徴とする積雪センサ。
3. The snow accumulation sensor according to claim 1, wherein the thermal conductivity of the support member is lower than the thermal conductivity of the optical fiber.
【請求項4】 請求項1から3いずれかに記載の積雪セ
ンサにおいて、前記光ファイバは一定間隔毎に、熱伝導
率の異なる材料で被覆されていることを特徴とする積雪
センサ。
4. The snow sensor according to any one of claims 1 to 3, wherein the optical fiber is covered with a material having a different thermal conductivity at regular intervals.
【請求項5】 請求項1から4いずれかに記載の積雪セ
ンサにおいて、前記光ファイバの外面に雪氷の付着を防
止する材料が塗布されていることを特徴とする積雪セン
サ。
5. The snow sensor according to any one of claims 1 to 4, wherein a material that prevents snow and ice from adhering to the outer surface of the optical fiber is applied.
【請求項6】 請求項1から5いずれかに記載の積雪セ
ンサと、前記積雪センサの前記光ファイバの一端に接続
された光パルス試験器と、前記光パルス試験器に接続さ
れた信号処理装置とを備え、前記光パルス試験器は前記
光ファイバに光パルスを入射し、ブリルアン散乱光ある
いはラマン散乱光を受光して前記光ファイバ内の温度分
布に関連する情報を計測し、前記信号処理装置は前記温
度分布に関連する情報から積雪量を算定するように構成
されていることを特徴とする積雪計。
6. The snow accumulation sensor according to claim 1, an optical pulse tester connected to one end of the optical fiber of the snow accumulation sensor, and a signal processing device connected to the optical pulse tester. The optical pulse tester is configured to inject an optical pulse into the optical fiber, receive Brillouin scattered light or Raman scattered light to measure information related to temperature distribution in the optical fiber, and the signal processing device. Is configured to calculate the amount of snow from the information related to the temperature distribution.
【請求項7】 らせん状または直線状の形状をなす光フ
ァイバを積雪計測対象地点にて上下方向に配置し、前記
光ファイバの一端に光パルス試験器から光パルスを入射
して前記光ファイバ内の温度分布に関連する情報を求
め、前記温度分布に関連する情報から積雪量を算定する
ことを特徴とする積雪計測法。
7. An optical fiber having a spiral shape or a linear shape is vertically arranged at a snowfall measurement target point, and an optical pulse is input from one end of the optical fiber from an optical pulse tester to the inside of the optical fiber. The method for measuring snowfall, characterized in that the snowfall amount is calculated from the information related to the temperature distribution and the snowfall amount is calculated from the information related to the temperature distribution.
JP2002071499A 2002-03-15 2002-03-15 Snow sensor, snow meter and snow measurement method using optical fiber Expired - Lifetime JP4056038B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002071499A JP4056038B2 (en) 2002-03-15 2002-03-15 Snow sensor, snow meter and snow measurement method using optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002071499A JP4056038B2 (en) 2002-03-15 2002-03-15 Snow sensor, snow meter and snow measurement method using optical fiber

Publications (2)

Publication Number Publication Date
JP2003270358A true JP2003270358A (en) 2003-09-25
JP4056038B2 JP4056038B2 (en) 2008-03-05

Family

ID=29201761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002071499A Expired - Lifetime JP4056038B2 (en) 2002-03-15 2002-03-15 Snow sensor, snow meter and snow measurement method using optical fiber

Country Status (1)

Country Link
JP (1) JP4056038B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2813870A1 (en) 2013-06-11 2014-12-17 Ceská Zemedelská Univerzita V Praze Device for measuring of the time course of snow height, air temperature and temperature profile of snow layer
CN109374089A (en) * 2018-12-04 2019-02-22 华中科技大学 Optical fiber sensing system for simultaneous measurement of liquid level and liquid temperature and its measurement method
CN113959527A (en) * 2021-10-21 2022-01-21 南昌大学 A liquid level sensor based on plastic optical fiber macrobending method
WO2023100316A1 (en) * 2021-12-02 2023-06-08 日本電信電話株式会社 Snow cover amount estimation system and snow cover amount estimation method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2813870A1 (en) 2013-06-11 2014-12-17 Ceská Zemedelská Univerzita V Praze Device for measuring of the time course of snow height, air temperature and temperature profile of snow layer
CN109374089A (en) * 2018-12-04 2019-02-22 华中科技大学 Optical fiber sensing system for simultaneous measurement of liquid level and liquid temperature and its measurement method
CN109374089B (en) * 2018-12-04 2020-06-09 华中科技大学 Optical fiber sensing system for simultaneously measuring liquid level and liquid temperature and measuring method thereof
CN113959527A (en) * 2021-10-21 2022-01-21 南昌大学 A liquid level sensor based on plastic optical fiber macrobending method
CN113959527B (en) * 2021-10-21 2023-11-24 南昌大学 Liquid level sensor prepared based on plastic optical fiber macrobending method
WO2023100316A1 (en) * 2021-12-02 2023-06-08 日本電信電話株式会社 Snow cover amount estimation system and snow cover amount estimation method

Also Published As

Publication number Publication date
JP4056038B2 (en) 2008-03-05

Similar Documents

Publication Publication Date Title
US20190003903A1 (en) Fibre Optic Temperature Measurement
US7109888B2 (en) Method and apparatus for detecting and destroying intruders
JP2004512492A (en) Cable monitoring system
CN1726343A (en) Bearing equipment for wind turbine blades
US20120069324A1 (en) High resolution large displacement/crack sensor
CN1207493A (en) Method and apparatus for non-contact measuring thickness of non-metal coating on surface of metal matrix
CN115060186A (en) Bridge girder safety monitoring system and method based on weak reflectivity grating array
US9400171B2 (en) Optical wear monitoring
JP2003270358A (en) Snow accumulation sensor using optical fiber, snow gauge, and snow accumulation measurement method
RU2287883C1 (en) Method for ice detection on power transmission line conductors
CN110696179A (en) Method for laying concrete sensing optical fiber
KR100674745B1 (en) Ear canal monitoring device of overhead transmission line
RU2554718C2 (en) Method of detection of ice, hoarfrost and complex deposits on wire and device for its implementation
JP4865423B2 (en) Optical fiber sensor and strain measurement method using the same
CN112378556A (en) Optical fiber sensing-based method for monitoring concrete stress on inner wall of pipe jacking pipe joint
KR102364685B1 (en) DTS-based overheat monitoring device
JP2009109225A (en) Optical fiber sensor and manufacturing method thereof
JPH03210440A (en) Planar fiber composite for optical fiber temperature sensor
Kim et al. Monitoring of beam deflection subjected to bending load using brillouin distributed optical fiber sensors
RU158854U1 (en) FIBER OPTICAL TEMPERATURE DISTRIBUTION SENSOR
JPH0723702Y2 (en) Water level detector using optical fiber
JP3910924B2 (en) Optical fiber displacement meter
JP2004257772A (en) Optical fiber type load cell
EP2396627B1 (en) System for measurement with pearls
JPH09101210A (en) Optical fiber sensor for temperature measurement

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071204

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20071210

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071210

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071210

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4056038

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131221

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term