TWI449065B - A stacked spin-valve magnetic sensor and fabrication method thereof - Google Patents
A stacked spin-valve magnetic sensor and fabrication method thereof Download PDFInfo
- Publication number
- TWI449065B TWI449065B TW100115224A TW100115224A TWI449065B TW I449065 B TWI449065 B TW I449065B TW 100115224 A TW100115224 A TW 100115224A TW 100115224 A TW100115224 A TW 100115224A TW I449065 B TWI449065 B TW I449065B
- Authority
- TW
- Taiwan
- Prior art keywords
- magnetization direction
- spin valve
- magnetoresistive
- magnetoresistive element
- valve magnetoresistive
- Prior art date
Links
Landscapes
- Hall/Mr Elements (AREA)
Description
本發明是有關於一種磁阻感測器的結構,且特別是有關於一種垂直堆疊式自旋閥磁阻感測器的結構。The present invention relates to the structure of a magnetoresistive sensor, and more particularly to the structure of a vertically stacked spin valve magnetoresistive sensor.
圖1為習知多層膜磁阻感測器(multilayer magnetoresistance sensor)的示意圖。請參照圖1,其中多層膜磁阻感測器100主要包含第一多層膜磁阻構造101、第二多層膜磁阻構造102、第三多層膜磁阻構造103和第四多層膜磁阻構造104,其彼此之間電性連接配置成惠斯登電橋(Wheatstone bridge)。而第一多層膜磁阻構造101、第二多層膜磁阻構造102、第三多層膜磁阻構造103和第四多層膜磁阻構造104皆具交替堆疊之至少一第一磁性層112和至少一第二磁性層114,以及至少一配置於第一磁性層112和第二磁性層114中之間隔層113,且外加磁場為零時第一磁性層112之磁化方向106和第二磁性層114之磁化方向108方向相反。習知多層膜磁阻感測器量測外加磁場變化時,需在第二多層膜磁阻構造102和第四多層膜磁阻構造104上覆蓋一遮蔽層110,使第二多層膜磁阻構造102和第四多層膜磁阻構造104之第一磁性層112之磁化方向106和第二磁性層114之磁化方向108以及電阻R12保持固定。外加磁場會使第一多層膜磁阻構造101、第三多層膜磁阻構造103中第一磁性層112之磁化方向106和第二磁性層114之磁化方向108之夾角產生變化,引起第一多層膜磁阻構造101、第三多層膜磁阻構造103中電阻R11之改變。由於遮蔽層110的製程較特別,並非現行半導體的標準製程,因此大大增加多層膜磁阻感測器製作上的複雜度。FIG. 1 is a schematic diagram of a conventional multilayer magnetoresistance sensor. Referring to FIG. 1, the multilayer film magnetoresistive sensor 100 mainly comprises a first multilayer film magnetoresistive structure 101, a second multilayer film magnetoresistive structure 102, a third multilayer film magnetoresistive structure 103 and a fourth multilayer. The membrane magnetoresistive structure 104 is electrically connected to each other and configured as a Wheatstone bridge. The first multilayer film magnetoresistive structure 101, the second multilayer film magnetoresistive structure 102, the third multilayer film magnetoresistive structure 103, and the fourth multilayer film magnetoresistive structure 104 all have at least one first magnetic layer alternately stacked. The layer 112 and the at least one second magnetic layer 114, and at least one spacer layer 113 disposed in the first magnetic layer 112 and the second magnetic layer 114, and the magnetization direction 106 of the first magnetic layer 112 and the first when the applied magnetic field is zero The magnetization directions 108 of the two magnetic layers 114 are opposite in direction. When the conventional multilayer magnetoresistive sensor measures the applied magnetic field change, the second multilayer film magnetoresistive structure 102 and the fourth multilayer film magnetoresistive structure 104 are covered with a shielding layer 110 to make the second multilayer film. The magnetization direction 106 of the first magnetic layer 112 of the magnetoresistive structure 102 and the fourth multilayer film magnetoresistive structure 104 and the magnetization direction 108 of the second magnetic layer 114 and the resistance R12 remain fixed. The applied magnetic field causes a change in the angle between the magnetization direction 106 of the first magnetic layer 112 and the magnetization direction 108 of the second magnetic layer 114 in the first multilayer film magnetoresistive structure 101 and the third multilayer film magnetoresistive structure 103, causing the A change in the resistance R11 in a multilayer film magnetoresistive structure 101 and a third multilayer film magnetoresistive structure 103. Since the process of the shielding layer 110 is relatively special, it is not a standard process of the current semiconductor, and thus the complexity of the fabrication of the multilayer film magnetoresistive sensor is greatly increased.
圖2為另一習知自旋閥磁阻感測器(Spin-valve magnetoresistance sensor)的示意圖。請參照圖2,其中自旋閥磁阻感測器200主要包含第一自旋閥磁阻構造201、第二自旋閥磁阻構造202、第三自旋閥磁阻構造203和第四自旋閥磁阻構造204,其彼此之間電性連接配置成惠斯登電橋(Wheatstone bridge)。而第一自旋閥磁阻構造201、第二自旋閥磁阻構造202、第三自旋閥磁阻構造203和第四自旋閥磁阻構造204皆具有固定層(pinned layer)210、自由層(free layer)212、以及配置於固定層210和自由層212中之間隔層(spacer)211和偏壓層(exchange bias layer)214。第一自旋閥磁阻構造201與第三自旋閥磁阻構203之固定層210磁化方向206相同;第二自旋閥磁阻構造202與第四自旋閥磁阻構造204之固定層210磁化方向207相同,且磁化方向206和磁化方向207相反,並和外加磁場為零時自由層212之磁化方向208垂直。四個自旋閥磁阻構造具有相同之自由層212之磁化方向208,且磁化方向208會隨外加磁場而改變。習知磁阻感測器必須配置一磁化方向調整導線在四組自旋閥磁阻構造週邊,經由高溫下通電流產生磁場的方式,控制固定層210的磁化方向206、207使兩者呈現反平行狀態。外加磁場會使自由層212之磁化方向208改變,分別與固定層210之磁化方向206、磁化方向207產生不同的夾角變化,進而得到不同的R21、R22電阻值。但利用磁化方向調整導線控制固定層210方向的方式較特殊,需要在高溫下施加電流才可達成,並非現行半導體的標準製程,因此增加了自旋閥磁阻感測器製作上之複雜度。2 is a schematic view of another conventional spin-valve magnetoresistance sensor. Referring to FIG. 2, the spin valve magnetoresistive sensor 200 mainly includes a first spin valve magnetoresistive structure 201, a second spin valve magnetoresistive structure 202, a third spin valve magnetoresistive structure 203, and a fourth self. The rotary valve magnetoresistive structure 204 is electrically connected to each other and configured as a Wheatstone bridge. The first spin valve magnetoresistive structure 201, the second spin valve magnetoresistive structure 202, the third spin valve magnetoresistive structure 203, and the fourth spin valve magnetoresistive structure 204 each have a pinned layer 210, A free layer 212, and a spacer 211 and an exchange bias layer 214 disposed in the fixed layer 210 and the free layer 212. The first spin valve magnetoresistive structure 201 is the same as the magnetization direction 206 of the fixed layer 210 of the third spin valve magnetoresistive structure 203; the fixed layer of the second spin valve magnetoresistive structure 202 and the fourth spin valve magnetoresistive structure 204 The magnetization direction 207 is the same, and the magnetization direction 206 is opposite to the magnetization direction 207 and perpendicular to the magnetization direction 208 of the free layer 212 when the applied magnetic field is zero. The four spin valve magnetoresistive configurations have the same magnetization direction 208 of the free layer 212, and the magnetization direction 208 changes with the applied magnetic field. The conventional magnetoresistive sensor must be equipped with a magnetization direction adjusting wire around the four sets of spin valve magnetoresistive structures, and the magnetization directions 206 and 207 of the fixed layer 210 are controlled to generate a magnetic field by a current generated by a high temperature. Parallel state. The applied magnetic field changes the magnetization direction 208 of the free layer 212, and differently changes the angle between the magnetization direction 206 and the magnetization direction 207 of the fixed layer 210, thereby obtaining different resistance values of R21 and R22. However, the method of adjusting the direction of the fixed layer 210 by using the magnetization direction adjusting wire is special, and it is required to apply a current at a high temperature, which is not a standard process of the current semiconductor, thereby increasing the complexity of the fabrication of the spin valve magnetoresistive sensor.
有鑑於此,本發明的目的就是在提供一種磁阻感測器,使用自旋閥堆疊結構,其具有較簡單之製程。In view of the above, it is an object of the present invention to provide a magnetoresistive sensor using a spin valve stack structure having a relatively simple process.
本發明提出一種堆疊式自旋閥磁阻感測器,可感測單一軸向的磁場變化,由第一自旋閥堆疊結構與第二自旋閥堆疊結構所構成。其第一自旋閥堆疊結構,包含第一自旋閥磁阻元件、介電層以及第二自旋閥磁阻元件。其中,第一自旋閥磁阻元件,其具有上表面、下表面和固定不變之第一磁化方向,且第一磁化方向和上表面、下表面互相平行,介電層配置於第一自旋閥磁阻元件之上表面之上方,第二自旋閥磁阻元件配置於介電層之上方。The invention provides a stacked spin valve magnetoresistive sensor capable of sensing a single axial magnetic field change, which is composed of a first spin valve stack structure and a second spin valve stack structure. The first spin valve stack structure comprises a first spin valve magnetoresistive element, a dielectric layer and a second spin valve magnetoresistive element. Wherein the first spin valve magnetoresistive element has an upper surface, a lower surface and a first magnetization direction fixed, and the first magnetization direction and the upper surface and the lower surface are parallel to each other, and the dielectric layer is disposed on the first self Above the upper surface of the rotary valve magnetoresistive element, the second spin valve magnetoresistive element is disposed above the dielectric layer.
在本發明之一實施例中,上述第一自旋閥磁阻元件包含第一磁阻結構和第二磁阻結構。其中,第一磁阻結構具有固定不變之第一磁化方向,第二磁阻結構配置於第一磁阻結構之一側,其具有第二磁化方向,且第二磁化方向因應外加磁場之強弱而產生變化。In an embodiment of the invention, the first spin valve magnetoresistive element comprises a first magnetoresistive structure and a second magnetoresistive structure. Wherein, the first magnetoresistive structure has a fixed first magnetization direction, the second magnetoresistive structure is disposed on one side of the first magnetoresistive structure, and has a second magnetization direction, and the second magnetization direction corresponds to the strength of the applied magnetic field And change.
在本發明之一實施例中,上述第二自旋閥磁阻元件包含:第三磁阻結構和第四磁阻結構。其中,第三磁阻結構具有固定不變之第三磁化方向,第四磁阻結構配置於第三磁阻結構之一側,其具有第四磁化方向,且第四磁化方向因應外加磁場之強弱而產生變化。In an embodiment of the invention, the second spin valve magnetoresistive element comprises: a third magnetoresistive structure and a fourth magnetoresistive structure. Wherein, the third magnetoresistive structure has a fixed third magnetization direction, and the fourth magnetoresistive structure is disposed on one side of the third magnetoresistive structure, which has a fourth magnetization direction, and the fourth magnetization direction corresponds to the strength of the applied magnetic field And change.
在本發明之一實施例中,上述第一磁化方向和第三磁化方向成反平行方向,第二磁化方向和第四磁化方向相同。In an embodiment of the invention, the first magnetization direction and the third magnetization direction are in an anti-parallel direction, and the second magnetization direction and the fourth magnetization direction are the same.
在本發明之一實施例中,上述第一磁化方向和第三磁化方向相同,第二磁化方向和第四磁化方向成反平行方向。In an embodiment of the invention, the first magnetization direction and the third magnetization direction are the same, and the second magnetization direction and the fourth magnetization direction are in an anti-parallel direction.
在本發明之一實施例中,上述第一磁阻結構、第二磁阻結構、第三磁阻結構和第四磁阻結構,其中任一磁阻結構可為合成反鐵磁結構(synthetic antiferromagnet,簡稱SAF)。In an embodiment of the invention, the first magnetoresistive structure, the second magnetoresistive structure, the third magnetoresistive structure and the fourth magnetoresistive structure, wherein any of the magnetoresistive structures may be a synthetic antiferromagnetic structure (synthetic antiferromagnet) , referred to as SAF).
在本發明之一實施例中,上述第一合成反鐵磁結構包含第一磁性層、第二磁性層和耦合層。其中,第二磁性層配置於第一磁性層之一側,耦合層配置於第一磁性層和第二磁性層之間。In an embodiment of the invention, the first synthetic antiferromagnetic structure comprises a first magnetic layer, a second magnetic layer and a coupling layer. The second magnetic layer is disposed on one side of the first magnetic layer, and the coupling layer is disposed between the first magnetic layer and the second magnetic layer.
在本發明之一實施例中,上述磁阻感測器之第二自旋閥堆疊結構,更包含第三自旋閥磁阻元件、介電層和第四自旋閥磁阻元件。其中,第三自旋閥磁阻元件具有上表面、下表面和固定不變之第一磁化方向,且第一磁化方向和上表面、下表面互相平行,介電層配置於第三自旋閥磁阻元件之上表面之上方,第四自旋閥磁阻元件配置於介電層之上方,其中,第三自旋閥磁阻元件分別與第二自旋閥磁阻元件和第四自旋閥磁阻元件電性連接,第一自旋閥磁阻元件分別與第四自旋閥磁阻元件和第二自旋閥磁阻元件電性連接。In an embodiment of the invention, the second spin valve stack structure of the magnetoresistive sensor further includes a third spin valve magnetoresistive element, a dielectric layer and a fourth spin valve magnetoresistive element. Wherein, the third spin valve magnetoresistive element has an upper surface, a lower surface and a fixed first magnetization direction, and the first magnetization direction is parallel to the upper surface and the lower surface, and the dielectric layer is disposed on the third spin valve Above the upper surface of the magnetoresistive element, the fourth spin valve magnetoresistive element is disposed above the dielectric layer, wherein the third spin valve magnetoresistive element and the second spin valve magnetoresistive element and the fourth spin respectively The valve magnetoresistive element is electrically connected, and the first spin valve magnetoresistive element is electrically connected to the fourth spin valve magnetoresistive element and the second spin valve magnetoresistive element, respectively.
在本發明之一實施例中,上述第三自旋閥磁阻元件包含第一磁阻結構和第二磁阻結構。其中,第一磁阻結構具有固定不變之第一磁化方向,第二磁阻結構配置於第一磁阻結構之一側,其具有第二磁化方向,且第二磁化方向因應外加磁場之強弱而產生變化。In an embodiment of the invention, the third spin valve magnetoresistive element comprises a first magnetoresistive structure and a second magnetoresistive structure. Wherein, the first magnetoresistive structure has a fixed first magnetization direction, the second magnetoresistive structure is disposed on one side of the first magnetoresistive structure, and has a second magnetization direction, and the second magnetization direction corresponds to the strength of the applied magnetic field And change.
在本發明之一實施例中,上述第四自旋閥磁阻元件包含第三磁阻結構和第四磁阻結構。其中,第三磁阻結構具有固定不變之第三磁化方向,第四磁阻結構配置於第三磁阻結構之一側,其具有第四磁化方向,且第四磁化方向因應外加磁場之強弱而產生變化。In an embodiment of the invention, the fourth spin valve magnetoresistive element comprises a third magnetoresistive structure and a fourth magnetoresistive structure. Wherein, the third magnetoresistive structure has a fixed third magnetization direction, and the fourth magnetoresistive structure is disposed on one side of the third magnetoresistive structure, which has a fourth magnetization direction, and the fourth magnetization direction corresponds to the strength of the applied magnetic field And change.
在本發明之一實施例中,上述自旋閥堆疊結構當外加磁場為零時,第二磁化方向和第四磁化方向相同可為垂直第一軸向,第一磁化方向和第三磁化方向成反向平行且和第二磁化方向間夾直角。In an embodiment of the present invention, when the applied magnetic field is zero, the second magnetization direction and the fourth magnetization direction are the same as the vertical first axis, and the first magnetization direction and the third magnetization direction are Anti-parallel and at right angles to the second magnetization direction.
在本發明之一實施例中,上述自旋閥堆疊結構當外加磁場為零時,第二磁化方向和第四磁化方向可為垂直第一軸向成反向平行,第一磁化方向和第三磁化方向相同且分別和第二磁化方向和第四磁化方向間夾直角。In an embodiment of the present invention, when the external magnetic field is zero, the second magnetization direction and the fourth magnetization direction may be parallel to the first axial direction, the first magnetization direction and the third The magnetization directions are the same and are respectively at right angles to the second magnetization direction and the fourth magnetization direction.
本發明提出另一種堆疊式自旋閥磁阻感測器,可感測兩個軸向的磁場變化,由四組自旋閥堆疊結構所構成。除了上述的第一自旋閥堆疊結構與第二自旋閥堆疊結構之外,更包含第三自旋閥堆疊結構與第四自旋閥堆疊結構。其第三自旋閥堆疊結構,包含第五自旋閥磁阻元件、第六自旋閥磁阻元件;第四自旋閥堆疊結構,包含第七自旋閥磁阻元件和第八自旋閥磁阻元件。其中,第五自旋閥磁阻元件、第六自旋閥磁阻元件、第七自旋閥磁阻元件和第八自旋閥磁阻元件分別和第一自旋閥磁阻元件、第二自旋閥磁阻元件、第三自旋閥磁阻元件和第四自旋閥磁阻元件夾90度角,其中,第七自旋閥磁阻元件分別與第六自旋閥磁阻元件和第八自旋閥磁阻元件電性連接,第五自旋閥磁阻元件分別與第八自旋閥磁阻元件和第六自旋閥磁阻元件電性連接,為第二軸向的磁阻感測器。The present invention proposes another stacked spin valve magnetoresistive sensor that senses two axial magnetic field variations and is composed of four sets of spin valve stack structures. In addition to the first spin valve stack structure and the second spin valve stack structure described above, a third spin valve stack structure and a fourth spin valve stack structure are further included. The third spin valve stack structure comprises a fifth spin valve magnetoresistive element and a sixth spin valve magnetoresistive element; a fourth spin valve stack structure comprising a seventh spin valve magnetoresistive element and an eighth spin Valve magnetoresistive element. Wherein, the fifth spin valve magnetoresistive element, the sixth spin valve magnetoresistive element, the seventh spin valve magnetoresistive element and the eighth spin valve magnetoresistive element respectively and the first spin valve magnetoresistive element, the second The spin valve magnetoresistive element, the third spin valve magnetoresistive element and the fourth spin valve magnetoresistive element are clamped at a 90 degree angle, wherein the seventh spin valve magnetoresistive element and the sixth spin valve magnetoresistive element respectively The eighth spin valve magnetoresistive element is electrically connected, and the fifth spin valve magnetoresistive element is electrically connected to the eighth spin valve magnetoresistive element and the sixth spin valve magnetoresistive element respectively, and is a second axial magnetic field Resistance sensor.
在本發明之一實施例中,上述第五自旋閥磁阻元件和第七自旋閥磁阻元件其包含第一磁阻結構和第二磁阻結構。其中,第一磁阻結構具有固定不變之第五磁化方向,第五磁化方向和第一磁化方向同向,第二磁阻結構配置於第一磁阻結構之一側,其具有第六磁化方向,且第六磁化方向因應外加磁場之強弱而產生變化,在外加磁場為零時,第六磁化方向和第二磁化方向夾90度角。In an embodiment of the invention, the fifth spin valve magnetoresistive element and the seventh spin valve magnetoresistive element comprise a first magnetoresistive structure and a second magnetoresistive structure. Wherein, the first magnetoresistive structure has a fixed fifth magnetization direction, the fifth magnetization direction is in the same direction as the first magnetization direction, and the second magnetoresistive structure is disposed on one side of the first magnetoresistive structure, and has a sixth magnetization The direction, and the sixth magnetization direction changes according to the strength of the applied magnetic field. When the applied magnetic field is zero, the sixth magnetization direction and the second magnetization direction are at an angle of 90 degrees.
在本發明之一實施例中,上述第六自旋閥磁阻元件和第八自旋閥磁阻元件包含第三磁阻結構和第四磁阻結構。其中,第三磁阻結構具有固定不變之第七磁化方向,第七磁化方向和第三磁化方向同向,第四磁阻結構配置第三磁阻結構之一側,其具有第八磁化方向,且第八磁化方向因應外加磁場之強弱而產生變化,在外加磁場為零時,第八磁化方向和第四磁化方向夾90度角。In an embodiment of the invention, the sixth spin valve magnetoresistive element and the eighth spin valve magnetoresistive element comprise a third magnetoresistive structure and a fourth magnetoresistive structure. Wherein, the third magnetoresistive structure has a fixed seventh magnetization direction, the seventh magnetization direction and the third magnetization direction are in the same direction, and the fourth magnetoresistive structure is disposed on one side of the third magnetoresistive structure, and has an eighth magnetization direction And the eighth magnetization direction changes according to the strength of the applied magnetic field. When the applied magnetic field is zero, the eighth magnetization direction and the fourth magnetization direction are at an angle of 90 degrees.
在本發明之一實施例中,上述磁阻堆疊結構當外加磁場為零時,第二磁化方向和第四磁化方向相同可為垂直第一軸向,第一磁化方向和第三磁化方向成反向平行且和第二磁化方向間夾銳角,第六磁化方向和第八磁化方向相同可為垂直第二軸向,第五磁化方向和第七磁化方向成反向平行且和第六磁化方向間夾銳角。In an embodiment of the present invention, when the applied magnetic field is zero, the second magnetization direction and the fourth magnetization direction are the same as the vertical first axis, and the first magnetization direction and the third magnetization direction are opposite. An acute angle is formed between the parallel and the second magnetization direction, and the sixth magnetization direction and the eighth magnetization direction are the same as the vertical second axis, and the fifth magnetization direction and the seventh magnetization direction are antiparallel and between the sixth magnetization direction Sharp angle.
在本發明之一實施例中,上述磁阻堆疊結構當外加磁場為零時,第二磁化方向和第四磁化方向可為垂直第一軸向成反向平行,第一磁化方向和第三磁化方向相同且分別和第二磁化方向和第四磁化方向間夾銳角;第六磁化方向和第八磁化方向可為垂直第二軸向成反向平行,第五磁化方向和第七磁化方向相同且分別和第六磁化方向和第八磁化方向間夾銳角。In an embodiment of the present invention, when the applied magnetic field is zero, the second magnetization direction and the fourth magnetization direction may be antiparallel to the vertical first axis, the first magnetization direction and the third magnetization. The directions are the same and respectively form an acute angle with the second magnetization direction and the fourth magnetization direction; the sixth magnetization direction and the eighth magnetization direction may be antiparallel to the vertical second axis, and the fifth magnetization direction and the seventh magnetization direction are the same and An acute angle is formed between the sixth magnetization direction and the eighth magnetization direction, respectively.
在本發明之自旋閥堆疊結構中,由於是兩個自旋閥磁阻元件垂直堆疊結構,相較於傳統平面配置的結構,可使用不同的自旋閥元件作堆疊組合,並縮小磁阻感測器的面積。In the spin valve stack structure of the present invention, since the two spin valve magnetoresistive elements are vertically stacked, different spin valve components can be used for stacking and reducing the magnetoresistance compared to the conventional planar configuration. The area of the sensor.
為讓本發明之上述和其他目的、特徵和優點能更明顯易懂,下文特舉較佳實施例,並配合所附圖式,作詳細說明如下。The above and other objects, features and advantages of the present invention will become more <RTIgt;
圖3為本發明之一實施例中自旋閥堆疊結構的剖面示意圖。請參照圖3,自旋閥堆疊結構300包含第一自旋閥磁阻元件301、介電層394、第二自旋閥磁阻元件302。其中,第一自旋閥磁阻元件301具有上表面392和下表面390,其包含第一磁阻結構310(固定層)、第二磁阻結構320(自由層)以及間隔層350配置於第一磁阻結構310和第二磁阻結構320之間以連接彼此,第一磁阻結構310具有固定不變之第一磁化方向D1,第一磁化方向D1和上表面392、下表面390互相平行。第二磁阻結構320配置於第一磁阻結構310之一側,其具有第二磁化方向D2,第二磁化方向D2會因應外加磁場之強弱而產生變化。介電層394配置於第一自旋閥磁阻元件301之上表面392上方。第二自旋閥磁阻元件302配置於介電層394之上方,其包含第三磁阻結構330(固定層)和第四磁阻結構340(自由層),間隔層370配置於第三磁阻結構330和第四磁阻結構340之間以連接彼此,第三磁阻結構330具有固定不變之第三磁化方向D3,第四磁阻結構340配置於第三磁阻結構330之一側,其具有第四磁化方向D4,且第四磁化方向D4因應外加磁場之強弱而產生變化。3 is a cross-sectional view showing a spin valve stack structure in an embodiment of the present invention. Referring to FIG. 3, the spin valve stack structure 300 includes a first spin valve magnetoresistive element 301, a dielectric layer 394, and a second spin valve magnetoresistive element 302. The first spin valve magnetoresistive element 301 has an upper surface 392 and a lower surface 390, and includes a first magnetoresistive structure 310 (fixed layer), a second magnetoresistive structure 320 (free layer), and a spacer layer 350. A magnetoresistive structure 310 and a second magnetoresistive structure 320 are connected to each other, and the first magnetoresistive structure 310 has a fixed first magnetization direction D1. The first magnetization direction D1 and the upper surface 392 and the lower surface 390 are parallel to each other. . The second magnetoresistive structure 320 is disposed on one side of the first magnetoresistive structure 310 and has a second magnetization direction D2. The second magnetization direction D2 changes according to the strength of the applied magnetic field. The dielectric layer 394 is disposed above the upper surface 392 of the first spin valve magnetoresistive element 301. The second spin valve magnetoresistive element 302 is disposed above the dielectric layer 394, and includes a third magnetoresistive structure 330 (fixed layer) and a fourth magnetoresistive structure 340 (free layer), and the spacer layer 370 is disposed on the third magnetic layer The resistive structure 330 and the fourth magnetoresistive structure 340 are connected to each other, the third magnetoresistive structure 330 has a fixed third magnetization direction D3, and the fourth magnetoresistive structure 340 is disposed on one side of the third magnetoresistive structure 330. It has a fourth magnetization direction D4, and the fourth magnetization direction D4 changes in response to the strength of the applied magnetic field.
為將自旋閥堆疊結構300配置成磁阻感測器以供實際使用,在本實施例中,第一磁化方向D1和第三磁化方向D3成反向平行,不隨外加磁場而改變;第一磁化方向D1和第三磁化方向D3可為沿著自旋閥的難軸(hard axis)方向,亦是感測外加磁場的方向。而第二磁化方向D2和第四磁化方向D4則成同向平行,可隨外加磁場而改變;當外加磁場為零時,第二磁化方向D2和第四磁化方向D4可為沿自旋閥之易軸(easy axis)方向。In order to configure the spin valve stack structure 300 as a magnetoresistive sensor for practical use, in the embodiment, the first magnetization direction D1 and the third magnetization direction D3 are antiparallel, and do not change with an applied magnetic field; A magnetization direction D1 and a third magnetization direction D3 may be along the hard axis direction of the spin valve, and also the direction in which the applied magnetic field is sensed. The second magnetization direction D2 and the fourth magnetization direction D4 are parallel in the same direction and may change with an applied magnetic field; when the applied magnetic field is zero, the second magnetization direction D2 and the fourth magnetization direction D4 may be along the spin valve. Easy axis direction.
為達上述目的,上述任一磁阻結構都可使用合成反鐵磁結構(synthetic antiferromagnet,簡稱SAF)。合成反鐵磁結構包含第一磁性層312、第二磁性層314配置於第一磁性層312之一側,耦合層316配置於第一磁性層312和第二磁性層314之間。因此,在本發明中,自旋閥堆疊結構可能有數種變化。圖3至圖5為本發明之一實施例中自旋閥堆疊結構的剖面示意圖。請參照圖3,自旋閥堆疊結構300中之第一磁阻結構310可使用合成反鐵磁結構,其餘磁阻結構皆為單一磁性層。第一磁阻結構310之合成反鐵磁結構是以第二磁性層314和間隔層350相連。利用同一次退火製程,施加磁場利用偏壓層360固定第一磁性層312之磁化方向D11;同樣,利用偏壓層380也固定了第三磁阻結構330之第三磁化方向D3,並使其與磁化方向D11同向。第一磁阻結構310之合成反鐵磁結構,可藉由耦合層316之厚度,使第二磁性層314之第一磁化方向D1與磁化方向D11相反,在本實施例中,耦合層316之厚度,以釕(ruthenium,Ru)為例,約為8埃(),如此可同時定義第一磁化方向D1和第三磁化方向D3,且使第三磁化方向D3與第一磁化方向D1相反。In order to achieve the above object, a synthetic antiferromagnetic structure (SAF) can be used for any of the above magnetoresistive structures. The synthetic antiferromagnetic structure includes a first magnetic layer 312 disposed on one side of the first magnetic layer 312, and a coupling layer 316 disposed between the first magnetic layer 312 and the second magnetic layer 314. Therefore, in the present invention, there may be several variations in the spin valve stack structure. 3 to 5 are schematic cross-sectional views showing a stacking structure of a spin valve according to an embodiment of the present invention. Referring to FIG. 3, the first magnetoresistive structure 310 in the spin valve stack structure 300 can use a synthetic antiferromagnetic structure, and the remaining magnetoresistive structures are all single magnetic layers. The synthetic antiferromagnetic structure of the first magnetoresistive structure 310 is connected by a second magnetic layer 314 and a spacer layer 350. With the same annealing process, the magnetic field is applied to the magnetization direction D11 of the first magnetic layer 312 by the bias layer 360. Similarly, the third magnetization direction D3 of the third magnetoresistive structure 330 is also fixed by the bias layer 380, and It is in the same direction as the magnetization direction D11. The composite antiferromagnetic structure of the first magnetoresistive structure 310 can make the first magnetization direction D1 of the second magnetic layer 314 opposite to the magnetization direction D11 by the thickness of the coupling layer 316. In this embodiment, the coupling layer 316 The thickness is ruthenium (Ru), which is about 8 angstroms ( In this way, the first magnetization direction D1 and the third magnetization direction D3 can be simultaneously defined, and the third magnetization direction D3 is opposite to the first magnetization direction D1.
上述之自旋閥磁阻元件種類可為巨磁阻(GMR,giant magnetoresistance)型自旋閥與穿遂磁阻(TMR,tunneling magnetoresistance)型自旋閥。其中巨磁阻型自旋閥可使用非鐵磁性金屬(non-ferromagnetic metal)材料作為間隔層,如銅;穿遂磁阻型自旋閥則可使用穿遂氧化物(tunneling oxide)材料作為間隔層,如氧化鋁(AlOx)與氧化鎂(MgO)。兩種自旋閥的固定層與自由層皆使用含鐵磁性材料(ferromagnet)之單層,如NiFe、CoFe、CoFeB或上述單層所組合之複合層,如合成反鐵磁結構。偏壓層則使用反鐵磁材料(anti-ferromagnet),如FeMn、PtMn、IrMn。The above-mentioned spin valve magnetoresistive element type may be a giant magnetoresistance type (GMR) type spin valve and a tunneling magnetoresistance type (TMR) type spin valve. Among them, the giant magnetoresistive spin valve can use a non-ferromagnetic metal material as a spacer layer, such as copper, and a perforated magnetoresistive spin valve can use a tunneling oxide material as a spacer. Layers such as alumina (AlOx) and magnesium oxide (MgO). Both the fixed layer and the free layer of the two spin valves use a single layer containing a ferromagnetic material such as NiFe, CoFe, CoFeB or a composite layer of the above single layer, such as a synthetic antiferromagnetic structure. The bias layer is made of anti-ferromagnet such as FeMn, PtMn, IrMn.
此外,請參照圖4,自旋閥堆疊結構400除了如上述第一自旋閥磁阻元件301中之第一磁阻結構310可使用合成反鐵磁結構,固定第一磁化方向D1,使其與第三磁阻結構330之第三磁化方向D3相反。在第二自旋閥磁阻元件302中,第四磁阻結構340也可使用合成反鐵磁結構,其反鐵磁結構是以第一磁性層342和間隔層370相連。第一磁性層342具有第四磁化方向D4,在沒有外加磁場時,第四磁化方向D4和第二磁化方向D2相同。而第四磁阻結構340中之合成反鐵磁結構,可藉由控制耦合層346之厚度,使第二磁性層344之磁化方向D41和第四磁化方向D4相反。在本實施例中,耦合層346厚度,以釕(ruthenium,Ru)為例,約為8埃。自旋閥堆疊結構400設計的特點在於結構簡化,第一自旋閥磁阻元件301與第二自旋閥磁阻元件302可以使用相同的磁性層材料與堆疊順序(磁性層312=磁性層330、磁性層314=磁性層342、磁性層320=磁性層344),如此,只需對調耦合層與間隔層的位置,第一自旋閥磁阻元件301與第二自旋閥磁阻元件302可以得到相同的電阻值與磁阻變化量。In addition, referring to FIG. 4, the spin valve stack structure 400 can use a synthetic antiferromagnetic structure in addition to the first magnetoresistive structure 310 in the first spin valve magnetoresistive element 301, and fix the first magnetization direction D1. The third magnetization direction D3 of the third magnetoresistive structure 330 is opposite. In the second spin valve magnetoresistive element 302, the fourth magnetoresistive structure 340 may also use a synthetic antiferromagnetic structure whose antiferromagnetic structure is connected by a first magnetic layer 342 and a spacer layer 370. The first magnetic layer 342 has a fourth magnetization direction D4, and the fourth magnetization direction D4 and the second magnetization direction D2 are the same when no external magnetic field is applied. The synthetic antiferromagnetic structure in the fourth magnetoresistive structure 340 can reverse the magnetization direction D41 of the second magnetic layer 344 and the fourth magnetization direction D4 by controlling the thickness of the coupling layer 346. In the present embodiment, the thickness of the coupling layer 346 is ruthenium (Ru), for example, about 8 angstroms. The spin valve stack structure 400 is characterized by a simplified structure. The first spin valve magnetoresistive element 301 and the second spin valve magnetoresistive element 302 can use the same magnetic layer material and stacking order (magnetic layer 312 = magnetic layer 330). , magnetic layer 314 = magnetic layer 342, magnetic layer 320 = magnetic layer 344), so that only the position of the coupling layer and the spacer layer, the first spin valve magnetoresistive element 301 and the second spin valve magnetoresistive element 302 The same resistance value and magnetoresistance change amount can be obtained.
請參照圖5,自旋閥堆疊結構500除了如上述第一自旋閥磁阻元件301之第一磁阻結構310使用合成反鐵磁結構,固定第一磁化方向D1。在第三磁阻結構330也使用合成反鐵磁結構。於同一次退火製程,可使第一自旋閥磁阻元件301具有第一磁化方向D1,使第三磁阻結構330具有第三磁化方向D3。而第三磁阻結構330之合成反鐵磁結構中,藉由耦合層336之厚度使第一磁性層332和第二磁性層334都具有第三磁化方向D3,且使第三磁化方向D3和第一磁化方向D1相反。在本發明之一實施例中,第三磁阻結構330中之耦合層336,以釕(ruthenium,Ru)為例,可約為13埃。相較於圖3使用單一磁性層的做法,自旋閥堆疊結構500使用合成反鐵磁結構作為第三磁阻結構330,其優點在於第一自旋閥磁阻元件301與第二自旋閥磁阻元件302可以得到幾近相同的材料與構造,進而得到相近的電阻值與磁阻變化量。Referring to FIG. 5, the spin valve stack structure 500 uses a synthetic antiferromagnetic structure in addition to the first magnetoresistive structure 310 of the first spin valve magnetoresistive element 301 to fix the first magnetization direction D1. A synthetic antiferromagnetic structure is also used in the third magnetoresistive structure 330. In the same annealing process, the first spin valve magnetoresistive element 301 can have a first magnetization direction D1, and the third magnetoresistive structure 330 has a third magnetization direction D3. In the synthetic antiferromagnetic structure of the third magnetoresistive structure 330, the first magnetic layer 332 and the second magnetic layer 334 both have a third magnetization direction D3 and a third magnetization direction D3 by the thickness of the coupling layer 336. The first magnetization direction D1 is opposite. In an embodiment of the present invention, the coupling layer 336 in the third magnetoresistive structure 330 is ruthenium (Ru), for example, and may be about 13 angstroms. The spin valve stack structure 500 uses a synthetic antiferromagnetic structure as the third magnetoresistive structure 330 as compared to FIG. 3, which has the advantages of the first spin valve magnetoresistive element 301 and the second spin valve. The magnetoresistive element 302 can be obtained in nearly the same material and configuration, thereby obtaining similar resistance values and magnetoresistance variations.
在本發明之其他實施例中,為將自旋閥堆疊結構配置成磁阻感測器以供實際使用,也可使第一磁化方向D1和第三磁化方向D3相同,平行於自旋閥的難軸(hard axis)方向,亦是感測外加磁場的方向。而第二磁化方向D2和第四磁化方向D4成反平行方向,平行於自旋閥的易軸(easy axis)方向,亦是外加磁場為零時的磁化方向。In other embodiments of the present invention, in order to configure the spin valve stack structure as a magnetoresistive sensor for practical use, the first magnetization direction D1 and the third magnetization direction D3 may be the same, parallel to the spin valve. The direction of the hard axis is also the direction in which the applied magnetic field is sensed. The second magnetization direction D2 and the fourth magnetization direction D4 are in an anti-parallel direction, parallel to the easy axis direction of the spin valve, and also the magnetization direction when the applied magnetic field is zero.
圖6至圖7為本發明之一實施例中自旋閥堆疊結構剖面示意圖。請參照圖6,自旋閥堆疊結構600中之第二磁阻結構320和第四磁阻結構340分別使用第一合成反鐵磁結構和第二合成反鐵磁結構,其餘磁阻結構皆為單一磁性層。其中第一合成反鐵磁結構中的第一磁阻層322可與第二合成反鐵磁結構中的第二磁阻層344相同,具有與外加磁場相同的磁化方向;第一合成反鐵磁結構中的第二磁阻層324可與第二合成反鐵磁結構中的第一磁阻層342相同,具有與外加磁場相反的磁化方向。第一合成反鐵磁結構的耦合層326可與第二合成反鐵磁結構的耦合層346相同,以釕(ruthenium,Ru)為例,可約為8埃。第一合成反鐵磁結構中以第一磁性層322和間隔層350相接,而第二合成反鐵磁結構中則是以第一磁阻層342和間隔層370相接。如同上述原理,作為固定層的第一磁阻結構310與第三磁阻結構330,其對應之第一磁化方向D1與第三磁化方向D3可於同一次退火製程成為同向。在沒有外加磁場時第二磁化方向D2和第二合成反鐵磁結構中之第二磁性層之磁化方向D41相同,又因為耦合層346的作用使第四磁化方向D4與磁化方向D41相反,因此第二磁化方向D2與第四磁化方向D4成反平行方向。6 to 7 are schematic cross-sectional views showing a stacking structure of a spin valve according to an embodiment of the present invention. Referring to FIG. 6, the second magnetoresistive structure 320 and the fourth magnetoresistive structure 340 in the spin valve stack structure 600 respectively use a first synthetic antiferromagnetic structure and a second synthetic antiferromagnetic structure, and the remaining magnetoresistive structures are A single magnetic layer. The first magnetoresistive layer 322 of the first synthetic antiferromagnetic structure may be the same as the second magnetoresistive layer 344 of the second synthetic antiferromagnetic structure, having the same magnetization direction as the applied magnetic field; the first synthetic antiferromagnetic The second magnetoresistive layer 324 in the structure may be the same as the first magnetoresistive layer 342 in the second synthetic antiferromagnetic structure, having a magnetization direction opposite to the applied magnetic field. The coupling layer 326 of the first synthetic antiferromagnetic structure may be the same as the coupling layer 346 of the second synthetic antiferromagnetic structure, for example, ruthenium (Ru), which may be about 8 angstroms. In the first synthetic antiferromagnetic structure, the first magnetic layer 322 and the spacer layer 350 are connected, and in the second synthetic antiferromagnetic structure, the first magnetoresistive layer 342 and the spacer layer 370 are connected. As in the above principle, the first magnetization structure 310 and the third magnetization structure 330, which are the fixed layers, may have the first magnetization direction D1 and the third magnetization direction D3 in the same annealing process. The second magnetization direction D2 is the same as the magnetization direction D41 of the second magnetic layer in the second synthetic antiferromagnetic structure in the absence of the applied magnetic field, and the fourth magnetization direction D4 is opposite to the magnetization direction D41 due to the action of the coupling layer 346. The second magnetization direction D2 and the fourth magnetization direction D4 are in an anti-parallel direction.
請參照圖7,自旋閥堆疊結構700也可能是第一磁阻結構310、第二磁阻結構320、第三磁阻結構330、和第四磁阻結構340都分別使用第一合成反鐵磁結構、第二合成反鐵磁結構、第三合成反鐵磁結構、第四合成反鐵磁結構。如此,可於同一次退火製程,利用合成反鐵磁結構中每個耦合層,使第一磁化方向D1和第三磁化方向D3相同,且第二磁化方向D2在沒有外加磁場時和第四磁化方向D4成反向平行。值得注意的是,第一合成反鐵磁結構以第二磁性層314和間隔層350相接,第二磁性層314可表現出第一磁化方向D1,第一磁性層312之磁化方向D11和第一磁化方向D1相反。第二合成反鐵磁結構以第一磁性層322和間隔層350相接,可表現出第二磁化方向D2,第二磁性層324之磁化方向D21和第一磁化方向D2相反。第三合成反鐵磁結構以第二磁性層334和間隔層370相接,可表現出第三磁化方向D3,第一磁性層332之磁化方向D31和第三磁化方向D3相反。第四合成反鐵磁結構以第一磁性層342和間隔層370相接,可表現出第四磁化方向D4,第二磁性層344之磁化方向D41和第一磁化方向D4相反。在本發明中,每個合成反鐵磁結構皆呈現反平行耦合,因此耦合層之厚度,以釕(ruthenium,Ru)為例,約為8埃。自旋閥堆疊結構700設計的優點在於結構簡化,第一自旋閥磁阻元件301與第二自旋閥磁阻元件302可以使用相同的合成反鐵磁層材料但相反的堆疊順序(磁性層312=磁性層334、磁性層314=磁性層332、磁性層322=磁性層344、磁性層324=磁性層342)。如此一來,第一自旋閥磁阻元件301與第二自旋閥磁阻元件302可以得到相同的電阻值與磁阻變化量。Referring to FIG. 7, the spin valve stack structure 700 may also be the first magnetoresistive structure 310, the second magnetoresistive structure 320, the third magnetoresistive structure 330, and the fourth magnetoresistive structure 340, respectively, using the first synthetic antiferrite The magnetic structure, the second synthetic antiferromagnetic structure, the third synthetic antiferromagnetic structure, and the fourth synthetic antiferromagnetic structure. Thus, in the same annealing process, each of the coupling layers in the synthetic antiferromagnetic structure can be used to make the first magnetization direction D1 and the third magnetization direction D3 the same, and the second magnetization direction D2 is in the absence of an applied magnetic field and the fourth magnetization. Direction D4 is antiparallel. It should be noted that the first synthetic antiferromagnetic structure is connected by the second magnetic layer 314 and the spacer layer 350, and the second magnetic layer 314 can exhibit the first magnetization direction D1, the magnetization direction D11 of the first magnetic layer 312, and the first A magnetization direction D1 is opposite. The second synthetic antiferromagnetic structure is in contact with the first magnetic layer 322 and the spacer layer 350, and may exhibit a second magnetization direction D2. The magnetization direction D21 of the second magnetic layer 324 is opposite to the first magnetization direction D2. The third synthetic antiferromagnetic structure is in contact with the second magnetic layer 334 and the spacer layer 370, and may exhibit a third magnetization direction D3. The magnetization direction D31 of the first magnetic layer 332 is opposite to the third magnetization direction D3. The fourth synthetic antiferromagnetic structure is in contact with the first magnetic layer 342 and the spacer layer 370, and may exhibit a fourth magnetization direction D4. The magnetization direction D41 of the second magnetic layer 344 is opposite to the first magnetization direction D4. In the present invention, each of the synthetic antiferromagnetic structures exhibits anti-parallel coupling, and thus the thickness of the coupling layer is ruthenium (Ru), for example, about 8 angstroms. The advantage of the spin valve stack structure 700 design is that the structure is simplified, and the first spin valve magnetoresistive element 301 and the second spin valve magnetoresistive element 302 can use the same synthetic antiferromagnetic layer material but the opposite stacking order (magnetic layer 312=magnetic layer 334, magnetic layer 314=magnetic layer 332, magnetic layer 322=magnetic layer 344, magnetic layer 324=magnetic layer 342). As a result, the first spin valve magnetoresistive element 301 and the second spin valve magnetoresistive element 302 can obtain the same resistance value and magnetoresistance change amount.
值得一提的是,在本發明之其他實施例中,上述之數種自旋閥堆疊結構,其中第一磁阻結構310和第二磁阻結構320配置之相對位置並無限制,第三磁阻結構330和第四磁阻結構340配置之相對位置也並無限制,第一自旋閥磁阻元件301和第二自旋閥磁阻元件302之相對位置也並無限制。It is worth mentioning that, in other embodiments of the present invention, the above-mentioned several kinds of spin valve stack structures, wherein the relative positions of the first magnetoresistive structure 310 and the second magnetoresistive structure 320 are not limited, the third magnetic The relative positions of the configuration of the resistive structure 330 and the fourth magnetoresistive structure 340 are also not limited, and the relative positions of the first spin valve magnetoresistive element 301 and the second spin valve magnetoresistive element 302 are also not limited.
圖8為本發明中之一實施例中堆疊式自旋閥磁阻感測器800的剖面示意圖。請參考圖8,本發明之磁阻感測器800由第一自旋閥堆疊結構與第二自旋閥堆疊結構所組成,兩者具有相同的自旋閥堆疊結構與相對應之磁化方向。其中第一自旋閥堆疊結構包含第一自旋閥磁阻元件301、第二自旋閥磁阻元件302和配置於上述兩者之間之介電層394;第二自旋閥堆疊結構包含第三自旋閥磁阻元件303、第四自旋閥磁阻元件304和配置於上述兩者之間之介電層394。各自旋閥磁阻元件可以串連的方式重複配置。其中,第一自旋閥磁阻元件301與第三自旋閥磁阻元件303具有上表面和下表面,其包含第一磁阻結構310和第二磁阻結構320,間隔層350配置於第一磁阻結構310和第二磁阻結構320之間以連接彼此。第一磁阻結構310具有固定不變之第一磁化方向D1,和上表面392、下表面390及感測磁場軸向互相平行。第二磁阻結構320配置於第一磁阻結構310之一側,其具有第二磁化方向D2,且第二磁化方向D2因應外加磁場之強弱而產生變化。介電層394配置於第一自旋閥磁阻元件301與第三自旋閥磁阻元件303之上表面之上方。第二自旋閥磁阻元件302與第四自旋閥磁阻元件304配置於介電層394之上方,其包含第三磁阻結構330、第四磁阻結構340,間隔層370配置於第三磁阻結構330和第四磁阻結構340之間以連接彼此。第三磁阻結構330具有固定不變之第三磁化方向D3,其與第一磁化方向D1呈反平行。第四磁阻結構340配置於第三磁阻結構330之一側,其具有第四磁化方向D4,且第四磁化方向D4可因應外加磁場之強弱而產生變化,與第二磁化方向D2平行。上述之磁化方向(D1、D2、D3、D4)皆定義為磁阻結構(310、320、330、340)中,與間隔層相連接之磁性層磁化方向。值得注意的是,第三自旋閥磁阻元件303可和第一自旋閥磁阻元件301可於同一製程中完成,第二自旋閥磁阻元件302可和第四自旋閥磁阻元件304也可於同一製程中完成。FIG. 8 is a cross-sectional view of a stacked spin valve magnetoresistive sensor 800 in accordance with an embodiment of the present invention. Referring to FIG. 8, the magnetoresistive sensor 800 of the present invention is composed of a first spin valve stack structure and a second spin valve stack structure, both of which have the same spin valve stack structure and corresponding magnetization directions. The first spin valve stack structure includes a first spin valve magnetoresistive element 301, a second spin valve magnetoresistive element 302, and a dielectric layer 394 disposed between the two; the second spin valve stack structure includes The third spin valve magnetoresistive element 303, the fourth spin valve magnetoresistive element 304, and a dielectric layer 394 disposed between the two. The respective rotary valve magnetoresistive elements can be repeatedly arranged in series. The first spin valve magnetoresistive element 301 and the third spin valve magnetoresistive element 303 have an upper surface and a lower surface, and include a first magnetoresistive structure 310 and a second magnetoresistive structure 320, and the spacer layer 350 is disposed at A magnetoresistive structure 310 and a second magnetoresistive structure 320 are connected to each other. The first magnetoresistive structure 310 has a fixed first magnetization direction D1, and the upper surface 392, the lower surface 390, and the sensing magnetic field are axially parallel to each other. The second magnetoresistive structure 320 is disposed on one side of the first magnetoresistive structure 310, and has a second magnetization direction D2, and the second magnetization direction D2 changes according to the strength of the applied magnetic field. The dielectric layer 394 is disposed above the upper surfaces of the first spin valve magnetoresistive element 301 and the third spin valve magnetoresistive element 303. The second spin valve magnetoresistive element 302 and the fourth spin valve magnetoresistive element 304 are disposed above the dielectric layer 394, and include a third magnetoresistive structure 330 and a fourth magnetoresistive structure 340. The three magnetoresistive structure 330 and the fourth magnetoresistive structure 340 are connected to each other. The third magnetoresistive structure 330 has a fixed third magnetization direction D3 which is anti-parallel to the first magnetization direction D1. The fourth magnetoresistive structure 340 is disposed on one side of the third magnetoresistive structure 330, and has a fourth magnetization direction D4, and the fourth magnetization direction D4 is changeable according to the strength of the applied magnetic field, and is parallel to the second magnetization direction D2. The above magnetization directions (D1, D2, D3, D4) are defined as the magnetization direction of the magnetic layer connected to the spacer layer in the magnetoresistive structure (310, 320, 330, 340). It should be noted that the third spin valve magnetoresistive element 303 and the first spin valve magnetoresistive element 301 can be completed in the same process, the second spin valve magnetoresistive element 302 and the fourth spin valve magnetoresistance Element 304 can also be completed in the same process.
接著,將第三自旋閥磁阻元件303分別與第二自旋閥磁阻元件302和第四自旋閥磁阻元件304電性連接,第一自旋閥磁阻元件301分別與第四自旋閥磁阻元件304和第二自旋閥磁阻元件302電性連接配置成惠斯登電橋(Wheatstone bridge),將之稱為為第一磁阻感測器800,用以偵測第一軸向(第一磁化方向D1或第三磁化方向D3)的磁場強度,當外加磁場為零時,第二磁化方向和第四磁化方向為垂直第一軸向成同向平行,第一磁化方向和第三磁化方向相反且分別和第二磁化方向和第四磁化方向間夾直角。其中810為輸入電壓端點,830為參考電壓端點,820為第一輸出電壓端點,840為第二輸出電壓端點。自旋 閥磁阻元件的電性連接方式可為水平串接法(CIP,Current-in-Plane,出/入接點在自旋閥磁阻元件間隔層之同一側或兩側)或垂直串接法(CPP,Current-Perpendicular-to-Plane,出/入接點在自旋閥磁阻元件間隔層之兩側),視自旋閥磁阻元件種類而定。Next, the third spin valve magnetoresistive element 303 is electrically connected to the second spin valve magnetoresistive element 302 and the fourth spin valve magnetoresistive element 304, respectively, and the first spin valve magnetoresistive element 301 and the fourth The spin valve magnetoresistive element 304 and the second spin valve magnetoresistive element 302 are electrically connected to each other to be configured as a Wheatstone bridge, which is referred to as a first magnetoresistive sensor 800 for detecting The magnetic field strength of the first axial direction (the first magnetization direction D1 or the third magnetization direction D3), when the applied magnetic field is zero, the second magnetization direction and the fourth magnetization direction are perpendicular to the first axis and are parallel in the same direction, first The magnetization direction is opposite to the third magnetization direction and is respectively perpendicular to the second magnetization direction and the fourth magnetization direction. Where 810 is the input voltage endpoint, 830 is the reference voltage endpoint, 820 is the first output voltage endpoint, and 840 is the second output voltage endpoint. Spin The electrical connection of the valve magnetoresistive element can be horizontally connected (CIP, Current-in-Plane, the in/out contact is on the same side or both sides of the spacer of the spin valve magnetoresistive element) or vertical series connection (CPP, Current-Perpendicular-to-Plane, the in/out contacts are on either side of the spin-valve magnetoresistive element spacer), depending on the type of spin-valve magnetoresistive element.
當感測外加磁場強弱時,習知自旋閥磁阻感測器中,需於惠斯登電橋任一對角線上之兩自旋閥磁阻元件上覆蓋遮蔽層或外加載流線圈,產生自旋閥磁阻元件參考電阻值或設定自旋閥磁阻元件之固定層磁化方向,造成製程上的複雜度。在本發明之一實施例中,利用上述自旋閥磁阻元件中第一磁化方向D1和第三磁化方向D3成反平行方向,而第二磁化方向D2和第四磁化方向D4相同,如此一來,可使第一自旋閥磁阻元件301和第三自旋閥磁阻元件303以及第二自旋閥磁阻元件302和第四自旋閥磁阻元件304分別擁有相同之第一電阻值和第二電阻值,不只增添了感測外加磁場時,自旋閥磁阻感測器之靈敏度,也不需如習知自旋閥磁阻感測器,要外加遮蔽層或外加載流線圈,才可以感測外加磁場之強弱。When sensing the applied magnetic field strength, the conventional spin valve magnetoresistive sensor needs to cover the shielding layer or the external loading current coil on the two spin valve magnetoresistive elements on either diagonal of the Wheatstone bridge. The reference valve resistance value of the spin valve magnetoresistive element is generated or the fixed layer magnetization direction of the spin valve magnetoresistive element is set, which causes process complexity. In an embodiment of the present invention, the first magnetization direction D1 and the third magnetization direction D3 in the spin valve magnetoresistive element are in an anti-parallel direction, and the second magnetization direction D2 and the fourth magnetization direction D4 are the same, such that The first spin valve magnetoresistive element 301 and the third spin valve magnetoresistive element 303 and the second spin valve magnetoresistive element 302 and the fourth spin valve magnetoresistive element 304 respectively have the same first resistance. The value and the second resistance value not only increase the sensitivity of the spin valve magnetoresistive sensor when sensing the applied magnetic field, but also do not need to be a conventional spin valve magnetoresistive sensor, plus a shielding layer or an external loading flow. The coil can sense the strength of the applied magnetic field.
圖9為本發明之又一實施例中堆疊式自旋閥磁阻感測器900的剖面示意圖。請參考圖9,磁阻感測器900也可利用上述自旋閥磁阻元件中第一磁化方向D1和第三磁化方向D3相同,平行於外加磁場軸向(第一軸向);第二磁化方向D2和第四磁化方向D4因應外加磁場之強弱而產生變化,彼此成反平行方向。使第一自旋閥磁阻元件301和第三自旋閥磁阻元件303以及第二自旋閥磁阻元件302和第四自旋閥磁阻元件304也分別擁有相同之第一電阻值和第二電阻值,藉以感測外加磁場之強弱。9 is a cross-sectional view of a stacked spin valve magnetoresistive sensor 900 in accordance with yet another embodiment of the present invention. Referring to FIG. 9, the magnetoresistive sensor 900 can also utilize the first magnetization direction D1 and the third magnetization direction D3 of the spin valve magnetoresistive element to be the same, parallel to the applied magnetic field axial direction (first axial direction); The magnetization direction D2 and the fourth magnetization direction D4 vary in response to the strength of the applied magnetic field, and are antiparallel to each other. The first spin valve magnetoresistive element 301 and the third spin valve magnetoresistive element 303 and the second spin valve magnetoresistive element 302 and the fourth spin valve magnetoresistive element 304 respectively have the same first resistance value and The second resistance value is used to sense the strength of the applied magnetic field.
圖10為本發明之再一實施例中堆疊式自旋閥磁阻感測器1000的實際結構剖面示意圖,可利用垂直配置自旋閥磁阻元件組成。在實際晶片製程中,自旋閥堆疊結構的形成步驟可包含:(1)連續沉積下自旋閥磁阻元件膜層(包含第一自旋閥磁阻元件301、第三自旋閥磁阻元件303)、介電層、上自旋閥磁阻元件膜層(包含第二自旋閥磁阻元件302、第四自旋閥磁阻元件304)、以及最後的硬遮罩層;(2)微影製程定義自旋閥堆疊結構圖形;(3)依序蝕刻硬遮罩層、上自旋閥磁阻元件膜層、介電層、下自旋閥磁阻元件膜層,完成自旋閥堆疊結構製作。另一自旋閥堆疊結構的形成步驟可包含:(1)形成下自旋閥磁阻元件;(2)沉積介電層;(3)形成上自旋閥磁阻元件。接著利用透孔接觸導線(via contact)與金屬導線將第三自旋閥磁阻元件分別與第二自旋閥磁阻元件和第四自旋閥磁阻元件電性連接,第一自旋閥磁阻元件分別與第四自旋閥磁阻元件和第二自旋閥磁阻元件電性連接配置成惠斯登電橋(Wheatstone bridge)。在此自旋閥磁阻元件的電性連接方式以水平串接法(CIP)為例。其中上電極導線810可電性連接至輸入電壓端點,上電極導線830可電性連接至參考電壓端點,上電極導線820可電性連接至第一輸出電壓端點,上電極導線840可電性連接至第二輸出電壓端點。FIG. 10 is a cross-sectional view showing the actual structure of the stacked spin valve magnetoresistive sensor 1000 according to still another embodiment of the present invention, which can be composed of a vertically arranged spin valve magnetoresistive element. In the actual wafer process, the step of forming the spin valve stack structure may include: (1) continuously depositing a spin valve magnetoresistive element film layer (including the first spin valve magnetoresistive element 301, the third spin valve magnetoresistance) Element 303), dielectric layer, upper spin valve magnetoresistive element film layer (including second spin valve magnetoresistive element 302, fourth spin valve magnetoresistive element 304), and finally hard mask layer; (2 The lithography process defines the spin valve stack structure pattern; (3) sequentially etches the hard mask layer, the upper spin valve magnetoresistive element film layer, the dielectric layer, and the lower spin valve magnetoresistive element film layer to complete the spin The valve stack structure is fabricated. The step of forming another spin valve stack structure may include: (1) forming a lower spin valve magnetoresistive element; (2) depositing a dielectric layer; and (3) forming an upper spin valve magnetoresistive element. Then, the third spin valve magnetoresistive element is electrically connected to the second spin valve magnetoresistive element and the fourth spin valve magnetoresistive element respectively by using a via contact and a metal wire, the first spin valve The magnetoresistive elements are electrically connected to the fourth spin valve magnetoresistive element and the second spin valve magnetoresistive element respectively to form a Wheatstone bridge. The electrical connection method of the spin valve magnetoresistive element is exemplified by horizontal series connection (CIP). The upper electrode lead 810 can be electrically connected to the input voltage end point, the upper electrode lead 830 can be electrically connected to the reference voltage end point, the upper electrode lead 820 can be electrically connected to the first output voltage end point, and the upper electrode lead 840 can be electrically connected Electrically connected to the second output voltage endpoint.
此外,為同時測量互相垂直之第一軸向和第二軸向的磁場強弱,圖11為本發明之再一實施例中堆疊式自旋閥磁阻感測器的剖面示意圖。請參考圖11,堆疊式自旋閥磁阻感測器1100可配置為一組第一磁阻感測器,並將另一組第一磁阻感測器旋轉九十度方向,稱為第二磁阻感測器,用以偵測第二軸向的磁場強度。第二磁阻感測器包含第五自旋閥磁阻元件305、第六自旋閥磁阻元件306、第七自旋閥磁阻元件307和第八自旋閥磁阻元件308。其中,第五自旋閥磁阻元件305、第六自旋閥磁阻元件306、第七自旋閥磁阻元件307和第八自旋閥磁阻元件308分別和第一自旋閥磁阻元件301、第二自旋閥磁阻元件302、第三自旋閥磁阻元件303和第四自旋閥磁阻元件304夾90度角。將第七自旋閥磁阻元件307分別與第六自旋閥磁阻元件306和第八自旋閥磁阻元件308電性連接,第五自旋閥磁阻元件305分別與第八自旋閥磁阻元件308和第六自旋閥磁阻元件306電性連接,完成兩組惠斯登電橋。In addition, in order to simultaneously measure the magnetic field strengths of the first axial direction and the second axial direction perpendicular to each other, FIG. 11 is a schematic cross-sectional view of the stacked spin valve magnetoresistive sensor according to still another embodiment of the present invention. Referring to FIG. 11 , the stacked spin valve magnetoresistive sensor 1100 can be configured as a set of first magnetoresistive sensors and rotate another set of first magnetoresistive sensors in a direction of ninety degrees, called A two-magnetoresistive sensor for detecting the magnetic field strength of the second axial direction. The second magnetoresistive sensor includes a fifth spin valve magnetoresistive element 305, a sixth spin valve magnetoresistive element 306, a seventh spin valve magnetoresistive element 307, and an eighth spin valve magnetoresistive element 308. Wherein, the fifth spin valve magnetoresistive element 305, the sixth spin valve magnetoresistive element 306, the seventh spin valve magnetoresistive element 307 and the eighth spin valve magnetoresistive element 308 and the first spin valve reluctance respectively Element 301, second spin valve magnetoresistive element 302, third spin valve magnetoresistive element 303, and fourth spin valve magnetoresistive element 304 are clamped at an angle of 90 degrees. The seventh spin valve magnetoresistive element 307 is electrically connected to the sixth spin valve magnetoresistive element 306 and the eighth spin valve magnetoresistive element 308, respectively, and the fifth spin valve magnetoresistive element 305 and the eighth spin respectively The valve magnetoresistive element 308 and the sixth spin valve magnetoresistive element 306 are electrically connected to complete two sets of Wheatstone bridges.
其中,上述第五自旋閥磁阻元件305和第七自旋閥磁阻元件307包含第一磁阻結構310和第二磁阻結構320,其可於同一製程中形成。第一磁阻結構310具有固定不變之第五磁化方向D5,第五磁化方向D5和第一磁化方向D1相同。第二磁阻結構320配置於第一磁阻結構310之一側,其具有第六磁化方向D6,且第六磁化方向D6因應外加磁場之強弱而產生變化,在外加磁場為零時,第六磁化方向D6和第二磁化方向D2夾90度角,兩者皆沿著該自旋閥磁阻元件之易軸方向。第六自旋閥磁阻元件306和第八自旋閥磁阻元件308包含第三磁阻結構330和第四磁阻結構340。其中,第三磁阻結構330具有固定不變之第七磁化方向D7,第七磁化方向D7和第三磁化方向D3同向,第四磁阻結構340配置第三磁阻結構330之一側,其具有第八磁化方向D8,且第八磁化方向D8因應外加磁場之強弱而產生變化,在外加磁場為零時,第八磁化方向D8和第四磁化方向D4夾90度角,同樣地兩者皆沿著該自旋閥磁阻元件之易軸方向。The fifth spin valve magnetoresistive element 305 and the seventh spin valve magnetoresistive element 307 include a first magnetoresistive structure 310 and a second magnetoresistive structure 320, which can be formed in the same process. The first magnetoresistive structure 310 has a fixed fifth magnetization direction D5, and the fifth magnetization direction D5 is the same as the first magnetization direction D1. The second magnetoresistive structure 320 is disposed on one side of the first magnetoresistive structure 310, and has a sixth magnetization direction D6, and the sixth magnetization direction D6 changes according to the strength of the applied magnetic field. When the applied magnetic field is zero, the sixth The magnetization direction D6 and the second magnetization direction D2 are at an angle of 90 degrees, both of which are along the easy axis direction of the spin valve magnetoresistive element. The sixth spin valve magnetoresistive element 306 and the eighth spin valve magnetoresistive element 308 include a third magnetoresistive structure 330 and a fourth magnetoresistive structure 340. The third magnetoresistive structure 330 has a fixed seventh magnetization direction D7, the seventh magnetization direction D7 and the third magnetization direction D3 are in the same direction, and the fourth magnetoresistive structure 340 is disposed on one side of the third magnetoresistive structure 330. It has an eighth magnetization direction D8, and the eighth magnetization direction D8 changes according to the strength of the applied magnetic field. When the applied magnetic field is zero, the eighth magnetization direction D8 and the fourth magnetization direction D4 are at an angle of 90 degrees, and the same Both are along the easy axis direction of the spin valve magnetoresistive element.
請參照圖11,於第一磁阻感測器1101中,在無外加磁場時,第二磁化方向D2和第四磁化方向D4相同,可垂直第一軸向Dx(沿第二軸向D-y延伸)。第一磁化方向D1和第三磁化方向D3成反向平行,分別和第二磁化方向D2和第四磁化方向D4夾一銳角θ。於第二磁阻感測器中,在無外加磁場時,第六磁化方向D6和第八磁化方向方向D8相同,可垂直第二軸向Dy(沿著第一軸向D+x)延伸。第五磁化方向D5和第七磁化方向D7成反向平行,分別和第六磁化方向D6和第八磁化方向D8夾一銳角θ。在本發明之實施例中,銳角θ可為一45度角。在此第一軸向之磁阻感測器1101用以偵測沿著X軸方向(D+x、D-x)之磁場強度,而第二軸向之磁阻感測器1102則用以偵測沿著Y軸方向(D+y、D-y)之磁場強度。Referring to FIG. 11, in the first magnetoresistive sensor 1101, when no external magnetic field is applied, the second magnetization direction D2 and the fourth magnetization direction D4 are the same, and may be perpendicular to the first axial direction Dx (extending along the second axial direction Dy) ). The first magnetization direction D1 and the third magnetization direction D3 are anti-parallel, and are respectively separated from the second magnetization direction D2 and the fourth magnetization direction D4 by an acute angle θ. In the second magnetoresistive sensor, the sixth magnetization direction D6 and the eighth magnetization direction direction D8 are the same when there is no external magnetic field, and may extend perpendicular to the second axial direction Dy (along the first axial direction D+x). The fifth magnetization direction D5 and the seventh magnetization direction D7 are antiparallel, and are respectively separated from the sixth magnetization direction D6 and the eighth magnetization direction D8 by an acute angle θ. In an embodiment of the invention, the acute angle θ may be a 45 degree angle. The first axial magnetoresistive sensor 1101 is for detecting the magnetic field strength along the X-axis direction (D+x, Dx), and the second axial magnetoresistive sensor 1102 is for detecting The magnetic field strength along the Y-axis direction (D+y, Dy).
圖12為本發明之再一實施例中堆疊式自旋閥磁阻感測器的剖面示意圖。請參考圖12,在本發明之再一實施例中,為達相同目的,可同時感測互相垂直之第一軸向X軸和第二軸向Y軸的磁場強弱,在無外加磁場時,堆疊式自旋閥磁阻感測器1200中之第一磁阻感測器中,也可以是第二磁化方向D2和第四磁化方向D4成反向平行,垂直第一軸向Dx,分別沿第二軸向Dy、D-y延伸,而第一磁化方向D1和第三磁化方向D3相同,分別和第二磁化方向D2和第四磁化方向D4夾一銳角θ。而在第二磁阻感測器中,第六磁化方向D6和第八磁化方向D8,可垂直第二軸向Dy,沿著第一軸向Dx、D-x延伸,但方向成反向平行,第五磁化方向D5和第七磁化方向D7相同,分別和第六磁化方向D6和第八磁化方向D8夾一銳角θ。本發明之實施例中,銳角θ可為45度角。FIG. 12 is a cross-sectional view showing a stacked spin valve magnetoresistive sensor according to still another embodiment of the present invention. Referring to FIG. 12, in another embodiment of the present invention, for the same purpose, the magnetic field strengths of the first axial X-axis and the second axial Y-axis perpendicular to each other can be simultaneously sensed, when no external magnetic field is applied. In the first magnetoresistive sensor of the stacked spin valve magnetoresistive sensor 1200, the second magnetization direction D2 and the fourth magnetization direction D4 may be antiparallel, and the first axial direction Dx may be along The second axial directions Dy, Dy extend, and the first magnetization direction D1 and the third magnetization direction D3 are the same, and an acute angle θ is sandwiched between the second magnetization direction D2 and the fourth magnetization direction D4, respectively. In the second magnetoresistive sensor, the sixth magnetization direction D6 and the eighth magnetization direction D8 are perpendicular to the second axial direction Dy, extending along the first axial direction Dx, Dx, but the directions are anti-parallel, The fifth magnetization direction D5 and the seventh magnetization direction D7 are the same, and an acute angle θ is sandwiched between the sixth magnetization direction D6 and the eighth magnetization direction D8, respectively. In an embodiment of the invention, the acute angle θ may be a 45 degree angle.
綜上所述,在本發明之自旋閥堆疊結構中,由於是兩個自旋閥磁阻元件垂直堆疊結構,相較於傳統平面配置的結構,可使用不同的自旋閥元件作堆疊組合,並縮小磁阻感測器的面積。且自旋閥堆疊結構中的自旋閥磁阻元件可於同一退火製程中定義出相反之固定層或自由層磁化方向。在製程後續的磁阻感測器中,由於有兩組不同之磁化方向,故無需外加遮蔽層或載流線圈,降低了在製程上的複雜度。In summary, in the spin valve stack structure of the present invention, since the two spin valve magnetoresistive elements are vertically stacked, different spin valve components can be used as a stack combination compared to the conventional planar configuration. And reduce the area of the magnetoresistive sensor. And the spin valve magnetoresistive element in the spin valve stack structure can define the opposite fixed layer or free layer magnetization direction in the same annealing process. In the subsequent magnetoresistive sensor of the process, since there are two sets of different magnetization directions, no additional shielding layer or current-carrying coil is needed, which reduces the complexity in the process.
雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。While the present invention has been described in its preferred embodiments, the present invention is not intended to limit the invention, and the present invention may be modified and modified without departing from the spirit and scope of the invention. The scope of protection is subject to the definition of the scope of the patent application.
100...多層膜磁阻感測器100. . . Multilayer film magnetoresistive sensor
101...第一多層膜磁阻構造101. . . First multilayer film magnetoresistive structure
102...第二多層膜磁阻構造102. . . Second multilayer film magnetoresistive structure
103...第三多層膜磁阻構造103. . . Third multilayer film magnetoresistive structure
104...第四多層膜磁阻構造104. . . Fourth multilayer film magnetoresistive structure
106、108、206、207、208、D11、D21、D31、D41...磁化方向106, 108, 206, 207, 208, D11, D21, D31, D41. . . Magnetization direction
110...遮蔽層110. . . Masking layer
112...第一磁性層112. . . First magnetic layer
113、211...間隔層113, 211. . . Spacer
114...第二磁性層114. . . Second magnetic layer
200...自旋閥磁阻感測器200. . . Spin valve magnetoresistive sensor
201...第一自旋閥磁阻構造201. . . First spin valve magnetoresistive structure
202...第二自旋閥磁阻構造202. . . Second spin valve magnetoresistive structure
203...第三自旋閥磁阻構造203. . . Third spin valve magnetoresistive structure
204...第四自旋閥磁阻構造204. . . Fourth spin valve magnetoresistive structure
210...固定層210. . . Fixed layer
212...自由層212. . . Free layer
214...偏壓層214. . . Bias layer
R11、R12、R21、R22...電阻R11, R12, R21, R22. . . resistance
300、400、500、600、700...自旋閥堆疊結構300, 400, 500, 600, 700. . . Spin valve stack structure
800、900、1000、1100、1200...堆疊式自旋閥磁阻感測器800, 900, 1000, 1100, 1200. . . Stacked spin valve magnetoresistive sensor
301...第一自旋閥磁阻元件301. . . First spin valve magnetoresistive element
302...第二自旋閥磁阻元件302. . . Second spin valve magnetoresistive element
303...第三自旋閥磁阻元件303. . . Third spin valve magnetoresistive element
304...第四自旋閥磁阻元件304. . . Fourth spin valve magnetoresistive element
305...第五自旋閥磁阻元件305. . . Fifth spin valve magnetoresistive element
306...第六自旋閥磁阻元件306. . . Sixth spin valve magnetoresistive element
307...第七自旋閥磁阻元件307. . . Seventh spin valve magnetoresistive element
308...第八自旋閥磁阻元件308. . . Eighth spin valve magnetoresistive element
310...第一磁阻結構310. . . First magnetoresistive structure
312、322、332、342...第一磁性層312, 322, 332, 342. . . First magnetic layer
314、324、334、344...第二磁性層314, 324, 334, 344. . . Second magnetic layer
316、326、336、346‧‧‧耦合層316, 326, 336, 346‧‧‧ coupling layer
320‧‧‧第二磁阻結構320‧‧‧Second magnetoresistive structure
330‧‧‧第三磁阻結構330‧‧‧ Third magnetoresistive structure
340‧‧‧第四磁阻結構340‧‧‧4th magnetoresistive structure
350、370‧‧‧間隔層350, 370‧‧‧ spacer
360、380‧‧‧偏壓層360, 380‧‧‧ bias layer
810‧‧‧輸入電壓端點810‧‧‧Input voltage endpoint
820‧‧‧第一輸出電壓端點820‧‧‧First output voltage endpoint
830‧‧‧參考電壓端點830‧‧‧reference voltage endpoint
840‧‧‧第二輸出電壓端點840‧‧‧second output voltage endpoint
1101‧‧‧第一磁阻感測器1101‧‧‧First Magnetoresistive Sensor
1102‧‧‧第二磁阻感測器1102‧‧‧Second Magnetoresistive Sensor
D1‧‧‧第一磁化方向D1‧‧‧first magnetization direction
D2‧‧‧第二磁化方向D2‧‧‧second magnetization direction
D3‧‧‧第三磁化方向D3‧‧‧ Third magnetization direction
D4‧‧‧第四磁化方向D4‧‧‧fourth magnetization direction
D5‧‧‧第五磁化方向D5‧‧‧ fifth magnetization direction
D6‧‧‧第六磁化方向D6‧‧‧ sixth magnetization direction
D7‧‧‧第七磁化方向D7‧‧‧ seventh magnetization direction
D8‧‧‧第八磁化方向D8‧‧‧8th magnetization direction
Dx‧‧‧第一軸向Dx‧‧‧first axial direction
Dy‧‧‧第二軸向Dy‧‧‧second axial
θ‧‧‧銳角Θ‧‧‧ acute angle
圖1繪示為習知多層膜磁阻感測器的示意圖。FIG. 1 is a schematic diagram of a conventional multilayer film magnetoresistive sensor.
圖2繪示為為另一習知自旋閥磁阻感測器的示意圖。2 is a schematic diagram of another conventional spin valve magnetoresistive sensor.
圖3至圖7為本發明之一實施例中自旋閥堆疊結構的剖面示意圖。3 to 7 are schematic cross-sectional views showing a stacking structure of a spin valve according to an embodiment of the present invention.
圖8為本發明中之另一實施例中堆疊式自旋閥磁阻感測器的剖面示意圖。FIG. 8 is a cross-sectional view showing a stacked spin valve magnetoresistive sensor according to another embodiment of the present invention.
圖9為本發明中之又一實施例中堆疊式自旋閥磁阻感測器的剖面示意圖。9 is a cross-sectional view showing a stacked spin valve magnetoresistive sensor in still another embodiment of the present invention.
圖10至圖12為本發明中之再一實施例中堆疊式自旋閥磁阻感測器的剖面示意圖。10 to 12 are schematic cross-sectional views showing a stacked spin valve magnetoresistive sensor according to still another embodiment of the present invention.
800...堆疊式自旋閥磁阻感測器800. . . Stacked spin valve magnetoresistive sensor
301...第一自旋閥磁阻元件301. . . First spin valve magnetoresistive element
302...第二自旋閥磁阻元件302. . . Second spin valve magnetoresistive element
303...第三自旋閥磁阻元件303. . . Third spin valve magnetoresistive element
304...第四自旋閥磁阻元件304. . . Fourth spin valve magnetoresistive element
310...第一磁阻結構310. . . First magnetoresistive structure
320...第二磁阻結構320. . . Second magnetoresistive structure
330...第三磁阻結構330. . . Third magnetoresistive structure
340...第四磁阻結構340. . . Fourth magnetoresistive structure
350、370...間隔層350, 370. . . Spacer
360、380...偏壓層360, 380. . . Bias layer
390...第一磁阻結構下表面390. . . Lower surface of the first magnetoresistive structure
392...第一磁阻結構上表面392. . . Upper surface of the first magnetoresistive structure
394...介電層394. . . Dielectric layer
810...輸入電壓端點810. . . Input voltage endpoint
820...第一輸出電壓端點820. . . First output voltage endpoint
830...參考電壓端點830. . . Reference voltage endpoint
840...第二輸出電壓端點840. . . Second output voltage endpoint
D1...第一磁化方向D1. . . First magnetization direction
D2...第二磁化方向D2. . . Second magnetization direction
D3...第三磁化方向D3. . . Third magnetization direction
D4...第四磁化方向D4. . . Fourth magnetization direction
Claims (17)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW100115224A TWI449065B (en) | 2011-04-29 | 2011-04-29 | A stacked spin-valve magnetic sensor and fabrication method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW100115224A TWI449065B (en) | 2011-04-29 | 2011-04-29 | A stacked spin-valve magnetic sensor and fabrication method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201243874A TW201243874A (en) | 2012-11-01 |
TWI449065B true TWI449065B (en) | 2014-08-11 |
Family
ID=48093955
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW100115224A TWI449065B (en) | 2011-04-29 | 2011-04-29 | A stacked spin-valve magnetic sensor and fabrication method thereof |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI449065B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115542207B (en) * | 2022-09-22 | 2023-10-31 | 江苏多维科技有限公司 | Magnetoresistive structure and uniaxial measuring magnetic sensor |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW498327B (en) * | 2000-03-09 | 2002-08-11 | Koninkl Philips Electronics Nv | Magnetic device with a coupling layer and method of manufacturing and operation of such device |
-
2011
- 2011-04-29 TW TW100115224A patent/TWI449065B/en not_active IP Right Cessation
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW498327B (en) * | 2000-03-09 | 2002-08-11 | Koninkl Philips Electronics Nv | Magnetic device with a coupling layer and method of manufacturing and operation of such device |
Also Published As
Publication number | Publication date |
---|---|
TW201243874A (en) | 2012-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI616007B (en) | Spin valve magnetoresistance element with improved response to magnetic fields | |
JP6189426B2 (en) | Magnetoresistive gear sensor | |
EP3092505B1 (en) | Magnetoresistance element with an improved seed layer to promote an improved response to magnetic fields | |
JP2014517264A (en) | Single-chip reference full-bridge magnetic field sensor | |
KR20180026725A (en) | Magnetoresistive sensor | |
JP2014515470A (en) | Single chip 2-axis bridge type magnetic field sensor | |
US11428758B2 (en) | High sensitivity TMR magnetic sensor | |
US11169228B2 (en) | Magnetic sensor with serial resistor for asymmetric sensing field range | |
JP6233722B2 (en) | Magnetic field generator, magnetic sensor system, and magnetic sensor | |
US20230251334A1 (en) | Magnetism detection device | |
JP2017103378A (en) | Magnetoresistance effect element, magnetic sensor, manufacturing method of magnetoresistance effect element, and manufacturing method of magnetic sensor | |
US11493573B2 (en) | Magnetic sensor with dual TMR films and the method of making the same | |
US11169226B2 (en) | Magnetic sensor bias point adjustment method | |
JP5195845B2 (en) | Magnetic sensor and magnetic field strength measuring method | |
TWI449065B (en) | A stacked spin-valve magnetic sensor and fabrication method thereof | |
CN113167847B (en) | Magnetic sensor array with dual TMR films | |
KR101965510B1 (en) | Giant magnetoresistance Sensor | |
CN113196079B (en) | Magnetic sensor array having a TMR stack including two free layers | |
JP6350841B2 (en) | Magnetic field generator and magnetic sensor | |
JP2015095630A (en) | Magnetic sensor | |
JP2019056685A (en) | Magnetic sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |