[go: up one dir, main page]

JP2003243744A - 磁気抵抗効果素子および磁気メモリ装置 - Google Patents

磁気抵抗効果素子および磁気メモリ装置

Info

Publication number
JP2003243744A
JP2003243744A JP2002037660A JP2002037660A JP2003243744A JP 2003243744 A JP2003243744 A JP 2003243744A JP 2002037660 A JP2002037660 A JP 2002037660A JP 2002037660 A JP2002037660 A JP 2002037660A JP 2003243744 A JP2003243744 A JP 2003243744A
Authority
JP
Japan
Prior art keywords
free layer
magnetoresistive effect
layer
magnetic field
effect element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002037660A
Other languages
English (en)
Other versions
JP3661652B2 (ja
Inventor
Yutaka Higo
豊 肥後
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2002037660A priority Critical patent/JP3661652B2/ja
Priority to US10/360,166 priority patent/US6768152B2/en
Priority to KR1020030007390A priority patent/KR100954507B1/ko
Priority to DE10305823.0A priority patent/DE10305823B4/de
Publication of JP2003243744A publication Critical patent/JP2003243744A/ja
Application granted granted Critical
Publication of JP3661652B2 publication Critical patent/JP3661652B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/14Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using thin-film elements
    • G11C11/15Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using thin-film elements using multiple magnetic layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/161Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • H10B61/20Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors
    • H10B61/22Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors of the field-effect transistor [FET] type
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Hall/Mr Elements (AREA)
  • Semiconductor Memories (AREA)
  • Measuring Magnetic Variables (AREA)
  • Magnetic Heads (AREA)

Abstract

(57)【要約】 【課題】 磁気抵抗効果素子の微細化や集積化等を進め
ていった場合であっても、保磁力の変化やばらつきが生
じてしまうのを極力抑制し、良好な情報記録特性を実現
する。 【解決手段】 少なくとも強磁性体からなる自由層12
と、非磁性体からなる非磁性層13と、強磁性体からな
り磁化方向が固定された固定層11とが順に積層され、
自由層12の磁化方向の変化を利用して情報記録を行う
ように構成された磁気抵抗効果素子において、自由層1
2を複数領域12a,12bに分断し、これら複数領域
12a,12bを各層11〜13の積層方向に沿って延
びる書き込み電極8の周囲に当該書き込み電極8を囲む
ように配し、その書き込み電極8を囲む各領域12a,
12bによって磁場を還流させるための磁場還流構造を
形成する。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、外部から加える磁
界によって抵抗値が変化するという、いわゆるMR(Ma
gnetoResistive)効果を発生する磁気抵抗効果素子、お
よび、その磁気抵抗効果素子を用いて情報を記憶するメ
モリデバイスとして構成された磁気メモリ装置に関す
る。
【0002】
【従来の技術】近年、情報通信機器、特に携帯端末装置
等の個人用小型機器の飛躍的な普及に伴い、これを構成
するメモリやロジックといったデバイスには、高集積
化、高速化、低電力化等、より一層の高性能化が求めら
れている。特に、不揮発性メモリの高密度・大容量化
は、可動部分(例えばヘッドシーク機構やディスク回転
機構)の存在により本質的に小型化等が困難なハードデ
ィスク装置や光ディスク装置を置き換える相補的な技術
として、益々重要になりつつある。
【0003】不揮発性メモリとしては、半導体を用いた
フラッシュメモリや、強誘電体を用いたFeRAM(Fe
rro electric Random Access Memory)等が広く知られ
ている。ところが、フラッシュメモリは、情報の書き込
み速度がDRAM(DynamicRandom Access Memory)や
SRAM(Static Random Access Memory)等の揮発性
メモリに比べて遅いという欠点がある。また、FeRA
Mにおいては、書き換え可能回数が少ないという問題が
指摘されている。そこで、これらの欠点を有さない不揮
発性メモリとして、磁気抵抗効果を利用したMRAM
(Magnetic Random Access Memory)と呼ばれる磁気メ
モリ装置が提案され、注目を集めている(例えば、「Na
ji et al.ISSCC2001」)。
【0004】MRAMは、巨大磁気抵抗効果(Giant Ma
gnetoresistive;GMR)型またはトンネル磁気抵抗効
果(Tunnel Magnetoresistive;TMR)型の記憶素子
(以下、これらを「磁気抵抗効果素子」と総称する)を
用いて情報記録を行うものである。磁気抵抗効果素子
は、二つの強磁性体層とこれらの間に挟まれる絶縁体層
あるいは導体よりなる非磁性体層とを含む多層膜構造を
有しており、一方の強磁性体層を磁化が反転可能な自由
層(フリー層)、他方の強磁性体層を磁化方向が固定さ
れた固定層(ピンド層)として用い、自由層の磁化の向
きに応じて抵抗が変化することを利用して、情報の
「0」と「1」とを区別することで、情報記録を行うよ
うに構成されている。
【0005】MRAMでは、このような磁気抵抗効果素
子がマトリクス状に配列されているとともに、これらの
素子群を縦横に横切るワード線およびビット線を有して
いる。そして、ワード線およびビット線の両方に電流を
流すことによって発生する合成電流磁界を用い、その交
差領域に位置する磁気抵抗効果素子の自由層の磁化方向
を制御することで、その磁気抵抗効果素子への情報の書
き込みを行うようになっている。このとき、各磁気抵抗
効果素子における自由層は、ワード線またはビット線が
単独で発生する磁界では磁化が変化せず、双方の合成電
流磁界によってのみ磁化が変化する。したがって、MR
AMでは、磁気抵抗効果素子がマトリクス状に配列され
ていても、所望する磁気抵抗効果素子に対して選択的に
情報の書き込みを行うことができるのである。
【0006】一方、各磁気抵抗効果素子からの読み出し
は、トランジスタ等の素子を用いて磁気抵抗効果素子の
選択を行い、MR効果を通じてその磁気抵抗効果素子に
おける自由層の磁化方向を電圧信号として取り出すこと
によって行う。この点について詳しく説明すると、一般
に、自由層または固定層といった強磁性体層中において
電子スピンは偏極しており、アップスピンおよびダウン
スピンは、状態密度の大きい多数スピンか、状態密度の
小さい少数スピンかのいずれかとなる。例えば、自由層
と固定層の磁化方向が平行な場合には、自由層でのアッ
プスピンが多数スピンであったならば、固定層において
もアップスピンは多数スピンである。また、自由層と固
定層の磁化方向が反平行な場合には、自由層でのアップ
スピンが多数スピンであったならば、固定層においての
アップスピンは少数スピンとなる。これに対し、電子が
自由層と固定層の間の非磁性体層を通過する際には、ス
ピンは保存され、かつ、あるスピンの通過確率は非磁性
体層を挟む両強磁性体層のスピンの状態密度の積に比例
する。故に、自由層と固定層の磁化方向が平行な場合に
は、状態密度の大きい多数スピン同士での通過が可能と
なるが、自由層と固定層の磁化方向が反平行な場合に
は、状態密度の大きい多数スピン同士での通過が不可能
となる。これらのことから、自由層と固定層の磁化方向
が反平行な場合には、平行な場合に比べて抵抗が大きく
なる。したがって、ワード線およびビット線を通じて、
自由層および固定層の間の電圧を検出すれば、その自由
層に記録された情報の読み出しを行うことが可能となる
のである。
【0007】このように、磁気抵抗効果素子を用いたM
RAMは、その磁気抵抗効果素子における自由層の磁化
の向きを情報の判別に用いるために、不揮発性で、か
つ、優れた応答特性を有した情報記録を行うことが可能
である。さらには、情報を保持する記憶素子(メモリセ
ル)の構造も単純であるため、微細化および集積化に適
したものとなる。
【0008】
【発明が解決しようとする課題】しかしながら、上述し
た従来のMRAMに用いられる磁気抵抗効果素子では、
その構造の単純さのために微細化および集積化には向い
ているが、微細化や集積化等を進めていくと磁気抵抗効
果素子の端部において磁化の乱れが生じてしまい、これ
が以下に述べるような問題を引き起こすことが考えられ
る。
【0009】詳しくは、MRAMでは磁気抵抗効果素子
がマトリクス状に配列されているため、微細化や集積化
等を進めていくと、各磁気抵抗効果素子が隣接する磁気
抵抗効果素子からの漏れ磁界による影響を受けてしま
い、これにより各磁気抵抗効果素子の自由層における保
磁力が変化してしまうおそれがある。このような保磁力
の変化は、情報書き込み時における素子選択を困難にし
てしまうものであるが、特に微細化や集積化等に伴って
素子サイズが小さくなるほど深刻なものとなる。
【0010】また、一般に、磁気抵抗効果素子の自由層
内においては、ミクロな磁気モーメントが一様でなく、
静磁エネルギーを最小にするように、いわゆる渦状態、
C状態、S状態等といった状態を採り得る。これらの各
状態においての保磁力は、たとえ自由層が同じ強磁性体
材料からなっていたとしても同一ではない。いかなる状
態を採るかは磁気抵抗効果素子の形状やサイズに依存す
るが、従来の磁気抵抗効果素子として用いられる形状は
矩形状や楕円形状が多いために、特に素子端部近傍にお
いて複数の状態を採る可能性がある。このような複数の
状態は、各磁気抵抗効果素子の自由層における保磁力の
ばらつきを招くものであるため好ましくない。
【0011】そこで、本発明は、微細化や集積化等を進
めていった場合であっても、保磁力の変化やばらつきが
生じてしまうのを極力抑制し、良好な情報記録特性を実
現することのできる磁気抵抗効果素子および磁気メモリ
装置を提供することを目的とする。
【0012】
【課題を解決するための手段】本発明は、上記目的を達
成するために案出された磁気抵抗効果素子で、少なくと
も強磁性体からなる自由層と、非磁性体からなる非磁性
層と、強磁性体からなり磁化方向が固定された固定層と
が順に積層され、前記自由層の磁化方向の変化を利用し
て情報記録を行うように構成された磁気抵抗効果素子に
おいて、前記自由層が発生させる磁場を還流させるため
の磁場還流構造を有していることを特徴とするものであ
る。
【0013】また、本発明は、上記目的を達成するため
に案出された磁気メモリ装置で、少なくとも強磁性体か
らなる自由層と、非磁性体からなる非磁性層と、強磁性
体からなり磁化方向が固定された固定層とが順に積層さ
れた磁気抵抗効果素子を備え、当該磁気抵抗効果素子に
おける自由層の磁化方向の変化を利用して情報記録を行
うように構成された磁気メモリ装置において、前記磁気
抵抗効果素子の自由層が発生させる磁場を還流させるた
めの磁場還流構造を有していることを特徴とするもので
ある。
【0014】上記構成の磁気抵抗効果素子および磁気メ
モリ装置によれば、磁場還流構造を有していることか
ら、磁気抵抗効果素子の自由層が発生させる磁場が還流
され、その磁気抵抗効果素子の外部に磁界を極力漏らさ
ないようになる。したがって、磁気抵抗効果素子が微細
化や集積化等しても、隣接する磁気抵抗効果素子に対し
て漏れ磁界による影響を与えてしまうことがなくなる。
また、磁場が還流することから、磁気抵抗効果素子の自
由層内においては、磁気モーメントが一様な状態を採り
得るようになり、これにより保磁力が安定することにな
る。
【0015】
【発明の実施の形態】以下、図面に基づき本発明に係る
磁気抵抗効果素子および磁気メモリ装置について説明す
る。ここでは、磁気抵抗効果素子としてTMR型スピン
バルブ素子(以下、単に「TMR素子」という)を、ま
た磁気メモリ装置としてTMR素子を具備したMRAM
を、それぞれ例に挙げて説明する。
【0016】〔磁気メモリ装置の概要〕先ず、はじめ
に、本発明に係る磁気メモリ装置全体の概略構成につい
て説明する。図1は、MRAMの基本的な構成例を示す
模式図である。MRAMは、マトリクス状に配された複
数のTMR素子1を備えている。さらに、これらのTM
R素子1が配された行および列のそれぞれに対応するよ
うに、相互に交差する書き込み線2および下部導線3
が、各TMR素子1群を縦横に横切るように設けられて
いる。そして、各TMR素子1は、書き込み線2および
下部導線3に上下から挟まれた状態で、かつ、これらの
交差領域に位置するように、それぞれが配置されてい
る。なお、書き込み線2および下部導線3は、Al(ア
ルミニウム)、Cu(銅)またはこれらの合金等の導電
性物質を、化学的または物理的に堆積した後に選択的に
エッチングする、といった周知の手法を用いて形成され
るものとする。
【0017】図2は、MRAMを構成する単一のTMR
素子部分の構成例を示す模式図である。それぞれのTM
R素子1部分では、詳細を後述するように、そのTMR
素子1の略央部を貫くように書き込み電極(ただし不図
示)が設けられている。書き込み電極には、書き込み線
2および下部導線3への選択的な電流の印加によって、
図例のような下向きの電流あるいは上向きの電流のいず
れかが流れる。この電流は、書き込み電極の周囲に、時
計回りあるいは反時計回りのいずれかの電流磁界を発生
させるものである。このような構成により、MRAMで
は、マトリクス状に配されたTMR素子1のうちのいず
れか一つを貫く書き込み電極に選択的に電流を流すとと
もに、これにより発生する電流磁界を用いてTMR素子
1における自由層の磁化方向を変化させることで、TM
R素子1への情報書き込みを行うようになっている。
【0018】図3は、MRAMを構成する単一のTMR
素子部分の断面構成の一例を示す模式図である。それぞ
れのTMR素子1部分では、半導体基板4上に、ゲート
電極5、ソース領域6およびドレイン領域7からなる電
界効果トランジスタが配設され、さらにその上方に、T
MR素子1、書き込み線2および下部導線3および書き
込み電極8が配設されている。また、TMR素子1の上
方には、書き込み電極8を挟んで2つの読み出し線9
a,9bが配設されている。このような構成により、M
RAMでは、電界効果トランジスタを用いてTMR素子
1の選択を行い、そのTMR素子1における自由層の磁
化方向を電圧信号として取り出すことによって、そのT
MR素子1に記録された情報の読み出しを行うようにな
っている。なお、2つの読み出し線9a,9bを用いた
情報読み出しについては、その詳細を後述する。
【0019】〔磁気抵抗効果素子の構成〕続いて、この
ようなMRAMに用いられるTMR素子1自体の構成に
ついて説明する。図4は、TMR素子の第1の構成例を
示す模式図である。図4(a)および(b)に示すよう
に、TMR素子1は、強磁性トンネル接合(Magnetic T
unnel Junction;MTJ)と呼ばれる構造の膜構成を有
している。MTJ構造は、強磁性体/非磁性体/強磁性
体からなる三層構造からなり、一方の強磁性体層を磁化
方向が固定された固定層(ピンド層)11、他方を自由
層(フリー層)12とし、これらの間に挟まれた非磁性
体層をトンネル障壁層13として用いる。そして、書き
込み電極8が発生させる電流磁界によって、その自由層
12の磁化方向を変化させることで、情報の書き込み
(記録)を行うとともに、トンネルMR効果を通じてそ
の自由層12における磁化方向と電圧信号を対応させて
いる。
【0020】固定層11および自由層12は、例えばF
e(鉄)、Ni(ニッケル)、Co(コバルト)のうち
1種若しくは2種以上の合金、またはこれらに異種の添
加元素を含有した合金からなる強磁性体材料を用いて、
20nm厚程度で形成すればよい。また、トンネル障壁
層13は、例えばAl(アルミニウム)の酸化物等の非
磁性導電材料を用いて、1nm厚程度で形成すればよ
い。
【0021】ただし、これらの各層11,12,13か
らなるTMR素子1の略央部には、その略央部を貫くよ
うに、各層11,12,13の積層方向に沿って延びる
書き込み電極8が設けられている。したがって、TMR
素子1を構成する各層11,12,13は、書き込み電
極8の周囲を囲む形状に形成されている。書き込み電極
8を囲む形状としては、例えば内径が60nm、外径が
120nmのリング状が挙げられる。なお、書き込み電
極8は、例えばCu、Ag(銀)、Pt(白金)、W
(タングステン)といった導電性を有した非磁性金属材
料により形成されたものであればよい。
【0022】また、書き込み電極8を囲む固定層11の
一部、自由層12およびトンネル障壁層13は、リング
状の周上の2ヶ所で切断されている。ただし、少なくと
も自由層12が切断されていれば、固定層11およびト
ンネル障壁層13については切断されていなくても構わ
ない。また、これとは逆に、固定層11の一部ではな
く、全部が切断されていても構わない。
【0023】この切断により、少なくとも自由層12
は、図4(c)に示すように、第1領域12aと第2領
域12bとの2つに分断されることになる。第1領域1
2aおよび第2領域12bは、いずれも平面形状が略C
字形状(C字状の対称形状を含む)に形成されており、
それぞれが向かい合い書き込み電極8を囲むように配さ
れている。そして、第1領域12aおよび第2領域12
bは、それぞれがトンネル障壁層13を介して固定層1
1との間で独立した2つのMTJ構造を構成している。
【0024】このように、第1領域12aおよび第2領
域12bがそれぞれ独立した2つのMTJ構造を構成し
ていることから、自由層12等についての切断は、図4
(a)に示すように、固定層11における磁化固定方向
に沿うように行われているものとする。さらに、第1領
域12aおよび第2領域12bには、それぞれの磁化方
向を電圧信号として取り出すための読み出し線9a,9
bが、それぞれ独立して接続されている。このことか
ら、読み出し線9a,9bは、上述したように書き込み
電極8を挟んで2つ配設されることになる。
【0025】これら第1領域12aおよび第2領域12
bに囲まれる書き込み電極8は、その一端が書き込み線
2に接続されている。また、他端は、一部のみが切断さ
れた固定層11に接続されているが、その固定層11を
介して下部導線3に導通しているものとする。
【0026】〔磁気抵抗効果素子の製造〕次に、以上の
ような構成のTMR素子1の製造手順について説明す
る。図5および図6は、TMR素子の製造手順の一例を
示す説明図である。TMR素子1は、半導体基板4上に
配設された電界効果トランジスタのさらに上方に形成さ
れる(図3参照)。なお、電界効果トランジスタ等につ
いては、従来と同様の手順で製造すればよいため、ここ
ではその説明を省略する。
【0027】TMR素子1の製造にあたっては、先ず、
図5(a)に示すように、例えばスパッタ法を用いて、
固定層11、トンネル障壁層13および自由層12から
なるMTJ構造を順に成膜して形成し(図中上段参
照)、その後、フォトリソグラフィ技術を用いて、平面
形状が略円状(ディスク状)であるMTJ構造の積層膜
を得る(図中下段参照)。
【0028】そして、略円状の積層膜を得た後は、素子
間の絶縁および読み出し線の形成を行う。すなわち、図
5(b)に示すように、例えばAl23(酸化アルミニ
ウム)やSiO2(二酸化ケイ素)といった絶縁材料を
成膜してMTJ積層膜を埋め込んだ後、略円状の平面形
状を得るために用いたレジスト膜21を剥離して、その
MTJ積層膜の上面を露出させる。さらには、MTJ積
層膜の端部に接続する2本の読み出し線9a,9bを、
所定方向(例えば、平面図中における上下方向)に延在
するように形成する。読み出し線9a,9bの形成は、
例えばCu等の導電材料をスパッタすることで行えばよ
い。
【0029】読み出し線9a,9bの形成後は、図6
(a)に示すように、Al23やSiO2等で層間絶縁
膜22を堆積し、CMP(Chemical Mechanical Polish
ing)等の研磨装置を用いて、その表面の平坦化を行
う。
【0030】平坦化を行った後は、続いて、書き込み電
極孔の開口およびMTJ積層膜の切断を行う。すなわ
ち、図6(b)に示すように、層間絶縁膜21、MTJ
積層膜を構成する自由層12およびトンネル障壁層13
を貫通して、固定層11を露出することになる開口23
を、例えばエッチング処理を行うことで形成する。この
開口23は、書き込み電極8を形成するためのものであ
ると同時に、MTJ積層膜の一部分(特に自由層12)
の周上を2ヶ所で切断するためのものである。したがっ
て、開口23は、その平面形状が略φ字形状、すなわち
円に2つの溝を加えた形状となっている。
【0031】開口23の形成後は、図6(c)に示すよ
うに、SiO2等を堆積して、エッチバックすることに
よって、側壁絶縁膜(サイドウォール)24を形成す
る。側壁絶縁膜24は、書き込み電極8を形成するため
の円形の孔の内壁および自由層12等を切断するための
2つの溝を覆うように形成されるものとする。
【0032】そして、図6(f)に示すように、側壁絶
縁膜24で覆われた開口23内に、例えばCu等の導電
材料からなる書き込み電極8を形成するとともに、その
書き込み電極8に接続する書き込み線2を、読み出し線
9a,9bと同様の手法で、所定方向(例えば、読み出
し線9a,9bとの直交方向である平面図中における左
右方向)に延在するように形成する。以上のような手順
を経ることで、上述した構成のTMR素子1(図3およ
び図4参照)が構成されることになる。
【0033】〔磁気抵抗効果素子の動作例〕次に、以上
のような手順を経て得られたTMR素子1における動作
例について説明する。ここでは、TMR素子1に対する
情報書き込み動作およびTMR素子1からの情報読み出
し動作について、図4を参照しながらを説明する。
【0034】TMR素子1に対する情報書き込みを行う
場合には、既に説明したように、書き込み電極8に電流
が流れる。そして、書き込み電極8の周囲には電流磁界
が発生する。これにより、第1領域12aおよび第2領
域12bからなる自由層12においては、図中の矢印で
示すような上方から見て時計回り方向、あるいはこれと
は逆の反時計回り方向のいずれかの磁化を形成すること
ができる。つまり、TMR素子1に対する情報書き込み
は、書き込み電極8が発生する電流磁界を利用して、自
由層12における磁化を時計回り方向と反時計回り方向
とのいずれかに切り換えることによって行うのである。
したがって、書き込みを行わない素子に対して不必要な
磁界が発生することがなく、書き込みエラーが生じてし
まうのを回避することができる。
【0035】このとき、TMR素子1では、自由層12
における磁化方向によって「0」または「1」といった
情報を記憶することになるが、その自由層12が第1領
域12aと第2領域12bとの2つに分断されており、
しかも第1領域12aおよび第2領域12bが互いに向
かい合う略C字形状に形成されている。そのため、第1
領域12aと第2領域12bとの切断箇所、すなわち第
1領域12aおよび第2領域12bの各端縁において
は、その端縁から洩れた磁界が、これと対向する端縁に
吸い込まれることになる。つまり、書き込み電極8を囲
むように配された第1領域12aおよび第2領域12b
によって、自由層が発生させる磁場を還流させるための
磁場還流構造が形成されている。
【0036】したがって、自由層12における磁化方向
によって「0」または「1」といった情報を記憶する場
合であっても、磁場還流構造によって磁場が還流される
ので、自由層12からの漏れ磁界を極力抑制することが
でき、隣接素子に対して漏れ磁界による悪影響を与えて
しまうことがなくなる。
【0037】また、磁場還流構造によって磁場が還流さ
れることから、第1領域12aおよび第2領域12bの
それぞれでは、特にその端部近傍において磁化状態が一
定の状態を採り得るようになる。具体的には、第1領域
12aおよび第2領域12bのいずれもが略C字形状で
あるため、ミクロな磁気モーメントはいわゆるC状態の
みを採り、渦状態、C状態、S状態等といった様々な状
態が混在することがない。そのため、第1領域12aお
よび第2領域12bにおける保磁力が安定することにな
る。
【0038】これらのことから、磁場還流構造を有した
自由層12は、その磁化方向によって情報記録を行う場
合であっても、良好な情報記録を実現することができ、
しかもTMR素子1の微細化や集積化等にも好適に対応
し得ると言える。
【0039】一方、TMR素子1からの情報読み出し
は、自由層12が第1領域12aと第2領域12bとの
2つに分断されているので、それぞれに接続する2つの
読み出し線9a,9bを用いてそれぞれにおけるMTJ
構造の抵抗値を測定し、互いの測定結果を比較すること
によって行う。詳しくは、第1領域12aと第2領域1
2bとの切断箇所は固定層11における磁化固定方向に
沿うように配されているため、第1領域12aおよび第
2領域12bそれぞれにおける磁化方向(図4(c)中
における実線の矢印参照)は、固定層11における磁化
固定方向(図4(c)中における破線の矢印参照)とな
す相対角が、必然的に互いに異なったものとなる。その
ため、第1領域12aと第2領域12bとによって形成
される2つの独立したMTJ構造に電流を流した場合に
は、それぞれの抵抗値も必ず互いに異なったものとな
る。そのため、両者の抵抗値の測定結果を比較し、どち
らが大きいかを判別すれば、第1領域12aおよび第2
領域12bからなる自由層12での磁化方向が時計回り
方向であるか、あるいは反時計回り方向であるかを認識
することができる。つまり、TMR素子1からの情報読
み出しは、書き込み電極8を挟んで対向する2つの領域
12a,12bについてのTMR効果の違いを利用し
て、自由層12における磁化を時計回り方向と反時計回
り方向とのどちらであるかを判断することによって行う
のである。
【0040】このように、第1領域12aと第2領域1
2bでのTMR効果の違いを利用して情報読み出しを行
う場合には、抵抗値の測定結果の差分から自由層12で
の磁化方向を判断することになるので、一般的なTMR
素子のように単一の抵抗値の測定結果を基に情報読み出
しを行う場合とは異なり、磁化方向判断のための閾値等
の設定が不要となる。そのため、各素子の保磁力のばら
つき等の影響を受けることなく適切に磁化方向を判断す
ることが可能となるので、良好な読み出し特性を実現す
ることができると言える。
【0041】また、自由層12を2つに分断するだけで
良好な読み出し特性を実現し得るので、そのための製造
手順の複雑化を極力抑えることができる。
【0042】〔磁気抵抗効果素子の変形例〕次に、本発
明に係るTMR素子1の変形例について説明する。図7
は、TMR素子の第2の構成例を示す模式図である。上
述した実施形態では、TMR素子1の膜構成として、固
定層11、トンネル障壁層13および自由層12のみが
順に積層されたMTJ構造を例に挙げて説明したが、図
7に示すように、固定層11の下方に反強磁性層14を
付加することも考えられる。反強磁性層14は、例えば
PtMn(白金マンガン)等を30nm厚程度で成膜す
ることによって形成すればよい。この反強磁性層14を
付加した場合には、固定層11における磁化方向の固定
がより確実なものとなり、TMR素子1としての機能の
安定性が向上することになる。
【0043】なお、TMR素子1の膜構成は、上述した
実施形態およびその変形例に限定されるものではなく、
例えば積層順を逆にしたり、Ta(タンタル)等からな
る保護層を付加したりしても構わない。さらに、各層の
材料や膜厚等についても同様であり、TMR素子1のサ
イズ等を考慮して適宜決定すればよい。例えば、固定層
11については、自由層12と同程度の大きさとするの
ではなく、複数の自由層12を配列し得る大きさとし、
これらの自由層12で固定層11を共有してMTJ構造
を構成することも考えられる。
【0044】また、上述した実施形態では、自由層12
を構成する第1領域12aおよび第2領域12bがいず
れも略C字形状に形成されている場合を例に挙げて説明
したが、磁場を還流させるための磁場還流構造を形成し
得る形状であれば、他の形状に形成しても構わない。他
の形状としては、例えば、第1領域12aおよび第2領
域12bがいずれも略コ字形状(コ字状の対称形状を含
む)に形成されている場合や、C字形状とコ字形状とが
組み合わされて形成されている場合(外周側がC字形状
で内周側がコ字形状、あるいはその逆等)が考えられ
る。
【0045】自由層12の分断数についても、上述した
実施形態のような2箇所に限定されることはない。図8
は、TMR素子の第3の構成例を示す模式図である。図
例では、自由層を第1領域12a、第2領域12b、第
3領域12cおよび第4領域12dからなる4つに分断
した場合を示している。このように、自由層を4つに分
断した場合であっても、各領域12a〜12dが書き込
み電極8を囲むように配されており、かつ、各領域12
a〜12dによって磁場還流構造が形成されていれば、
上述した2箇所で分断した場合と全く同様に、外部への
漏れ磁界の発生を抑制しつつ、ばらつきのない良好な保
磁力が得られるようになる。なお、この場合に磁場還流
構造を形成するための各領域12a〜12dの形状とし
ては、図8(a)に示すような円弧状や、図8(b)に
示すような直線状、またはこれらを組み合わせたもの等
が考えられる。
【0046】ところで、自由層を4つに分断した場合に
は、情報読み出しを行うための読み出し線9a,9bが
第1領域12aと第2領域12bとのみに接続されてお
り、それぞれにおけるMTJ構造の抵抗値を測定し、互
いの測定結果を比較することで、当該自由層からの情報
読み出しを行うものとする。したがって、第3領域12
cおよび第4領域12dは、磁場還流構造を形成し得る
ものであれば、第1領域12aおよび第2領域12bと
は異なる材質からなるものであっても構わない。
【0047】このように、第1領域12aおよび第2領
域12bにおける抵抗値の測定結果を基にして情報読み
出しを行えば、固定層11における磁化固定方向との相
対角度の差が、自由層を2つに分断した場合よりも大き
くなるという利点がある。すなわち、情報読み出しにあ
たり、固定層11における磁化固定方向と非平行成分に
ついては、その影響を極力排除することができる。した
がって、自由層を2つに分断した場合よりも更に各素子
の保磁力のばらつき等の影響を受けることなく適切に磁
化方向を判断することができ、より一層良好な読み出し
特性を実現することができるようになる。
【0048】自由層の分断数としては、上述したような
2つまたは4つが望ましいが、本発明は必ずしもこれら
に限定されないことは勿論である。自由層を2つまたは
4つ以外の複数領域に分断することで、磁場還流構造を
形成しても構わない。
【0049】また、磁場還流構造は、自由層を平面的に
分断したもの以外によっても実現することが可能であ
る。例えば図8に示すように、上述したような書き込み
電極8を持たない構成のTMR素子1については、自由
層12に近接して配されたワード線またはビット線を挟
んで対向する位置に磁性層30を積層することで、磁場
還流構造を形成しても構わない。この場合であっても、
その磁場還流構造によって、自由層11が発生させる磁
場が還流するようになるので、そのTMR素子1の外部
に磁界が極力漏れないようになるとともに、自由層11
内における磁気モーメントが一様な状態を採り得るよう
になる。
【0050】さらに、磁場還流構造は、TMR素子のみ
ならず、記憶層と固定層との間の非磁性体層がCu等で
構成されたGMR型のものについても、全く同様に適用
することが考えられる。つまり、本発明は、MR効果を
発生する磁気抵抗効果素子であれば適用することが可能
である。
【0051】
【発明の効果】以上に説明したように、本発明によれ
ば、自由層が発生させる磁場を還流させるための磁場還
流構造が漏れ磁場を発生させないので、磁気抵抗効果素
子の微細化や集積化等しても漏れ磁場による悪影響が生
じることない。また、磁場が還流することから、磁気抵
抗効果素子の自由層における磁気モーメントが一様な状
態となり、これにより保磁力が安定することになる。し
たがって、磁気抵抗効果素子の微細化や集積化等を進め
ていった場合であっても、保磁力の変化やばらつきが生
じてしまうのを極力抑制し、良好な情報記録特性を実現
することができるようになる。
【図面の簡単な説明】
【図1】MRAMの基本的な構成例を示す模式図であ
る。
【図2】MRAMを構成する単一のTMR素子部分の構
成例を示す模式図である。
【図3】MRAMを構成する単一のTMR素子部分の断
面構成の一例を示す模式図である。
【図4】本発明に係るTMR素子の第1の構成例を模式
的に示す図であり、(a)はその斜視図、(b)はその
側断面図、(c)はその平面図である。
【図5】本発明が適用されたTMR素子の製造手順の一
例を示す説明図(その1)であり、(a)および(b)
はいずれもその過程における構成例を示す図である。
【図6】本発明が適用されたTMR素子の製造手順の一
例を示す説明図(その2)であり、(a)〜(d)はい
ずれもその過程における構成例を示す図である。
【図7】本発明に係るTMR素子の第2の構成例を模式
的に示す図であり、(a)はその斜視図、(b)はその
側断面図である。
【図8】本発明に係るTMR素子の第3の構成例を模式
的に示す図であり、(a)および(b)はいずれもその
平面図である。
【図9】本発明に係るTMR素子の第4の構成例を模式
的に示す図である。
【符号の説明】
1…TMR素子、8…書き込み電極、11…固定層、1
2…自由層、12a…第1領域、12b…第2領域、1
2c…第3領域、12d…第4領域、13…トンネル障
壁層、30…磁性層

Claims (10)

    【特許請求の範囲】
  1. 【請求項1】 少なくとも強磁性体からなる自由層と、
    非磁性体からなる非磁性層と、強磁性体からなり磁化方
    向が固定された固定層とが順に積層され、前記自由層の
    磁化方向の変化を利用して情報記録を行うように構成さ
    れた磁気抵抗効果素子において、 前記自由層が発生させる磁場を還流させるための磁場還
    流構造を有していることを特徴とする磁気抵抗効果素
    子。
  2. 【請求項2】 少なくとも強磁性体からなる自由層と、
    非磁性体からなる非磁性層と、強磁性体からなり磁化方
    向が固定された固定層とが順に積層され、前記自由層の
    磁化方向の変化を利用して情報記録を行うように構成さ
    れた磁気抵抗効果素子において、 前記自由層は、複数領域に分断されており、 前記複数領域は、各層の積層方向に沿って延びる書き込
    み電極の周囲に、当該書き込み電極を囲むように配され
    ており、 前記書き込み電極を囲む各領域によって磁場を還流させ
    るための磁場還流構造が形成されていることを特徴とす
    る磁気抵抗効果素子。
  3. 【請求項3】 前記自由層は、略C字形状若しくは略コ
    字形状またはこれらの組み合わせ形状に形成された2つ
    の領域に分断されていることを特徴とする請求項2記載
    の磁気抵抗効果素子。
  4. 【請求項4】 前記自由層は、円弧状若しくは直線状ま
    たはこれらの組み合わせ形状に形成された4つの領域に
    分断されていることを特徴とする請求項2記載の磁気抵
    抗効果素子。
  5. 【請求項5】 前記書き込み電極を挟んで対向する2つ
    の領域についての磁気抵抗効果の違いを利用して情報取
    り出しを行うように構成されたことを特徴とする請求項
    2記載の磁気抵抗効果素子。
  6. 【請求項6】 少なくとも強磁性体からなる自由層と、
    非磁性体からなる非磁性層と、強磁性体からなり磁化方
    向が固定された固定層とが順に積層された磁気抵抗効果
    素子を備え、当該磁気抵抗効果素子における自由層の磁
    化方向の変化を利用して情報記録を行うように構成され
    た磁気メモリ装置において、 前記磁気抵抗効果素子の自由層が発生させる磁場を還流
    させるための磁場還流構造を有していることを特徴とす
    る磁気メモリ装置。
  7. 【請求項7】 少なくとも強磁性体からなる自由層と、
    非磁性体からなる非磁性層と、強磁性体からなり磁化方
    向が固定された固定層とが順に積層された磁気抵抗効果
    素子を備え、当該磁気抵抗効果素子における自由層の磁
    化方向の変化を利用して情報記録を行うように構成され
    た磁気メモリ装置において、 前記磁気抵抗効果素子の自由層は、複数領域に分断され
    ており、 前記複数領域は、各層の積層方向に沿って延びる書き込
    み電極の周囲に、当該書き込み電極を囲むように配され
    ており、 前記書き込み電極を囲む各領域によって磁場を還流させ
    るための磁場還流構造が形成されていることを特徴とす
    る磁気メモリ装置。
  8. 【請求項8】 前記自由層は、略C字形状若しくは略コ
    字形状またはこれらの組み合わせ形状に形成された2つ
    の領域に分断されていることを特徴とする請求項7記載
    の磁気メモリ装置。
  9. 【請求項9】 前記自由層は、円弧状若しくは直線状ま
    たはこれらの組み合わせ形状に形成された4つの領域に
    分断されていることを特徴とする請求項7記載の磁気メ
    モリ装置。
  10. 【請求項10】 前記書き込み電極を挟んで対向する2
    つの領域についての磁気抵抗効果の違いを利用して情報
    取り出しを行うように構成されたことを特徴とする請求
    項7記載の磁気メモリ装置。
JP2002037660A 2002-02-15 2002-02-15 磁気抵抗効果素子および磁気メモリ装置 Expired - Lifetime JP3661652B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002037660A JP3661652B2 (ja) 2002-02-15 2002-02-15 磁気抵抗効果素子および磁気メモリ装置
US10/360,166 US6768152B2 (en) 2002-02-15 2003-02-06 Magnetoresistive effect element and magnetic memory device
KR1020030007390A KR100954507B1 (ko) 2002-02-15 2003-02-06 자기저항 효과 소자 및 자기 메모리 장치
DE10305823.0A DE10305823B4 (de) 2002-02-15 2003-02-12 Magnetowiderstandseffekt-Element und Magnetspeicher mit einem solchen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002037660A JP3661652B2 (ja) 2002-02-15 2002-02-15 磁気抵抗効果素子および磁気メモリ装置

Publications (2)

Publication Number Publication Date
JP2003243744A true JP2003243744A (ja) 2003-08-29
JP3661652B2 JP3661652B2 (ja) 2005-06-15

Family

ID=27655114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002037660A Expired - Lifetime JP3661652B2 (ja) 2002-02-15 2002-02-15 磁気抵抗効果素子および磁気メモリ装置

Country Status (4)

Country Link
US (1) US6768152B2 (ja)
JP (1) JP3661652B2 (ja)
KR (1) KR100954507B1 (ja)
DE (1) DE10305823B4 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100550192B1 (ko) * 2002-03-28 2006-02-08 가부시끼가이샤 도시바 자기 저항 소자 및 자기 기억 장치
JP2009503833A (ja) * 2005-07-27 2009-01-29 コミサリア、ア、レネルジ、アトミク 磁気抵抗素子
JP2010008160A (ja) * 2008-06-25 2010-01-14 Hitachi Metals Ltd 磁気センサ及び回転角度検出装置
JP2010008161A (ja) * 2008-06-25 2010-01-14 Hitachi Metals Ltd 磁気センサ及び回転角度検出装置
JP2011512030A (ja) * 2008-02-01 2011-04-14 クゥアルコム・インコーポレイテッド 複数の磁区を含む磁気トンネル接合セル
KR101327788B1 (ko) * 2007-07-16 2013-11-11 삼성전자주식회사 자기장 센서 및 그를 이용한 자기장 측정 방법
US8716819B2 (en) 2011-08-12 2014-05-06 Kabushiki Kaisha Toshiba Magnetic random access memory

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6885576B2 (en) * 2002-08-13 2005-04-26 Micron Technology, Inc. Closed flux magnetic memory
US6956257B2 (en) * 2002-11-18 2005-10-18 Carnegie Mellon University Magnetic memory element and memory device including same
US6833573B1 (en) * 2003-07-18 2004-12-21 International Business Machines Corporation Curvature anisotropy in magnetic bits for a magnetic random access memory
KR100541558B1 (ko) * 2004-04-19 2006-01-11 삼성전자주식회사 양 단들에 구부러진 팁들을 구비하는 자기터널 접합구조체들, 이들을 채택하는 자기램 셀들 및 이들의 형성에사용되는 포토 마스크들
US7116575B1 (en) * 2005-03-23 2006-10-03 Honeywell International Inc. Architectures for CPP ring shaped (RS) devices
JP4594839B2 (ja) * 2005-09-29 2010-12-08 株式会社東芝 磁気ランダムアクセスメモリ、磁気ランダムアクセスメモリの製造方法、及び、磁気ランダムアクセスメモリのデータ書き込み方法
US20070236978A1 (en) * 2006-04-06 2007-10-11 Wilson Jannier M R Non-volatile Reactive Magnetic Memory device (REMM)
JP2008098515A (ja) * 2006-10-13 2008-04-24 Toshiba Corp 磁気ランダムアクセスメモリ及びその製造方法
EP2306540B1 (en) * 2008-06-24 2014-08-27 Fuji Electric Co., Ltd. Spin valve recording element and storage device
EP2306510B1 (en) * 2008-06-25 2013-01-23 Fuji Electric Co., Ltd. Magnetic memory element and its driving method and nonvolatile memory device
US8149614B2 (en) * 2010-03-31 2012-04-03 Nanya Technology Corp. Magnetoresistive random access memory element and fabrication method thereof
KR101215951B1 (ko) * 2011-03-24 2013-01-21 에스케이하이닉스 주식회사 반도체 메모리 및 그 형성방법
TW201505026A (zh) * 2013-07-17 2015-02-01 Univ Nat Yunlin Sci & Tech 環形磁阻記憶體及其寫入方法
KR20150106550A (ko) * 2014-03-12 2015-09-22 에스케이하이닉스 주식회사 전자 장치 및 그 제조 방법
CN108666339B (zh) * 2017-03-28 2020-11-13 中芯国际集成电路制造(上海)有限公司 磁性随机存储器及其存储单元的制造方法
DE102017112546B4 (de) 2017-06-07 2021-07-08 Infineon Technologies Ag Magnetoresistive Sensoren mit Magnetisierungsmustern mit geschlossenem Fluss
KR102408685B1 (ko) * 2017-10-16 2022-06-15 삼성전자주식회사 반도체 소자의 제조를 위한 공정 제어 방법 및 시스템
US10411184B1 (en) * 2018-03-02 2019-09-10 Samsung Electronics Co., Ltd. Vertical spin orbit torque devices
US10497858B1 (en) * 2018-12-21 2019-12-03 Applied Materials, Inc. Methods for forming structures for MRAM applications
CN111108617B (zh) * 2019-12-24 2021-02-02 长江存储科技有限责任公司 磁阻随机存取存储器
US12216183B2 (en) * 2021-08-30 2025-02-04 Tdk Corporation Magnetic sensor and magnetic sensor system

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5475304A (en) * 1993-10-01 1995-12-12 The United States Of America As Represented By The Secretary Of The Navy Magnetoresistive linear displacement sensor, angular displacement sensor, and variable resistor using a moving domain wall
US5587943A (en) * 1995-02-13 1996-12-24 Integrated Microtransducer Electronics Corporation Nonvolatile magnetoresistive memory with fully closed flux operation
US5541868A (en) * 1995-02-21 1996-07-30 The United States Of America As Represented By The Secretary Of The Navy Annular GMR-based memory element
US6111784A (en) * 1997-09-18 2000-08-29 Canon Kabushiki Kaisha Magnetic thin film memory element utilizing GMR effect, and recording/reproduction method using such memory element
JPH11154389A (ja) * 1997-09-18 1999-06-08 Canon Inc 磁気抵抗素子、磁性薄膜メモリ素子および該メモリ素子の記録再生方法
JP3646508B2 (ja) * 1998-03-18 2005-05-11 株式会社日立製作所 トンネル磁気抵抗効果素子、これを用いた磁気センサー及び磁気ヘッド
KR100369721B1 (ko) * 1998-08-12 2003-01-30 인피니언 테크놀로지스 아게 자기 저항성 소자 및 메모리 셀 장치내에 메모리 소자로서상기 소자의 사용
DE19836567C2 (de) * 1998-08-12 2000-12-07 Siemens Ag Speicherzellenanordnung mit Speicherelementen mit magnetoresistivem Effekt und Verfahren zu deren Herstellung
US6266289B1 (en) * 1999-03-09 2001-07-24 Amphora Method of toroid write and read, memory cell and memory device for realizing the same
US6391483B1 (en) * 1999-03-30 2002-05-21 Carnegie Mellon University Magnetic device and method of forming same
JP2001084758A (ja) * 1999-09-17 2001-03-30 Fujitsu Ltd 強磁性トンネル接合ランダムアクセスメモリ、スピンバルブランダムアクセスメモリ、単一強磁性膜ランダムアクセスメモリ、およびこれらをつかったメモリセルアレイ
JP2001217479A (ja) * 2000-02-02 2001-08-10 Sharp Corp 磁気トンネル接合素子及びそれを用いた磁気メモリ
JP2002074936A (ja) * 2000-08-31 2002-03-15 Canon Inc 磁気デバイス

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100550192B1 (ko) * 2002-03-28 2006-02-08 가부시끼가이샤 도시바 자기 저항 소자 및 자기 기억 장치
JP2009503833A (ja) * 2005-07-27 2009-01-29 コミサリア、ア、レネルジ、アトミク 磁気抵抗素子
KR101327788B1 (ko) * 2007-07-16 2013-11-11 삼성전자주식회사 자기장 센서 및 그를 이용한 자기장 측정 방법
JP2011512030A (ja) * 2008-02-01 2011-04-14 クゥアルコム・インコーポレイテッド 複数の磁区を含む磁気トンネル接合セル
JP2010008160A (ja) * 2008-06-25 2010-01-14 Hitachi Metals Ltd 磁気センサ及び回転角度検出装置
JP2010008161A (ja) * 2008-06-25 2010-01-14 Hitachi Metals Ltd 磁気センサ及び回転角度検出装置
US8716819B2 (en) 2011-08-12 2014-05-06 Kabushiki Kaisha Toshiba Magnetic random access memory

Also Published As

Publication number Publication date
KR100954507B1 (ko) 2010-04-27
US6768152B2 (en) 2004-07-27
US20030169147A1 (en) 2003-09-11
JP3661652B2 (ja) 2005-06-15
KR20030069055A (ko) 2003-08-25
DE10305823B4 (de) 2015-03-05
DE10305823A1 (de) 2003-08-28

Similar Documents

Publication Publication Date Title
JP3661652B2 (ja) 磁気抵抗効果素子および磁気メモリ装置
TWI633542B (zh) Magnetic memory
US8357982B2 (en) Magnetic memory
JP5191717B2 (ja) 磁気記録素子とその製造方法及び磁気メモリ
CN100341073C (zh) 磁性随机存取存储器
JP4253225B2 (ja) 磁気抵抗効果素子および磁気メモリ
KR101360991B1 (ko) 기억 소자 및 메모리
KR102369657B1 (ko) 자기 저항 소자 및 전자 디바이스
US20100230769A1 (en) Magnetoresistive element, magnetic random access memory and method of manufacturing the same
JP2004128015A (ja) 磁気抵抗効果素子および磁気メモリ装置
JP2006269530A (ja) 磁気抵抗効果素子および磁気メモリ
KR20080070597A (ko) 자기 저항 소자 및 자기 메모리
KR101946457B1 (ko) 열적으로 안정한 자기터널접합 셀 및 이를 포함하는 메모리 소자
KR20100033386A (ko) 기억 소자 및 메모리
US8729648B2 (en) Magnetic body device and manufacturing method thereof
KR100450468B1 (ko) 기억 셀 장치 및 그의 제조 방법
JP5686626B2 (ja) 磁気メモリ及びその製造方法
JP4951858B2 (ja) メモリ
JP2005203702A (ja) 磁気抵抗効果素子及び磁気メモリ装置
JP2007180487A (ja) 記憶素子及びメモリ
JP4389423B2 (ja) 磁気抵抗効果素子およびその製造方法並びに磁気メモリ装置
JP2005209951A (ja) 磁気メモリ素子及び磁気記憶装置
JP2005203701A (ja) 磁気抵抗効果素子及び磁気メモリ装置
KR20040040364A (ko) 자기 기억 장치 및 그 제조 방법
JP2004023015A (ja) 磁気抵抗効果素子およびその製造方法並びに磁気メモリ装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050314

R151 Written notification of patent or utility model registration

Ref document number: 3661652

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080401

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090401

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100401

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100401

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110401

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120401

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130401

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130401

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130401

Year of fee payment: 8

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130401

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130401

Year of fee payment: 8

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130401

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130401

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130401

Year of fee payment: 8

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130401

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140401

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term