JP2003160893A - Method for controlling voltage of electrolytic vessel - Google Patents
Method for controlling voltage of electrolytic vesselInfo
- Publication number
- JP2003160893A JP2003160893A JP2001361960A JP2001361960A JP2003160893A JP 2003160893 A JP2003160893 A JP 2003160893A JP 2001361960 A JP2001361960 A JP 2001361960A JP 2001361960 A JP2001361960 A JP 2001361960A JP 2003160893 A JP2003160893 A JP 2003160893A
- Authority
- JP
- Japan
- Prior art keywords
- voltage
- electrolytic cell
- electrolytic
- calculated
- resistance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 14
- 239000008151 electrolyte solution Substances 0.000 claims abstract description 15
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims abstract description 11
- 229910021645 metal ion Inorganic materials 0.000 claims abstract description 10
- 239000002184 metal Substances 0.000 claims abstract description 8
- 229910052751 metal Inorganic materials 0.000 claims abstract description 8
- 238000005868 electrolysis reaction Methods 0.000 claims description 22
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 claims description 11
- 239000007788 liquid Substances 0.000 claims description 6
- 239000003792 electrolyte Substances 0.000 claims description 4
- 150000002500 ions Chemical class 0.000 claims description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 4
- 238000007726 management method Methods 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 3
- 230000035699 permeability Effects 0.000 claims description 3
- 150000001805 chlorine compounds Chemical group 0.000 claims 1
- -1 chlorine ions Chemical class 0.000 abstract description 5
- 230000002159 abnormal effect Effects 0.000 abstract description 4
- 229910052801 chlorine Inorganic materials 0.000 abstract description 2
- 239000000460 chlorine Substances 0.000 abstract description 2
- 239000000243 solution Substances 0.000 abstract description 2
- 239000002659 electrodeposit Substances 0.000 abstract 1
- 239000012528 membrane Substances 0.000 abstract 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 17
- 230000005856 abnormality Effects 0.000 description 8
- 229910052759 nickel Inorganic materials 0.000 description 8
- 239000000470 constituent Substances 0.000 description 4
- 239000004744 fabric Substances 0.000 description 3
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 3
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 2
- 206010073261 Ovarian theca cell tumour Diseases 0.000 description 2
- 238000003487 electrochemical reaction Methods 0.000 description 2
- 238000005363 electrowinning Methods 0.000 description 2
- 208000001644 thecoma Diseases 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- VEQPNABPJHWNSG-UHFFFAOYSA-N Nickel(2+) Chemical compound [Ni+2] VEQPNABPJHWNSG-UHFFFAOYSA-N 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 229910001453 nickel ion Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 238000006479 redox reaction Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Landscapes
- Electrolytic Production Of Metals (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、ニッケル、コバル
ト、銅などの非鉄金属を塩化浴から電解採取又は電解精
製する際に、操業中の電極の接触不良やショート等の異
常を発見するために電解槽の電圧を管理する方法に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is intended to detect abnormalities such as contact failure and short circuit of electrodes during operation when electrolytically extracting or electrolytically refining non-ferrous metals such as nickel, cobalt and copper from a chloride bath. The present invention relates to a method for managing the voltage of an electrolytic cell.
【0002】[0002]
【従来の技術】ニッケルなどの非鉄金属の電解採取又は
電解精製においては、数十から数百の電解槽で同時に操
業が行われる。これら多数の電解槽の中からアノードや
カソードの接触不良、あるいはショート等の異常を発見
するために、従来から電解槽の電圧を管理することが一
般的に行われている。2. Description of the Related Art In electrowinning or electrorefining of non-ferrous metals such as nickel, several tens to several hundreds of electrolytic cells are simultaneously operated. In order to detect abnormalities such as poor contact between anodes and cathodes or short-circuits among these many electrolytic cells, it has been customary to manage the voltage of the electrolytic cells.
【0003】従来の電解槽電圧の管理方法としては、1
日のある時刻における各電解槽電圧を定期的に測定し、
その測定値を取り込んだ一覧表を作成して、電解槽電圧
の測定値の最も高い槽及び最も低い槽、若しくは電解槽
電圧の推移をチェックしていた。これにより、電解槽電
圧が大幅に上昇し又は下降した電解槽については、アノ
ードやカソードの接触不良あるいはショート等の異常が
発生したと判断することができる。The conventional electrolytic cell voltage control method is as follows:
Periodically measure the voltage of each electrolytic cell at a certain time of day,
A list containing the measured values was created to check the highest and lowest electrolytic cell voltage measured values, or the transition of electrolytic cell voltage. As a result, it can be determined that an abnormality such as a contact failure or short circuit of the anode or cathode has occurred in the electrolytic cell in which the electrolytic cell voltage has significantly increased or decreased.
【0004】[0004]
【発明が解決しようとする課題】上記した従来の管理方
法では、単に電解槽電圧の測定値の相対的な高低や推移
をチェックするに過ぎないため、操業条件に適した電解
槽電圧であるか判断する方法がなく、適切な電解槽電圧
の管理ができなかった。例えば、操業条件を変更した際
には、電解槽電圧の測定値が変更後の操業条件に対応し
た適切な値かどうかを判断することは困難であった。In the above-mentioned conventional control method, since the relative level or transition of the measured value of the electrolytic cell voltage is merely checked, is the electrolytic cell voltage suitable for the operating conditions? There was no way to judge and it was not possible to manage the electrolytic cell voltage appropriately. For example, when the operating conditions were changed, it was difficult to judge whether the measured value of the electrolytic cell voltage was an appropriate value corresponding to the changed operating conditions.
【0005】また、多数の電解槽の操業条件に差がある
場合には、その中から高い確度で異常を発見することは
困難であった。例えば、電極枚数が少ない槽や、給液中
で非鉄金属イオン濃度が低い条件で操業している槽が、
常に高い電解槽電圧を示す槽として優先的にチェックさ
れてしまい、接触抵抗の上昇やショートが原因で電解槽
電圧に異常がある槽が見逃される可能性が大きかった。Further, when there are differences in the operating conditions of a large number of electrolytic cells, it is difficult to detect abnormalities with high accuracy from among them. For example, a tank with a small number of electrodes, or a tank operating under conditions where the concentration of non-ferrous metal ions in the liquid supply is low,
It was always prioritized to be checked as a cell showing a high electrolysis cell voltage, and there was a high possibility that a cell with an abnormal electrolysis cell voltage could be overlooked due to an increase in contact resistance or a short circuit.
【0006】本発明は、このような従来の事情に鑑み、
操業条件の違い又は変化に対応した適切な電解槽電圧を
個別的に計算によって求め、その計算電圧値と実際の測
定電圧値との比較により、適切な操業ができ且つ異常電
圧を示す電解槽を簡単に発見することができる電解槽電
圧の管理方法を提供することを目的とする。The present invention has been made in view of such conventional circumstances.
Obtain an appropriate electrolytic cell voltage corresponding to the difference or change in operating conditions by individual calculation, and compare the calculated voltage value with the actual measured voltage value to determine an electrolytic cell that can operate properly and shows abnormal voltage. It is an object of the present invention to provide a method of controlling the electrolytic cell voltage that can be easily found.
【0007】[0007]
【課題を解決するための手段】上記目的を達成するた
め、本発明が提供する非鉄金属の塩化浴における電解槽
電圧の管理方法は、カソード及びアノードの電極接触抵
抗、電解液抵抗、及び隔膜抵抗からそれぞれ計算により
求めた電圧降下、非鉄金属イオンと塩素イオンを含む電
解液から目的金属が電析する際の理論電解電圧、及び過
電圧の合計として計算電圧E(ca)を予め求めておき、こ
の計算電圧E(ca)に対して電解槽で実測した測定電圧E
(me)を比較管理することを特徴とする。In order to achieve the above object, the method of controlling the electrolytic cell voltage in a chloride bath of a non-ferrous metal provided by the present invention is: electrode contact resistance of cathode and anode, electrolytic solution resistance, and diaphragm resistance. From the calculated voltage drop, the theoretical electrolysis voltage when the target metal is electrodeposited from the electrolyte containing non-ferrous metal ions and chloride ions, and the calculated voltage E (ca) is calculated in advance as the sum of the overvoltages. Measured voltage E measured in the electrolytic cell against calculated voltage E (ca)
Characterized by comparing and managing (me).
【0008】また、上記本発明の電解槽電圧の管理方法
は、操業条件の異なる複数の電解槽について、それぞれ
予め求めた計算電圧E(ca)と各電解槽で実測した測定電
圧E(me)とを比較して、両者の差△Eが所定の値以上と
なった電解槽を検知することを特徴とするものである。Further, in the above-mentioned electrolytic cell voltage management method of the present invention, the calculated voltage E (ca) and the measured voltage E (me) actually measured in each electrolytic cell are previously obtained for a plurality of electrolytic cells having different operating conditions. Is compared with each other, and the electrolytic cell in which the difference ΔE between the two becomes equal to or more than a predetermined value is detected.
【0009】上記本発明の電解槽電圧の管理方法におい
て、前記電解液抵抗は、少なくとも非鉄金属イオン濃
度、塩素イオン濃度、SO4イオン濃度、Naイオン濃
度を含む塩化浴の液組成、通電電流、電極枚数、通電時
間、電極板面積、電解槽内温度をパラメータ―として計
算することを特徴とする。また、前記隔膜抵抗は、電解
槽内温度及び隔膜の通水度をパラメータ―として計算す
ることを特徴とする。In the electrolytic cell voltage control method of the present invention, the electrolytic solution resistance is at least a non-ferrous metal ion concentration, a chlorine ion concentration, a SO 4 ion concentration, a Na ion concentration, a liquid composition of a chloride bath, an energizing current, It is characterized in that the number of electrodes, energization time, electrode plate area, and temperature inside the electrolytic cell are used as parameters. Further, the diaphragm resistance is calculated by using the temperature in the electrolytic cell and the water permeability of the diaphragm as parameters.
【0010】更に、上記本発明の電解槽電圧の管理方法
において、前記過電圧を前記各電圧降下及び理論電解電
圧の合計と、通常操業で測定された電解槽電圧との差と
して定め、その値を目的非鉄金属イオン濃度、通電電
流、及び電解槽内温度をパラメータ―として計算するこ
とを特徴としている。Further, in the above-described electrolytic cell voltage management method of the present invention, the overvoltage is defined as a difference between the sum of the voltage drops and the theoretical electrolytic voltage and the electrolytic cell voltage measured in normal operation, and the value is determined. Purpose It is characterized by calculating non-ferrous metal ion concentration, energizing current, and temperature in the electrolytic cell as parameters.
【0011】[0011]
【発明の実施の形態】電解槽電圧を決定する構成要因と
しては、図1に概念的に示すように、アノードの接触抵
抗による電圧降下△Ea、カソードの接触抵抗による電
圧降下△Ec、溶液中を電流が通過する際に発生する電
解液抵抗に起因するアノード電解浴での電圧降下△E
La及びカソード電解浴での電圧降下△ELcがある。
また、塩化浴からの電解採取ではアノードより塩素ガス
が発生するため、アノードは対極面が濾布によって覆わ
れたアノードボックス内に設置されており、この濾布に
よる隔膜抵抗に起因する電圧降下△Efが生じる。BEST MODE FOR CARRYING OUT THE INVENTION Constituent factors for determining the electrolytic cell voltage are, as conceptually shown in FIG. 1, a voltage drop ΔE a due to a contact resistance of an anode, a voltage drop ΔE c due to a contact resistance of a cathode, Voltage drop in the anode electrolytic bath due to the resistance of the electrolytic solution that occurs when an electric current passes through the solution ΔE
There is a voltage drop △ E Lc in La and cathode electrolytic bath.
In addition, since chlorine gas is generated from the anode during electrowinning from a chloride bath, the anode is installed in an anode box whose counter surface is covered with a filter cloth, and the voltage drop caused by the diaphragm resistance due to this filter cloth Δ E f occurs.
【0012】更に、アノード及びカソードの表面では、
電気化学反応に基づく電極電位EA及びECが生じる。
このアノードとカソードの電極電位は、各電極表面での
酸化還元反応の平衡電位E(eq)と過電圧ηの和として次
のように表される。
アノードの電極電位EA=EA(eq)+ηa
カソードの電極電位EC=EC(eq)+ηc Further, on the surface of the anode and cathode,
Electrode potential E based on electrochemical reactionAAnd ECOccurs.
The electrode potentials of this anode and cathode are
As the sum of the equilibrium potential E (eq) of the redox reaction and the overvoltage η,
It is expressed as.
Anode electrode potential EA= EA(eq) + ηa
Electrode potential E of the cathodeC= EC(eq) + ηc
【0013】従って、電解槽電圧Eは、上記の各電圧降
下△Ea、△Ec、△ELa、△E Lc及び△Efと、
電極電位の合計として以下のように表わすことができ
る。
E=△Ea+△Ec+△ELa+△ELc+△Ef+
{EA(eq)+ηa}−{EC(eq)+ηc}Therefore, the electrolytic cell voltage E is reduced by the above voltage reduction.
Down △ Ea, △ Ec, △ ELa, △ E LcAnd △ EfWhen,
It can be expressed as the total electrode potential as follows:
It
E = △ Ea+ △ Ec+ △ ELa+ △ ELc+ △ Ef+
{EA(eq) + ηa}-{EC(eq) + ηc}
【0014】ここで、アノード電解浴とカソード電解浴
の液質は同じと考え、△EL=EL a+△ELcとす
る。また、平衡電極電位の差EA(eq)−EC(eq)、即ち
理論電解電圧をETheと表記する。更に、アノード及
びカソードの過電圧を総合して評価するために、過電圧
η=ηa−ηcとすると、電解槽電圧Eは以下のように
表わすことができる。
E=△Ea+△Ec+△EL+△Ef+EThe+ηHere, it is considered that the liquid quality of the anode electrolytic bath and the liquid quality of the cathode electrolytic bath are the same, and it is assumed that ΔE L = E L a + ΔE Lc . The difference E A (eq) −E C (eq) of the equilibrium electrode potential, that is, the theoretical electrolysis voltage is expressed as E The . Further, in order to comprehensively evaluate the overvoltages of the anode and the cathode, if the overvoltage η = η a −η c , the electrolytic cell voltage E can be expressed as follows. E = ΔE a + ΔE c + ΔE L + ΔE f + E The + η
【0015】即ち、電解槽電圧Eは、アノード及びカソ
ードの電極接触抵抗による電圧降下△Ea及び△Ec、
電解液抵抗による電圧降下△EL、隔膜抵抗による電圧
降下△Ef、理論電解電圧EThe、及び過電圧ηの合
計として、計算により求めることができる。That is, the electrolytic cell voltage E is the voltage drop ΔE a and ΔE c due to the electrode contact resistance of the anode and cathode,
The voltage drop ΔE L due to the electrolytic solution resistance, the voltage drop ΔE f due to the diaphragm resistance, the theoretical electrolytic voltage E The , and the overvoltage η can be obtained by calculation.
【0016】以下、各構成要因に電圧の計算方法につい
て更に詳細に説明する。
(1)電極接触抵抗による電圧降下(△Ea、△Ec)
アノード及びカソードの接触抵抗値をそれぞれRa及び
Rcとし、通電電流をI、電極枚数をnとすると、アノ
ード及びカソードの接触抵抗による電圧はオームの法則
に従って次のように示される。
△Ea=Ra×I/n
△Ec=Rc×I/nThe method of calculating the voltage for each constituent factor will be described in more detail below. (1) Voltage drop due to electrode contact resistance (ΔE a , ΔE c ) Letting the contact resistance values of the anode and the cathode be R a and R c , respectively, the energizing current is I, and the number of electrodes is n, the anode and cathode The voltage due to contact resistance is given as follows according to Ohm's law. ΔE a = R a × I / n ΔE c = R c × I / n
【0017】(2)隔膜抵抗による電圧降下(△Ef)
隔膜抵抗に起因する電圧降下もアノード及びカソードの
電極接触抵抗に起因する電圧降下と同様に、隔膜抵抗R
fと通電電流I及び電極枚数nによりオームの法則に従
って以下の式で示される。
△Ef=Rf×I/n
また、隔膜抵抗Rfは、電解槽内温度及び隔膜の通水度
によって変化し、以下の式で表される。
Rf=a×電解槽内温度+b×通水度+c(2) Voltage drop due to diaphragm resistance (ΔE f ) The voltage drop due to the diaphragm resistance is the same as the voltage drop due to the electrode contact resistance of the anode and cathode, and the diaphragm resistance R
According to Ohm's law, it is represented by the following formula by f , the energizing current I and the number of electrodes n. ΔE f = R f × I / n Further, the diaphragm resistance R f changes depending on the temperature in the electrolytic cell and the water permeability of the diaphragm and is represented by the following formula. R f = a × electrolysis cell temperature + b × water flow rate + c
【0018】(3)電解液抵抗による電圧降下(△
EL)
電解液中でイオンが移動する時、即ち電流が流れる時に
液の流れ・対流はないものと仮定すると、電解液抵抗を
RL、通電電流をI及び電極枚数をnとしたとき、電解
液にはオームの法則で表わされる以下の電位差が生じ
る。
△EL=RL×I/n
また、電解液抵抗RLは、電解液の比抵抗ρ、電極板面
積S、電極間距離dと下記関係式で表される。ここで、
電解液の比抵抗ρは電解液の組成と温度から、及び電極
間距離dは通電電流と通電時間から、それぞれ求めるこ
とができる。
RL=ρ×d/S(3) Voltage drop due to electrolyte resistance (△
E L ) Assuming that there is no flow or convection of the liquid when the ions move in the electrolytic solution, that is, when a current flows, the electrolytic solution resistance is R L , the applied current is I, and the number of electrodes is n, The following potential difference represented by Ohm's law occurs in the electrolytic solution. ΔE L = R L × I / n Further, the electrolytic solution resistance R L is expressed by the following relational expression with the specific resistance ρ of the electrolytic solution, the electrode plate area S, and the interelectrode distance d. here,
The specific resistance ρ of the electrolytic solution can be determined from the composition and temperature of the electrolytic solution, and the inter-electrode distance d can be determined from the energizing current and the energizing time. R L = ρ × d / S
【0019】(4)理論電解電圧(EThe)
ニッケル電解を例に挙げると、アノード電極表面では塩
素イオンが酸化されて塩素ガスが発生し、カソード電極
表面ではニッケルイオンが電気ニッケルとして電析す
る。この電気化学反応が起こっているとき、アノード平
衡電位EA(eq)及びカソード平衡電位EC(eq)は、それ
ぞれ下記数式1及び数式2により求められることが知ら
れている。(4) Theoretical electrolysis voltage (E The ) Taking nickel electrolysis as an example, chlorine ions are oxidized on the surface of the anode electrode to generate chlorine gas, and nickel ions are deposited as electric nickel on the surface of the cathode electrode. . It is known that when this electrochemical reaction occurs, the anode equilibrium potential E A (eq) and the cathode equilibrium potential E C (eq) are obtained by the following mathematical formulas 1 and 2, respectively.
【0020】[0020]
【数1】 [Equation 1]
【0021】[0021]
【数2】 [Equation 2]
【0022】理論電解電圧ETheとは、このアノード
平衡電位EA(eq)とカソード平衡電位EC(eq)の差
であって、この理論電解電圧以上の電位をかけなければ
ニッケルの電解が成り立たない電圧のことである。つま
り、理論電解電圧ETheは、下記数式3により求める
ことができる。 The theoretical electrolysis voltage E The is the difference between the anode equilibrium potential E A (eq) and the cathode equilibrium potential E C (eq), and nickel electrolysis will occur unless a potential higher than the theoretical electrolysis voltage is applied. It is a voltage that does not hold. That is, the theoretical electrolysis voltage E The can be obtained by the following mathematical formula 3.
【0023】[0023]
【数3】 [Equation 3]
【0024】(5)過電圧(η)
過電圧ηは、アノード及びカソード電極電位の平衡電位
からのずれ、即ち分極の程度で電流を流す駆動力を意味
し、ターフェルの式に示されるように電流との関係で表
わされるものである。(5) Overvoltage (η) The overvoltage η means a driving force that causes a current to flow depending on the deviation of the anode and cathode electrode potentials from the equilibrium potential, that is, the degree of polarization. It is represented by the relationship of.
【0025】本発明においては、前述した(1)〜
(3)の各電圧降下及び(4)の理論電解電圧の合計
と、通常の実操業の電解槽で測定された電解槽電圧との
差をもって過電圧ηと定義し、目的とする非鉄金属イオ
ン濃度、通電電流、電解槽内温度の3種のパラメータに
回帰する以下の式を用いて計算する。
η=a×非鉄金属イオン濃度+b×通電電流+c×電解
槽内温度+dIn the present invention, the above (1) to
Overvoltage η is defined as the difference between the total voltage drop of (3) and the theoretical electrolysis voltage of (4) and the electrolysis cell voltage measured in the electrolysis cell of the normal operation, and the target non-ferrous metal ion concentration is defined. Calculation is performed by using the following formulas that regress to three types of parameters, that is, the applied current and the temperature inside the electrolytic cell. η = a × non-ferrous metal ion concentration + b × carrying current + c × electrolytic cell temperature + d
【0026】上記の通り、電解槽電圧を決定する全ての
構成要因に基づいて、アノード及びカソードの接触抵抗
による電圧降下△Ea及び△Ec、電解液抵抗による電
圧降下△EL、隔膜抵抗による電圧降下△Ef、理論電
解電圧EThe、過電圧(η)を、それぞれ(1)〜
(5)に従って実際の操業条件より計算し、これらの値
の合計として計算電圧E(ca)を求めることができる。As described above, the voltage drops ΔE a and ΔE c due to the contact resistance between the anode and the cathode, the voltage drop ΔE L due to the electrolytic solution resistance, the diaphragm resistance based on all the constituent factors that determine the electrolytic cell voltage. The voltage drop ΔE f , the theoretical electrolysis voltage E The , and the overvoltage (η) due to
The calculation voltage E (ca) can be calculated as the sum of these values by calculating from the actual operating conditions according to (5).
【0027】本発明においては、このようにして求めた
計算電圧E(ca)を、電解槽で実測した測定電圧E(me)と
比較し、両者の差に基づいて電解槽電圧を管理する。そ
のため、両者の差を小さく維持することで常に適切な操
業を行うことができ、また操業条件を変更した場合に
も、変更後の操業条件に対して適切な電解槽電流となっ
ているか直ちに判断することができる。In the present invention, the calculated voltage E (ca) thus obtained is compared with the measured voltage E (me) actually measured in the electrolytic cell, and the electrolytic cell voltage is controlled based on the difference between the two. Therefore, by maintaining a small difference between the two, it is possible to always perform an appropriate operation, and even when the operating conditions are changed, it is immediately determined whether the electrolytic cell current is appropriate for the changed operating conditions. can do.
【0028】また、操業条件の異なる複数の電解槽を同
時に操業している場合おいても、それぞれ予め求めた計
算電圧E(ca)と各電解槽で実測した測定電圧E(me)とを
比較して、両者の差が所定の値以上となった電解槽を検
知することにより、アノードやカソードの接触不良ある
いはショート等の異常が発生した電解槽を容易に発見す
ることが可能である。尚、接触不良あるいはショート等
の異常は、電解槽が一つのみの場合も両者の差から容易
に発見できることは言うまでもない。Further, even when a plurality of electrolytic cells having different operating conditions are operated at the same time, the calculated voltage E (ca) obtained in advance and the measured voltage E (me) actually measured in each electrolytic cell are compared. Then, by detecting the electrolytic cell in which the difference between the two becomes a predetermined value or more, it is possible to easily find the electrolytic cell in which an abnormality such as a poor contact between the anode and the cathode or a short circuit has occurred. Needless to say, an abnormality such as a contact failure or a short circuit can be easily detected from the difference between the two electrolysis cells even when there is only one.
【0029】[0029]
【実施例】ニッケルを塩化浴から電解採取する工場にお
いて、操業している全ての電解槽について測定電圧値を
毎朝5時に取込み、同時にその時のNi濃度、通電電
流、電解槽内温度、通電時間等の操業条件から前述の計
算式(1)〜(5)に基づいて計算した計算電圧値E(c
a)を各電解槽について求めた。各電解槽について測定電
圧E(me)と計算電圧E(ca)との差△E(△E=E(me)−
E(ca))を一覧表に作成し、電解槽電圧が異常に高いか
又は異常に低い電解槽のチェックを行った。[Example] In a factory where electrolytic extraction of nickel is performed from a chloride bath, the measured voltage values are taken in every morning at 5 o'clock in the morning, and at the same time, the Ni concentration, energizing current, electrolyzer temperature, energizing time, etc. The calculated voltage value E (c) calculated from the above operating conditions based on the above-mentioned formulas (1) to (5).
a) was determined for each electrolytic cell. Difference between measured voltage E (me) and calculated voltage E (ca) for each electrolytic cell ΔE (ΔE = E (me) −
E (ca)) was prepared in the list, and the electrolytic cell whose electrolytic cell voltage was abnormally high or abnormally low was checked.
【0030】このようにして電解槽電圧を管理しながら
操業を行った結果、下記表1に示すように、129号槽
において12月9〜11日にかけて測定電圧E(me)と計
算電圧E(ca)との差△Eが異常に高い日が続いた。12
9号槽を点検してみると、カソードビームが発熱し、表
面が酸化により黒色化しており、接触抵抗が増加してい
ることが判明した。カソードビームを交換することによ
り、12月12日から電解槽電圧は正常値に戻った。As a result of performing the operation while controlling the voltage of the electrolytic cell in this way, as shown in Table 1 below, the measured voltage E (me) and the calculated voltage E ( The day when the difference ΔE from (ca) was abnormally high continued. 12
Inspection of the No. 9 tank revealed that the cathode beam generated heat and the surface was blackened due to oxidation, increasing the contact resistance. By changing the cathode beam, the electrolytic cell voltage returned to the normal value from December 12.
【0031】[0031]
【表1】 [Table 1]
【0032】また、下記表2に示すように、130号槽
において5月19日から△Eが徐々に上昇したため、5
月21日にカソードビームを交換したところ、一時的に
電解槽電圧が低下したものの再び異常電圧値を示した。
更に130号槽を点検したところ、カソードビームを置
くコマ型台座のニッケルめっきが剥離しており、コマ型
台座とカソードビームの間の接触抵抗が上昇したため、
電解槽電圧が高くなっていたことが判明した。そこで5
月24日に台座を交換することにより、電解槽電圧は正
常値に戻った。As shown in Table 2 below, since ΔE gradually increased from May 19 in tank No. 130, 5
When the cathode beam was replaced on the 21st of March, the electrolytic cell voltage dropped temporarily but showed an abnormal voltage value again.
When the No. 130 tank was further inspected, the nickel plating on the coma type pedestal on which the cathode beam was placed was peeled off, and the contact resistance between the coma type pedestal and the cathode beam increased,
It was found that the electrolyzer voltage was high. There 5
By replacing the pedestal on the 24th of the month, the electrolytic cell voltage returned to the normal value.
【0033】[0033]
【表2】 [Table 2]
【0034】更に、下記表3に示すように、207号槽
において8月12日より△Eが通常より低い値を示し
た。そこで8月15日にカソードを引揚げてみると、ニ
ッケルが濾布を巻き込んで電着することによりショート
している部分が見つかった。8月15日から新しいアノ
ードボックスを用いることにより、電解槽電圧は正常値
に戻った。Further, as shown in Table 3 below, the value of ΔE in the No. 207 tank was lower than usual from August 12th. Therefore, when the cathode was pulled up on August 15, it was found that nickel was short-circuited due to the electrodeposition by winding the filter cloth. By using a new anode box from August 15, the electrolytic cell voltage returned to the normal value.
【0035】[0035]
【表3】 [Table 3]
【0036】[0036]
【発明の効果】本発明によれば、電解槽電圧に影響を与
える操業条件を全て考慮して計算電圧を求めているた
め、その計算電圧値と実際の測定電圧値を比較するだけ
で、適切な操業ができ、しかも異常を示す電解槽を簡単
且つ的確に発見することができる。特に本発明に係わる
計算電圧によれば、実際の電解槽電圧が計算電圧よりも
高い値を示す原因は電極接触抵抗の上昇によるもののみ
となるため、異常の原因発見も極めて容易である。According to the present invention, since the calculated voltage is calculated in consideration of all the operating conditions that affect the electrolytic cell voltage, it is appropriate to compare the calculated voltage value with the actual measured voltage value. It is possible to perform various operations, and it is possible to easily and accurately find an electrolytic cell that exhibits an abnormality. In particular, according to the calculated voltage of the present invention, the cause of the actual electrolytic cell voltage being higher than the calculated voltage is only due to the increase of the electrode contact resistance, and therefore the cause of the abnormality can be found very easily.
【0037】また、本発明に係わる計算電圧は操業条件
に対応した理想に近い電解槽電圧を表すので、実際の操
業を行わずに様々な操業条件に応じた電解槽電圧の予測
が可能であって、特に実操業と大きく異なる条件におけ
る電解槽電圧を推定する場合においても高い信頼性を有
している。Further, since the calculated voltage according to the present invention represents a near-ideal electrolysis cell voltage corresponding to the operating conditions, it is possible to predict the electrolysis cell voltage according to various operating conditions without actually performing the operation. In particular, it has high reliability even when estimating the electrolytic cell voltage under conditions that are significantly different from the actual operation.
【図1】電解槽電圧を決定する構成要因の概念図であ
る。FIG. 1 is a conceptual diagram of constituent factors that determine an electrolytic cell voltage.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 家守 伸正 愛媛県新居浜市西原町3−5−3 住友金 属鉱山株式会社別子事業所内 Fターム(参考) 4K058 AA13 AA25 BA17 BA21 BB03 BB04 CA04 CA05 CA07 FB01 FB03 ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Nobumasa Iemori 3-5-3 Nishihara-cho, Niihama-shi, Ehime Sumitomo Kin Besshi Works, Inc. F-term (reference) 4K058 AA13 AA25 BA17 BA21 BB03 BB04 CA04 CA05 CA07 FB01 FB03
Claims (5)
管理する方法において、カソード及びアノードの電極接
触抵抗、電解液抵抗、及び隔膜抵抗からそれぞれ計算に
より求めた電圧降下、非鉄金属イオンと塩素イオンを含
む電解液から目的金属が電析する際の理論電解電圧、及
び過電圧の合計として計算電圧E(ca)を予め求めてお
き、この計算電圧E(ca)に対して電解槽で実測した測定
電圧E(me)を比較管理することを特徴とする電解槽電圧
の管理方法。1. A method of controlling an electrolytic cell voltage in a chloride bath of non-ferrous metal, wherein voltage drop, non-ferrous metal ion and chlorine ion calculated respectively from electrode contact resistance of cathode and anode, electrolytic solution resistance, and diaphragm resistance. Calculated voltage E (ca) is calculated in advance as the total of the theoretical electrolysis voltage and overvoltage when the target metal is electrodeposited from the electrolyte containing, and the measured voltage E (ca) is measured in the electrolytic cell. A method for controlling an electrolytic cell voltage, which is characterized by comparing and managing a voltage E (me).
て、それぞれ予め求めた計算電圧E(ca)と各電解槽で実
測した測定電圧E(me)とを比較して、両者の差△Eが所
定の値以上となった電解槽を検知することを特徴とす
る、請求項1に記載の電解槽電圧の管理方法。2. For a plurality of electrolytic cells having different operating conditions, the calculated voltage E (ca) obtained in advance and the measured voltage E (me) actually measured in each electrolytic cell are compared, and the difference ΔE between the two is found. The electrolytic cell voltage management method according to claim 1, wherein an electrolytic cell having a predetermined value or more is detected.
イオン濃度、塩素イオン濃度、SO4イオン濃度、Na
イオン濃度を含む塩化浴の液組成、通電電流、電極枚
数、通電時間、電極板面積、及び電解槽内温度をパラメ
ータ―として計算することを特徴とする、請求項1又は
2に記載の電解槽電圧の管理方法。3. The electrolyte resistance is at least non-ferrous metal ion concentration, chloride ion concentration, SO 4 ion concentration, Na
3. The electrolytic cell according to claim 1 or 2, wherein the liquid composition of the chloride bath including the ion concentration, the applied current, the number of electrodes, the applied time, the electrode plate area, and the temperature inside the electrolytic cell are calculated as parameters. How to control voltage.
の通水度をパラメータ―として計算することを特徴とす
る、請求項1〜3のいずれかに記載の電解槽電圧の管理
方法。4. The method for controlling the electrolytic cell voltage according to claim 1, wherein the diaphragm resistance is calculated using the temperature inside the electrolytic cell and the water permeability of the diaphragm as parameters.
解電圧の合計と、通常操業で測定された電解槽電圧との
差として定め、その値を目的非鉄金属イオン濃度、通電
電流、及び電解槽内温度をパラメータ―として計算する
ことを特徴とする、請求項1〜4のいずれかに記載の電
解槽電圧の管理方法。5. The overvoltage is defined as the difference between the total of the voltage drops and the theoretical electrolysis voltage and the electrolysis cell voltage measured in normal operation, and the values are determined as the target non-ferrous metal ion concentration, the energizing current, and the electrolysis cell. The method for controlling the electrolytic cell voltage according to claim 1, wherein the internal temperature is calculated as a parameter.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001361960A JP2003160893A (en) | 2001-11-28 | 2001-11-28 | Method for controlling voltage of electrolytic vessel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001361960A JP2003160893A (en) | 2001-11-28 | 2001-11-28 | Method for controlling voltage of electrolytic vessel |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003160893A true JP2003160893A (en) | 2003-06-06 |
Family
ID=19172541
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001361960A Pending JP2003160893A (en) | 2001-11-28 | 2001-11-28 | Method for controlling voltage of electrolytic vessel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003160893A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014028045A1 (en) * | 2012-08-17 | 2014-02-20 | Alcoa Inc. | Systems and methods for preventing thermite reactions in electrolytic cells |
-
2001
- 2001-11-28 JP JP2001361960A patent/JP2003160893A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014028045A1 (en) * | 2012-08-17 | 2014-02-20 | Alcoa Inc. | Systems and methods for preventing thermite reactions in electrolytic cells |
CN104471116A (en) * | 2012-08-17 | 2015-03-25 | 美铝公司 | Systems and methods for preventing thermite reactions in electrolytic cells |
AU2013303221B2 (en) * | 2012-08-17 | 2015-11-19 | Alcoa Usa Corp. | Systems and methods for preventing thermite reactions in electrolytic cells |
RU2626517C2 (en) * | 2012-08-17 | 2017-07-28 | Алкоа Инк. | Systems and methods for prevention of thermal reactions in electrolysers |
US9982355B2 (en) | 2012-08-17 | 2018-05-29 | Alcoa Usa Corp. | Systems and methods for preventing thermite reactions in electrolytic cells |
CN104471116B (en) * | 2012-08-17 | 2019-01-01 | 美铝美国公司 | System and method for preventing the thermit reaction in electrolytic cell |
US12006581B2 (en) | 2012-08-17 | 2024-06-11 | Elysis Limited Partnership | Systems and methods for preventing thermite reactions in electrolytic cells |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9255338B2 (en) | Permanent system for continuous detection of current distribution in interconnected electrolytic cells | |
CN1322170C (en) | Method for improvement of current efficiency in electrolysis | |
US9957628B2 (en) | System for evaluation of current distribution in electrodes of electrochemical plants | |
US20220243346A1 (en) | System and method for controlling a multi-state electrochemical cell | |
US10047449B2 (en) | Device and method for electrolytically coating an object | |
AU2002350349A1 (en) | Method for the improvement of current efficiency in electrolysis | |
JP2017524074A (en) | Cell for electrowinning metals | |
JP2003160893A (en) | Method for controlling voltage of electrolytic vessel | |
US20230392272A1 (en) | Electrochemical cell and process for producing metal and chlorine gas | |
JP6726411B2 (en) | Power control device and power control method for use in electrolytic refining equipment | |
JP2019167564A (en) | Electrolysis device | |
WO2010118533A1 (en) | Method and system for electrolyser single cell current efficiency | |
CN109055999A (en) | A method and system for quickly judging electrode short circuit based on temperature | |
JP3371443B2 (en) | Short circuit detection method | |
JP5406073B2 (en) | Copper electrolytic purification apparatus and copper electrolytic purification method using the same | |
JP2792414B2 (en) | Method and apparatus for determining life of noble metal-based insoluble electrode for electroplating | |
JPH05156482A (en) | Quality control method for electrolytically refining metal | |
RU2359072C1 (en) | Method of informational parametres pickup of aluminium electrolysers | |
JP2019044221A (en) | Operation method of copper electrorefining | |
Morales et al. | Sliding window trend analysis: a method for short and open circuit detection in copper electrorefining | |
JP2025521984A (en) | System and method for estimating current efficiency of an electrolytic cell | |
JPH1025589A (en) | Detection of shorting occurrence point of electrolytic cell | |
Nora | THE DE NORA SOLUTION–PART I, DSA® ANODES FOR COPPER ELECTROWINNING | |
JP2003119587A (en) | Method for electrolytically refining copper | |
JPS5835275B2 (en) | Aluminum steel plate |