[go: up one dir, main page]

JP2003192301A - Method for producing hydrogen from lower hydrocarbons - Google Patents

Method for producing hydrogen from lower hydrocarbons

Info

Publication number
JP2003192301A
JP2003192301A JP2001388871A JP2001388871A JP2003192301A JP 2003192301 A JP2003192301 A JP 2003192301A JP 2001388871 A JP2001388871 A JP 2001388871A JP 2001388871 A JP2001388871 A JP 2001388871A JP 2003192301 A JP2003192301 A JP 2003192301A
Authority
JP
Japan
Prior art keywords
catalyst
hydrogen
reaction
methane
producing hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001388871A
Other languages
Japanese (ja)
Inventor
Naoki Mimura
直樹 三村
Kazuhisa Murata
和久 村田
Hitoshi Inaba
仁 稲葉
Isao Takahara
功 高原
Masahiro Saito
昌弘 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2001388871A priority Critical patent/JP2003192301A/en
Publication of JP2003192301A publication Critical patent/JP2003192301A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for decomposing hydrocarbons capable of producing hydrogen efficiently in a relatively short period of time using a highly active catalyst. <P>SOLUTION: This method for producing hydrogen by a decomposition reaction of a lower hydrocarbon comprises bringing a 1-4C lower hydrocarbon-containing gas into contact with an H-β type zeolite or H-ZSM-5 type zeolite catalyst at 400 to 800°C. AS a raw material lower hydrocarbon-containing gas, it is preferable to use methane or a mixed gas of methane and an inert gas. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、炭化水素の分解反
応による水素の製法に関するものである。
TECHNICAL FIELD The present invention relates to a method for producing hydrogen by a decomposition reaction of hydrocarbons.

【0002】[0002]

【従来の技術】水素は、化学工業分野において汎用され
る化学物質の製造原料などに広範に利用されているが、
近年における環境問題の高まりに伴って、クリーンなエ
ネルギー源として重要なものになってきている。従来、
炭化水素から水素を製造する方法としては、炭化水素を
水蒸気改質する方法や空気により部分酸化する方法など
が知られているが、これらの方法は、地球温暖化を引き
起こす二酸化炭素が多量に副生するという問題がある。
2. Description of the Related Art Hydrogen is widely used as a raw material for the production of chemical substances widely used in the chemical industry.
With the increasing environmental problems in recent years, it has become important as a clean energy source. Conventionally,
Known methods for producing hydrogen from hydrocarbons include steam reforming of hydrocarbons and partial oxidation of the hydrocarbons with air. However, these methods produce a large amount of carbon dioxide that causes global warming. There is a problem of living.

【0003】最近、炭化水素から水素を製造する他の方
法として、メタンなどの分解反応により水素と固体状炭
素を製造する方法が検討されている。この方法は、二酸
化炭素を発生しないことから注目される水素の製法であ
って、この分解反応には、主として金属酸化物に担持さ
れたニッケル触媒が用いられ、なかでもシリカ(Cab-O-
Sil)担持触媒は高活性かつ長寿命であることが報告さ
れている〔Chemistry Letters, 1179-1180 (1999)〕。
ところが、この方法は、水素の生成に長時間を要するこ
とやメタンの分解で副生するカーボンが触媒上に蓄積
し、やがて触媒活性が低下するなどの問題がある。
Recently, as another method of producing hydrogen from hydrocarbons, a method of producing hydrogen and solid carbon by a decomposition reaction of methane or the like has been investigated. This method is a method for producing hydrogen, which attracts attention because it does not generate carbon dioxide, and in this decomposition reaction, a nickel catalyst supported on a metal oxide is mainly used. Among them, silica (Cab-O-
Sil) -supported catalysts have been reported to have high activity and long life [Chemistry Letters, 1179-1180 (1999)].
However, this method has problems that it takes a long time to generate hydrogen, carbon by-produced by decomposition of methane accumulates on the catalyst, and eventually the catalytic activity decreases.

【0004】[0004]

【発明が解決しようとする課題】本発明は、従来の技術
における上記した実状のもとになされたものである。す
なわち、本発明の目的は、高活性な触媒を用いて比較的
短時間で効率よく水素を製造できる炭化水素の分解方法
を提供することにある。
The present invention has been made based on the above-mentioned actual situation in the prior art. That is, it is an object of the present invention to provide a hydrocarbon decomposition method capable of efficiently producing hydrogen in a relatively short time using a highly active catalyst.

【0005】[0005]

【課題を解決するための手段】本発明者らは、炭化水素
の分解による水素の製法について鋭意研究を重ねた結
果、ニッケルを特定の担体に担持させた触媒を用いる
と、炭化水素の分解が促進され、長時間触媒活性が保持
されるとともに高収率で水素が得られることを見出し、
本発明を完成するに至った。すなわち、本発明によれ
ば、炭素数1〜4の低級炭化水素含有ガスをニッケルが
担持されているH−ベータ型ゼオライト触媒またはニッ
ケルが担持されているH−ZSM−5型ゼオライト触媒
と400〜800℃で接触させて、低級炭化水素の分解
反応により水素を得ることを特徴とする水素の製造方法
が提供される。その際、原料の炭素数1〜4の低級炭化
水素含有ガスとしては、メタンまたはメタンと不活性ガ
スとの混合ガスを用いることが好ましい。
Means for Solving the Problems The inventors of the present invention have conducted extensive studies on a method for producing hydrogen by decomposing hydrocarbons, and as a result, when a catalyst in which nickel is supported on a specific carrier is used, the decomposition of hydrocarbons is Found that hydrogen is obtained in high yield while being promoted, the catalytic activity is retained for a long time,
The present invention has been completed. That is, according to the present invention, a lower hydrocarbon-containing gas having 1 to 4 carbon atoms is supported on nickel by an H-beta type zeolite catalyst or by a nickel supported H-ZSM-5 type zeolite catalyst and 400- There is provided a method for producing hydrogen, which comprises contacting at 800 ° C. to obtain hydrogen by a decomposition reaction of a lower hydrocarbon. At that time, it is preferable to use methane or a mixed gas of methane and an inert gas as the lower hydrocarbon-containing gas having 1 to 4 carbon atoms as a raw material.

【0006】[0006]

【発明の実施の形態】本発明は、低級炭化水素を加熱条
件下、触媒担体に活性成分としてニッケルを担持させた
触媒と接触させて水素と炭素に分解させるものである。
本発明においては、触媒担体としてアルミノケイ酸塩で
あるゼオライトを用いる。一般にゼオライトには、A
型、X型、Y型などの種々のゼオライトが知られている
が、本発明では国際ゼオライト学会が制定した構造コー
ドでMFIと表記されるZSM−5型ゼオライトまたは
同じくBEAと表記されるベータ型ゼオライトであっ
て、ゼオライトは交換可能なカチオンとしてNaなどを含
有していることもあるがプロトン型(H型)に交換したも
のを用いる。このゼオライトのシリカ/アルミナ比は、
特に限定されるものではないが、好ましい範囲としては
20〜200の範囲のものである。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, a lower hydrocarbon is brought into contact with a catalyst having nickel supported as an active component on a catalyst carrier under heating conditions to decompose it into hydrogen and carbon.
In the present invention, zeolite which is an aluminosilicate is used as the catalyst carrier. Generally, zeolite has
Various types of zeolites such as type, X type, Y type, etc. are known, but in the present invention, ZSM-5 type zeolite represented by MFI in the structural code established by the International Zeolite Association or beta also represented by * BEA. Type zeolite, which may contain Na or the like as an exchangeable cation, is used after being exchanged into a proton type (H type). The silica / alumina ratio of this zeolite is
Although not particularly limited, a preferable range is from 20 to 200.

【0007】上記のゼオライト担体に触媒活性成分とし
て担持させるニッケルの前駆体として用いるニッケル化
合物は、特に制限されるものではないが、容易に入手可
能な水溶性の硝酸塩、酢酸塩、塩化物塩、硫酸塩などを
用いることが好ましく、なかでも硝酸塩がより好まし
い。また、ニッケルの担持方法としては、従来公知の如
何なる方法も使用可能であって、例えば、含浸法、沈殿
法、イオン交換法などが用いられるが、なかでも含浸法
により担持させることが好ましい。また、触媒担体に対
するニッケルの担持量は、所望の触媒活性が得られる範
囲であれば何ら制限されるものではないが、触媒担体1
gに対してニッケル原子3〜15mmolの範囲が好ま
しい。
The nickel compound used as a nickel precursor to be supported on the above zeolite carrier as a catalytically active component is not particularly limited, but readily available water-soluble nitrates, acetates, chlorides, It is preferable to use sulfate or the like, and nitrate is more preferable. As a method for supporting nickel, any conventionally known method can be used, and, for example, an impregnation method, a precipitation method, an ion exchange method or the like is used. Among them, the impregnation method is preferable. The amount of nickel supported on the catalyst carrier is not particularly limited as long as the desired catalyst activity can be obtained.
A range of 3 to 15 mmol of nickel atom is preferable with respect to g.

【0008】次に、ニッケル化合物を担持したゼオライ
ト担体を、酸素含有ガス中、例えば空気或いは酸素中で
加熱焼成を行うことが望ましい。その焼成温度として
は、通常300〜900℃の範囲であるが、好ましくは
500〜800℃である。また、その加熱時間は、通常
10分〜24時間の範囲であるが、好ましくは1〜10
時間である。
Next, it is desirable that the zeolite carrier carrying the nickel compound is heated and calcined in an oxygen-containing gas such as air or oxygen. The firing temperature is usually in the range of 300 to 900 ° C, preferably 500 to 800 ° C. The heating time is usually 10 minutes to 24 hours, preferably 1 to 10 hours.
It's time.

【0009】本発明に用いる反応原料としては、炭素数
1〜4の低級炭化水素含有ガスであって、炭素数1〜4
個を有する低級炭化水素の単独若しくは2種以上の混合
ガス、またはそれらの低級炭化水素と不活性ガスとの混
合ガスである。その低級炭化水素としては、メタン、エ
タン、エチレン、プロパン、プロピレン、ノルマルブタ
ン、イソブタン、1-ブテン、2-ブテン、イソブテン、ブ
タジエンなどが挙げられ、これらを単独で又はこれらの
2種以上を混合したものを用いるが、好ましくはメタン
である。また、不活性ガスとしては、ヘリウム、アルゴ
ン、ネオン、窒素などが挙げられ、これらを単独で又は
これらの2種以上を混合して用いる。さらに、上記の原
料中には、5%以下の水蒸気、酸素、空気などが含まれ
ていても良い。
The reaction raw material used in the present invention is a lower hydrocarbon-containing gas having 1 to 4 carbon atoms and having 1 to 4 carbon atoms.
It is a single gas or a mixed gas of two or more kinds of lower hydrocarbons having one or a mixed gas of these lower hydrocarbons and an inert gas. Examples of the lower hydrocarbon include methane, ethane, ethylene, propane, propylene, normal butane, isobutane, 1-butene, 2-butene, isobutene, butadiene and the like, and these may be used alone or in combination of two or more thereof. The one used is preferably methane. In addition, examples of the inert gas include helium, argon, neon, nitrogen, and the like, and these are used alone or in combination of two or more thereof. Further, the above raw materials may contain 5% or less of water vapor, oxygen, air and the like.

【0010】本発明の反応を行うには、従来公知の如何
なる接触反応形式も採用可能であるが、具体的には、流
通式、回分式、固定床、流動床などを単独で或いはこれ
らを適宜組み合わせて行うことができる。また、上記触
媒は、反応開始前に予め水素または水素と不活性ガスの
混合ガスと接触させて、還元活性化処理を行うことが望
ましい。その処理は400〜800℃の温度で10分間
〜10時間にわたって施すことが望ましい。
Any conventionally known catalytic reaction system can be employed to carry out the reaction of the present invention. Specifically, a flow system, a batch system, a fixed bed, a fluidized bed, etc. can be used alone or appropriately. It can be performed in combination. In addition, it is desirable that the catalyst be brought into contact with hydrogen or a mixed gas of hydrogen and an inert gas in advance before the reaction is started to perform the reduction activation treatment. The treatment is preferably performed at a temperature of 400 to 800 ° C. for 10 minutes to 10 hours.

【0011】低級炭化水素を触媒の存在下に分解させて
水素を製造する反応では、炭素が触媒表面に徐々に蓄積
するため、それに伴う反応器の閉塞などに十分注意を払
う必要がある。本発明において分解反応を行う温度は、
400〜800℃の範囲であることが必要である。40
0℃より低いと十分な転化率が達成できず、一方、80
0℃を超えると触媒上に炭素の折出が多くなって十分な
量の水素が得られない状態で触媒が失活するなどの問題
が生じる。この分解反応は、6〜10時間経過すると触
媒活性が低下して反応は殆ど進行しなくなるので、長時
間に亘り連続的に水素を得るには、複数の触媒層を配置
し、これらを適宜切り替えて、常に活性な触媒に原料ガ
スを供給できるシステムを備えた装置、または流動床な
どを応用して連続的に活性な触媒を供給する装置を用い
ることが望ましい。この反応に使用後の活性低下した触
媒は、空気または酸素含有ガス中で加熱処理すると炭素
質が除去されて再生されるから、再利用できるようにな
る。
In the reaction in which lower hydrocarbons are decomposed in the presence of a catalyst to produce hydrogen, carbon gradually accumulates on the surface of the catalyst, so that it is necessary to pay sufficient attention to the accompanying clogging of the reactor. In the present invention, the temperature for carrying out the decomposition reaction is
It is necessary to be in the range of 400 to 800 ° C. 40
If the temperature is lower than 0 ° C, a sufficient conversion cannot be achieved.
If the temperature exceeds 0 ° C., carbon is more likely to be deposited on the catalyst, which causes a problem such as deactivation of the catalyst when a sufficient amount of hydrogen cannot be obtained. In this decomposition reaction, the catalyst activity decreases after 6 to 10 hours and the reaction hardly progresses. Therefore, in order to continuously obtain hydrogen for a long time, a plurality of catalyst layers are arranged and these are appropriately switched. Therefore, it is desirable to use an apparatus provided with a system capable of always supplying the raw material gas to the active catalyst, or an apparatus which continuously supplies the active catalyst by applying a fluidized bed or the like. The catalyst whose activity has been reduced after use in this reaction can be reused because it is regenerated by removing carbonaceous substances when heat-treated in air or an oxygen-containing gas.

【0012】[0012]

【実施例】以下、本発明を実施例によりさらに具体的に
説明するが、本発明はこれらの実施例によって何ら限定
されるものではない。 実施例1 (触媒の調製)セラミック製反応皿(直径2cm、深さ
5mm)中に、シリカ−アルミナ比25のH−ベータ型
ゼオライト担体または150のH−ベータ型ゼオライト
担体0.1gを入れ、その中に硝酸ニッケル水溶液(2mo
l/l)0.25mlを滴下し、ガラス棒で担体と十分混
合させた後、100℃において乾燥させた。その後、空
気中750℃で5時間の加熱焼成を行うことにより触媒
を得た。この触媒のニッケル担持率は、担体1gあたり
5mmolであった。 (反応操作)石英製カップ(内径5.5mm、外径7.0m
m、高さ11.0mm)内に触媒約4mgを充填し、両端が
開口されたセラミック製ボート内に配置した。そのカッ
プを載せたボートを、両端が開口された石英反応管(外
径28mm、内径24mm)内に配置し、管状電気炉で加熱
する方式の反応器を準備した。その後、触媒を流速50
ml/分の水素(10vol%)とアルゴン(90vol%)の混合ガ
スと600℃で1時間接触させて、触媒の還元活性化処
理を行った。その反応器内を500℃に加熱し、その一
方の開口からメタン(10vol%)とヘリウム(90vol%)の混
合ガスを流速150ml/分で30分間に亘って流すこ
とによりメタンの分解反応を進行させた。反応終了後、
メタンガスの供給を停止し、ヘリウムのみを流しながら
100℃以下に冷却した。その後、カップ内の触媒を取
り出し、熱重量分析装置を用いて炭素及び触媒の重量
を、それぞれ精密に測定した。この測定で得られた炭素
重量から、生成水素量を計算で求め反応開始から30分
間の平均水素生成速度を算出した。その結果、シリカ/
アルミナ比25のH−ベータゼオライト担体を用いた触
媒では、水素生成速度が11.68mmolg/触媒・
分であった。一方、シリカ/アルミナ比150のH−ベ
ータゼオライト担体を用いた触媒では13.05mmo
lg/触媒・分であった。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples. Example 1 (Preparation of catalyst) 0.1 g of H-beta type zeolite carrier having a silica-alumina ratio of 25 or 150 H-beta type zeolite carrier having a silica-alumina ratio of 25 was placed in a ceramic reaction dish (diameter 2 cm, depth 5 mm). In it, nickel nitrate solution (2mo
(1/1) 0.25 ml was added dropwise, and the mixture was thoroughly mixed with the carrier using a glass rod and then dried at 100 ° C. Then, the catalyst was obtained by performing heating and calcination in air at 750 ° C. for 5 hours. The nickel supporting rate of this catalyst was 5 mmol per 1 g of the carrier. (Reaction operation) Quartz cup (inner diameter 5.5 mm, outer diameter 7.0 m
m, height 11.0 mm) was filled with about 4 mg of the catalyst and placed in a ceramic boat with both ends open. The boat on which the cup was placed was placed in a quartz reaction tube (outer diameter 28 mm, inner diameter 24 mm) having both ends opened, and a reactor of a system of heating in a tubular electric furnace was prepared. After that, the catalyst is flown at a flow rate of 50.
The catalyst was subjected to reductive activation treatment by bringing it into contact with a mixed gas of hydrogen (10 vol%) and argon (90 vol%) at 600 ml for 1 hour. The inside of the reactor is heated to 500 ° C, and a mixed gas of methane (10 vol%) and helium (90 vol%) is caused to flow from one opening at a flow rate of 150 ml / min for 30 minutes to progress the decomposition reaction of methane. Let After the reaction,
The supply of methane gas was stopped, and it was cooled to 100 ° C. or lower while flowing only helium. Then, the catalyst in the cup was taken out, and the weights of carbon and catalyst were precisely measured using a thermogravimetric analyzer. From the carbon weight obtained in this measurement, the amount of hydrogen produced was calculated and the average hydrogen production rate for 30 minutes from the start of the reaction was calculated. As a result, silica /
A catalyst using an H-beta zeolite carrier with an alumina ratio of 25 has a hydrogen generation rate of 11.68 mmol / catalyst.
It was a minute. On the other hand, with a catalyst using a H-beta zeolite carrier with a silica / alumina ratio of 150, 13.05 mmo
It was lg / catalyst · minute.

【0013】実施例2 実施例1に用いた触媒担体を、シリカ/アルミナ比90
のH−ZSM−5に代えたこと以外は、実施例1と同様
にして反応させ、得られた触媒から、活性測定を行って
平均水素生成速度を算出した。その結果、反応開始から
30分間の平均初期反応速度は14.56mmolg/
触媒・分であった。
Example 2 The catalyst carrier used in Example 1 was used with a silica / alumina ratio of 90.
The reaction was performed in the same manner as in Example 1 except that the H-ZSM-5 was replaced with H-ZSM-5, and the resulting catalyst was subjected to activity measurement to calculate the average hydrogen generation rate. As a result, the average initial reaction rate within 30 minutes from the start of the reaction was 14.56 mmolg /
It was a catalyst / minute.

【0014】比較例1 実施例1に用いた触媒担体を、シリカ/アルミナ比36
0のUSY担体(FAU構造)またはシリカ/アルミナ比2
0のH−モルデナイト(MOR構造のもの)に代えたこと以
外は、それぞれ実施例1と同様にして反応させ、得られ
た触媒から、活性測定を行って平均水素生成速度を算出
した。その結果、反応開始から30分間の平均初期反応
速度は、前者(USYを用いたもの)では8.48mmo
lg/触媒・分であり、後者(H−モルデナイトを用い
たもの)では7.86mmolg/触媒・分であった。
Comparative Example 1 The catalyst carrier used in Example 1 was used in a silica / alumina ratio of 36.
USY carrier of 0 (FAU structure) or silica / alumina ratio of 2
The reaction was carried out in the same manner as in Example 1 except that H-mordenite (having a MOR structure) of 0 was used, and the resulting catalyst was subjected to activity measurement to calculate the average hydrogen generation rate. As a result, the average initial reaction rate within 30 minutes from the start of the reaction was 8.48 mmo in the former case (using USY).
It was lg / catalyst-minute, and the latter (using H-mordenite) was 7.86 mmolg / catalyst-minute.

【0015】比較例2 メタンの分解反応触媒として、それぞれNi/Si
、Ni/TiOまたはNi/グラファイト[Appl
ied Catalysis Vol.217.p101〜110(2001)参照]を用い
て行われた従来の実験では、500℃における最大の活
性でもメタンの転化率は6〜7%に過ぎない(図1参
照)。また、その反応速度は長時間維持されず急速に低
下しており、最大値を示す条件で水素生成速度を計算し
ても約7.3〜8.5mmolg/触媒・分である。
Comparative Example 2 Ni / Si was used as a catalyst for the decomposition reaction of methane.
O 2 , Ni / TiO 2 or Ni / graphite [Appl
In a conventional experiment carried out using ied Catalysis Vol.217.p101-110 (2001)], the conversion of methane was only 6-7% even at the maximum activity at 500 ° C (see Fig. 1). In addition, the reaction rate is not maintained for a long time and is rapidly decreasing, and the hydrogen production rate is about 7.3 to 8.5 mmol / catalyst · minute even if the hydrogen production rate is calculated under the condition of showing the maximum value.

【0016】実施例3 実施例1及び2に示す触媒を用いたメタンの分解反応を
4時間継続させて行って、その間の生成水素量の総計を
求めたところ、H−ZSM−5を担体とする触媒では1
gあたりの水素量は1.91モルであり、シリカ/アル
ミナ比25のH−ベータゼオライト担体を用いた触媒で
は1gあたりの水素量は1.95モルであり、シリカ/
アルミナ比150のH−ベータゼオライト担体を用いた
触媒では1gあたりの水素量は2.06モルであった。
また、4時間の平均水素生成速度については、H−ZS
M−5を担体とする触媒では7.96mmolg/触媒
・分であり、シリカ/アルミナ比25のH−ベータゼオ
ライト担体を用いた触媒では8.13mmolg/触媒
・分であり、シリカ/アルミナ比150のH−ベータゼ
オライト担体を用いた触媒では8.58mmolg/触
媒・分であった。これらの値は比較例2に示した値にほ
ぼ等しいが、比較例2の活性は初期の瞬間的な最大値で
あり4時間後には3〜4.5%にまで低下している。こ
のことは、4時間の平均値が比較例2の瞬間的な最大値
にほぼ等しい本触媒は大きく優れていることを意味して
いる。
Example 3 The decomposition reaction of methane using the catalysts shown in Examples 1 and 2 was continued for 4 hours, and the total amount of hydrogen produced during that period was determined. H-ZSM-5 was used as a carrier. 1 for catalyst
The amount of hydrogen per gram is 1.91 mol, and the amount of hydrogen per gram is 1.95 mol for the catalyst using the H-beta zeolite carrier with a silica / alumina ratio of 25.
The amount of hydrogen per gram of the catalyst using the H-beta zeolite carrier with an alumina ratio of 150 was 2.06 mol.
The average hydrogen production rate for 4 hours was H-ZS.
The catalyst using M-5 as a carrier has a concentration of 7.96 mmol / catalyst / min, and the catalyst using the H-beta zeolite carrier having a silica / alumina ratio of 25 has a value of 8.13 mmol / catalyst / min and a silica / alumina ratio of 150. The catalyst using the H-beta zeolite carrier of No. 8 was 8.58 mmol / catalyst · min. These values are almost the same as those shown in Comparative Example 2, but the activity of Comparative Example 2 is the initial maximum value at the initial stage, and decreases to 3 to 4.5% after 4 hours. This means that the catalyst of which the average value for 4 hours is almost equal to the instantaneous maximum value of Comparative Example 2 is extremely excellent.

【0017】比較例3 比較例1に示す触媒担体の触媒を用い、実施例3と同様
にして4時間反応を行って生成水素量の総計を求めたと
ころ、シリカ/アルミナ比360のUSY(FAU構造)を
担体とする触媒では、触媒1gあたりの生成水素量は
1.68モルであり、またシリカ/アルミナ比20のH
−モルデナイト(MOR構造)を担体とする触媒では、触媒
1gあたりの生成水素量は1.01モルであった。上記
した各実施例と各比較例との対比から、メタンの分解反
応には実施例に示した触媒が優れていることが明らかに
なった。
Comparative Example 3 Using the catalyst of the catalyst carrier shown in Comparative Example 1, the reaction was carried out for 4 hours in the same manner as in Example 3 to find the total amount of produced hydrogen. USY (FAU) having a silica / alumina ratio of 360 was obtained. In the case of a catalyst having a structure) as a carrier, the amount of hydrogen produced per 1 g of the catalyst is 1.68 mol, and the silica / alumina ratio 20
In the catalyst using mordenite (MOR structure) as a carrier, the amount of produced hydrogen was 1.01 mol per 1 g of the catalyst. From the comparison between each of the above-mentioned Examples and each of the Comparative Examples, it was revealed that the catalysts shown in the Examples are excellent in the decomposition reaction of methane.

【0018】[0018]

【発明の効果】本発明によれば、炭化水素の分解反応
に、特定のゼオライトを触媒担体に用いたから、触媒活
性が向上して反応速度が促進されるとともに、触媒の失
活が軽減されて効率よく水素を製造することが可能であ
る。
According to the present invention, since a specific zeolite is used as a catalyst carrier in a hydrocarbon decomposition reaction, the catalytic activity is improved, the reaction rate is accelerated, and the deactivation of the catalyst is reduced. It is possible to efficiently produce hydrogen.

【図面の簡単な説明】[Brief description of drawings]

【図1】 メタンの500℃における分解反応を、それ
ぞれ異なる担体に担持されたニッケル触媒を用いて行わ
れた従来の実験結果を示すグラフである。
FIG. 1 is a graph showing the results of a conventional experiment in which a decomposition reaction of methane at 500 ° C. was performed using nickel catalysts supported on different carriers.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高原 功 茨城県つくば市東1−1−1 独立行政法 人産業技術総合研究所つくばセンター内 (72)発明者 斉藤 昌弘 茨城県つくば市東1−1−1 独立行政法 人産業技術総合研究所つくばセンター内 Fターム(参考) 4G040 DA03 DC01 4G069 AA03 BA07A BA07B BB02A BB02B BC68A BC68B CC17 ZA11A ZA11B ZA19A ZA19B ZF05A ZF05B    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Isao Takahara             1-1-1 Higashi 1-1-1 Tsukuba City, Ibaraki Prefecture             Inside the Tsukuba Center, National Institute of Advanced Industrial Science and Technology (72) Inventor Masahiro Saito             1-1-1 Higashi 1-1-1 Tsukuba City, Ibaraki Prefecture             Inside the Tsukuba Center, National Institute of Advanced Industrial Science and Technology F-term (reference) 4G040 DA03 DC01                 4G069 AA03 BA07A BA07B BB02A                       BB02B BC68A BC68B CC17                       ZA11A ZA11B ZA19A ZA19B                       ZF05A ZF05B

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 炭素数1〜4の低級炭化水素含有ガスを
ニッケルが担持されているH−ベータ型ゼオライトまた
はH−ZSM−5型ゼオライト触媒と400〜800℃
で接触させて、低級炭化水素の分解反応により水素を得
ることを特徴とする水素の製造方法。
1. A H-beta type zeolite or H-ZSM-5 type zeolite catalyst supporting nickel with a lower hydrocarbon-containing gas having 1 to 4 carbon atoms and 400 to 800 ° C.
A method for producing hydrogen, characterized in that the hydrogen is obtained by the decomposition reaction of lower hydrocarbons by contacting with each other.
【請求項2】 前記低級炭化水素含有ガスが、メタンま
たはメタンと不活性ガスとの混合ガスであることを特徴
とする請求項1に記載の水素の製造方法。
2. The method for producing hydrogen according to claim 1, wherein the lower hydrocarbon-containing gas is methane or a mixed gas of methane and an inert gas.
JP2001388871A 2001-12-21 2001-12-21 Method for producing hydrogen from lower hydrocarbons Pending JP2003192301A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001388871A JP2003192301A (en) 2001-12-21 2001-12-21 Method for producing hydrogen from lower hydrocarbons

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001388871A JP2003192301A (en) 2001-12-21 2001-12-21 Method for producing hydrogen from lower hydrocarbons

Publications (1)

Publication Number Publication Date
JP2003192301A true JP2003192301A (en) 2003-07-09

Family

ID=27597237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001388871A Pending JP2003192301A (en) 2001-12-21 2001-12-21 Method for producing hydrogen from lower hydrocarbons

Country Status (1)

Country Link
JP (1) JP2003192301A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015020929A (en) * 2013-07-19 2015-02-02 独立行政法人国立高等専門学校機構 Hydrogen production apparatus and hydrogen production method
JP7089235B1 (en) 2020-12-28 2022-06-22 三菱重工業株式会社 Direct decomposition device for hydrocarbons and direct decomposition method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015020929A (en) * 2013-07-19 2015-02-02 独立行政法人国立高等専門学校機構 Hydrogen production apparatus and hydrogen production method
JP7089235B1 (en) 2020-12-28 2022-06-22 三菱重工業株式会社 Direct decomposition device for hydrocarbons and direct decomposition method
JP2022104521A (en) * 2020-12-28 2022-07-08 三菱重工業株式会社 Direct decomposition device for hydrocarbons and direct decomposition method

Similar Documents

Publication Publication Date Title
JP4828680B2 (en) Method and catalyst for converting low carbon number aliphatic hydrocarbons to higher carbon number hydrocarbons
JP5266225B2 (en) Process for producing aromatic hydrocarbons
JP5231991B2 (en) A selective hydrogenation process of acetylene to ethylene.
JPH0448499B2 (en)
US9079169B2 (en) Methane aromatization catalyst, method of making and method of using the catalyst
JP5536778B2 (en) Process for producing aromatic hydrocarbon and transition metal-containing crystalline metallosilicate catalyst used in the process
JP2010209057A (en) Method for producing aromatic hydrocarbon
JP2006517957A (en) Paraxylene production process
JP2001334151A (en) Catalyst for converting lower hydrocarbon into aromatic compound and method for producing aromatic compound and hydrogen from lower hydrocarbon as raw material
JP3072348B2 (en) Method for producing lower olefin
JP2012012340A (en) Method for producing aromatic hydrocarbon
JP4235731B2 (en) Process for producing molded catalyst for dehydroaromatization reaction of lower hydrocarbon
JP2003192301A (en) Method for producing hydrogen from lower hydrocarbons
WO2005105710A1 (en) Method for producing lower olefin
JP3866005B2 (en) Biogas treatment method
JP5674029B2 (en) Propylene and ethylene production method
JP7410397B2 (en) Catalyst for producing aromatic compounds, method for producing catalyst for aromatic compounds, and method for producing aromatic compounds
JP2003012570A (en) Method for producing lower alkene
WO2011118279A1 (en) Method of manufacture for aromatic compound
JP4159853B2 (en) Catalyst for catalytic cracking of hydrocarbon and catalytic cracking method using the same
JP2021041333A (en) Catalyst for ethylene production and ethylene production method
WO2010092850A1 (en) Method for producing aromatic hydrocarbon
US6573413B2 (en) Process for activating catalyst for the hydroxylation of aromatics
JP2021109132A (en) Catalyst for producing aromatic compounds
JP2023001522A (en) Method for producing cyclopentadiene

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20060428

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060509

A02 Decision of refusal

Effective date: 20060919

Free format text: JAPANESE INTERMEDIATE CODE: A02