[go: up one dir, main page]

JP2003173939A - Method of manufacturing solid-state electrolytic capacitor - Google Patents

Method of manufacturing solid-state electrolytic capacitor

Info

Publication number
JP2003173939A
JP2003173939A JP2001372349A JP2001372349A JP2003173939A JP 2003173939 A JP2003173939 A JP 2003173939A JP 2001372349 A JP2001372349 A JP 2001372349A JP 2001372349 A JP2001372349 A JP 2001372349A JP 2003173939 A JP2003173939 A JP 2003173939A
Authority
JP
Japan
Prior art keywords
oxide film
aqueous solution
solid
electrolytic capacitor
dielectric oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001372349A
Other languages
Japanese (ja)
Inventor
Kazue Hatayama
和重 畑山
Toshikatsu Terao
俊勝 寺尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Media Devices Ltd
Original Assignee
Fujitsu Media Devices Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Media Devices Ltd filed Critical Fujitsu Media Devices Ltd
Priority to JP2001372349A priority Critical patent/JP2003173939A/en
Publication of JP2003173939A publication Critical patent/JP2003173939A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a solid-state electrolytic capacitor in which conductive high-molecular compound is used as a cathode material, which enables the solid-state electrolytic capacitor to reduce a leakage current and a occurrence rate of a current leakage failure. <P>SOLUTION: A solid-state electrolytic capacitor is manufactured through a method where a dielectric oxide film 3 is made to serve as an anode, and a solid-state electrolytic layer 4 is formed on the dielectric oxide film 3 to serve as a cathode. After or while the solid-state electrolytic layer 4 is formed, the electrolytic layer 4 including the dielectric oxide film 3 is dipped into an inorganic acid aqueous solution or an organic acid aqueous solution 8, the plus side of a step-up power supply 9 is connected to an anode leading wire 2, on the other hand, the inorganic acid aqueous solution or an organic acid aqueous solution 8 is connected to the minus side of the step-up power supply 9, a DC positive voltage is applied and stepped up at a certain rate, a solid-state electrolytic layer on the defective part of the dielectric oxide film 3 is locally, electrically insulated to form a solid-state electrolytic layer 4 serving as a cathode layer. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、導電性高分子を固
体電解質とする固体電解キャパシタの製造方法に関する
ものである。
TECHNICAL FIELD The present invention relates to a method for manufacturing a solid electrolytic capacitor using a conductive polymer as a solid electrolyte.

【0002】[0002]

【従来の技術】周知のように、固体電解キャパシタはタ
ンタル或いはアルミニウム等の弁作用金属の多孔質成形
体を陽極とし、その金属の酸化皮膜を誘電体とし、その
表面に二酸化マンガン、導電性高分子等の固体電解質を
形成し、この固体電解質を陰極として構成されている。
2. Description of the Related Art As is well known, a solid electrolytic capacitor has a porous molded body of valve-acting metal such as tantalum or aluminum as an anode, an oxide film of the metal as a dielectric, and manganese dioxide on the surface of which is highly conductive. A solid electrolyte such as molecules is formed, and the solid electrolyte is used as a cathode.

【0003】更に説明すれば、図3において、固体電解
キャパシタは、陽極導出線2を有するアルミニウム、タ
ンタル、ニオブ、チタン等の弁作用金属成形体1の表面
に誘電体となる酸化皮膜3、導電性高分子化合物層であ
る固体電解質層4、陰極となる導電体層としてのカーボ
ン層5、銀ペースト層6を順次形成し、外装樹脂(図示
しない。)で封止して構成されている。
To further explain, referring to FIG. 3, the solid electrolytic capacitor has an oxide film 3 serving as a dielectric and a conductive film formed on the surface of a valve metal body 1 made of aluminum, tantalum, niobium, titanium or the like having an anode lead wire 2. A solid electrolyte layer 4 which is a conductive polymer compound layer, a carbon layer 5 which is a conductor layer which becomes a cathode, and a silver paste layer 6 are sequentially formed and are sealed with an exterior resin (not shown).

【0004】ところで、このような構成に係る固体電解
キャパシタの従来の製造方法は、導電性高分子のモノマ
ー溶液と酸化剤溶液に、酸化皮膜3を形成した弁作用金
属成形体1を交互に浸漬し、又はモノマー溶液と酸化剤
溶液の混合液に浸漬し、乾燥することで固体電解質層4
を形成し、リン酸水溶液を用いて、固体電解質層4の形
成作業を1回行った後と、固体電解質層4の形成終了後
の2回定電圧印加処理を行っていた。
By the way, according to the conventional manufacturing method of the solid electrolytic capacitor having such a structure, the valve action metal compact 1 having the oxide film 3 formed thereon is alternately dipped in the conductive polymer monomer solution and the oxidizing agent solution. Or the solid electrolyte layer 4 by immersing in a mixed solution of a monomer solution and an oxidant solution and drying.
And a constant voltage application process was performed twice after the formation work of the solid electrolyte layer 4 was performed using the phosphoric acid aqueous solution and after the formation of the solid electrolyte layer 4 was completed.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、この従
来方法では、誘電体となる酸化皮膜3が均一に形成され
ず、その上から化学酸化重合によって導電性高分子化合
物層である固体電解質層4を形成すると、この固体電解
質層4が酸化皮膜3の欠陥部分にも形成されるため、そ
の部分が導通箇所となって漏れ電流が大きくなるという
問題点があり、又、固体電解質層4の形成中、形成後或
いはその両方で定電圧印加すると、等価直列抵抗(ES
R)が大きくなってしまうという問題点があった。
However, in this conventional method, the oxide film 3 serving as a dielectric is not uniformly formed, and the solid electrolyte layer 4 which is a conductive polymer compound layer is formed on the oxide film 3 by chemical oxidative polymerization. When formed, this solid electrolyte layer 4 is also formed in the defective portion of the oxide film 3, and there is a problem that that portion becomes a conductive portion and the leakage current increases, and during formation of the solid electrolyte layer 4. , A constant voltage is applied after formation, or both, the equivalent series resistance (ES
There is a problem that R) becomes large.

【0006】本発明は、このような従来の問題点に鑑み
なされたもので、その目的とするところは、化学重合に
よって得られる導電性高分子化合物を陰極材料とした固
体電解キャパシタの漏れ電流を低減させることにある。
The present invention has been made in view of the above conventional problems, and an object thereof is to prevent leakage current of a solid electrolytic capacitor using a conductive polymer compound obtained by chemical polymerization as a cathode material. To reduce.

【0007】[0007]

【課題を解決するための手段】この目的のため、請求項
1に係る発明は、誘電体酸化皮膜を陽極とし、前記誘電
体酸化皮膜上に形成された固体電解質層を陰極とする固
体電解キャパシタの製造方法において、前記固体電解質
層を形成する途中或いは形成後に、前記誘電体酸化皮膜
の部分まで無機酸水溶液中又は有機酸水溶液中に沈むよ
うに浸漬しながら、直流正電圧を一定速度で昇圧印加処
理して、前記誘電体酸化皮膜の欠陥部分上の固体電解質
層を局部的に絶縁化して陰極層である固体電解質層を形
成することを特徴とするものである。
To this end, the invention according to claim 1 provides a solid electrolytic capacitor having a dielectric oxide film as an anode and a solid electrolyte layer formed on the dielectric oxide film as a cathode. In the manufacturing method, during or after the formation of the solid electrolyte layer, a direct current positive voltage is applied at a constant rate while immersing the dielectric oxide film so as to be submerged in the inorganic acid aqueous solution or the organic acid aqueous solution. The solid electrolyte layer on the defective portion of the dielectric oxide film is locally insulated to form a solid electrolyte layer which is a cathode layer by treatment.

【0008】請求項2に係る発明は、前記誘電体酸化皮
膜はアルミニウム、タンタル、ニオブ、チタン等の弁作
用金属を陽極とし、その酸化皮膜を誘電体としたことを
特徴とするものである。
The invention according to claim 2 is characterized in that the dielectric oxide film has a valve metal such as aluminum, tantalum, niobium, or titanium as an anode, and the oxide film as a dielectric.

【0009】請求項3に係る発明は、前記固体電解質層
はポリピロール、ポリチオフェン、ポリアニリン等の導
電性高分子を化学重合により形成した導電性高分子化合
物層であることを特徴とするものである。
The invention according to claim 3 is characterized in that the solid electrolyte layer is a conductive polymer compound layer formed by chemically polymerizing a conductive polymer such as polypyrrole, polythiophene, and polyaniline.

【0010】請求項4に係る発明は、前記無機酸水溶液
は硝酸、リン酸又はその塩を含む酸性水溶液であること
を特徴とするものである。
The invention according to claim 4 is characterized in that the inorganic acid aqueous solution is an acidic aqueous solution containing nitric acid, phosphoric acid or a salt thereof.

【0011】請求項5に係る発明は、前記有機酸水溶液
は無機酸を除くオキソ酸とカルボン酸、スルホン酸、ス
ルフィン酸、酸アミド、オキシム、スルホンアミド等酸
性を示す官能基を持つ化合物水溶液であることを特徴と
するものである。
According to a fifth aspect of the invention, the aqueous solution of organic acid is an aqueous solution of a compound having an acidic functional group such as oxo acid except inorganic acid and carboxylic acid, sulfonic acid, sulfinic acid, acid amide, oxime, sulfonamide. It is characterized by being.

【0012】[0012]

【発明の実施の形態】本発明の実施の形態について説明
する。本発明に係る固体電解キャパシタの製造方法は、
誘電体酸化皮膜3を陽極とし、該誘電体酸化皮膜3上に
形成された固体電解質層4を陰極とする固体電解キャパ
シタの製造方法において、図1に示されているように、
陰極層である導電性高分子化合物の固体電解質層4を形
成する途中、形成後或いは形成中と形成後の両方で誘電
体酸化皮膜3の部分まで酸水溶液槽7の無機酸水溶液中
又は有機酸水溶液8中に沈むように弁作用金属成形体1
を浸漬しながら、陽極導出線2にステップ昇圧用電源9
のプラス側を接続させ、一方、無機酸水溶液又は有機酸
水溶液8側をマイナス側として、直流正電圧を一定速度
で昇圧印加処理して、誘電体酸化皮膜3の欠陥部分上の
固体電解質層を局部的に絶縁化して固体電解質層4を形
成し、これにより漏れ電流を低減させるものである。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described. The method for manufacturing a solid electrolytic capacitor according to the present invention,
In the method for manufacturing a solid electrolytic capacitor in which the dielectric oxide film 3 is used as an anode and the solid electrolyte layer 4 formed on the dielectric oxide film 3 is used as a cathode, as shown in FIG.
During the formation of the solid electrolyte layer 4 of the conductive polymer compound which is the cathode layer, or after the formation or both of the formation and the formation of the dielectric oxide film 3 up to the portion of the acid aqueous solution tank 7 in the inorganic acid aqueous solution or the organic acid. Valve action metal molded body 1 so as to be submerged in the aqueous solution 8
While soaking, step up power supply 9 to anode lead wire 2
Of the inorganic acid aqueous solution or the organic acid aqueous solution 8 side is the negative side, and a direct current positive voltage is applied at a constant rate by pressurizing and applying the solid electrolytic layer on the defective portion of the dielectric oxide film 3. The solid electrolyte layer 4 is locally insulated to form the solid electrolyte layer 4, thereby reducing the leakage current.

【0013】なお、固体電解質層4を形成する方法とし
ては、二つの方法がある。一つの方法としては、図2
(a)の形成フローシートに示すように、モノマー溶液
に、酸化皮膜3を形成した弁作用金属成形体1を浸漬
し、乾燥させた後、酸化剤溶液に浸漬し、乾燥させる。
これを数回繰り返して導電性高分子化合物層である固体
電解質層4を形成するものである。又、もう一つの方法
としては、図2(b)の形成フローシートに示すよう
に、モノマー溶液と酸化剤溶液の混合溶液に、酸化皮膜
3を形成した弁作用金属成形体1を浸漬し、乾燥させこ
れを数回繰り返して導電性高分子化合物層である固体電
解質層4を形成するものである。
There are two methods for forming the solid electrolyte layer 4. As one method, FIG.
As shown in the formation flow sheet of (a), the valve action metal compact 1 on which the oxide film 3 is formed is dipped in the monomer solution, dried, and then dipped in the oxidant solution and dried.
This is repeated several times to form the solid electrolyte layer 4 which is a conductive polymer compound layer. As another method, as shown in the formation flow sheet of FIG. 2B, the valve action metal molded body 1 having the oxide film 3 formed thereon is dipped in a mixed solution of a monomer solution and an oxidant solution, The solid electrolyte layer 4 which is a conductive polymer compound layer is formed by drying and repeating this several times.

【0014】[0014]

【実施例】以下に本発明の具体的実施例を説明する。 実施例1 弁作用金属成形体1の表面に誘電体酸化皮膜3を形成
し、かつ該誘電体酸化皮膜3上に固体電解質槽4の形成
を1回行った後、誘電体酸化皮膜3の部分まで酸水溶液
槽7の0.01〜2.0wt%リン酸水溶液8中に沈む
ように弁作用金属成形体1を浸漬しながら、陽極導出線
2にステップ昇圧用電源9のプラス側を接続させ、一
方、リン酸水溶液8側をマイナス側として電圧処理を1
回行った。この時の電圧処理は、所定の電圧まで毎分
0.1〜1.0Vで昇圧させた後、5〜15分間保持さ
せた。この後、引き続き固体電解質層4の形成作業を行
い、前記段落番号0003の記載に基づいて固体電解キ
ャパシタを完成させた。
EXAMPLES Specific examples of the present invention will be described below. Example 1 After the dielectric oxide film 3 was formed on the surface of the valve metal molding 1, and the solid electrolyte tank 4 was formed once on the dielectric oxide film 3, the dielectric oxide film 3 part was formed. While immersing the valve action metal molded body 1 so as to be immersed in the 0.01 to 2.0 wt% phosphoric acid aqueous solution 8 in the acid aqueous solution tank 7, the positive side of the step-up power source 9 is connected to the anode lead wire 2. On the other hand, the voltage treatment is set to 1 with the phosphoric acid aqueous solution 8 side as the negative side.
I went there. In the voltage treatment at this time, the voltage was raised to a predetermined voltage at 0.1 to 1.0 V per minute and then held for 5 to 15 minutes. After that, the solid electrolyte layer 4 was continuously formed, and the solid electrolytic capacitor was completed based on the description in Paragraph No. 0003.

【0015】実施例2 弁作用金属成形体1の表面に誘電体酸化皮膜3を形成
し、かつ該誘電体酸化皮膜3上に固体電解質槽4の形成
終了後、誘電体酸化皮膜3の部分まで酸水溶液槽7の
0.01wt%パラトルエンスルホン酸水溶液8中に沈
むように弁作用金属成形体1を浸漬しながら実施例1と
同様に電圧処理を行った。この後、実施例1と同様にし
て固体電解キャパシタを完成させた。
Example 2 After the dielectric oxide film 3 was formed on the surface of the valve metal molding 1, and the solid electrolyte tank 4 was formed on the dielectric oxide film 3, the dielectric oxide film 3 was reached. A voltage treatment was performed in the same manner as in Example 1 while immersing the valve action metal compact 1 so as to be submerged in the 0.01 wt% paratoluenesulfonic acid aqueous solution 8 in the acid aqueous solution tank 7. Then, the solid electrolytic capacitor was completed in the same manner as in Example 1.

【0016】実施例3 弁作用金属成形体1の表面に誘電体酸化皮膜3を形成
し、かつ該誘電体酸化皮膜3上に固体電解質槽4の形成
終了後、誘電体酸化皮膜3の部分まで酸水溶液槽7の
0.01〜2.0wt%リン酸水溶液8中に沈むように
弁作用金属成形体1を浸漬しながら電圧処理を行った。
この後、実施例1と同様にして固体電解キャパシタを完
成させた。
Example 3 A dielectric oxide film 3 was formed on the surface of the valve metal molding 1, and after the solid electrolyte tank 4 was formed on the dielectric oxide film 3, the dielectric oxide film 3 was reached. Voltage treatment was performed while immersing the valve action metal molded body 1 so as to be submerged in the 0.01 to 2.0 wt% phosphoric acid aqueous solution 8 in the acid aqueous solution tank 7.
Then, the solid electrolytic capacitor was completed in the same manner as in Example 1.

【0017】実施例4 弁作用金属成形体1の表面に誘電体酸化皮膜3を形成
し、かつ該誘電体酸化皮膜3上に固体電解質槽4の形成
終了後、誘電体酸化皮膜3の部分まで酸水溶液槽7の
0.01wt%パラトルエンスルホン酸水溶液8中に沈
むように弁作用金属成形体1を浸漬しながら電圧処理を
行った。この後、実施例1と同様にして固体電解キャパ
シタを完成させた。
Example 4 After forming the dielectric oxide film 3 on the surface of the valve action metal molded body 1 and forming the solid electrolyte tank 4 on the dielectric oxide film 3, the dielectric oxide film 3 is reached. Voltage treatment was performed while immersing the valve action metal molded body 1 so as to be submerged in the 0.01 wt% paratoluenesulfonic acid aqueous solution 8 in the acid aqueous solution tank 7. Then, the solid electrolytic capacitor was completed in the same manner as in Example 1.

【0018】実施例5 弁作用金属成形体1の表面に誘電体酸化皮膜3を形成
し、かつ該誘電体酸化皮膜3上に固体電解質槽4の形成
作業を1回行った後と固体電解質槽4の形成終了後の2
回において、誘電体酸化皮膜3の部分まで酸水溶液槽7
の0.01〜2.0wt%リン酸水溶液8中に沈むよう
に弁作用金属成形体1を浸漬しながら2回の電圧処理を
行った。この後、実施例1と同様にして固体電解キャパ
シタを完成させた。
Example 5 After the dielectric oxide film 3 was formed on the surface of the valve metal molding 1, and the solid electrolyte tank 4 was formed once on the dielectric oxide film 3, the solid oxide tank 3 was formed. 2 after the formation of 4
In the operation, the acid aqueous solution tank 7 up to the part of the dielectric oxide film 3
While the valve action metal molded body 1 was dipped so as to be submerged in the 0.01 to 2.0 wt% phosphoric acid aqueous solution 8, the voltage treatment was performed twice. Then, the solid electrolytic capacitor was completed in the same manner as in Example 1.

【0019】実施例6 弁作用金属成形体1の表面に誘電体酸化皮膜3を形成
し、かつ該誘電体酸化皮膜3上に固体電解質槽4の形成
作業を1回行った後と固体電解質槽4の形成終了後の2
回において、誘電体酸化皮膜3の部分まで酸水溶液槽7
の0.01wt%パラトルエンスルホン酸水溶液8中に
沈むように弁作用金属成形体1を浸漬しながら2回の電
圧処理を行った。この後、実施例1と同様にして固体電
解キャパシタを完成させた。
Example 6 After the dielectric oxide film 3 was formed on the surface of the valve action metal compact 1 and the solid electrolyte tank 4 was formed once on the dielectric oxide film 3, the solid oxide tank 3 was formed. 2 after the formation of 4
In the operation, the acid aqueous solution tank 7 up to the part of the dielectric oxide film 3
While the valve action metal molded body 1 was dipped so as to be submerged in the 0.01 wt% paratoluenesulfonic acid aqueous solution 8, the voltage treatment was performed twice. Then, the solid electrolytic capacitor was completed in the same manner as in Example 1.

【0020】次に、参考例として、固体電解質層4の形
成時に電圧処理を行うことなく固体電解キャパシタを完
成させた。
Next, as a reference example, a solid electrolytic capacitor was completed without performing voltage treatment when forming the solid electrolyte layer 4.

【0021】実施例1から6と参考例、前記段落番号0
004で記載した従来例の各固体電解キャパシタにつ
き、その漏れ電流不良率、定格電圧印加時の漏れ電流の
実測値の中央値と等価直列抵抗(ESR)の平均値を比
較した結果を表1に示す。
Examples 1 to 6 and Reference Example, the paragraph number 0
For each solid electrolytic capacitor of the conventional example described in 004, the result of comparing the leakage current defective rate, the median of the measured values of the leakage current when the rated voltage is applied, and the average value of the equivalent series resistance (ESR) are shown in Table 1. Show.

【0022】[0022]

【表1】 [Table 1]

【0023】この表1から明らかなように、固体電解質
層の形成途中と形成後に電圧処理をする本発明方法によ
り得られた固体電解キャパシタは、漏れ電流を低減で
き、かつ等価直列抵抗(ESR)特性に優れた固体電解
キャパシタが得られたことが判る。
As is clear from Table 1, the solid electrolytic capacitor obtained by the method of the present invention in which the voltage treatment is performed during and after the formation of the solid electrolyte layer can reduce the leakage current, and has an equivalent series resistance (ESR). It can be seen that a solid electrolytic capacitor having excellent characteristics was obtained.

【0024】又、従来例のように、定電圧を印加するよ
りも、低電圧からステップで昇圧させることで漏れ電流
と漏れ電流不良率、等価直列抵抗の低減への効果が高い
ことが判明した。
Further, it has been found that, as in the conventional example, by stepping up from a low voltage in steps rather than applying a constant voltage, the effect of reducing the leakage current, the leakage current defect rate, and the equivalent series resistance is higher. .

【0025】[0025]

【発明の効果】しかして、本発明によれば、漏れ電流が
少なく、かつ漏れ電流不良の発生率が少なくて、等価直
列抵抗(ESR)特性に優れた固体電解キャパシタを提
供し得るものである。このことは、酸水溶液中での電圧
処理時における漏れ電流の挙動から見て、誘電体酸化皮
膜層の欠陥部分上の固体電解質を電圧処理することで局
部的に絶縁化し、又、固体電解質層の形成途中と形成後
の2回電圧処理を行うことで、より漏れ電流不良を減ら
し、ステップで昇圧することによって、漏れ電流による
発熱を抑え、より局部的な絶縁化が可能であるからであ
る。
As described above, according to the present invention, it is possible to provide a solid electrolytic capacitor having a small leakage current and a low occurrence rate of leakage current defects, and having excellent equivalent series resistance (ESR) characteristics. . This means that the solid electrolyte on the defective portion of the dielectric oxide film layer is locally insulated by voltage treatment in view of the behavior of the leakage current during the voltage treatment in the acid aqueous solution, and the solid electrolyte layer is also treated. This is because by performing voltage treatment twice during and after the formation, leakage current defects can be further reduced, and step-up boosting can suppress heat generation due to leakage current and enable more localized insulation. .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明における固体電解質層を形成する電圧処
理を説明する模式的断面図である。
FIG. 1 is a schematic cross-sectional view illustrating a voltage treatment for forming a solid electrolyte layer in the present invention.

【図2】固体電解キャパシタにおける固体電解質層の形
成フローシートである。(a)は一つの方法のフローシ
ートである。(b)は他の方法のフローシートである。
FIG. 2 is a flow sheet for forming a solid electrolyte layer in a solid electrolytic capacitor. (A) is a flow sheet of one method. (B) is a flow sheet of another method.

【図3】固体電解キャパシタの基本的な構造を示す模式
的断面図である。
FIG. 3 is a schematic cross-sectional view showing the basic structure of a solid electrolytic capacitor.

【符号の説明】[Explanation of symbols]

1 弁作用金属成形体 2 陽極導出線 3 酸化皮膜 4 固体電解質層(導電性高分子化合物層) 5 カーボン層 6 銀ペースト層 7 酸水溶液槽 8 酸水溶液 9 ステップ昇圧用電源 1 Valve action metal compact 2 Anode lead wire 3 oxide film 4 Solid electrolyte layer (conductive polymer compound layer) 5 carbon layer 6 Silver paste layer 7 Acid solution tank 8 Acid aqueous solution 9 step boost power supply

───────────────────────────────────────────────────── フロントページの続き (72)発明者 寺尾 俊勝 青森県三戸郡福地村大字法師岡字仁右エ門 山3番地 東北メディアデバイス株式会社 内   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Toshikatsu Terao             Niemon, Fukuchi Village, Sannohe-gun, Aomori Prefecture             No. 3 Mountain Tohoku Media Device Co., Ltd.             Within

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 誘電体酸化皮膜を陽極とし、前記誘電体
酸化皮膜上に形成された固体電解質層を陰極とする固体
電解キャパシタの製造方法において、 前記固体電解質層を形成する途中或いは形成後に、前記
誘電体酸化皮膜の部分まで無機酸水溶液中又は有機酸水
溶液中に沈むように浸漬しながら、直流正電圧を一定速
度で昇圧印加処理して、前記誘電体酸化皮膜の欠陥部分
上の固体電解質層を局部的に絶縁化して陰極層である固
体電解質層を形成することを特徴とする固体電解キャパ
シタの製造方法。
1. A method of manufacturing a solid electrolytic capacitor, wherein a dielectric oxide film serves as an anode and a solid electrolyte layer formed on the dielectric oxide film serves as a cathode, wherein during or after the formation of the solid electrolyte layer, A solid electrolyte layer on the defective portion of the dielectric oxide film is applied by applying a positive DC voltage at a constant rate while immersing the dielectric oxide film so as to be immersed in an inorganic acid aqueous solution or an organic acid aqueous solution. A method for producing a solid electrolytic capacitor, which comprises locally insulating a solid electrolyte layer as a cathode layer.
【請求項2】 前記誘電体酸化皮膜はアルミニウム、タ
ンタル、ニオブ、チタン等の弁作用金属を陽極とし、そ
の酸化皮膜を誘電体としたものである請求項1の固体電
解キャパシタの製造方法。
2. The method for producing a solid electrolytic capacitor according to claim 1, wherein the dielectric oxide film has a valve action metal such as aluminum, tantalum, niobium, or titanium as an anode and the oxide film as a dielectric.
【請求項3】 前記固体電解質層はポリピロール、ポリ
チオフェン、ポリアニリン等の導電性高分子を化学重合
により形成した導電性高分子化合物層である請求項1の
固体電解キャパシタの製造方法。
3. The method for producing a solid electrolytic capacitor according to claim 1, wherein the solid electrolyte layer is a conductive polymer compound layer formed by chemically polymerizing a conductive polymer such as polypyrrole, polythiophene and polyaniline.
【請求項4】 前記無機酸水溶液は硝酸、リン酸又はそ
の塩を含む酸性水溶液である請求項1の固体電解キャパ
シタの製造方法。
4. The method for producing a solid electrolytic capacitor according to claim 1, wherein the inorganic acid aqueous solution is an acidic aqueous solution containing nitric acid, phosphoric acid or a salt thereof.
【請求項5】 前記有機酸水溶液は無機酸を除くオキソ
酸とカルボン酸、スルホン酸、スルフィン酸、酸アミ
ド、オキシム、スルホンアミド等酸性を示す官能基を持
つ化合物水溶液である請求項1の固体電解キャパシタの
製造方法。
5. The solid solution according to claim 1, wherein the organic acid aqueous solution is an aqueous solution of a compound having an acidic functional group such as oxo acid excluding inorganic acid and carboxylic acid, sulfonic acid, sulfinic acid, acid amide, oxime, sulfonamide. Method for manufacturing electrolytic capacitor.
JP2001372349A 2001-12-06 2001-12-06 Method of manufacturing solid-state electrolytic capacitor Pending JP2003173939A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001372349A JP2003173939A (en) 2001-12-06 2001-12-06 Method of manufacturing solid-state electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001372349A JP2003173939A (en) 2001-12-06 2001-12-06 Method of manufacturing solid-state electrolytic capacitor

Publications (1)

Publication Number Publication Date
JP2003173939A true JP2003173939A (en) 2003-06-20

Family

ID=19181260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001372349A Pending JP2003173939A (en) 2001-12-06 2001-12-06 Method of manufacturing solid-state electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP2003173939A (en)

Similar Documents

Publication Publication Date Title
JP2005109252A (en) Method of manufacturing solid electrolytic capacitor
JPH1187187A (en) Manufacture of solid electroytic capacitor
JP2000216061A (en) Manufacture for solid-state electrolytic capacitor
JP3026817B2 (en) Method for manufacturing solid electrolytic capacitor
JP4926131B2 (en) Solid electrolytic capacitor manufacturing method and solid electrolytic capacitor
JP3362600B2 (en) Manufacturing method of capacitor
JP2811648B2 (en) Method for manufacturing solid electrolytic capacitor
JP3864651B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JPH0396210A (en) Manufacture of solid electrolytic capacitor
JP2006108192A (en) Solid electrolytic capacitor
JP2003173939A (en) Method of manufacturing solid-state electrolytic capacitor
JP2009182027A (en) Manufacturing method of solid electrolytic capacitor
JP2009238776A (en) Method of manufacturing solid electrolytic capacitor
JP2003297684A (en) Solid electrolytic capacitor and its producing method
JP2003297672A (en) Method of manufacturing solid electrolytic capacitor
JP2007305684A (en) Solid electrolytic capacitor and method for manufacturing the same
JP3750476B2 (en) Manufacturing method of solid electrolytic capacitor
JP2006135191A (en) Solid electrolytic capacitor and manufacturing method thereof
JP2004103748A (en) Method for manufacturing solid-state electrolytic capacitor
JP2001203128A (en) Method for manufacturing solid electrolytic capacitor
JP2004128035A (en) Method of manufacturing solid-state electrolytic capacitor
JPH05152169A (en) Manufacture of solid electrolytic capacitor
JP4258619B2 (en) Manufacturing method of solid electrolytic capacitor
JP2004128033A (en) Method of manufacturing solid state electrolytic capacitor
JPH0373509A (en) Manufacturing method of solid electrolytic capacitor