[go: up one dir, main page]

JP2003170524A - LAMINATE HAVING Ag-BASED FILM AND METHOD FOR FORMING Ag-BASED FILM - Google Patents

LAMINATE HAVING Ag-BASED FILM AND METHOD FOR FORMING Ag-BASED FILM

Info

Publication number
JP2003170524A
JP2003170524A JP2001375288A JP2001375288A JP2003170524A JP 2003170524 A JP2003170524 A JP 2003170524A JP 2001375288 A JP2001375288 A JP 2001375288A JP 2001375288 A JP2001375288 A JP 2001375288A JP 2003170524 A JP2003170524 A JP 2003170524A
Authority
JP
Japan
Prior art keywords
film
gas
alloy
glass substrate
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001375288A
Other languages
Japanese (ja)
Other versions
JP4176988B2 (en
Inventor
Yumi Kito
有美 奇藤
Akira Ishibashi
暁 石橋
Takashi Komatsu
孝 小松
Hajime Nakamura
肇 中村
Junya Kiyota
淳也 清田
Makoto Arai
新井  真
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2001375288A priority Critical patent/JP4176988B2/en
Publication of JP2003170524A publication Critical patent/JP2003170524A/en
Application granted granted Critical
Publication of JP4176988B2 publication Critical patent/JP4176988B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Electroluminescent Light Sources (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Glass (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for forming an Ag-based film having the good adhesion with a substrate and to provide a laminate having the Ag-based film. <P>SOLUTION: An oxide film 2 of an Ag-based material is formed on the substrate 1 and the Ag-based film 3 comprising the Ag-based material is formed on the oxide film 2 to form the laminate 10 wherein the oxide film 2 of the Ag-based material is interposed between the substrate 1 and the Ag-based film 3. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、基体にAg膜やA
g合金膜を成膜するAg系膜の成膜方法及びこのAg系
膜を有する積層体に関し、更に詳しくは、基板に対する
Ag膜やAg合金膜の密着性を高める技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention
The present invention relates to a method for forming an Ag-based film for forming a g-alloy film and a laminate having this Ag-based film, and more specifically to a technique for increasing the adhesion of the Ag film or the Ag-alloy film to a substrate.

【0002】[0002]

【従来の技術】Ag膜やAg合金膜は、液晶や、有機E
L(Electro Luminescence)素子などを用いた表示装置
用の薄膜配線、電極、反射膜などに利用されている。A
g膜やAg合金膜の膜厚を薄くすれば良好な光透過性の
導電膜となり、厚くすれば良好な光反射性の導電膜とな
る。例えば、有機EL素子では、ガラス基板上に透明電
極が形成されているが、その透明電極としてAg膜やA
g合金膜が用いられている。
2. Description of the Related Art Ag films and Ag alloy films are used for liquid crystals and organic E
It is used for thin film wirings, electrodes, reflective films, etc. for display devices using L (Electro Luminescence) elements and the like. A
If the film thickness of the g film or the Ag alloy film is thin, it becomes a conductive film having good light transmissivity, and if it is thick, it becomes a conductive film having good light reflectivity. For example, in an organic EL element, a transparent electrode is formed on a glass substrate, and as the transparent electrode, an Ag film or A
A g-alloy film is used.

【0003】[0003]

【発明が解決しようとする課題】しかし、Ag膜やAg
合金膜は、下地となるガラス基板などの基体との密着性
が悪く、例えばAg膜やAg合金膜をパターニングする
際のフォトレジスト工程などを経ると、基体からの剥離
などが起こりやすく安定性に欠けていた。
However, Ag films and Ag films
The alloy film has poor adhesion to a substrate such as a glass substrate as an underlayer. For example, if it goes through a photoresist process when patterning an Ag film or an Ag alloy film, peeling from the substrate easily occurs and stability is improved. Was missing.

【0004】本発明は上述の問題に鑑みてなされ、その
目的とするところは、基体との良好な密着性を有するA
g系膜の成膜方法及びそのようなAg系膜を有する積層
体を提供することである。
The present invention has been made in view of the above problems, and an object of the present invention is to obtain a good adhesion to a substrate A.
A method for forming a g-based film and a laminate having such an Ag-based film.

【0005】[0005]

【課題を解決するための手段】本発明のAg系膜を有す
る積層体は、基体と、Ag系材料でなるAg系膜との間
に、前記Ag系材料の酸化膜が介在されて構成される。
A laminate having an Ag-based film according to the present invention is constructed by interposing an oxide film of the Ag-based material between a substrate and an Ag-based film made of an Ag-based material. It

【0006】本発明のAg系膜の成膜方法では、基体
に、Ag系材料の酸化膜を成膜してから、この酸化膜の
上に、前記Ag系材料でなるAg系膜を成膜する。
In the method of forming an Ag-based film of the present invention, an oxide film of an Ag-based material is formed on a substrate, and then an Ag-based film made of the Ag-based material is formed on the oxide film. To do.

【0007】すなわち、本発明では、基体上にAg膜ま
たはAg合金膜を成膜する前に、それぞれの酸化膜(A
gOX 膜、Ag合金OX 膜)を成膜してからAg膜また
はAg合金膜を積層し、基体との密着性を持たせるよう
にしている。好ましくは、AgOX 膜、Ag合金O
X 膜、それぞれの膜厚を20Å以上とすれば、より優れ
た密着性が得られる。
That is, in the present invention, before forming the Ag film or the Ag alloy film on the substrate, the respective oxide films (A
After forming the gO x film and the Ag alloy O x film), the Ag film or the Ag alloy film is laminated to provide the adhesiveness with the substrate. Preferably, AgO x film and Ag alloy O
If the X film and each film thickness is 20 Å or more, more excellent adhesion can be obtained.

【0008】本発明で、Ag系材料とは、Ag単体、あ
るいはAgに、例えばCu、Ti、Su、Au、Pt、
Niなどが1つ若しくは複数添加されてなるAg合金を
表す。また、基体は、ガラス基板やプラスチック基板な
どの単層構造、あるいはガラス基板やプラスチック基板
の上に、例えばTiOX 膜やSiO2 膜などが形成され
た多層構造でなる。
In the present invention, the Ag-based material means Ag alone or Ag containing, for example, Cu, Ti, Su, Au, Pt,
It represents an Ag alloy formed by adding one or more of Ni and the like. The base has a single layer structure such as a glass substrate or a plastic substrate, or a multilayer structure in which a TiO x film or a SiO 2 film is formed on the glass substrate or the plastic substrate.

【0009】[0009]

【発明の実施の形態】先ず、本実施の形態で用いる成膜
装置について、図5、6を参照して説明する。本実施の
形態では、通過成膜型インターバック式のスパッタ装置
30を用いて成膜を行う。図5は、そのスパッタ装置3
0の模式側面図を、図6は模式平面図を示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS First, a film forming apparatus used in this embodiment will be described with reference to FIGS. In the present embodiment, film formation is carried out using a pass film formation type interback type sputtering device 30. FIG. 5 shows the sputtering apparatus 3
0 is a schematic side view, and FIG. 6 is a schematic plan view.

【0010】スパッタ装置30は、主として、スパッタ
室31と、搬出入室32とから構成される。これら両室
31、32は仕切弁36により仕切られている。仕切弁
36は、両室31、32を気密に遮断可能である。搬出
入室32はバルブ38を介して真空排気系(粗引き系)
に接続されている。スパッタ室はバルブ39を介して真
空ポンプ(例えばクライオポンプ)40に接続されてい
る。
The sputtering apparatus 30 mainly comprises a sputtering chamber 31 and a loading / unloading chamber 32. Both chambers 31 and 32 are partitioned by a sluice valve 36. The sluice valve 36 can hermetically shut off the both chambers 31 and 32. The loading / unloading chamber 32 is evacuated through a valve 38 to a vacuum exhaust system (roughing system).
It is connected to the. The sputtering chamber is connected to a vacuum pump (eg, cryopump) 40 via a valve 39.

【0011】基体1は、被成膜面を下方に露出させてキ
ャリア35に保持され、搬出入室32とスパッタ室31
間を移動され、更にはスパッタ室31内を図において左
右方向に移動される。キャリア35は、移動方向に沿っ
て配設されたローラ(図示せず)にその両側端部を支持
され、そのローラ上を移動する。
The substrate 1 is held by a carrier 35 with the surface on which the film is formed being exposed downward, and is carried in and out by a carrier chamber 32 and a sputtering chamber 31.
And the inside of the sputtering chamber 31 is moved to the left and right in the figure. The carrier 35 is supported on both side ends by rollers (not shown) arranged along the moving direction, and moves on the rollers.

【0012】スパッタ室31内の出入り口側(図におい
て右方)には、ターゲット33が配設されており、成膜
時、このターゲット33に電源41から電力が印加され
る。ターゲット33の近傍には、スパッタ室31内に通
じるガス導入管37が設けられている。スパッタ室31
内の左方には、ヒータ34aが配設され、加熱部34を
形成している。
A target 33 is provided on the entrance / exit side (right side in the drawing) of the sputtering chamber 31, and power is applied from a power source 41 to the target 33 during film formation. In the vicinity of the target 33, a gas introduction pipe 37 communicating with the inside of the sputtering chamber 31 is provided. Sputtering room 31
A heater 34a is arranged on the left side of the inside to form a heating portion 34.

【0013】(第1の実施の形態)基体1としては、縦
横の寸法が210mm×210mm、厚さが0.7mm
のコーニング社製Code 7059,1737のガラス基板を用い
た。ターゲット33は、純度99.99%以上のAg材料で
なる。
(First Embodiment) The substrate 1 has a vertical and horizontal dimensions of 210 mm × 210 mm and a thickness of 0.7 mm.
A Corning Code 7059, 1737 glass substrate was used. The target 33 is made of an Ag material having a purity of 99.99% or more.

【0014】先ず、ガラス基板1はキャリア35に保持
され、搬出入室32内に搬入される。そして、搬出入室
32内は粗引き排気される。スパッタ室31内はクライ
オポンプ40により真空排気される。両室31、32が
所定の減圧雰囲気になると、仕切弁36が開かれ、キャ
リア35の移動によりガラス基板1はスパッタ室31内
に搬入される。
First, the glass substrate 1 is held by the carrier 35 and loaded into the loading / unloading chamber 32. Then, the inside of the carry-in / out chamber 32 is roughly exhausted. The interior of the sputtering chamber 31 is evacuated by the cryopump 40. When both chambers 31 and 32 have a predetermined reduced pressure atmosphere, the sluice valve 36 is opened, and the glass substrate 1 is carried into the sputtering chamber 31 by the movement of the carrier 35.

【0015】ガラス基板1は、ヒータ34aの設置され
た加熱部34に移動され加熱される。このとき、ガス導
入管37よりArガスとO2 ガスが導入され(真空排気
は引き続き行われている)、スパッタ室31内は、Ar
ガスとO2 ガスとの混合ガス雰囲気(圧力0.3Pa)
とされる。
The glass substrate 1 is moved to and heated by a heating section 34 provided with a heater 34a. At this time, Ar gas and O 2 gas are introduced from the gas introduction pipe 37 (vacuum evacuation is continued), and the inside of the sputtering chamber 31 is filled with Ar gas.
Mixed gas atmosphere of gas and O 2 gas (pressure 0.3 Pa)
It is said that

【0016】上記雰囲気中にて、Agターゲット33に
電源41より電力を印加すると共に、加熱部34にて加
熱されたガラス基板1を、スパッタ室31内(加熱部3
4以外の部分)で左右に移動させる。これにより、Ag
ターゲット33からスパッタされたAg原子が、ガラス
基板1上でO2 ガスと反応しながら付着し、ガラス基板
1にAgOX 膜が形成される。ガラス基板1を移動させ
ながらスパッタリングを行うのは、基板面内での膜厚を
均一にするためである。
In the atmosphere described above, power is applied to the Ag target 33 from the power source 41, and the glass substrate 1 heated by the heating unit 34 is placed in the sputtering chamber 31 (heating unit 3).
Move to the left or right with the part other than 4. As a result, Ag
Ag atoms sputtered from the target 33 adhere to the glass substrate 1 while reacting with the O 2 gas to form an AgO x film on the glass substrate 1. The reason why the sputtering is performed while moving the glass substrate 1 is to make the film thickness uniform within the substrate surface.

【0017】Agターゲット33への電力印加を停止し
て、AgOX 膜の成膜を終了すると、ガラス基板1を再
び加熱部34へと移動させ、更にO2 ガスの導入を停止
して、放電用のArガスのみを120sccmで導入
し、スパッタ室31内をArガスのみの雰囲気(圧力
0.3Pa)とする。
When the application of electric power to the Ag target 33 is stopped and the formation of the AgO x film is completed, the glass substrate 1 is moved to the heating section 34 again, the introduction of O 2 gas is stopped, and the discharge is performed. The Ar gas for use is introduced at 120 sccm, and the inside of the sputtering chamber 31 is set to an atmosphere of Ar gas only (pressure 0.3 Pa).

【0018】そして、このArガス雰囲気中で、Agタ
ーゲット33に電源41より電力を印加すると共に、加
熱部34にて加熱されたガラス基板1を、スパッタ室3
1内(加熱部34以外の部分)で左右に移動させる。こ
れにより、Agターゲット33からスパッタされたAg
原子がガラス基板1に付着し、ガラス基板1にAg膜が
形成される。この成膜時にも、基板面内での膜厚を均一
にするため、ガラス基板1を移動させながらスパッタリ
ングを行っている。なお、以上の一連の成膜工程中は、
仕切弁36は閉じられ、スパッタ室31と搬出入室32
とを気密に遮断している。
Then, in this Ar gas atmosphere, power is applied to the Ag target 33 from the power source 41, and the glass substrate 1 heated by the heating section 34 is moved to the sputtering chamber 3
It is moved left and right within 1 (a part other than the heating part 34). Thereby, the Ag sputtered from the Ag target 33
Atoms adhere to the glass substrate 1 and an Ag film is formed on the glass substrate 1. Also during this film formation, the sputtering is performed while moving the glass substrate 1 in order to make the film thickness uniform within the substrate surface. In addition, during the above series of film forming steps,
The gate valve 36 is closed, and the sputter chamber 31 and the carry-in / out chamber 32 are
And airtightly cut off.

【0019】以上述べた一連の成膜が終了すると、Ag
X 膜及びAg膜が積層されたガラス基板1は、開状態
とされた仕切弁36を介して、減圧下にある搬出入室3
2に搬送され、外部に取り出される。このようにして、
図1に示す積層体10が得られる。すなわち、積層体1
0は、ガラス基板1上にAgOX 膜2が形成され、この
AgOX 膜2上にAg膜3が形成されて構成される。こ
のように、AgOX 膜2を介してAg膜3をガラス基板
1に積層することで、Ag膜3とAgOX 膜2間、及び
AgOX 膜2とガラス基板1間の密着性を高めることが
でき、膜剥がれを防ぐことができる。
When the above-described series of film formation is completed, Ag
O X film and the glass substrate 1, an Ag film is laminated via a gate valve 36 which is opened and transport room under reduced pressure 3
It is transported to the 2 and taken out. In this way
The laminated body 10 shown in FIG. 1 is obtained. That is, the laminated body 1
In No. 0, the AgO x film 2 is formed on the glass substrate 1, and the Ag film 3 is formed on the AgO x film 2. Thus, by stacking the Ag film 3 on glass substrate 1 through the AgO X film 2, between the Ag film 3 and AgO X film 2, and AgO X film 2 and to increase the adhesion between the glass substrate 1 It is possible to prevent film peeling.

【0020】以下、密着性を評価するために行ったピー
リング試験の結果について説明する。この試験は、上記
で得られた積層体10の表面(Ag膜3)に、粘着テー
プを貼り付けた後、そのテープを剥がして、Ag膜3の
剥離を確認するものである。具体的には長さ3cmに切
ったニチバン社製のセロハンテープと、これより粘着力
が強力な3M社製のスコッチテープ(やはり長さ3c
m)の両方を用いて行った。図7に示すように、積層体
10上の(番号1〜9で示す)9箇所について行った。
なお、AgOX 膜2の膜厚としては20Å〜100Åほ
どであり、このAgOX 膜2形成時のO2 ガスの分圧
(トータル圧力0.3Paに対する分圧)は、0.01
Pa〜0.3Paである。
The results of the peeling test conducted to evaluate the adhesion will be described below. This test is to confirm the peeling of the Ag film 3 by sticking an adhesive tape on the surface (Ag film 3) of the laminate 10 obtained above and then peeling off the tape. Specifically, a Nichiban cellophane tape cut into a length of 3 cm and a 3M Scotch tape with a stronger adhesive strength (again, length 3c
m). As shown in FIG. 7, the test was performed at nine positions (indicated by numbers 1 to 9) on the laminate 10.
The thickness of the AgO x film 2 is about 20 Å to 100 Å, and the partial pressure of O 2 gas (partial pressure for a total pressure of 0.3 Pa) when forming the AgO x film 2 is 0.01.
Pa to 0.3 Pa.

【0021】また、上述と同様なピーリング試験を、ガ
ラス基板上に直接Ag膜を形成した従来構成の積層体
(上述と同じスパッタ装置及び同条件にて作製された)
についても行った。この比較結果を図8に示す。図8
中、Pos.1〜Pos.9は、図7中の位置1〜9に対応す
る。また、図8中、温度とあるのは、成膜時のガラス基
板の温度(例えばガラス基板に熱電対を取り付けて測
定)を示す。室温は、ガラス基板を加熱しなかった場合
である。
Further, a peeling test similar to that described above was carried out, and a laminate having a conventional structure in which an Ag film was directly formed on a glass substrate (produced under the same sputtering apparatus and conditions as above)
Also went. The result of this comparison is shown in FIG. Figure 8
Medium, Pos.1 to Pos.9 correspond to positions 1 to 9 in FIG. Further, in FIG. 8, the term “temperature” indicates the temperature of the glass substrate during film formation (for example, measured by attaching a thermocouple to the glass substrate). Room temperature is when the glass substrate is not heated.

【0022】また、図8で、○は全く剥離しなかった場
合を、×は剥離した場合を、△は○と×の中間の評価と
してやや剥離した場合を示している。この結果から明ら
かなように、(Ag/AgOX /ガラス基板)の構成
は、従来構成(Ag/ガラス基板)に比べ密着性に優れ
ていることがわかる。特に、ガラス基板を150℃で加
熱して成膜した場合には、全ての位置にて剥離が認めら
れなかった。
In FIG. 8, .largecircle. Indicates that no peeling occurred, x indicates peeling, and .DELTA. Indicates slight peeling as an evaluation between .largecircle. And x. As is clear from this result, it can be seen that the structure of (Ag / AgO x / glass substrate) is superior in adhesiveness to the conventional structure (Ag / glass substrate). In particular, when a glass substrate was heated at 150 ° C. to form a film, peeling was not observed at all positions.

【0023】図9は、AgOX 膜形成時における、Ar
ガスとO2 ガスの混合比を変化させたときの密着性評価
を示す。なお、AgOX 膜は100Åの膜厚で形成し
た。この結果からわかるように、O2 ガスの分圧が0P
aのとき、すなわちAgOX 膜を形成しなかった場合
(従来の構成)以外は、良好な結果となっている。すな
わち、わずかでもO2 ガスを導入して、酸化されたAg
膜(AgOX 膜)をガラス基板とAg膜との間に介在さ
せることで、従来に比べて密着性を向上させることがで
きる。なお、図9には示していないが、O2 ガスの分圧
が0.01Paのときでも良好な密着性が得られた。
FIG. 9 shows Ar during the formation of the AgO x film.
The adhesion evaluation when the mixing ratio of gas and O 2 gas is changed is shown. The AgO x film was formed with a film thickness of 100 Å. As can be seen from this result, the partial pressure of O 2 gas is 0 P.
When a, i.e. other than when not formed AgO X film (conventional configuration) is a better result. That is, even a small amount of O 2 gas is introduced to oxidize Ag.
By interposing the film (AgO x film) between the glass substrate and the Ag film, the adhesion can be improved as compared with the conventional case. Although not shown in FIG. 9, good adhesion was obtained even when the partial pressure of O 2 gas was 0.01 Pa.

【0024】図10は、AgOX 膜の膜厚と剥離率との
関係を示す。AgOX 膜成膜時の雰囲気は、0.2Pa
のArガスと、0.1PaのO2 ガスとの混合ガス(全
体の圧力Ptot は0.3Pa)である。●は基板温度1
50℃で成膜した結果、×は室温で成膜した結果を示
す。この結果からわかるように、基板温度にかかわら
ず、AgOX 膜の膜厚が20Å以上の場合には剥離率が
0%となっており、剥離が認められなかった。従って、
AgOX 膜の膜厚を20Å以上とすれば、優れた密着性
が得られる。膜厚は、Agターゲット33への印加電力
や、スパッタ室31内に導入するArガスやO2 ガスの
ガス流量などの調整で容易に制御できる。なお、AgO
X 膜の上に形成されるAg膜の膜厚は、1000〜50
00Åである。
FIG. 10 shows the relationship between the film thickness of the AgO x film and the peeling rate. The atmosphere during deposition of the AgO x film is 0.2 Pa.
Of Ar gas and O 2 gas of 0.1 Pa (total pressure P tot is 0.3 Pa). ● is the substrate temperature 1
As a result of film formation at 50 ° C., × indicates the result of film formation at room temperature. As can be seen from these results, regardless of the substrate temperature, when the thickness of the AgO x film was 20 Å or more, the peeling rate was 0%, and peeling was not observed. Therefore,
If the thickness of the AgO x film is 20 Å or more, excellent adhesion can be obtained. The film thickness can be easily controlled by adjusting the power applied to the Ag target 33 and the gas flow rates of Ar gas and O 2 gas introduced into the sputtering chamber 31. In addition, AgO
The Ag film formed on the X film has a thickness of 1000 to 50.
It is 00Å.

【0025】(第2の実施の形態)本実施の形態では、
Ag系膜としてAg合金膜(具体的にはAgとCuとの
合金膜)の成膜を行った。本実施の形態でも、図5、6
に示す通過成膜型インターバック式のスパッタ装置30
を用いて成膜を行った。
(Second Embodiment) In the present embodiment,
An Ag alloy film (specifically, an alloy film of Ag and Cu) was formed as an Ag-based film. Also in this embodiment, FIGS.
Interpenetrating type sputtering apparatus 30 shown in FIG.
Was used to form a film.

【0026】基体1としては、第1の実施の形態と同
様、縦横の寸法が210mm×210mm、厚さが0.
7mmのコーニング社製Code 7059,1737のガラス基板を
用いた。ターゲット33は、純度 99.99%以上のAg材
料でなる。更に、本実施の形態では、このAgターゲッ
ト33の上にCuのチップ(3〜5mm角)を置いた。
これにより、Cuを3at%(原子量%)含んだAg合金
膜(Ag:Cu=97at%:3at%)が成膜される。
As in the first embodiment, the substrate 1 has vertical and horizontal dimensions of 210 mm × 210 mm and a thickness of 0.
A 7 mm Corning Code 7059, 1737 glass substrate was used. The target 33 is made of an Ag material having a purity of 99.99% or more. Further, in the present embodiment, a Cu chip (3 to 5 mm square) is placed on the Ag target 33.
As a result, an Ag alloy film (Ag: Cu = 97 at%: 3 at%) containing 3 at% (atomic weight%) of Cu is formed.

【0027】先ず、第1の実施の形態と同様、ガラス基
板1はキャリア35に保持され、搬出入室32内に搬入
される。そして、搬出入室32内は粗引き排気される。
スパッタ室31内はクライオポンプ40により真空排気
される。両室31、32が所定の減圧雰囲気になると、
仕切弁36が開かれ、キャリア35の移動によりガラス
基板1はスパッタ室31内に搬入される。
First, as in the first embodiment, the glass substrate 1 is held by the carrier 35 and loaded into the loading / unloading chamber 32. Then, the inside of the carry-in / out chamber 32 is roughly exhausted.
The interior of the sputtering chamber 31 is evacuated by the cryopump 40. When both chambers 31 and 32 have a predetermined reduced pressure atmosphere,
The sluice valve 36 is opened, and the glass substrate 1 is carried into the sputtering chamber 31 by the movement of the carrier 35.

【0028】ガラス基板1は、ヒータ34aの設置され
た加熱部34に移動され加熱される。このとき、ガス導
入管37よりArガスとO2 ガスが導入され(真空排気
は引き続き行われている)、スパッタ室31内は、Ar
ガスとO2 ガスとの混合ガス雰囲気(圧力0.3Pa)
とされる。
The glass substrate 1 is moved to and heated by the heating section 34 provided with the heater 34a. At this time, Ar gas and O 2 gas are introduced from the gas introduction pipe 37 (vacuum evacuation is continued), and the inside of the sputtering chamber 31 is filled with Ar gas.
Mixed gas atmosphere of gas and O 2 gas (pressure 0.3 Pa)
It is said that

【0029】上記雰囲気中にて、Cuチップを載置した
Agターゲット33に電源41より電力を印加すると共
に、加熱部34にて加熱されたガラス基板1を、スパッ
タ室31内(加熱部34以外の部分)で左右に移動させ
る。これにより、Agターゲット33及びこの上のCu
チップからスパッタされたAg原子及びCu原子が、ガ
ラス基板1上でO2 ガスと反応しながら付着し、ガラス
基板1に(Ag−Cu合金)OX 膜が形成される。ガラ
ス基板1を移動させながらスパッタリングを行うのは、
基板面内での膜厚を均一にするためである。
In the above atmosphere, power is applied from the power source 41 to the Ag target 33 on which the Cu chip is mounted, and the glass substrate 1 heated by the heating section 34 is placed in the sputtering chamber 31 (other than the heating section 34). Part) to move left and right. As a result, the Ag target 33 and Cu on the Ag target 33 are formed.
Ag atoms and Cu atoms sputtered from the chips adhere to the glass substrate 1 while reacting with O 2 gas to form an (Ag—Cu alloy) O x film on the glass substrate 1. Performing sputtering while moving the glass substrate 1 is
This is to make the film thickness uniform within the substrate surface.

【0030】Agターゲット33への電力印加を停止し
て、(Ag−Cu合金)OX 膜の成膜を終了すると、ガ
ラス基板1を再び加熱部34へと移動させ、更にO2
スの導入を停止して、放電用のArガスのみを120s
ccmで導入し、スパッタ室31内をArガスのみの雰
囲気(圧力0.3Pa)とする。
When the application of electric power to the Ag target 33 is stopped and the formation of the (Ag-Cu alloy) O x film is completed, the glass substrate 1 is moved to the heating section 34 again, and further O 2 gas is introduced. Stop, and only discharge Ar gas for 120s
It is introduced at ccm, and the inside of the sputtering chamber 31 is set to an atmosphere of Ar gas only (pressure 0.3 Pa).

【0031】そして、このArガス雰囲気中で、Agタ
ーゲット33に電源41より電力を印加すると共に、加
熱部34にて加熱されたガラス基板1を、スパッタ室3
1内(加熱部34以外の部分)で左右に移動させる。こ
れにより、Agターゲット33及びCuチップからスパ
ッタされたAg原子とCu原子の合金膜がガラス基板1
に形成される。この成膜時にも、基板面内での膜厚を均
一にするため、ガラス基板1を移動させながらスパッタ
リングを行っている。なお、以上の一連の成膜工程中
は、仕切弁36は閉じられ、スパッタ室31と搬出入室
32とを気密に遮断している。
Then, in this Ar gas atmosphere, electric power is applied to the Ag target 33 from the power source 41, and the glass substrate 1 heated by the heating section 34 is moved to the sputtering chamber 3
It is moved left and right within 1 (a part other than the heating part 34). As a result, the alloy film of Ag atoms and Cu atoms sputtered from the Ag target 33 and the Cu chip becomes the glass substrate 1.
Is formed. Also during this film formation, the sputtering is performed while moving the glass substrate 1 in order to make the film thickness uniform within the substrate surface. During the above-described series of film forming steps, the sluice valve 36 is closed, and the sputtering chamber 31 and the loading / unloading chamber 32 are hermetically shut off from each other.

【0032】以上述べた一連の成膜が終了すると、(A
g−Cu合金)OX 膜、及びAg−Cu合金膜が積層さ
れたガラス基板1は、開状態とされた仕切弁36を介し
て、減圧下にある搬出入室32に搬送され、外部に取り
出される。このようにして、図2に示す積層体20が得
られる。すなわち、積層体20は、ガラス基板1上に
(Ag−Cu合金)OX 膜12が形成され、この(Ag
−Cu合金)OX 膜12上にAg−Cu合金膜13が形
成されて構成される。このように、(Ag−Cu合金)
X 膜12を介してAg−Cu合金膜13をガラス基板
1に積層することで、Ag−Cu合金膜13と(Ag−
Cu合金)OX 膜12間、及び(Ag−Cu合金)OX
膜12とガラス基板1間の密着性を高めることができ、
膜剥がれを防ぐことができる。
When the series of film formation described above is completed, (A
The glass substrate 1 on which the g-Cu alloy) O x film and the Ag-Cu alloy film are laminated is conveyed to the loading / unloading chamber 32 under reduced pressure via the sluice valve 36 in the open state and taken out to the outside. Be done. In this way, the laminated body 20 shown in FIG. 2 is obtained. That is, in the laminated body 20, the (Ag—Cu alloy) O X film 12 is formed on the glass substrate 1, and the (Ag—Cu alloy) O X film 12 is formed.
-Cu alloy) O X film formed is formed Ag-Cu alloy film 13 on 12. Thus, (Ag-Cu alloy)
By stacking the Ag—Cu alloy film 13 on the glass substrate 1 through the O x film 12, the Ag—Cu alloy film 13 and (Ag−
Between Cu alloy) O X film 12, and (Ag-Cu alloy) O X
The adhesion between the film 12 and the glass substrate 1 can be increased,
Film peeling can be prevented.

【0033】本実施の形態においても、第1の実施の形
態と同様な密着性評価を行った。図11は、(Ag−C
u合金)OX 膜形成時における、ArガスとO2 ガスの
混合比を変化させたときの密着性評価を示す。なお、
(Ag−Cu合金)OX 膜は100Åの膜厚で形成し
た。この結果からわかるように、O2 ガスの分圧が0P
aのとき、すなわち(Ag−Cu合金)OX 膜を形成し
なかった場合(従来の構成)以外は、良好な結果となっ
ている。すなわち、わずかでもO2 ガスを導入して、酸
化されたAg−Cu合金膜をガラス基板とAg−Cu合
金膜との間に介在させることで、従来に比べて密着性を
向上させることができる。なお、図11には示していな
いが、O2 ガスの分圧が0.01Paのときでも良好な
密着性が得られた。
Also in this embodiment, the same adhesion evaluation as in the first embodiment was performed. FIG. 11 shows (Ag-C
u alloy) Evaluation of adhesion when changing the mixing ratio of Ar gas and O 2 gas during formation of O x film. In addition,
(Ag-Cu alloy) O X film was formed to a thickness of 100 Å. As can be seen from this result, the partial pressure of O 2 gas is 0 P.
In the case of “a”, that is, except when the (Ag—Cu alloy) O x film was not formed (conventional structure), the result is good. That is, even if only a small amount of O 2 gas is introduced and the oxidized Ag—Cu alloy film is interposed between the glass substrate and the Ag—Cu alloy film, the adhesion can be improved as compared with the conventional case. . Although not shown in FIG. 11, good adhesion was obtained even when the partial pressure of O 2 gas was 0.01 Pa.

【0034】図12は、(Ag−Cu合金)OX 膜の膜
厚と剥離率との関係を示す。(Ag−Cu合金)OX
成膜時の雰囲気は、0.2PaのArガスと、0.1P
aのO2 ガスとの混合ガス(全体の圧力Ptot は0.3
Pa)である。●は基板温度150℃で成膜した結果、
×は室温で成膜した結果を示す。この結果からわかるよ
うに、基板温度にかかわらず、(Ag−Cu合金)OX
膜の膜厚が20Å以上の場合には剥離率が0%となって
おり、剥離が認められなかった。従って、(Ag−Cu
合金)OX 膜の膜厚を20Å以上とすれば、優れた密着
性が得られる。膜厚は、Cuチップを載置したAgター
ゲット33への印加電力や、スパッタ室31内に導入す
るArガスやO2 ガスのガス流量などの調整で容易に制
御できる。なお、(Ag−Cu合金)OX 膜の上に形成
されるAg−Cu合金膜の膜厚は、1000〜5000
Åである。
FIG. 12 shows the relationship between the film thickness of the (Ag—Cu alloy) O x film and the peeling rate. (Ag—Cu alloy) O X film is formed in an atmosphere of Ar gas of 0.2 Pa and 0.1 P
Gas mixture of a with O 2 gas (total pressure P tot is 0.3
Pa). ● is the result of film formation at a substrate temperature of 150 ℃,
X indicates the result of film formation at room temperature. As can be seen from these results, regardless of the substrate temperature, (Ag-Cu alloy) O x
When the film thickness was 20 Å or more, the peeling rate was 0%, and peeling was not observed. Therefore, (Ag-Cu
If the film thickness of the alloy) O x film is 20 Å or more, excellent adhesion can be obtained. The film thickness can be easily controlled by adjusting the power applied to the Ag target 33 on which the Cu chip is mounted, the gas flow rates of Ar gas and O 2 gas introduced into the sputtering chamber 31, and the like. Incidentally, the thickness of the (Ag-Cu alloy) O X film Ag-Cu alloy film formed on the, 1000-5000
It is Å.

【0035】以上、本発明の各実施の形態について説明
したが、勿論、本発明はこれらに限定されることなく、
本発明の技術的思想に基づいて種々の変形が可能であ
る。
Although the respective embodiments of the present invention have been described above, it goes without saying that the present invention is not limited to these embodiments.
Various modifications are possible based on the technical idea of the present invention.

【0036】上記各実施の形態で示したスパッタ成膜時
の各種条件は、上記で示したものに限ることはない。ま
た、Ag系酸化膜の形成に際しては、O2 ガスを用いた
反応性スパッタリングに限らず、不活性ガスのみの雰囲
気中で、Ag系酸化物でなるターゲットをスパッタリン
グすることによって形成するようにしてもよい。ただ
し、この場合、Ag系酸化物でなるターゲットの加工性
の問題や、得られるAg系酸化膜の組成がターゲットの
組成からずれるなどの問題がある。これに対して、反応
性スパッタリングによるAg系酸化膜の形成では、O2
ガスと不活性ガスの混合比を変えてスパッタリングする
ことにより、Ag系酸化膜を所望の組成に容易に制御で
きる。単に導入するガスを制御するだけであり、同一の
スパッタ室にて、Ag系酸化膜とAg系膜とを連続的に
成膜でき効率的である。Ag系酸化膜とAg系膜とを成
膜する過程でスパッタ室は真空破壊されない、すなわち
大気にさらされないので、良質な膜が得られる。などの
利点がある。なお、スパッタリング時の放電用ガスとし
てはArガスに限ることなく、その他の不活性ガスも用
いることが可能である。更には、スパッタリングに限ら
ず、例えば蒸着法などで、図1、2に示す構造の積層体
を作製してもよい。
The various conditions at the time of film formation by sputtering shown in each of the above embodiments are not limited to those shown above. Further, the formation of the Ag-based oxide film is not limited to reactive sputtering using O 2 gas, but may be performed by sputtering a target made of an Ag-based oxide in an atmosphere of only an inert gas. Good. However, in this case, there are problems such as the workability of the target made of an Ag-based oxide and the composition of the obtained Ag-based oxide film deviating from the composition of the target. On the other hand, in forming the Ag-based oxide film by reactive sputtering, O 2
By changing the mixing ratio of the gas and the inert gas and performing the sputtering, the Ag-based oxide film can be easily controlled to have a desired composition. By simply controlling the gas to be introduced, it is efficient to continuously form the Ag-based oxide film and the Ag-based film in the same sputtering chamber. In the process of forming the Ag-based oxide film and the Ag-based film, the sputtering chamber is not broken in vacuum, that is, not exposed to the atmosphere, so that a good quality film can be obtained. There are advantages such as. The discharge gas during sputtering is not limited to Ar gas, and other inert gas can be used. Further, the laminated body having the structure shown in FIGS. 1 and 2 may be produced by not only sputtering but also vapor deposition, for example.

【0037】基体としては、ガラス基板に限らず、図3
に示すようにプラスチック基板21を用いた場合であっ
ても、その上に形成されるAg系酸化膜(AgOX 膜/
Ag合金OX 膜)22、及びAg系膜(Ag膜/Ag合
金膜)23との良好な密着性は得られる。更には、基体
としては、図4に示すように、ガラス基板1の上にTi
X 膜あるいはSiO2 膜などが形成された多層構造で
あってもよい。もちろん、プラスチック基板21の上に
TiOX 膜あるいはSiO2 膜などが形成された多層構
造であってもよい。また、Ag系合金としては、Ag−
Cu合金に限らず、Agに、例えばCu、Ti、Su、
Au、Pt、Niなどが1つ若しくは複数添加されてな
るAg合金であってもよい。
The substrate is not limited to the glass substrate, but may be any of those shown in FIG.
Even when the plastic substrate 21 is used as shown in FIG. 5, an Ag-based oxide film (AgO x film /
Good adhesion with the Ag alloy O x film) 22 and the Ag-based film (Ag film / Ag alloy film) 23 can be obtained. Further, as the base, as shown in FIG. 4, Ti on the glass substrate 1 is used.
It may have a multi-layer structure in which an O x film or a SiO 2 film is formed. Of course, it may have a multi-layer structure in which a TiO x film or a SiO 2 film is formed on the plastic substrate 21. Further, as an Ag-based alloy, Ag-
Not only Cu alloys but also Ag, such as Cu, Ti, Su,
It may be an Ag alloy formed by adding one or more of Au, Pt, Ni and the like.

【0038】[0038]

【発明の効果】以上述べたように、本発明によれば、基
体と、Ag膜またはAg合金膜との間に、Agの酸化膜
またはAg合金の酸化膜を介在させることで、基体に対
するAg膜またはAg合金膜の密着性を向上させること
ができる。例えば、Ag膜またはAg合金膜をパターニ
ングする際のフォトレジスト工程などを経ても剥離する
ことがない。更に、実用に耐えうる低抵抗(酸化膜を形
成することで抵抗は多少大きくなるが実用上は問題な
い)で、高反射率あるいは良好な光透過性を有するAg
膜またはAg合金膜が得られる。
As described above, according to the present invention, by interposing an oxide film of Ag or an oxide film of Ag alloy between the substrate and the Ag film or the Ag alloy film, Ag on the substrate is improved. The adhesion of the film or the Ag alloy film can be improved. For example, it does not peel off even after a photoresist process for patterning the Ag film or the Ag alloy film. Furthermore, Ag having a low resistance that can be used practically (the resistance increases a little by forming an oxide film, but there is no problem in practical use), and has high reflectance or good light transmittance.
A film or Ag alloy film is obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施の形態による積層体の構成
を示す模式図である。
FIG. 1 is a schematic diagram showing a configuration of a laminated body according to a first embodiment of the present invention.

【図2】本発明の第2の実施の形態による積層体の構成
を示す模式図である。
FIG. 2 is a schematic diagram showing a structure of a laminated body according to a second embodiment of the present invention.

【図3】本発明の変形例による積層体の構成を示す模式
図である。
FIG. 3 is a schematic diagram showing a configuration of a laminated body according to a modified example of the present invention.

【図4】本発明の他変形例による積層体の構成を示す模
式図である。
FIG. 4 is a schematic diagram showing a configuration of a laminate according to another modification of the present invention.

【図5】通過成膜型インターバック式スパッタ装置の模
式側面図である。
FIG. 5 is a schematic side view of a pass film deposition type interback sputtering apparatus.

【図6】同装置の模式平面図である。FIG. 6 is a schematic plan view of the same device.

【図7】積層体表面上における、ピーリングテストを行
った位置を示す平面図である。
FIG. 7 is a plan view showing a position where a peeling test is performed on the surface of the laminated body.

【図8】従来構成の積層体と、本発明の積層体とのピー
リングテストの比較結果を示す。
FIG. 8 shows a comparison result of a peeling test between a laminate having a conventional structure and a laminate of the present invention.

【図9】スパッタガス分圧の変化に対するAgOX 膜の
密着性の良否を示す。
FIG. 9 shows the quality of the adhesion of the AgO x film with respect to changes in the sputtering gas partial pressure.

【図10】AgOX 膜の膜厚と剥離率との関係を示すグ
ラフである。
FIG. 10 is a graph showing the relationship between the film thickness of the AgO x film and the peeling rate.

【図11】スパッタガス分圧の変化に対するAg合金O
X 膜の密着性の良否を示す。
FIG. 11: Ag alloy O for changes in sputter gas partial pressure
Indicates whether the X film has good adhesion.

【図12】Ag合金OX 膜の膜厚と剥離率との関係を示
すグラフである。
FIG. 12 is a graph showing the relationship between the film thickness of an Ag alloy O x film and the peeling rate.

【符号の説明】[Explanation of symbols]

1……ガラス基板、2……AgOX 膜、3……Ag膜、
10……積層体、12……Ag合金OX 膜、13……A
g合金膜、20……積層体、21……プラスチック基
板、22……Ag系酸化膜(AgOX 膜/Ag合金OX
膜)、23……Ag系膜(Ag膜/Ag合金膜)、24
……TiOX 膜/SiO2 膜、30……スパッタ装置、
31……スパッタ室、32……搬出入室、33……Ag
ターゲット、34……加熱部、34a……ヒータ、35
……キャリア、36……仕切弁、37……ガス導入管、
40……真空ポンプ、41……電源。
1 ... Glass substrate, 2 ... AgO X film, 3 ... Ag film,
10 ...... laminate, 12 ...... Ag alloy O X film, 13 ...... A
g alloy film, 20 ... laminated body, 21 ... plastic substrate, 22 ... Ag-based oxide film (AgO x film / Ag alloy O x)
Film), 23 ... Ag-based film (Ag film / Ag alloy film), 24
...... TiO x film / SiO 2 film, 30 …… Sputtering device,
31 ... Sputtering room, 32 ... Carrying in / out room, 33 ... Ag
Target, 34 ... Heating part, 34a ... Heater, 35
...... Carrier, 36 ...... gate valve, 37 ...... gas inlet pipe,
40 ... vacuum pump, 41 ... power supply.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小松 孝 千葉県山武郡山武町横田523 株式会社ア ルバック千葉超材料研究所内 (72)発明者 中村 肇 千葉県山武郡山武町横田523 株式会社ア ルバック千葉超材料研究所内 (72)発明者 清田 淳也 千葉県山武郡山武町横田523 株式会社ア ルバック千葉超材料研究所内 (72)発明者 新井 真 千葉県山武郡山武町横田523 株式会社ア ルバック千葉超材料研究所内 Fターム(参考) 2H042 DA04 DA11 DA12 DA15 DC02 DE00 3K007 CA01 CB01 CC01 DB03 4F100 AA17C AB24B AG00A AT00A BA03 BA07 BA10A BA10B EH66B EH66C GB41 JL11 YY00C 4G059 AA08 AC05 AC12 DA01 DA04 DB02 EA01 EB04 GA01 GA04 GA14 4K029 AA09 AA24 BA04 BA43 BB02 BC07 BD00 BD09 CA05 CA06 EA01    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Takashi Komatsu             523 Yokota, Sanmu-cho, Sanmu-gun, Chiba Prefecture             Lubac Chiba Institute for Materials Research (72) Inventor Hajime Nakamura             523 Yokota, Sanmu-cho, Sanmu-gun, Chiba Prefecture             Lubac Chiba Institute for Materials Research (72) Inventor Junya Kiyota             523 Yokota, Sanmu-cho, Sanmu-gun, Chiba Prefecture             Lubac Chiba Institute for Materials Research (72) Inventor Makoto Arai             523 Yokota, Sanmu-cho, Sanmu-gun, Chiba Prefecture             Lubac Chiba Institute for Materials Research F-term (reference) 2H042 DA04 DA11 DA12 DA15 DC02                       DE00                 3K007 CA01 CB01 CC01 DB03                 4F100 AA17C AB24B AG00A AT00A                       BA03 BA07 BA10A BA10B                       EH66B EH66C GB41 JL11                       YY00C                 4G059 AA08 AC05 AC12 DA01 DA04                       DB02 EA01 EB04 GA01 GA04                       GA14                 4K029 AA09 AA24 BA04 BA43 BB02                       BC07 BD00 BD09 CA05 CA06                       EA01

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 基体と、Ag系材料でなるAg系膜との
間に、前記Ag系材料の酸化膜が介在されていることを
特徴とするAg系膜を有する積層体。
1. A laminate having an Ag-based film, wherein an oxide film of the Ag-based material is interposed between a substrate and an Ag-based film made of an Ag-based material.
【請求項2】 前記酸化膜の膜厚が20Å以上であるこ
とを特徴とする請求項1に記載のAg系膜を有する積層
体。
2. The laminated body having an Ag-based film according to claim 1, wherein the oxide film has a film thickness of 20 Å or more.
【請求項3】 前記基体はガラス材料でなることを特徴
とする請求項1又は請求項2に記載のAg系膜を有する
積層体。
3. The laminate having an Ag-based film according to claim 1, wherein the base is made of a glass material.
【請求項4】 基体に、Ag系材料でなるAg系膜を成
膜するAg系膜の成膜方法であって、 前記基体に、前記Ag系材料の酸化膜を成膜してから、
該酸化膜の上に前記Ag系膜を成膜することを特徴とす
るAg系膜の成膜方法。
4. A method for forming an Ag-based film, which comprises forming an Ag-based film made of an Ag-based material on a substrate, the method comprising: forming an oxide film of the Ag-based material on the substrate;
A method for forming an Ag-based film, which comprises forming the Ag-based film on the oxide film.
【請求項5】 酸素ガスを含む雰囲気中のスパッタ室内
で、前記Ag系材料でなるターゲットをスパッタリング
して、前記基体に前記酸化膜を成膜した後、 前記スパッタ室内の雰囲気を不活性ガスのみにして、前
記ターゲットをスパッタリングして、前記酸化膜の上に
前記Ag系膜を成膜することを特徴とする請求項4に記
載のAg系膜の成膜方法。
5. A target made of the Ag-based material is sputtered in a sputtering chamber in an atmosphere containing oxygen gas to form the oxide film on the substrate, and then the atmosphere in the sputtering chamber is kept only with an inert gas. 5. The method of forming an Ag-based film according to claim 4, wherein the target is sputtered to form the Ag-based film on the oxide film.
【請求項6】 前記酸化膜の膜厚を20Å以上とするこ
とを特徴とする請求項4又は請求項5に記載のAg系膜
の成膜方法。
6. The method of forming an Ag-based film according to claim 4, wherein the oxide film has a film thickness of 20 Å or more.
【請求項7】 前記基体はガラス材料でなることを特徴
とする請求項6に記載のAg系膜の成膜方法。
7. The method for forming an Ag-based film according to claim 6, wherein the substrate is made of a glass material.
JP2001375288A 2001-12-10 2001-12-10 Method for forming Ag-based film Expired - Fee Related JP4176988B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001375288A JP4176988B2 (en) 2001-12-10 2001-12-10 Method for forming Ag-based film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001375288A JP4176988B2 (en) 2001-12-10 2001-12-10 Method for forming Ag-based film

Publications (2)

Publication Number Publication Date
JP2003170524A true JP2003170524A (en) 2003-06-17
JP4176988B2 JP4176988B2 (en) 2008-11-05

Family

ID=19183692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001375288A Expired - Fee Related JP4176988B2 (en) 2001-12-10 2001-12-10 Method for forming Ag-based film

Country Status (1)

Country Link
JP (1) JP4176988B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004022499A1 (en) * 2002-09-04 2004-03-18 Guardian Industries Corp. Heat treatable low-e coated articles and methods of making same by sputtering ag in oxygen inclusive atmosphere
WO2005031681A1 (en) * 2003-09-30 2005-04-07 Asahi Glass Company, Limited Multilayer body for forming base with wiring, base with wiring, and methods for manufacturing those
JP2005264329A (en) * 2004-02-19 2005-09-29 Ulvac Seimaku Kk Ag alloy film and manufacturing method thereof
JP2008191541A (en) * 2007-02-07 2008-08-21 Mitsubishi Materials Corp Wiring and electrode for liquid crystal display device excellent in adhesion without causing thermal defect
KR101168729B1 (en) * 2005-08-16 2012-07-26 삼성전자주식회사 Wire and method for fabricating interconnection line and thin film transistor substrate and method for fabricating the same
JP2014103105A (en) * 2012-10-24 2014-06-05 Konica Minolta Inc Transparent electrode, method for manufacturing transparent electrode, electronic device and organic electroluminescent element
JP2014211964A (en) * 2013-04-17 2014-11-13 コニカミノルタ株式会社 Transparent electrode, electronic device and organic electroluminescent element
JP2020510596A (en) * 2017-03-01 2020-04-09 ガーディアン・グラス・エルエルシーGuardian Glass, Llc Coated article having a (low emissivity) low-E coating with a silver-doped protective layer for protecting a silver-based infrared (IR) reflective layer, and method of making same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004022499A1 (en) * 2002-09-04 2004-03-18 Guardian Industries Corp. Heat treatable low-e coated articles and methods of making same by sputtering ag in oxygen inclusive atmosphere
WO2005031681A1 (en) * 2003-09-30 2005-04-07 Asahi Glass Company, Limited Multilayer body for forming base with wiring, base with wiring, and methods for manufacturing those
CN100452112C (en) * 2003-09-30 2009-01-14 旭硝子株式会社 Multilayer body for forming base with wiring, base with wiring, and methods for manufacturing those
JP2005264329A (en) * 2004-02-19 2005-09-29 Ulvac Seimaku Kk Ag alloy film and manufacturing method thereof
KR101168729B1 (en) * 2005-08-16 2012-07-26 삼성전자주식회사 Wire and method for fabricating interconnection line and thin film transistor substrate and method for fabricating the same
JP2008191541A (en) * 2007-02-07 2008-08-21 Mitsubishi Materials Corp Wiring and electrode for liquid crystal display device excellent in adhesion without causing thermal defect
JP2014103105A (en) * 2012-10-24 2014-06-05 Konica Minolta Inc Transparent electrode, method for manufacturing transparent electrode, electronic device and organic electroluminescent element
JP2014211964A (en) * 2013-04-17 2014-11-13 コニカミノルタ株式会社 Transparent electrode, electronic device and organic electroluminescent element
JP2020510596A (en) * 2017-03-01 2020-04-09 ガーディアン・グラス・エルエルシーGuardian Glass, Llc Coated article having a (low emissivity) low-E coating with a silver-doped protective layer for protecting a silver-based infrared (IR) reflective layer, and method of making same
JP7022142B2 (en) 2017-03-01 2022-02-17 ガーディアン・グラス・エルエルシー A coated article having a (low emissivity) low-E coating having a silver-doped protective layer for protecting a silver-based infrared (IR) reflective layer, and a method for manufacturing the same.

Also Published As

Publication number Publication date
JP4176988B2 (en) 2008-11-05

Similar Documents

Publication Publication Date Title
DK166536B1 (en) PRODUCT WITH HIGH TRANSMITTANCE AND LOW EMISSIVITY
EP1745922B1 (en) Multilayer body, light-emitting device and use thereof
JPH02160641A (en) Heat ray reflecting glass
US7169461B2 (en) Laminate, a substrate with wires, an organic EL display element, a connection terminal for the organic EL display element and a method for producing each
US20060068227A1 (en) Ag-based reflection film and method for preparing the same
JP2003170524A (en) LAMINATE HAVING Ag-BASED FILM AND METHOD FOR FORMING Ag-BASED FILM
JPH01206035A (en) Heat ray reflecting plate having visible light permeability
EP0801145A1 (en) Oxide film, laminate and methods for their production
US7799677B2 (en) Device comprising multi-layered thin film having excellent adhesive strength and method for fabricating the same
US6559593B1 (en) Sputter deposition
JPH10237630A (en) Oxide film, laminate, and method for producing them
JP2008038225A (en) Film forming apparatus, film forming system, and film forming method
JPH09171188A (en) Lamination type transparent conductive film
TWI604751B (en) Electronic device and electronic device sealing method
JPH07178866A (en) Heat ray blocking film and manufacturing method thereof
JP2004079528A (en) Manufacturing apparatus
JP2008038224A (en) Film deposition apparatus, film deposition system, and film deposition method
JP2008102273A (en) Electrochromic element and its manufacturing method
JP2004207383A (en) Electromagnetic shielding film
JP2005093441A (en) Layered transparent conductive film
JPH11126686A (en) Organic electroluminescence device manufacturing equipment
JP4714477B2 (en) Ag alloy film and manufacturing method thereof
JPS63110507A (en) Transparent conductor
JPH10270164A (en) Method and apparatus for manufacturing organic electroluminescence element
JP2697000B2 (en) Article coated with optical film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070425

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20071110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080819

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080821

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4176988

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140829

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees