[go: up one dir, main page]

JP2003215222A - Magneto-resistance effect element sensor - Google Patents

Magneto-resistance effect element sensor

Info

Publication number
JP2003215222A
JP2003215222A JP2002013997A JP2002013997A JP2003215222A JP 2003215222 A JP2003215222 A JP 2003215222A JP 2002013997 A JP2002013997 A JP 2002013997A JP 2002013997 A JP2002013997 A JP 2002013997A JP 2003215222 A JP2003215222 A JP 2003215222A
Authority
JP
Japan
Prior art keywords
magnetoresistive effect
magnetoresistive
multilayer film
magneto
effect multilayer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002013997A
Other languages
Japanese (ja)
Inventor
Yuichiro Murata
雄一朗 村田
Ineo Toyoda
稲男 豊田
Yasutoshi Suzuki
康利 鈴木
Hirobumi Uenoyama
博文 上野山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2002013997A priority Critical patent/JP2003215222A/en
Publication of JP2003215222A publication Critical patent/JP2003215222A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)
  • Hall/Mr Elements (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To appropriately detect magnetism, while making the direction of magnetism of the pinned ferromagnetic layer of each magneto-resistance effect multilayer film of a magneto-resistance effect element sensor, which has a plurality of parallel-arranged magneto-resistance effect multilayer films same, and detects a change in an external magnetic field by computing the output of each magneto-resistance effect multilayer film. <P>SOLUTION: The direction of magnetism of the pinned ferromagnetic layer of each magneto-resistance effect multilayer film 10 is the same. By making the plane shape of each multilayer film 10 a quadrangle, and making the aspect ratio L/W of each quadrangle different, individual magneto-resistance characteristics are made different from one another. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、TMR(トンネル
磁気抵抗効果)素子やGMR(巨大磁気抵抗効果)素子
を用いた磁気抵抗効果素子センサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetoresistive effect element sensor using a TMR (tunnel magnetoresistive effect) element or a GMR (giant magnetoresistive effect) element.

【0002】[0002]

【従来の技術】従来より、この種の磁気抵抗効果素子セ
ンサとしては、特開平10−256620号公報や特開
2000−35470号公報に記載のセンサが提案され
ている。
2. Description of the Related Art Heretofore, as the magnetoresistive element sensor of this type, there have been proposed the sensors described in JP-A-10-256620 and JP-A-2000-35470.

【0003】これらのセンサは、少なくとも磁化反転が
ピン止めされたピン止め強磁性層および外部磁界により
磁化が自在に反転するフリー強磁性層からなるとともに
抵抗値が互いに同じである複数個の磁気抵抗効果多層膜
が、並列に配置され、外部磁界の変化を各々の磁気抵抗
効果多層膜の出力を演算することにより検出するように
している。
These sensors are composed of at least a pinned ferromagnetic layer whose magnetization reversal is pinned and a free ferromagnetic layer whose magnetization is freely reversed by an external magnetic field, and which have a plurality of magnetoresistive resistances. The effect multilayer films are arranged in parallel, and the change of the external magnetic field is detected by calculating the output of each magnetoresistive effect multilayer film.

【0004】ここで、各磁気抵抗効果多層膜は互いに、
ピン止め強磁性層の磁化の向きを異ならせており、それ
によって、各々の磁気抵抗効果多層膜の磁気抵抗特性を
異ならせている。そして、外部磁界による各々の磁気抵
抗効果多層膜の抵抗変化を、演算処理(差動処理等)し
て出力することで、温度特性変化分をキャンセルし、磁
界変化による抵抗変化分のみを実質的に精度良く出力で
きる。
Here, the magnetoresistive effect multilayer films are mutually
The magnetization directions of the pinned ferromagnetic layers are made different, and thereby the magnetoresistive characteristics of the respective magnetoresistive effect multilayer films are made different. Then, the resistance change of each magnetoresistive multi-layered film due to the external magnetic field is subjected to arithmetic processing (differential processing, etc.) and output to cancel the temperature characteristic change, and substantially only the resistance change due to the magnetic field change. Can be output accurately.

【0005】[0005]

【発明が解決しようとする課題】しかし、上記特開平1
0−256620号公報にも記載されているように、複
数個の磁気抵抗効果多層膜においてピン止め強磁性層の
磁化の向きの異ならせるには、磁化処理を複数回行った
り、磁気抵抗効果多層膜を別々の基板(ウェハ)上に作
製し、それぞれのウェハを切断して互いに磁化の向きが
異なるように並設して磁気センサを組み付ける必要があ
るため、手間がかかったり、コスト高を招く。
However, the above-mentioned Japanese Unexamined Patent Application Publication No.
As described in Japanese Unexamined Patent Publication No. 0-256620, in order to make the magnetization directions of the pinned ferromagnetic layers different among a plurality of magnetoresistive effect multilayer films, a magnetization process is performed a plurality of times or a magnetoresistive effect multilayer film is used. Since it is necessary to assemble the films on different substrates (wafers), cut each wafer and install them side by side so that the directions of magnetization are different from each other, it is time-consuming and costly. .

【0006】そこで、本発明は上記問題に鑑み、磁気抵
抗効果多層膜が複数個並列に配置され、外部磁界の変化
を各々の磁気抵抗効果多層膜の出力を演算することによ
り検出するようにした磁気抵抗効果素子センサにおい
て、各々の磁気抵抗効果多層膜のピン止め強磁性層の磁
化の向きを同一方向としつつ、適切に磁気を検出できる
ようにすることを目的とする。
In view of the above problems, the present invention is arranged so that a plurality of magnetoresistive effect multilayer films are arranged in parallel and a change in the external magnetic field is detected by calculating the output of each magnetoresistive effect multilayer film. An object of the present invention is to enable appropriate detection of magnetism in the magnetoresistive element sensor while keeping the magnetization directions of the pinned ferromagnetic layers of each magnetoresistive multilayer film in the same direction.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するた
め、請求項1に記載の発明では、少なくとも磁化反転が
ピン止めされたピン止め強磁性層(13)および外部磁
界により磁化が自在に反転するフリー強磁性層(11)
からなる磁気抵抗効果多層膜(10)が複数個並列に配
置され、外部磁界の変化を各々の磁気抵抗効果多層膜の
出力を演算することにより検出するようにした磁気抵抗
効果素子センサにおいて、各々の磁気抵抗効果多層膜の
ピン止め強磁性層は磁化の向きが同一であり、各々の磁
気抵抗効果多層膜は、互いに平面形状が異なっているこ
とを特徴とする。
In order to achieve the above object, in the invention described in claim 1, the magnetization is freely reversed by a pinned ferromagnetic layer (13) in which at least magnetization reversal is pinned and an external magnetic field. Free ferromagnetic layer (11)
A plurality of magnetoresistive effect multi-layered films (10) are arranged in parallel, and the change in the external magnetic field is detected by calculating the output of each magnetoresistive effect multi-layered film. The pinned ferromagnetic layers of the magnetoresistive effect multilayer film are characterized in that the directions of magnetization are the same, and the respective magnetoresistive effect multilayer films are different in planar shape from each other.

【0008】それによれば、各々の磁気抵抗効果多層膜
(10)は、互いに平面形状が異なっているため、各々
の磁気抵抗効果多層膜のピン止め強磁性層(13)にお
いて磁化の向きが互いに同一であっても、磁化の向きを
互いに変えた場合と同様に、互いの磁気抵抗効果多層膜
の磁気抵抗特性を変えることができる。
According to this, since the magnetoresistive effect multilayer films (10) have different plane shapes from each other, the magnetization directions in the pinned ferromagnetic layers (13) of each magnetoresistive effect multilayer film are mutually different. Even if they are the same, the magnetoresistive characteristics of the magnetoresistive effect multilayer films can be changed in the same manner as when the magnetization directions are changed.

【0009】そのため、外部磁界による各々の磁気抵抗
効果多層膜の抵抗変化を、演算処理(差動処理等)して
出力することで、温度特性変化分をキャンセルし、磁界
変化による抵抗変化分のみを実質的に精度良く出力でき
る。したがって、各々の磁気抵抗効果多層膜のピン止め
強磁性層の磁化の向きを同一方向としつつ、適切に磁気
を検出することができる。
Therefore, the resistance change of each magnetoresistive multi-layered film due to the external magnetic field is output by arithmetic processing (differential processing etc.) to cancel the temperature characteristic change, and only the resistance change due to the magnetic field change. Can be output substantially accurately. Therefore, it is possible to properly detect magnetism while keeping the magnetization directions of the pinned ferromagnetic layers of each magnetoresistive multilayer film in the same direction.

【0010】ここで、請求項2に記載の発明のように、
各々の磁気抵抗効果多層膜(10)は、平面形状が四角
形であって当該四角形の縦横比が異なっているものにす
ることができる。
Here, as in the invention described in claim 2,
Each of the magnetoresistive effect multilayer films (10) may have a quadrangular planar shape and have different aspect ratios.

【0011】なお、上記各手段の括弧内の符号は、後述
する実施形態に記載の具体的手段との対応関係を示す一
例である。
The reference numerals in parentheses of the above-mentioned means are examples showing the correspondence with the concrete means described in the embodiments described later.

【0012】[0012]

【発明の実施の形態】以下、本発明を図に示す実施形態
について説明する。本実施形態の磁気抵抗効果素子セン
サは基板の上に磁気抵抗効果多層膜が複数個並列に配置
されてなるスピンバルブ素子を用いたものである。図1
は、本発明の実施形態に係る磁気抵抗効果素子センサに
おける1個の磁気抵抗効果多層膜10の概略断面構成を
示す図である。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention shown in the drawings will be described. The magnetoresistive effect element sensor of this embodiment uses a spin valve element in which a plurality of magnetoresistive effect multilayer films are arranged in parallel on a substrate. Figure 1
FIG. 3 is a diagram showing a schematic cross-sectional structure of one magnetoresistive effect multilayer film 10 in the magnetoresistive effect element sensor according to the embodiment of the present invention.

【0013】磁気抵抗効果多層膜10は、表面に絶縁層
21が形成された基板20の表面上に、電極層30、3
1に挟まれた形で形成されている。ここで、基板20は
ガラス基板やシリコン基板等、非磁性且つ電気絶縁性を
有する材料からなり、絶縁層21はシリコン酸化膜等か
らなる。また、電極層30、31はCuやAl等の導体
材料からなる。
The magnetoresistive effect multilayer film 10 has electrode layers 30, 3 on the surface of a substrate 20 having an insulating layer 21 formed on the surface thereof.
It is formed so as to be sandwiched between 1. Here, the substrate 20 is made of a nonmagnetic and electrically insulating material such as a glass substrate or a silicon substrate, and the insulating layer 21 is made of a silicon oxide film or the like. The electrode layers 30 and 31 are made of a conductor material such as Cu or Al.

【0014】磁気抵抗効果多層膜10は、基板20側か
ら、フリー強磁性層11、絶縁薄膜12、ピン止め強磁
性層13、反強磁性層14が積層されてなる。反強磁性
層(以下、ピニング層という)14はピン止め強磁性層
(以下、ピンド層という)13の磁化反転をピン止めす
るものであり、フリー強磁性層11は外部磁界により磁
化が自在に反転するものである。
The magnetoresistive effect multilayer film 10 is formed by laminating a free ferromagnetic layer 11, an insulating thin film 12, a pinning ferromagnetic layer 13, and an antiferromagnetic layer 14 from the substrate 20 side. The antiferromagnetic layer (hereinafter, referred to as pinning layer) 14 is for pinning the magnetization reversal of the pinned ferromagnetic layer (hereinafter, referred to as pinned layer) 13, and the free ferromagnetic layer 11 can be magnetized freely by an external magnetic field. It is the one that is reversed.

【0015】そして、磁気抵抗効果多層膜10において
は、図1中の矢印Yに示すように、ピンド層13から絶
縁薄膜12を介してフリー強磁性層11へトンネル電流
が流れるが、外部磁界が変化した場合、磁化反転をピン
止めされたピンド層13の磁化の向きは一定であるのに
対し、フリー強磁性層11の磁化の向きが変化すること
で、磁気抵抗効果多層膜10の抵抗値が変化し、トンネ
ル電流の大きさが変わるようになっている。
In the magnetoresistive effect multilayer film 10, a tunnel current flows from the pinned layer 13 to the free ferromagnetic layer 11 via the insulating thin film 12 as shown by an arrow Y in FIG. When the magnetization direction is changed, the magnetization direction of the pinned layer 13 pinned by the magnetization reversal is constant, whereas the magnetization direction of the free ferromagnetic layer 11 is changed, so that the resistance value of the magnetoresistive effect multilayer film 10 is changed. Changes, and the magnitude of the tunnel current changes.

【0016】ここで、磁気抵抗効果多層膜10における
各膜の積層順序は限定されるものではなく、磁気抵抗効
果多層膜10は、少なくとも磁化反転がピン止めされた
ピン止め強磁性層13と外部磁界により磁化が自在に反
転するフリー強磁性層11とを備えたものであって、上
記外部磁界の変化に伴う抵抗値変化によるトンネル電流
の変化が発生するものであればよい。
Here, the stacking order of the respective films in the magnetoresistive effect multilayer film 10 is not limited, and the magnetoresistive effect multilayer film 10 has at least the pinned ferromagnetic layer 13 whose magnetization reversal is pinned and the outside. A free ferromagnetic layer 11 whose magnetization can be freely reversed by a magnetic field is provided, and any change in tunnel current due to a change in resistance value due to a change in the external magnetic field may be performed.

【0017】磁気抵抗効果多層膜10において、ピニン
グ層14は反強磁性体からなる薄膜であれば良く、例え
ば、Mnに対してFeやNiなどが添加された合金等か
ら構成することができる。
In the magnetoresistive effect multilayer film 10, the pinning layer 14 may be a thin film made of an antiferromagnetic material, and can be made of, for example, an alloy in which Fe or Ni is added to Mn.

【0018】ピンド層13およびフリー強磁性層11
は、いずれも強磁性体からなる薄膜であれば良く、例え
ば、Ni−Fe合金やCo−Fe合金等から構成するこ
とができる。また、絶縁薄膜12は、Al23等の非磁
性体からなる薄膜から構成することができる。
Pinned layer 13 and free ferromagnetic layer 11
Are all thin films made of a ferromagnetic material, and can be made of, for example, a Ni—Fe alloy or a Co—Fe alloy. Further, the insulating thin film 12 can be composed of a thin film made of a non-magnetic material such as Al 2 O 3 .

【0019】このような図1に示す磁気抵抗効果多層膜
10を、基板20の表面上に複数個並列に配置し、各々
の磁気抵抗効果多層膜10のピンド層(ピン止め強磁性
層)13の磁化の向きを同一とし、且つ、各々の磁気抵
抗効果多層膜10の平面形状を互いに異ならせたもの
が、本実施形態の磁気抵抗効果素子センサである。各磁
気抵抗効果多層膜10における上記トンネル電流が流れ
る方向の抵抗値は、初期的に(外部磁界が0のときに)
同一である。
A plurality of such magnetoresistive effect multilayer films 10 shown in FIG. 1 are arranged in parallel on the surface of the substrate 20, and the pinned layer (pinned ferromagnetic layer) 13 of each magnetoresistive effect multilayer film 10 is arranged. The magnetoresistive effect element sensor of the present embodiment has the same magnetization direction and different planar shapes of the respective magnetoresistive effect multilayer films 10. The resistance value in the direction in which the tunnel current flows in each magnetoresistive effect multilayer film 10 is initially (when the external magnetic field is 0).
It is the same.

【0020】ここで、各々の磁気抵抗効果多層膜10の
平面形状を互いに異ならせ、その磁気抵抗特性を調べた
例を示す。図2に示すように、各々の磁気抵抗効果多層
膜10の平面形状を四角形とし、その四角形の縦横比
(縦寸法Lと横寸法Wとの比)L/Wを異ならせた。
Here, an example is shown in which the planar shapes of the respective magnetoresistive effect multilayer films 10 are made different from each other and the magnetoresistive characteristics thereof are investigated. As shown in FIG. 2, each magnetoresistive effect multilayer film 10 had a quadrangular planar shape, and the quadrangle had different aspect ratios (ratio between the vertical dimension L and the horizontal dimension W) L / W.

【0021】図2において、(a)は、正方形に近い縦
横比L/Wを有する磁気抵抗効果多層膜10であるパタ
ーンAを示し、(b)は、縦横比L/Wの大きい縦長の
磁気抵抗効果多層膜10であるパターンBを示す。ま
た、各パターンの磁気抵抗効果多層膜10におけるピン
ド層13の磁化の向きは、横寸法W方向に同一としてい
る。
In FIG. 2, (a) shows a pattern A which is a magnetoresistive effect multilayer film 10 having an aspect ratio L / W close to a square, and (b) shows a vertically long magnetic field having a large aspect ratio L / W. A pattern B which is the resistance effect multilayer film 10 is shown. Further, the magnetization direction of the pinned layer 13 in the magnetoresistive effect multilayer film 10 of each pattern is the same in the lateral dimension W direction.

【0022】この図2において、外部から印加される磁
界(印加磁界)Hの印加方向を横寸法W方向としたと
き、各パターンA、Bにおける磁気抵抗特性(磁界Hと
磁気抵抗効果多層膜10の抵抗値変化率との関係を示す
特性)を模式的に示したものが、図3である。
In FIG. 2, when the application direction of the magnetic field (applied magnetic field) H applied from the outside is the lateral dimension W direction, the magnetoresistive characteristics (the magnetic field H and the magnetoresistive effect multilayer film 10) in the respective patterns A and B are shown. FIG. 3 is a schematic diagram showing the characteristic of (1) showing the relationship with the resistance value change rate.

【0023】図3に示すように、磁界Hの印加方向であ
る横寸法Wと磁界Hの印加方向とは垂直方向である縦寸
法Lとの比、すなわち縦横比L/Wが大きくなるほど、
磁界Hに対する抵抗値の変化は小さくなる(感度が低下
する)。これは、反磁界の影響によるものと考えられ
る。
As shown in FIG. 3, the ratio of the lateral dimension W, which is the direction in which the magnetic field H is applied, to the vertical dimension L, which is perpendicular to the direction in which the magnetic field H is applied, that is, the larger the aspect ratio L / W,
The change in resistance value with respect to the magnetic field H becomes small (sensitivity decreases). It is considered that this is due to the influence of the demagnetizing field.

【0024】つまり、フリー強磁性層11の初期の磁化
の向きは、形状異方性効果によって磁気抵抗効果多層膜
10の平面形状の長手方向に向きやすい。そのため、図
2において、パターンAでは印加磁界Hの変化に応じて
感度良く(応答良く)フリー強磁性層11の磁化が反転
するのに対し、パターンBでは、フリー強磁性層11の
初期の磁化の向きが磁界Hの印加方向と略直交するた
め、感度が低下すると考えられる。
That is, the initial magnetization direction of the free ferromagnetic layer 11 tends to be oriented in the longitudinal direction of the planar shape of the magnetoresistive effect multilayer film 10 due to the shape anisotropy effect. Therefore, in FIG. 2, in the pattern A, the magnetization of the free ferromagnetic layer 11 is inverted with good sensitivity (response is good) according to the change of the applied magnetic field H, whereas in the pattern B, the initial magnetization of the free ferromagnetic layer 11 is reversed. Since the direction of is substantially orthogonal to the direction of application of the magnetic field H, it is considered that the sensitivity decreases.

【0025】よって、本実施形態の磁気抵抗効果素子セ
ンサにおいては、上記図2に示されるような平面形状の
異なるパターンを有する磁気抵抗効果多層膜10を複数
個組み合わせることで、各々の磁気抵抗効果多層膜10
のピンド層13が、その磁化の向きが互いに同一であっ
ても、磁化の向きを互いに変えた場合と同様に、互いの
磁気抵抗効果多層膜10の磁気抵抗特性を変えることが
できる。
Therefore, in the magnetoresistive effect element sensor of the present embodiment, by combining a plurality of magnetoresistive effect multilayer films 10 having patterns having different plane shapes as shown in FIG. Multilayer film 10
Even if the magnetization directions of the pinned layers 13 are the same, the magnetoresistive characteristics of the magnetoresistive effect multilayer films 10 can be changed similarly to the case where the magnetization directions are changed.

【0026】そのため、外部磁界Hによる各々の磁気抵
抗効果多層膜10の抵抗変化を、演算処理(差動処理
等)して出力することで、温度特性変化分をキャンセル
し、磁界変化による抵抗変化分のみを実質的に精度良く
出力できる。したがって、本実施形態によれば、各々の
磁気抵抗効果多層膜10のピンド層13の磁化の向きを
同一方向としつつ、適切に磁気を検出することができ
る。
Therefore, the resistance change of each magnetoresistive effect multilayer film 10 due to the external magnetic field H is calculated and output (differential process, etc.) to output the change in temperature characteristic, and the resistance change due to the magnetic field change. Only the minute can be output substantially accurately. Therefore, according to the present embodiment, it is possible to properly detect magnetism while making the magnetization directions of the pinned layers 13 of the respective magnetoresistive effect multilayer films 10 the same direction.

【0027】図4(a)は、平面形状が異なるパターン
を有する磁気抵抗効果多層膜10を複数個組み合わせた
一例を示す図である。この図4(a)に示す例は、上記
図2に示したパターンAとパターンBとを基板20上に
並列に配置して、両パターンA、Bによりハーフブリッ
ジ回路を構成した場合であり、出力は、パターンAの多
層膜10とパターンBの多層膜10との中点から行って
いる。
FIG. 4A is a diagram showing an example in which a plurality of magnetoresistive effect multilayer films 10 having patterns having different plane shapes are combined. The example shown in FIG. 4A is a case where the pattern A and the pattern B shown in FIG. 2 are arranged in parallel on the substrate 20, and a half bridge circuit is constituted by both patterns A and B. The output is performed from the midpoint between the pattern A multilayer film 10 and the pattern B multilayer film 10.

【0028】この図4(a)に示す例における磁界Hの
変化に対する出力変化率を図4(b)に示す。この図4
(b)に示す出力変化率は、上記図3に示したパターン
Aの抵抗値変化率とパターンBの抵抗値変化率との差を
とったものに相当する。これによって、温度特性による
変化分をキャンセルした磁気センサとしての機能を果た
すことができる。
FIG. 4B shows the output change rate with respect to the change of the magnetic field H in the example shown in FIG. 4A. This Figure 4
The output change rate shown in (b) corresponds to the difference between the resistance change rate of the pattern A and the resistance change rate of the pattern B shown in FIG. As a result, it is possible to fulfill the function of the magnetic sensor in which the variation due to the temperature characteristic is canceled.

【0029】さらに、図5は、平面形状が異なるパター
ンを有する磁気抵抗効果多層膜10を複数個組み合わせ
た他の例を示す図である。この図5に示す例は、上記図
2に示したパターンAを2個およびパターンBを2個基
板20上に並列に配置して、これら4個のパターン(磁
気抵抗効果多層膜10)によってフルブリッジ回路(ホ
ートストンブリッジ)を構成した場合であり、当該ブリ
ッジ回路の中点間の電圧を出力としている。この場合、
上記図4に示すハーフブリッジの場合の2倍程度の出力
が得られる。
Further, FIG. 5 is a diagram showing another example in which a plurality of magnetoresistive effect multilayer films 10 having patterns having different planar shapes are combined. In the example shown in FIG. 5, two patterns A shown in FIG. 2 and two patterns B shown in FIG. 2 are arranged in parallel on the substrate 20, and the four patterns (the magnetoresistive effect multilayer film 10) are used to fully form the pattern. This is a case where a bridge circuit (Houghton bridge) is configured, and the voltage between the middle points of the bridge circuit is output. in this case,
An output about twice that in the case of the half bridge shown in FIG. 4 can be obtained.

【0030】なお、上記実施形態の磁気抵抗効果素子セ
ンサは、ピンド層とフリー強磁性層との間のトンネル電
流を利用したスピンバルブ素子を用いたものであるが、
本発明の磁気抵抗効果素子センサは、スピンバルブ素子
以外のGMR(巨大磁気抵抗効果)素子を用いたもので
あっても良い。
The magnetoresistive element sensor of the above embodiment uses a spin valve element utilizing the tunnel current between the pinned layer and the free ferromagnetic layer.
The magnetoresistive element sensor of the present invention may use a GMR (giant magnetoresistive effect) element other than the spin valve element.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施形態に係る磁気抵抗効果素子セン
サにおける1個の磁気抵抗効果多層膜の概略断面図であ
る。
FIG. 1 is a schematic cross-sectional view of one magnetoresistive effect multilayer film in a magnetoresistive effect element sensor according to an embodiment of the present invention.

【図2】各々の磁気抵抗効果多層膜の平面形状を互いに
異ならせたパターン例を示す図である。
FIG. 2 is a diagram showing a pattern example in which the planar shapes of the respective magnetoresistive effect multilayer films are different from each other.

【図3】図2に示す各パターン例毎の磁気抵抗特性を模
式的に示す図である。
FIG. 3 is a diagram schematically showing a magnetoresistive characteristic for each pattern example shown in FIG.

【図4】(a)は、平面形状が異なるパターンを有する
磁気抵抗効果多層膜を複数個組み合わせた一例を示す概
略平面図であり、(b)は(a)に示す例における磁界
変化に対する出力変化率を示す図である。
FIG. 4A is a schematic plan view showing an example in which a plurality of magnetoresistive effect multilayer films having patterns having different planar shapes are combined, and FIG. 4B is an output with respect to a magnetic field change in the example shown in FIG. It is a figure which shows a rate of change.

【図5】平面形状が異なるパターンを有する磁気抵抗効
果多層膜を複数個組み合わせた他の例を示す概略平面図
である。
FIG. 5 is a schematic plan view showing another example in which a plurality of magnetoresistive effect multilayer films having patterns having different planar shapes are combined.

【符号の説明】[Explanation of symbols]

10…磁気抵抗効果多層膜、11…フリー強磁性層、1
3…ピン止め強磁性層(ピンド層)。
10 ... Magnetoresistive multilayer film, 11 ... Free ferromagnetic layer, 1
3 ... Pinned ferromagnetic layer (pinned layer).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鈴木 康利 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内 (72)発明者 上野山 博文 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内 Fターム(参考) 2G017 AA01 AC04 AD55 BA05 5D034 BA03 BB02 CA03 CA08    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Yasutoshi Suzuki             1-1, Showa-cho, Kariya city, Aichi stock market             Inside the company DENSO (72) Inventor Hirofumi Uenoyama             1-1, Showa-cho, Kariya city, Aichi stock market             Inside the company DENSO F-term (reference) 2G017 AA01 AC04 AD55 BA05                 5D034 BA03 BB02 CA03 CA08

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも磁化反転がピン止めされたピ
ン止め強磁性層(13)および外部磁界により磁化が自
在に反転するフリー強磁性層(11)からなる磁気抵抗
効果多層膜(10)が複数個並列に配置され、 外部磁界の変化を各々の前記磁気抵抗効果多層膜の出力
を演算することにより検出するようにした磁気抵抗効果
素子センサにおいて、 各々の前記磁気抵抗効果多層膜の前記ピン止め強磁性層
は磁化の向きが同一であり、 各々の前記磁気抵抗効果多層膜は、互いに平面形状が異
なっていることを特徴とする磁気抵抗効果素子センサ。
1. A plurality of magnetoresistive effect multilayer films (10) comprising at least a pinned ferromagnetic layer (13) whose magnetization reversal is pinned and a free ferromagnetic layer (11) whose magnetization is freely reversible by an external magnetic field. In a magnetoresistive element sensor arranged in parallel and adapted to detect a change in external magnetic field by calculating the output of each magnetoresistive multilayer, said pinning of each magnetoresistive multilayer The magnetoresistive effect element sensor is characterized in that the ferromagnetic layers have the same direction of magnetization, and the magnetoresistive effect multilayer films have mutually different planar shapes.
【請求項2】 各々の前記磁気抵抗効果多層膜(10)
は、平面形状が四角形であって当該四角形の縦横比が異
なっていることを特徴とする請求項1に記載の磁気抵抗
効果素子センサ。
2. Each of the magnetoresistive effect multilayer films (10)
2. The magnetoresistive element sensor according to claim 1, wherein the two-dimensional shape is a quadrangle, and the quadrangle has a different aspect ratio.
JP2002013997A 2002-01-23 2002-01-23 Magneto-resistance effect element sensor Pending JP2003215222A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002013997A JP2003215222A (en) 2002-01-23 2002-01-23 Magneto-resistance effect element sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002013997A JP2003215222A (en) 2002-01-23 2002-01-23 Magneto-resistance effect element sensor

Publications (1)

Publication Number Publication Date
JP2003215222A true JP2003215222A (en) 2003-07-30

Family

ID=27650810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002013997A Pending JP2003215222A (en) 2002-01-23 2002-01-23 Magneto-resistance effect element sensor

Country Status (1)

Country Link
JP (1) JP2003215222A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008012959A1 (en) * 2006-07-26 2008-01-31 Alps Electric Co., Ltd. Magnetic sensor
JP2008525787A (en) * 2004-12-28 2008-07-17 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Magnetic sensor with adjustable characteristics
JP2008209317A (en) * 2007-02-27 2008-09-11 Daido Steel Co Ltd Magnetic angle sensor
WO2009078296A1 (en) * 2007-12-14 2009-06-25 Alps Electric Co., Ltd. Magnetic sensor
JP2010060340A (en) * 2008-09-02 2010-03-18 Murata Mfg Co Ltd Magnetic sensor device
JP2010060341A (en) * 2008-09-02 2010-03-18 Murata Mfg Co Ltd Magnetic sensor
JP2010197399A (en) * 2010-04-01 2010-09-09 Mitsubishi Electric Corp Magnetic field detector, and method for regulating the same
JP2014515470A (en) * 2011-04-06 2014-06-30 ジャンス マルチディメンショナル テクノロジー シーオー., エルティーディー Single chip 2-axis bridge type magnetic field sensor
JP2015513667A (en) * 2012-02-20 2015-05-14 江▲蘇▼多▲維▼科技有限公司Jiang Su Multi Dimension Technology Co.,Ltd Magnetoresistive sensor for measuring magnetic fields

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008525787A (en) * 2004-12-28 2008-07-17 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Magnetic sensor with adjustable characteristics
WO2008012959A1 (en) * 2006-07-26 2008-01-31 Alps Electric Co., Ltd. Magnetic sensor
JPWO2008012959A1 (en) * 2006-07-26 2009-12-17 アルプス電気株式会社 Magnetic sensor
JP2008209317A (en) * 2007-02-27 2008-09-11 Daido Steel Co Ltd Magnetic angle sensor
WO2009078296A1 (en) * 2007-12-14 2009-06-25 Alps Electric Co., Ltd. Magnetic sensor
JP2010060340A (en) * 2008-09-02 2010-03-18 Murata Mfg Co Ltd Magnetic sensor device
JP2010060341A (en) * 2008-09-02 2010-03-18 Murata Mfg Co Ltd Magnetic sensor
JP2010197399A (en) * 2010-04-01 2010-09-09 Mitsubishi Electric Corp Magnetic field detector, and method for regulating the same
JP2014515470A (en) * 2011-04-06 2014-06-30 ジャンス マルチディメンショナル テクノロジー シーオー., エルティーディー Single chip 2-axis bridge type magnetic field sensor
JP2015513667A (en) * 2012-02-20 2015-05-14 江▲蘇▼多▲維▼科技有限公司Jiang Su Multi Dimension Technology Co.,Ltd Magnetoresistive sensor for measuring magnetic fields
US11287490B2 (en) 2012-02-20 2022-03-29 MultiDimension Technology Co., Ltd. Magnetoresistive sensor with sensing elements and permanent magnet bars oriented at non-orthogonal and non-parallel angles with respect to the sensing direction of the sensing elements

Similar Documents

Publication Publication Date Title
JP6189426B2 (en) Magnetoresistive gear sensor
JP6193212B2 (en) Single chip 2-axis bridge type magnetic field sensor
US10908233B2 (en) Magnetic detection device and method for manufacturing the same
EP2700968B1 (en) Single-chip referenced full-bridge magnetic field sensor
US8063633B2 (en) Magnetoresistive magnetic field sensor structure
US6577124B2 (en) Magnetic field sensor with perpendicular axis sensitivity, comprising a giant magnetoresistance material or a spin tunnel junction
CN113574694B (en) Magneto-resistive element and magnetic sensor
JP2014516406A (en) Single chip bridge type magnetic field sensor and manufacturing method thereof
JP2004193540A (en) Magnetic sensor and method of manufacturing the same
JP2008134181A (en) Magnetic detector and its manufacturing method
US10256022B2 (en) Magnetic field generator, magnetic sensor system and magnetic sensor
US11385306B2 (en) TMR sensor with magnetic tunnel junctions with shape anisotropy
CN109471051B (en) TMR full-bridge magnetic sensor and preparation method thereof
US11209505B2 (en) Large field range TMR sensor using free layer exchange pinning
JP2017103378A (en) Magnetoresistance effect element, magnetic sensor, manufacturing method of magnetoresistance effect element, and manufacturing method of magnetic sensor
JP2003215222A (en) Magneto-resistance effect element sensor
JP2005183614A (en) Magnetic sensor
JP2005291728A (en) Goniometer with giant magnetoresistive element
JP2006066821A (en) Magnetic sensor with magnetoresistive effect element
JP2012063232A (en) Method for manufacturing magnetic field detection apparatus, and magnetic field detection apparatus
JP4940565B2 (en) Manufacturing method of magnetic sensor
US20240142549A1 (en) Magnetic sensor element, magnetic sensor, and magnetic sensor device
TWI449065B (en) A stacked spin-valve magnetic sensor and fabrication method thereof
JP2006019484A (en) Magnetic sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060822

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061219