[go: up one dir, main page]

JP2003151621A - Non-aqueous electrolyte battery - Google Patents

Non-aqueous electrolyte battery

Info

Publication number
JP2003151621A
JP2003151621A JP2001345006A JP2001345006A JP2003151621A JP 2003151621 A JP2003151621 A JP 2003151621A JP 2001345006 A JP2001345006 A JP 2001345006A JP 2001345006 A JP2001345006 A JP 2001345006A JP 2003151621 A JP2003151621 A JP 2003151621A
Authority
JP
Japan
Prior art keywords
carbonate
aqueous electrolyte
bond
electrolyte battery
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001345006A
Other languages
Japanese (ja)
Inventor
Arinori Fujimoto
有紀 藤本
Hiroe Nakagawa
裕江 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP2001345006A priority Critical patent/JP2003151621A/en
Publication of JP2003151621A publication Critical patent/JP2003151621A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

(57)【要約】 【目的】 安全性に優れ、充放電効率が高く、高いエネ
ルギー密度を有し、サイクル性能や保存性能に優れた非
水電解質電池を容易に提供することを目的とする 【解決手段】 正極と、負極と、非水電解質とから少な
くとも構成される非水電解質電池において、前記非水電
解質は、環内にπ結合を有するカーボネートを1種以上
含有し、且つ、環外にのみπ結合を有するカーボネート
を1種以上含有することで、上記課題を解決できる。前
記環内にπ結合を有するカーボネートとしてはビニレン
カーボネートが、また、前記環外にのみπ結合を有する
カーボネートとしてはビニルエチレンカーボネートが好
適に選択される。さらに、前記非水電解質は、1種以上
のπ結合を有さない環状カーボネートをさらに含有して
いることが望ましい。
(57) [Abstract] [Purpose] It is intended to easily provide a non-aqueous electrolyte battery having excellent safety, high charge / discharge efficiency, high energy density, and excellent cycle performance and storage performance. SOLUTION: In a non-aqueous electrolyte battery comprising at least a positive electrode, a negative electrode, and a non-aqueous electrolyte, the non-aqueous electrolyte contains at least one carbonate having a π bond in a ring, and has The above problem can be solved by containing at least one carbonate having only a π bond. Vinylene carbonate is preferably selected as the carbonate having a π bond in the ring, and vinylethylene carbonate is preferably selected as the carbonate having a π bond only in the outer ring. Further, it is preferable that the non-aqueous electrolyte further contains one or more cyclic carbonates having no π bond.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は非水電解質電池に関
し、特に、非水電解質の改良に関するものである。
TECHNICAL FIELD The present invention relates to a non-aqueous electrolyte battery, and more particularly to improvement of a non-aqueous electrolyte.

【0002】[0002]

【従来の技術】近年、非水電解質電池、特にリチウム二
次電池は、携帯電話,PHS(簡易携帯電話),小型コ
ンピューター等の携帯機器類用電源、電力貯蔵用電源、
電気自動車用電源として注目されている。
2. Description of the Related Art In recent years, non-aqueous electrolyte batteries, especially lithium secondary batteries, have been used as power sources for mobile devices such as mobile phones, PHS (simple mobile phones), and small computers, power storage power sources,
It is attracting attention as a power source for electric vehicles.

【0003】リチウム二次電池は、一般に、正極活物質
を主要構成成分とする正極と、負極活物質を主要構成成
分とする負極と、非水電解質とから構成される。
A lithium secondary battery is generally composed of a positive electrode having a positive electrode active material as a main constituent, a negative electrode having a negative electrode active material as a main constituent, and a non-aqueous electrolyte.

【0004】リチウム二次電池を構成する正極活物質と
しては、リチウム含有遷移金属酸化物が、負極活物質と
しては、グラファイトに代表される炭素質材料が、非水
電解質としては、六フッ化リン酸リチウム(LiP
6)等の電解質がエチレンカーボネートを主構成成分
とする非水溶媒に溶解されたものが広く知られている。
A lithium-containing transition metal oxide is used as a positive electrode active material constituting a lithium secondary battery, a carbonaceous material typified by graphite is used as a negative electrode active material, and phosphorus hexafluoride is used as a non-aqueous electrolyte. Lithium acid (LiP
It is widely known that an electrolyte such as F 6 ) is dissolved in a non-aqueous solvent containing ethylene carbonate as a main constituent.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、エチレ
ンカーボネートは融点が高く、低温で電解液が凝固し易
い。そのため、エチレンカーボネートに代えて、より融
点の低いプロピレンカーボネートを電解液の非水溶媒と
して使用する方法が知られているが、充電時、とりわけ
初充電時にプロピレンカーボネートがグラファイト負極
上で分解するため、電池性能が充分に得られないという
問題があった。
However, since ethylene carbonate has a high melting point, the electrolytic solution easily solidifies at low temperatures. Therefore, in place of ethylene carbonate, a method of using a lower melting point propylene carbonate as a non-aqueous solvent of the electrolytic solution is known, but during charging, especially propylene carbonate decomposes on the graphite negative electrode at the time of initial charging, There is a problem that the battery performance is not sufficiently obtained.

【0006】この問題を解決する手段として、特開平1
1−67266号公報などには、プロピレンカーボネー
トの上記分解を抑制するために、ビニレンカーボネート
を必須成分とする非水溶媒を非水電解質電池に適用する
技術が開示されている。すなわち、初充電時にビニレン
カーボネートがグラファイト負極上で分解することによ
り、グラファイト負極表面にリチウムイオン透過性の保
護被膜を形成するため、プロピレンカーボネートの分解
が抑制され、高い低温特性と高いエネルギー密度とを有
する非水電解質電池が得られるとされている。
As a means for solving this problem, Japanese Patent Laid-Open No.
Japanese Patent Application Laid-Open No. 1-67266 discloses a technique of applying a non-aqueous solvent containing vinylene carbonate as an essential component to a non-aqueous electrolyte battery in order to suppress the above decomposition of propylene carbonate. That is, by decomposing vinylene carbonate on the graphite negative electrode during initial charging, a lithium ion permeable protective coating is formed on the surface of the graphite negative electrode, so that decomposition of propylene carbonate is suppressed, and high temperature characteristics and high energy density are obtained. It is said that a non-aqueous electrolyte battery having the same can be obtained.

【0007】しかしながら、ビニレンカーボネートは耐
酸化性に劣り、正極上で分解するため、多量に添加する
と電池性能を低下させるという問題があった。
However, since vinylene carbonate is inferior in oxidation resistance and decomposes on the positive electrode, there is a problem that addition of a large amount thereof deteriorates battery performance.

【0008】一方、特開2001−126761号公報
などには、ビニルエチレンカーボネート類を必須成分と
する非水溶媒を非水電解質電池に適用する技術が開示さ
れている。すなわち、初充電時にビニルエチレンカーボ
ネート類がグラファイト負極上で分解することにより、
グラファイト負極表面にリチウムイオン透過性の保護被
膜を形成するため、プロピレンカーボネートの分解が抑
制され、高い低温特性と高いエネルギー密度とを有する
非水電解質電池が得られるとされている。
On the other hand, Japanese Patent Application Laid-Open No. 2001-126761 discloses a technique of applying a non-aqueous solvent containing vinyl ethylene carbonates as an essential component to a non-aqueous electrolyte battery. That is, when vinyl ethylene carbonates are decomposed on the graphite negative electrode during initial charging,
It is said that since a lithium ion-permeable protective coating is formed on the surface of the graphite negative electrode, decomposition of propylene carbonate is suppressed, and a non-aqueous electrolyte battery having high temperature characteristics and high energy density can be obtained.

【0009】しかしながら、ビニルエチレンカーボネー
トの分解物による保護被膜は、ビニレンカーボネートの
分解物による保護被膜に比較してプロピレンカーボネー
トの分解抑制能に劣り、その効果を充分に得るために
は、上記したビニレンカーボネートの場合に比較し、多
量に添加する必要があるという問題があることに加え、
ビニレンカーボネートと同様、耐酸化性に劣り、正極上
で分解するため、電池性能を低下させるという問題があ
った。
However, the protective film formed by the decomposition product of vinyl ethylene carbonate is inferior to the protective film formed by the decomposition product of vinylene carbonate in the ability to suppress the decomposition of propylene carbonate, and in order to sufficiently obtain the effect, the above-mentioned vinylene In addition to the problem that it is necessary to add a large amount compared to the case of carbonate,
Similar to vinylene carbonate, it has poor oxidation resistance and decomposes on the positive electrode, resulting in a problem of reduced battery performance.

【0010】本発明は、前記問題点に鑑みてなされたも
のであり、その目的は、安全性に優れ、充放電効率が高
く、高いエネルギー密度を有し、サイクル性能や保存性
能に優れた非水電解質電池を容易に提供することであ
る。
The present invention has been made in view of the above problems, and an object thereof is a non-excellent product having excellent safety, high charge / discharge efficiency, high energy density, and excellent cycle performance and storage performance. It is to provide a water electrolyte battery easily.

【0011】[0011]

【課題を解決するための手段】上記課題を解決するた
め、本発明者らは、鋭意検討の結果、非水電解質を構成
する非水溶媒を特定のものとすることにより、驚くべき
ことに、安全性に優れ、且つ、充放電効率が高く、高い
エネルギー密度を有する非水電解質電池が得られること
を見出し、本発明に至った。すなわち、本発明の技術的
構成及びその作用効果は以下の通りである。ただし、作
用機構については推定を含んでおり、その正否は、本発
明を制限するものではない。
In order to solve the above-mentioned problems, the present inventors have made earnest studies and as a result, by surprisingly selecting a non-aqueous solvent constituting a non-aqueous electrolyte, surprisingly, The inventors have found that a non-aqueous electrolyte battery having excellent safety, high charge / discharge efficiency, and high energy density can be obtained, and the present invention has been completed. That is, the technical configuration of the present invention and its effects are as follows. However, the mechanism of action includes estimation, and its correctness does not limit the present invention.

【0012】すなわち本発明の非水電解質電池は、請求
項1に記載したように、正極と、負極と、非水電解質と
から少なくとも構成される非水電解質電池において、前
記非水電解質は、環内にπ結合を有するカーボネートを
1種以上含有し、且つ、環外にのみπ結合を有するカー
ボネートを1種以上含有していることを特徴している。
That is, the non-aqueous electrolyte battery of the present invention is a non-aqueous electrolyte battery comprising at least a positive electrode, a negative electrode and a non-aqueous electrolyte as described in claim 1, wherein the non-aqueous electrolyte is a ring. It is characterized in that it contains at least one carbonate having a π bond inside and at least one carbonate having a π bond only outside the ring.

【0013】このような構成によれば、初充電時に、π
結合を有する環状カーボネートがグラファイト負極上で
分解し、グラファイト負極表面にリチウムイオン透過性
の保護被膜を形成するため、非水電解質を構成するその
他の有機溶媒の分解を確実に抑制できるので、2サイク
ル目以降の充放電を充分に行うことができ、充放電効率
を向上させることができるが、このとき、環内にπ結合
を有するカーボネートと、環外にのみπ結合を有するカ
ーボネートとを混合して用いることにより、驚くべきこ
とに、前記環内にπ結合を有するカーボネートの添加量
及び環外にのみπ結合を有するカーボネートの添加量を
少量とした場合においても、負極表面に形成されるリチ
ウムイオン透過性の保護被膜が、特に緻密で、且つ、リ
チウムイオン透過性に優れたものとなるため、非水電解
質を構成するその他の有機溶媒の分解をより効果的に抑
制できる。即ち、前記環内にπ結合を有するカーボネー
トの添加量又は環外にのみπ結合を有するカーボネート
を単独でまた、よって、前記環内にπ結合を有するカー
ボネートの添加量を少量とすることができるので、該環
内にπ結合を有するカーボネートの正極上での分解を低
く抑えることができる。従って、充放電効率が高く、高
いエネルギー密度を有し、サイクル性能や保存性能に優
れた非水電解質電池とすることができる。
According to this structure, at the time of initial charging, π
The cyclic carbonate having a bond decomposes on the graphite negative electrode and forms a lithium ion-permeable protective coating on the surface of the graphite negative electrode, so that the decomposition of other organic solvents constituting the non-aqueous electrolyte can be surely suppressed, so that 2 cycles Charge and discharge after the eyes can be sufficiently performed, and charge and discharge efficiency can be improved. At this time, a carbonate having a π bond inside the ring and a carbonate having a π bond only outside the ring are mixed. Surprisingly, even when the amount of the carbonate having a π bond inside the ring and the amount of the carbonate having a π bond only outside the ring are small, the lithium formed on the surface of the negative electrode Since the ion-permeable protective film is particularly dense and has excellent lithium ion permeability, it constitutes a non-aqueous electrolyte. The decomposition of the organic solvent can be suppressed more effectively. That is, the addition amount of the carbonate having a π bond in the ring or the carbonate having a π bond only outside the ring can be used alone, and thus the addition amount of the carbonate having a π bond in the ring can be made small. Therefore, decomposition of the carbonate having a π bond in the ring on the positive electrode can be suppressed low. Therefore, a nonaqueous electrolyte battery having high charge / discharge efficiency, high energy density, and excellent cycle performance and storage performance can be obtained.

【0014】また、本発明の非水電解質電池は、請求項
2に記載したように、前記環内にπ結合を有する環状カ
ーボネートは、(化1)に示される構造を有しているこ
とを特徴としている。
Further, in the non-aqueous electrolyte battery of the present invention, as described in claim 2, the cyclic carbonate having a π bond in the ring has a structure shown in (Chemical Formula 1). It has a feature.

【0015】[0015]

【化1】 このような構成によれば、初充電時に負極表面に形成さ
れるリチウムイオン透過性の保護被膜が、より緻密で、
且つ、リチウムイオン透過性に優れたものとなるため、
非水電解質を構成するその他の有機溶媒の分解をより効
果的に抑制でき、2サイクル目以降の充放電を充分に行
うことができ、充放電効率を向上させることができる。
[Chemical 1] According to such a configuration, the lithium ion-permeable protective coating formed on the negative electrode surface at the time of initial charging is more dense,
And since it becomes excellent in lithium ion permeability,
It is possible to more effectively suppress the decomposition of the other organic solvent that constitutes the non-aqueous electrolyte, sufficiently charge and discharge the second and subsequent cycles, and improve the charge and discharge efficiency.

【0016】また、本発明の非水電解質電池は、請求項
3に記載したように、前記環外にのみπ結合を有する環
状カーボネートは、(化2)に示される構造を有してい
ることを特徴としている。
Further, in the non-aqueous electrolyte battery of the present invention, as described in claim 3, the cyclic carbonate having a π bond only on the outside of the ring has the structure shown in (formula 2). Is characterized by.

【0017】[0017]

【化2】 このような構成によれば、初充電時に負極表面に形成さ
れるリチウムイオン透過性の保護被膜が、より緻密で、
且つ、リチウムイオン透過性に優れたものとなるため、
非水電解質を構成するその他の有機溶媒の分解をより効
果的に抑制でき、2サイクル目以降の充放電を充分に行
うことができ、充放電効率を向上させることができる。
[Chemical 2] According to such a configuration, the lithium ion-permeable protective coating formed on the negative electrode surface at the time of initial charging is more dense,
And since it becomes excellent in lithium ion permeability,
It is possible to more effectively suppress the decomposition of the other organic solvent that constitutes the non-aqueous electrolyte, sufficiently charge and discharge the second and subsequent cycles, and improve the charge and discharge efficiency.

【0018】また、本発明の非水電解質電池は、請求項
4に記載したように、前記非水電解質は、前記環内にπ
結合を有するカーボネートとしてビニレンカーボネート
を含有していることを特徴としている。
In the non-aqueous electrolyte battery of the present invention, as described in claim 4, the non-aqueous electrolyte is π in the ring.
It is characterized in that it contains vinylene carbonate as a carbonate having a bond.

【0019】このような構成によれば、初充電時に負極
表面に形成されるリチウムイオン透過性の保護被膜が、
特に緻密で、且つ、リチウムイオン透過性に非常に優れ
たものとなるため、非水電解質を構成するその他の有機
溶媒の分解をさらに効果的に抑制でき、2サイクル目以
降の充放電を充分に行うことができ、充放電効率を向上
させることができる。
According to this structure, the lithium ion-permeable protective coating formed on the surface of the negative electrode at the time of initial charging is
Since it is particularly dense and has extremely excellent lithium ion permeability, decomposition of other organic solvents that compose the non-aqueous electrolyte can be suppressed more effectively, and charge and discharge after the second cycle can be sufficiently performed. Can be performed, and the charge / discharge efficiency can be improved.

【0020】また、本発明の非水電解質電池は、請求項
5に記載したように、前記非水電解質は、前記環外にの
みπ結合を有するカーボネートとしてビニルエチレンカ
ーボネートを含有していることを特徴としている。
In the non-aqueous electrolyte battery of the present invention, as described in claim 5, the non-aqueous electrolyte contains vinyl ethylene carbonate as a carbonate having a π bond only outside the ring. It has a feature.

【0021】このような構成によれば、初充電時に負極
表面に形成されるリチウムイオン透過性の保護被膜が、
特に緻密で、且つ、リチウムイオン透過性に非常に優れ
たものとなるため、非水電解質を構成するその他の有機
溶媒の分解をさらに効果的に抑制でき、2サイクル目以
降の充放電を充分に行うことができ、充放電効率を向上
させることができる。
According to this structure, the lithium ion-permeable protective coating formed on the surface of the negative electrode at the time of initial charging is
Since it is particularly dense and has extremely excellent lithium ion permeability, decomposition of other organic solvents that compose the non-aqueous electrolyte can be suppressed more effectively, and charge and discharge after the second cycle can be sufficiently performed. Can be performed, and the charge / discharge efficiency can be improved.

【0022】また、本発明の非水電解質電池は、請求項
6に記載したように、前記非水電解質は、1種以上のπ
結合を有さない環状カーボネートをさらに含有している
ことを特徴としている。
In the non-aqueous electrolyte battery of the present invention, as described in claim 6, the non-aqueous electrolyte is one or more kinds of π.
It is characterized by further containing a cyclic carbonate having no bond.

【0023】このような構成によれば、非水電解質の沸
点及び引火点を高く保った上に、高誘電率を有するた
め、リチウムイオン伝導度を向上でき、さらに耐酸化性
に優れることから、上記効果が効果的に得られる。よっ
て、安全性に優れ、充放電効率が高く、高いエネルギー
密度を有する非水電解質電池とすることができる。
According to such a structure, since the boiling point and the flash point of the non-aqueous electrolyte are kept high and the high dielectric constant is obtained, the lithium ion conductivity can be improved and the oxidation resistance is excellent. The above effects can be effectively obtained. Therefore, a nonaqueous electrolyte battery having excellent safety, high charge / discharge efficiency, and high energy density can be obtained.

【0024】また、本発明の非水電解質電池は、請求項
7に記載したように、前記非水電解質は、前記π結合を
有さない環状カーボネートとして、エチレンカーボネー
ト、プロピレンカーボネート及びブチレンカーボネート
からなる群から選ばれる少なくとも1種を含有している
ことを特徴としている。
In the non-aqueous electrolyte battery of the present invention, as described in claim 7, the non-aqueous electrolyte comprises ethylene carbonate, propylene carbonate and butylene carbonate as the cyclic carbonate having no π bond. It is characterized by containing at least one selected from the group.

【0025】このような構成によれば、π結合を有さな
い環状カーボネートが持つ、高誘電率を有し、耐酸化性
に優れた有機溶媒の特性を生かすことができるため、上
記効果がより効果的に得られる。
According to this structure, the characteristics of the organic solvent having a high dielectric constant and excellent oxidation resistance, which are possessed by the cyclic carbonate having no π bond, can be utilized, so that the above-mentioned effect can be obtained. Effectively obtained.

【0026】また、本発明の非水電解質電池は、請求項
8に記載したように、前記負極は、グラファイトを主要
構成成分としてなることを特徴としている。
The non-aqueous electrolyte battery of the present invention is characterized in that, as described in claim 8, the negative electrode mainly contains graphite.

【0027】このような構成によれば、グラファイト
は、金属リチウム電位(水溶液の場合−3.045V
vs. NHE)に極めて近い作動電位を有し、且つ充
放電における不可逆容量を少なくできることから、高作
動電圧を有し、高エネルギー密度である非水電解質電池
を得ることができる。
According to such a structure, the graphite has a metallic lithium potential (-3.045 V in the case of an aqueous solution).
vs. Since it has an operating potential very close to that of NHE) and can reduce the irreversible capacity during charge and discharge, it is possible to obtain a non-aqueous electrolyte battery having a high operating voltage and a high energy density.

【0028】また、本発明の非水電解質電池は、請求項
9に記載したように、前記非水電解質電池は、外装体に
金属樹脂複合材料を用いたことを特徴としている。
The non-aqueous electrolyte battery of the present invention is characterized in that, as described in claim 9, the non-aqueous electrolyte battery uses a metal-resin composite material for the exterior body.

【0029】このような構成によれば、金属樹脂複合材
料は、金属よりも軽く、また、薄形形状に容易に成形で
きるので、非水電解質電池の小形軽量化が可能である。
With such a structure, the metal-resin composite material is lighter than metal and can be easily formed into a thin shape, so that the non-aqueous electrolyte battery can be made compact and lightweight.

【0030】[0030]

【発明の実施の形態】以下に、本発明の実施の形態を例
示するが、本発明は、これらの記述に限定されるもので
はない。
BEST MODE FOR CARRYING OUT THE INVENTION The embodiments of the present invention will be illustrated below, but the present invention is not limited to these descriptions.

【0031】本発明に係る非水電解質電池は、正極活物
質を主要構成成分とする正極と、負極活物質を主要構成
成分とする負極と、電解質塩が非水溶媒に溶解された、
「環内にπ結合を有するカーボネート」と「環外にのみ
π結合を有するカーボネート」を含有している非水電解
質とから構成され、一般的には、正極と負極との間に、
非水電解質電池用セパレータが設けられる。
The non-aqueous electrolyte battery according to the present invention comprises a positive electrode containing a positive electrode active material as a main constituent, a negative electrode containing a negative electrode active material as a main constituent, and an electrolyte salt dissolved in a non-aqueous solvent.
It is composed of a non-aqueous electrolyte containing "a carbonate having a π bond in the ring" and "a carbonate having a π bond only outside the ring", and generally, between the positive electrode and the negative electrode,
A non-aqueous electrolyte battery separator is provided.

【0032】前記「環内にπ結合を有するカーボネー
ト」と前記「環外にのみπ結合を有するカーボネート」
の含有量は、合計して非水電解質の全重量に対して0.
01重量%〜20重量%であることが好ましく、より好
ましくは0.10重量%〜10重量%である。該含有量
を非水電解質の全重量に対して0.01重量%以上とす
ることによって、非水電解質を構成するその他の有機溶
媒の初充電時における分解をほぼ完全に抑制し、充電を
確実に行うことができる。また、該含有量を非水電解質
の全重量に対して20重量%以下とすることによって、
「環内にπ結合を有するカーボネート」や「環外にのみ
π結合を有するカーボネート」が正極上で分解すること
による電池性能の劣化がほとんど発生せず、充分な電池
性能を発揮することができる。なお、「環内にπ結合を
有するカーボネート」と「環外にのみπ結合を有するカ
ーボネート」との含有比は、任意に選択することができ
る。
The "carbonate having a π bond in the ring" and the "carbonate having a π bond only outside the ring"
Content of 0 .. based on the total weight of the non-aqueous electrolyte.
It is preferably from 01% to 20% by weight, more preferably from 0.10% to 10% by weight. By setting the content to 0.01% by weight or more with respect to the total weight of the non-aqueous electrolyte, the decomposition of other organic solvents constituting the non-aqueous electrolyte during initial charging is almost completely suppressed, and the charging is ensured. Can be done. Further, by setting the content to 20% by weight or less based on the total weight of the non-aqueous electrolyte,
Sufficient battery performance can be exhibited with almost no deterioration of battery performance due to decomposition of "carbonate having π bond in the ring" or "carbonate having π bond only outside the ring" on the positive electrode. . The content ratio of “carbonate having π bond inside the ring” and “carbonate having π bond only outside the ring” can be arbitrarily selected.

【0033】非水電解質を構成する有機溶媒は、一般に
非水電解質電池用非水電解質に使用される有機溶媒が使
用できる。例えば、プロピレンカーボネート、エチレン
カーボネート、ブチレンカーボネート、クロロエチレン
カーボネート、等の環状カーボネート;γ−ブチロラク
トン、γ−バレロラクトン、プロピオラクトン等の環状
エステル;ジメチルカーボネート、ジエチルカーボネー
ト、エチルメチルカーボネート、ジフェニルカーボネー
ト等の鎖状カーボネート;酢酸メチル、酪酸メチル等の
鎖状エステル;テトラヒドロフラン又はその誘導体、
1,3−ジオキサン、ジメトキシエタン、ジエトキシエ
タン、メトキシエトキシエタン、メチルジグライム等の
エーテル類;アセトニトリル、ベンゾニトリル等のニト
リル類;ジオキサラン又はその誘導体;スルホラン、ス
ルトン又はその誘導体等の単独又はそれら2種以上の混
合物等を挙げることができるが、これらに限定されるも
のではない。
As the organic solvent constituting the non-aqueous electrolyte, an organic solvent generally used for non-aqueous electrolytes for non-aqueous electrolyte batteries can be used. For example, cyclic carbonates such as propylene carbonate, ethylene carbonate, butylene carbonate, chloroethylene carbonate; cyclic esters such as γ-butyrolactone, γ-valerolactone, propiolactone; dimethyl carbonate, diethyl carbonate, ethylmethyl carbonate, diphenyl carbonate, etc. Chain carbonates of; chain esters of methyl acetate, methyl butyrate, etc .; tetrahydrofuran or its derivatives,
Ethers such as 1,3-dioxane, dimethoxyethane, diethoxyethane, methoxyethoxyethane, and methyldiglyme; nitriles such as acetonitrile and benzonitrile; dioxalane or a derivative thereof; sulfolane, sultone or a derivative thereof, or the like. Examples thereof include a mixture of two or more, but are not limited to these.

【0034】なお、本発明においては、非水電解質中に
高誘電率を有するπ結合を有さない環状カーボネートを
含有することにより、本発明の効果が充分に発揮できる
ため好ましく、なかでも、エチレンカーボネート、プロ
ピレンカーボネート及びブチレンカーボネートからなる
群から選ばれる少なくとも1種を含有することが、特に
好ましい。
In the present invention, the inclusion of a cyclic carbonate having a high dielectric constant and not having a π bond in the non-aqueous electrolyte is preferable because the effects of the present invention can be sufficiently exhibited. It is particularly preferable to contain at least one selected from the group consisting of carbonate, propylene carbonate and butylene carbonate.

【0035】電解質塩としては、例えば、LiCl
4,LiBF4,LiAsF6,LiPF6,LiSC
N,LiBr,LiI,Li2SO4,Li210
10,NaClO4,NaI,NaSCN,NaBr,
KClO4,KSCN等のリチウム(Li)、ナトリウ
ム(Na)又はカリウム(K)の1種を含む無機イオン
塩、LiCF3SO3,LiN(CF3SO22,LiN
(C25SO22,(CH34NBF4,(CH34
Br,(C254NClO4,(C254NI,(C3
7 4NBr,(n−C494NClO4,(n−C4
94NI,(C254N−maleate,(C2
54N−benzoate,(C254N−phta
late等の四級アンモニウム塩、ステアリルスルホン
酸リチウム、オクチルスルホン酸リチウム、ドデシルベ
ンゼンスルホン酸リチウム等の有機イオン塩が挙げら
れ、これらのイオン性化合物を単独、あるいは2種類以
上混合して用いることが可能である。
Examples of the electrolyte salt include LiCl
OFour, LiBFFour, LiAsF6, LiPF6, LiSC
N, LiBr, LiI, Li2SOFour, Li2BTenC
lTen, NaClOFour, NaI, NaSCN, NaBr,
KClOFour, KSCN, Lithium (Li), Natriu
Inorganic ion containing one of sodium (Na) or potassium (K)
Salt, LiCF3SO3, LiN (CF3SO2)2, LiN
(C2FFiveSO2)2, (CH3)FourNBFFour, (CH3)FourN
Br, (C2HFive)FourNClOFour, (C2HFive)FourNI, (C3
H7) FourNBr, (n-CFourH9)FourNClOFour, (N-CFour
H9)FourNI, (C2HFive)FourN-maleate, (C2H
Five)FourN-benzoate, (C2HFive)FourN-phta
Quaternary ammonium salt such as late, stearyl sulfone
Lithium oxide, lithium octyl sulfonate, dodecylbe
Examples include organic ionic salts such as lithium benzenesulfonate.
These ionic compounds may be used alone or in combination of two or more.
It is possible to mix and use the above.

【0036】非水電解質における電解質塩の濃度として
は、高い電池特性を有する非水電解質電池を確実に得る
ために、0.1mol/l〜5mol/lが好ましく、
さらに好ましくは、1mol/l〜2.5mol/lで
ある。
The concentration of the electrolyte salt in the non-aqueous electrolyte is preferably 0.1 mol / l to 5 mol / l in order to surely obtain a non-aqueous electrolyte battery having high battery characteristics.
More preferably, it is 1 mol / l to 2.5 mol / l.

【0037】正極の主要構成成分である正極活物質とし
ては、リチウム含有遷移金属酸化物、リチウム含有リン
酸塩、リチウム含有硫酸塩などを単独あるいは混合して
用いることが望ましい。リチウム含有遷移金属酸化物と
しては、一般式LiyCo1-xx2、LiyMn2-xX
4(Mは、IからVIII族の金属(例えば、Li,
Ca,Cr,Ni,Mn,Fe,Coの1種類以上の元
素)であり、異種元素置換量を示すx値については置換
できる最大量まで有効であるが、好ましくは放電容量の
点から0≦x≦1である。また、リチウム量を示すy値
についてはリチウムを可逆的に利用しうる最大量が有効
であり、好ましくは放電容量の点から0≦y≦2であ
る。)が挙げられるが、これらに限定されるものではな
い。
As the positive electrode active material, which is the main constituent of the positive electrode, it is desirable to use lithium-containing transition metal oxides, lithium-containing phosphates, lithium-containing sulfates, etc., alone or in combination. Examples of the lithium-containing transition metal oxide include general formulas Li y Co 1-x M x O 2 and Li y Mn 2-x M x.
O 4 (M is a group I to VIII metal (eg, Li,
Ca, Cr, Ni, Mn, Fe, Co, one or more elements), and the x value indicating the substitution amount of different elements is effective up to the maximum substitutable amount, but preferably 0 ≦ from the viewpoint of discharge capacity. x ≦ 1. As for the y value indicating the amount of lithium, the maximum amount that can reversibly use lithium is effective, and preferably 0 ≦ y ≦ 2 in terms of discharge capacity. ), But is not limited thereto.

【0038】また、前記リチウム含有化合物に他の正極
活物質を混合して用いてもよく、他の正極活物質として
は、CuO,Cu2O,Ag2O,CuS,CuSO4
のI族金属化合物、TiS2,SiO2,SnO等のIV
族金属化合物、V25,V612,VOx,Nb25,B
23,Sb23等のV族金属化合物、CrO3,Cr2
3,MoO3,MoS2,WO3,SeO2等のVI族金
属化合物、MnO2,Mn23等のVII族金属化合
物、Fe23,FeO,Fe34,Ni23,NiO,
CoO3,CoO等のVIII族金属化合物、又は、一
般式LixMX2,LixMNy2(M、NはIからVI
II族の金属、Xは酸素、硫黄などのカルコゲン化合物
を示す。)等で表される、例えばリチウム−コバルト系
複合酸化物やリチウム−マンガン系複合酸化物等の金属
化合物、さらに、ジスルフィド,ポリピロール,ポリア
ニリン,ポリパラフェニレン,ポリアセチレン,ポリア
セン系材料等の導電性高分子化合物、擬グラファイト構
造炭素質材料等が挙げられるが、これらに限定されるも
のではない。
Further, other positive electrode active material may be mixed with the lithium-containing compound, and as the other positive electrode active material, CuO, Cu 2 O, Ag 2 O, CuS, CuSO 4 or the like can be used. IV of metal compounds, TiS 2 , SiO 2 , SnO, etc.
Group metal compound, V 2 O 5 , V 6 O 12 , VO x , Nb 2 O 5 , B
Group V metal compounds such as i 2 O 3 and Sb 2 O 3 , CrO 3 and Cr 2
Group VI metal compounds such as O 3 , MoO 3 , MoS 2 , WO 3 , and SeO 2 , Group VII metal compounds such as MnO 2 , Mn 2 O 3 , Fe 2 O 3 , FeO, Fe 3 O 4 , and Ni 2 O 3 , NiO,
Group VIII metal compounds such as CoO 3 and CoO, or general formulas Li x MX 2 , Li x MN y X 2 (M and N are I to VI
Group II metals, X represents chalcogen compounds such as oxygen and sulfur. ) Or the like, for example, a metal compound such as a lithium-cobalt-based composite oxide or a lithium-manganese-based composite oxide, and a conductive high material such as disulfide, polypyrrole, polyaniline, polyparaphenylene, polyacetylene, or polyacene-based material. Examples thereof include molecular compounds and pseudo-graphite structure carbonaceous materials, but are not limited to these.

【0039】負極の主要構成成分である負極活物質とし
ては、炭素質材料、スズ酸化物,珪素酸化物等の金属酸
化物、さらにこれらの物質に負極特性を向上させる目的
でリンやホウ素を添加し改質を行った材料等が挙げられ
る。炭素質材料の中でもグラファイトは、金属リチウム
に極めて近い作動電位を有するので電解質塩としてリチ
ウム塩を採用した場合に自己放電を少なくでき、且つ充
放電における不可逆容量を少なくできるので、負極活物
質として好ましい。さらに本発明においては、環状カー
ボネート又は鎖状カーボネートのフッ化物を含有する非
水電解質が使用されるので、充電時にグラファイトを主
成分とする負極上で非水電解質を構成するその他の有機
溶媒の分解を確実に抑制でき、グラファイトの上記有利
な特性を確実に発現させることができる。
As the negative electrode active material which is the main constituent of the negative electrode, carbonaceous materials, metal oxides such as tin oxide and silicon oxide, and phosphorus and boron are added to these materials for the purpose of improving the negative electrode characteristics. Examples of the modified material include: Among the carbonaceous materials, graphite is preferable as the negative electrode active material because it has an operating potential extremely close to that of metallic lithium and thus can reduce self-discharge when a lithium salt is adopted as the electrolyte salt and can reduce the irreversible capacity during charge and discharge. . Further, in the present invention, since a non-aqueous electrolyte containing a fluoride of a cyclic carbonate or a chain carbonate is used, decomposition of other organic solvent constituting the non-aqueous electrolyte on the negative electrode containing graphite as a main component during charging. Can be reliably suppressed, and the above-mentioned advantageous properties of graphite can be surely exhibited.

【0040】以下に、好適に用いることのできるグラフ
ァイトのエックス線回折等による分析結果を示す; 格子面間隔(d002) 0.333から0.350ナノメートル a軸方向の結晶子の大きさLa 20ナノメートル以上 c軸方向の結晶子の大きさLc 20ナノメートル以上 真密度 2.00から2.25g/cm3
The analysis results of X-ray diffraction and the like of graphite which can be preferably used are shown below: Lattice plane spacing (d 002 ) 0.333 to 0.350 nanometers Crystallite size La 20 in the a-axis direction Nanometer or more C-axis crystallite size Lc 20 nanometers or more True density 2.00 to 2.25 g / cm 3

【0041】また、グラファイトに、スズ酸化物,ケイ
素酸化物等の金属酸化物、リン、ホウ素、アモルファス
カーボン等を添加して改質を行ってもよい。特に、グラ
ファイトの表面を上記の方法によって改質することで、
電解液の分解を抑制し電池特性を高めることができる点
で好ましい。さらに、グラファイトに対して、リチウム
金属、リチウム−アルミニウム,リチウム−鉛,リチウ
ム−スズ,リチウム−アルミニウム−スズ,リチウム−
ガリウム,及びウッド合金等のリチウム金属含有合金等
を併用することや、あらかじめ電気化学的に還元するこ
とによってリチウムが挿入されたグラファイト等も負極
活物質として使用可能である。
Further, graphite may be modified by adding metal oxides such as tin oxide and silicon oxide, phosphorus, boron and amorphous carbon. In particular, by modifying the surface of graphite by the above method,
It is preferable in that the decomposition of the electrolytic solution can be suppressed and the battery characteristics can be improved. Further, with respect to graphite, lithium metal, lithium-aluminum, lithium-lead, lithium-tin, lithium-aluminum-tin, lithium-
It is possible to use gallium, graphite containing lithium metal such as wood alloy, or the like, or graphite into which lithium is inserted by electrochemical reduction in advance, as the negative electrode active material.

【0042】また、正極活物質の粉体及び/又は負極活
物質の粉体の少なくとも表面層部分を電子伝導性やイオ
ン伝導性の良いもの、あるいは疎水基を有する化合物で
修飾してもよい。例えば、金,銀,カーボン,ニッケ
ル,銅等の電子伝導性のよい物質や、炭酸リチウム,ホ
ウ素ガラス,固体電解質等のイオン伝導性のよい物質、
あるいはシリコーンオイル等の疎水基を有する物質をメ
ッキ,焼結,メカノフュージョン,蒸着,焼き付け等の
技術を応用して被覆すること等が挙げられる。
Further, at least the surface layer portion of the powder of the positive electrode active material and / or the powder of the negative electrode active material may be modified with a material having good electron conductivity or ion conductivity, or a compound having a hydrophobic group. For example, substances having good electron conductivity such as gold, silver, carbon, nickel, and copper, substances having good ion conductivity such as lithium carbonate, boron glass, and solid electrolyte,
Alternatively, coating with a substance having a hydrophobic group such as silicone oil by applying a technique such as plating, sintering, mechanofusion, vapor deposition, or baking may be mentioned.

【0043】正極活物質の粉体及び負極活物質の粉体
は、平均粒子サイズ100μm以下であることが望まし
い。特に、正極活物質の粉体は、非水電解質電池の高出
力特性を向上する目的で10μm以下であることが望ま
しい。粉体を所定の形状で得るためには粉砕機や分級機
が用いられる。例えば乳鉢、ボールミル、サンドミル、
振動ボールミル、遊星ボールミル、ジェットミル、カウ
ンタージェトミル、旋回気流型ジェットミルや篩等が用
いられる。粉砕時には水、あるいはヘキサン等の有機溶
剤を共存させた湿式粉砕を用いることもできる。分級方
法としては、特に限定はなく、篩や風力分級機などが、
乾式、湿式ともに必要に応じて用いられる。
The powder of the positive electrode active material and the powder of the negative electrode active material preferably have an average particle size of 100 μm or less. In particular, the powder of the positive electrode active material is preferably 10 μm or less for the purpose of improving the high output characteristics of the non-aqueous electrolyte battery. A crusher or a classifier is used to obtain the powder in a predetermined shape. For example, mortar, ball mill, sand mill,
A vibrating ball mill, a planetary ball mill, a jet mill, a counter jet mill, a swirling airflow type jet mill, a sieve or the like is used. Wet grinding in which water or an organic solvent such as hexane coexists may be used during grinding. The classification method is not particularly limited, and a sieve or a wind classifier,
Both dry type and wet type are used as necessary.

【0044】以上、正極活物質及び負極活物質について
詳述したが、正極及び負極には、主要構成成分である前
記活物質の他に、導電剤、結着剤及びフィラーが、他の
構成成分として含有されてもよい。
The positive electrode active material and the negative electrode active material have been described above in detail. In the positive electrode and the negative electrode, in addition to the active material which is a main constituent, a conductive agent, a binder and a filler are other constituent components. May be included as

【0045】導電剤としては、電池性能に悪影響を及ぼ
さない電子伝導性材料であれば限定されないが、通常、
天然黒鉛(鱗状黒鉛,鱗片状黒鉛,土状黒鉛等)、人造
黒鉛、カーボンブラック、アセチレンブラック、ケッチ
ェンブラック、カーボンウイスカー、炭素繊維、金属
(銅,ニッケル,アルミニウム,銀,金等)粉、金属繊
維、導電性セラミックス材料等の導電性材料を1種又は
それらの混合物として含ませることができる。
The conductive agent is not limited as long as it is an electron conductive material that does not adversely affect the battery performance, but usually,
Natural graphite (scaly graphite, flake graphite, earth graphite, etc.), artificial graphite, carbon black, acetylene black, Ketjen black, carbon whiskers, carbon fiber, metal (copper, nickel, aluminum, silver, gold, etc.) powder, A conductive material such as a metal fiber or a conductive ceramic material may be contained as one kind or a mixture thereof.

【0046】これらの中で、導電剤としては、導電性及
び塗工性の観点よりアセチレンブラックが望ましい。導
電剤の添加量は、正極又は負極の総重量に対して1重量
%〜50重量%が好ましく、特に2重量%〜30重量%
が好ましい。これらの混合方法は、物理的な混合であ
り、その理想とするところは均一混合である。そのた
め、V型混合機、S型混合機、擂かい機、ボールミル、
遊星ボールミルといったような粉体混合機を乾式、ある
いは湿式で混合することが可能である。
Of these, acetylene black is preferable as the conductive agent from the viewpoints of conductivity and coatability. The amount of the conductive agent added is preferably 1% by weight to 50% by weight, particularly 2% by weight to 30% by weight, based on the total weight of the positive electrode or the negative electrode.
Is preferred. These mixing methods are physical mixing, and ideally, they are homogeneous mixing. Therefore, V type mixer, S type mixer, grinding machine, ball mill,
A powder mixer such as a planetary ball mill can be mixed dry or wet.

【0047】結着剤としては、通常、ポリテトラフルオ
ロエチレン,ポリフッ化ビニリデン,ポリエチレン,ポ
リプロピレン等の熱可塑性樹脂、エチレン−プロピレン
ジエンターポリマー(EPDM),スルホン化EPD
M,スチレンブタジエンゴム(SBR)、フッ素ゴム等
のゴム弾性を有するポリマー、カルボキシメチルセルロ
ース等の多糖類等を1種又は2種以上の混合物として用
いることができる。また、多糖類の様にリチウムと反応
する官能基を有する結着剤は、例えばメチル化するなど
してその官能基を失活させておくことが望ましい。結着
剤の添加量は、正極又は負極の総重量に対して1〜50
重量%が好ましく、特に2〜30重量%が好ましい。
The binder is usually a thermoplastic resin such as polytetrafluoroethylene, polyvinylidene fluoride, polyethylene or polypropylene, ethylene-propylene diene terpolymer (EPDM), sulfonated EPD.
Polymers having rubber elasticity such as M, styrene-butadiene rubber (SBR) and fluororubber, polysaccharides such as carboxymethyl cellulose and the like can be used as one kind or as a mixture of two or more kinds. In addition, it is desirable that the binder having a functional group that reacts with lithium such as a polysaccharide is deactivated by, for example, methylating. The amount of the binder added is 1 to 50 with respect to the total weight of the positive electrode or the negative electrode.
Weight% is preferable, and 2-30 weight% is especially preferable.

【0048】フィラーとしては、電池性能に悪影響を及
ぼさない材料であれば何でも良い。通常、ポリプロピレ
ン,ポリエチレン等のオレフィン系ポリマー、酸化ケイ
素、酸化チタン、酸化アルミニウム、酸化マグネシウ
ム、酸化ジルコニウム、酸化亜鉛、酸化鉄などの金属酸
化物、炭酸カルシウム、炭酸マグネシウムなどの金属炭
酸塩、ガラス、炭素等が用いられる。フィラーの添加量
は、正極又は負極の総重量に対して添加量は30重量%
以下が好ましい。
As the filler, any material may be used as long as it does not adversely affect the battery performance. Usually, olefin polymers such as polypropylene and polyethylene, metal oxides such as silicon oxide, titanium oxide, aluminum oxide, magnesium oxide, zirconium oxide, zinc oxide and iron oxide, metal carbonates such as calcium carbonate and magnesium carbonate, glass, Carbon or the like is used. The amount of the filler added is 30% by weight based on the total weight of the positive electrode or the negative electrode.
The following are preferred.

【0049】正極及び負極は、前記活物質、導電剤及び
結着剤をN−メチルピロリドン,トルエン等の有機溶媒
に混合させた後、得られた混合液を下記に詳述する集電
体の上に塗布し、乾燥することによって、好適に作製さ
れる。前記塗布方法については、例えば、アプリケータ
ーロールなどのローラーコーティング、スクリーンコー
ティング、ドクターブレード方式、スピンコーティン
グ、バーコーダー等の手段を用いて任意の厚み及び任意
の形状に塗布することが望ましいが、これらに限定され
るものではない。
For the positive electrode and the negative electrode, the active material, the conductive agent, and the binder are mixed with an organic solvent such as N-methylpyrrolidone and toluene, and the resulting mixed liquid is used as a current collector described in detail below. It is suitably prepared by applying it on the surface and drying it. For the coating method, for example, roller coating such as an applicator roll, screen coating, doctor blade method, spin coating, it is desirable to apply to any shape using a means such as bar coder, these It is not limited.

【0050】集電体としては、構成された電池において
悪影響を及ぼさない電子伝導体であれば何でもよい。例
えば、正極用集電体としては、アルミニウム、チタン、
ステンレス鋼、ニッケル、焼成炭素、導電性高分子、導
電性ガラス等の他に、接着性、導電性及び耐酸化性向上
の目的で、アルミニウムや銅等の表面をカーボン、ニッ
ケル、チタンや銀等で処理した物を用いることができ
る。負極用集電体としては、銅、ニッケル、鉄、ステン
レス鋼、チタン、アルミニウム、焼成炭素、導電性高分
子、導電性ガラス、Al−Cd合金等の他に、接着性、
導電性、耐酸化性向上の目的で、銅等の表面をカーボ
ン、ニッケル、チタンや銀等で処理した物を用いること
ができる。これらの材料については表面を酸化処理する
ことも可能である。
Any current collector may be used as long as it is an electron conductor that does not adversely affect the constructed battery. For example, as the current collector for the positive electrode, aluminum, titanium,
In addition to stainless steel, nickel, baked carbon, conductive polymers, conductive glass, etc., the surface of aluminum, copper, etc. is carbon, nickel, titanium, silver, etc. for the purpose of improving adhesion, conductivity, and oxidation resistance. The product treated with can be used. As the negative electrode current collector, in addition to copper, nickel, iron, stainless steel, titanium, aluminum, baked carbon, conductive polymer, conductive glass, Al-Cd alloy, adhesiveness,
For the purpose of improving conductivity and oxidation resistance, a material such as copper whose surface is treated with carbon, nickel, titanium, silver or the like can be used. It is also possible to oxidize the surface of these materials.

【0051】集電体の形状については、フォイル状の
他、フィルム状、シート状、ネット状、パンチ又はエキ
スパンドされた物、ラス体、多孔質体、発泡体、繊維群
の形成体等が用いられる。厚みの限定は特にないが、1
〜500μmのものが用いられる。これらの集電体の中
で、正極としては、耐酸化性に優れているアルミニウム
箔が、負極としては、還元場において安定であり、且つ
電導性に優れ、安価な銅箔、ニッケル箔、鉄箔、及びそ
れらの一部を含む合金箔を使用することが好ましい。さ
らに、粗面表面粗さが0.2μmRa以上の箔であるこ
とが好ましく、これにより正極活物質又は負極活物質と
集電体との密着性は優れたものとなる。よって、このよ
うな粗面を有することから、電解箔を使用するのが好ま
しい。特に、ハナ付き処理を施した電解箔は最も好まし
い。
With respect to the shape of the current collector, in addition to a foil shape, a film shape, a sheet shape, a net shape, a punched or expanded material, a lath body, a porous body, a foamed body, a fiber group forming body, or the like is used. To be There is no particular limitation on the thickness, but 1
Those having a thickness of up to 500 μm are used. Among these current collectors, the positive electrode is an aluminum foil having excellent oxidation resistance, and the negative electrode is a stable copper foil in a reducing field and has excellent electrical conductivity, and an inexpensive copper foil, nickel foil, or iron. Preference is given to using foils and alloy foils containing parts thereof. Furthermore, it is preferable that the foil has a rough surface with a surface roughness of 0.2 μmRa or more, and thereby the adhesion between the positive electrode active material or the negative electrode active material and the current collector becomes excellent. Therefore, it is preferable to use the electrolytic foil because it has such a rough surface. In particular, an electrolytic foil that has been treated with a hook is most preferable.

【0052】非水電解質電池用セパレータとしては、優
れたレート特性を示す微多孔膜や不織布等を、単独ある
いは併用することが好ましい。非水電解質電池用セパレ
ータを構成する材料としては、例えばポリエチレン,ポ
リプロピレン等に代表されるポリオレフィン系樹脂、ポ
リエチレンテレフタレート,ポリブチレンテレフタレー
ト等に代表されるポリエステル系樹脂、ポリフッ化ビニ
リデン、フッ化ビニリデン−ヘキサフルオロプロピレン
共重合体、フッ化ビニリデン−パーフルオロビニルエー
テル共重合体、フッ化ビニリデン−テトラフルオロエチ
レン共重合体、フッ化ビニリデン−トリフルオロエチレ
ン共重合体、フッ化ビニリデン−フルオロエチレン共重
合体、フッ化ビニリデン−ヘキサフルオロアセトン共重
合体、フッ化ビニリデン−エチレン共重合体、フッ化ビ
ニリデン−プロピレン共重合体、フッ化ビニリデン−ト
リフルオロプロピレン共重合体、フッ化ビニリデン−テ
トラフルオロエチレン−ヘキサフルオロプロピレン共重
合体、フッ化ビニリデン−エチレン−テトラフルオロエ
チレン共重合体等を挙げることができる。
As the separator for a non-aqueous electrolyte battery, it is preferable to use a microporous membrane or a non-woven fabric having excellent rate characteristics, either alone or in combination. Examples of the material forming the separator for the non-aqueous electrolyte battery include polyolefin resins represented by polyethylene, polypropylene, etc., polyester resins represented by polyethylene terephthalate, polybutylene terephthalate, etc., polyvinylidene fluoride, and vinylidene fluoride-hexa. Fluoropropylene copolymer, vinylidene fluoride-perfluorovinyl ether copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, vinylidene fluoride-trifluoroethylene copolymer, vinylidene fluoride-fluoroethylene copolymer, fluorine Vinylidene fluoride-hexafluoroacetone copolymer, vinylidene fluoride-ethylene copolymer, vinylidene fluoride-propylene copolymer, vinylidene fluoride-trifluoropropylene copolymer, vinylidene fluoride - tetrafluoroethylene - hexafluoropropylene copolymer, vinylidene fluoride - ethylene - can be mentioned tetrafluoroethylene copolymer.

【0053】非水電解質電池用セパレータの空孔率は強
度の観点から98体積%以下が好ましい。また、充放電
特性の観点から空孔率は20体積%以上が好ましい。
The porosity of the non-aqueous electrolyte battery separator is preferably 98% by volume or less from the viewpoint of strength. From the viewpoint of charge / discharge characteristics, the porosity is preferably 20% by volume or more.

【0054】また、非水電解質電池用セパレータは、例
えばアクリロニトリル、エチレンオキシド、プロピレン
オキシド、メチルメタアクリレート、ビニルアセテー
ト、ビニルピロリドン、ポリフッ化ビニリデン等のポリ
マーと電解液とで構成されるポリマーゲルを用いてもよ
い。
The non-aqueous electrolyte battery separator uses a polymer gel composed of an electrolyte and a polymer such as acrylonitrile, ethylene oxide, propylene oxide, methyl methacrylate, vinyl acetate, vinylpyrrolidone or polyvinylidene fluoride. Good.

【0055】さらに、非水電解質電池用セパレータは、
上述したような多孔膜や不織布等とポリマーゲルを併用
して用いると、電解液の保液性が向上するため望まし
い。即ち、ポリエチレン微孔膜の表面及び微孔壁面に厚
さ数μm以下の親溶媒性ポリマーを被覆したフィルムを
形成し、該フィルムの微孔内に電解液を保持させること
で、前記親溶媒性ポリマーがゲル化する。
Further, the separator for non-aqueous electrolyte battery is
It is desirable to use a polymer gel in combination with the above-mentioned porous membrane, non-woven fabric or the like, since the liquid retaining property of the electrolytic solution is improved. That is, by forming a film in which the surface of the polyethylene microporous membrane and the wall of the micropores are coated with a lyophilic polymer having a thickness of several μm or less, and holding the electrolyte solution in the micropores of the film, The polymer gels.

【0056】該親溶媒性ポリマーとしては、ポリフッ化
ビニリデンの他、エチレンオキシド基やエステル基等を
有するアクリレートモノマー、エポキシモノマー、イソ
シアネート基を有するモノマー等が架橋したポリマー等
が挙げられる。架橋にあたっては、熱、紫外線(UV)
や電子線(EB)等の活性光線等を用いることができ
る。
Examples of the solvophilic polymer include polyvinylidene fluoride, acrylate monomers having an ethylene oxide group or ester group, epoxy monomers, and polymers obtained by crosslinking monomers having an isocyanate group. For crosslinking, heat and ultraviolet rays (UV)
And actinic rays such as electron beam (EB) can be used.

【0057】該親溶媒性ポリマーには、強度や物性制御
の目的で、架橋体の形成を妨害しない範囲の物性調整剤
を配合して使用することができる。該物性調整剤の例と
しては、無機フィラー類{酸化ケイ素、酸化チタン、酸
化アルミニウム、酸化マグネシウム、酸化ジルコニウ
ム、酸化亜鉛、酸化鉄などの金属酸化物、炭酸カルシウ
ム、炭酸マグネシウムなどの金属炭酸塩}、ポリマー類
{ポリフッ化ビニリデン、フッ化ビニリデン/ヘキサフ
ルオロプロピレン共重合体、ポリアクリロニトリル、ポ
リメチルメタクリレート等}等が挙げられる。該物性調
整剤の添加量は、架橋性モノマーに対して通常50重量
%以下、好ましくは20重量%以下である。
For the purpose of controlling strength and physical properties, the solvent-philic polymer may be blended with a physical property adjusting agent within a range not interfering with the formation of a crosslinked product. Examples of the physical property adjusting agent include inorganic fillers {metal oxides such as silicon oxide, titanium oxide, aluminum oxide, magnesium oxide, zirconium oxide, zinc oxide and iron oxide, metal carbonates such as calcium carbonate and magnesium carbonate}. , Polymers {polyvinylidene fluoride, vinylidene fluoride / hexafluoropropylene copolymer, polyacrylonitrile, polymethyl methacrylate, etc.} and the like. The addition amount of the physical property adjusting agent is usually 50% by weight or less, preferably 20% by weight or less with respect to the crosslinkable monomer.

【0058】前記アクリレートモノマーについて例示す
ると、二官能以上の不飽和モノマーが好適に挙げられ、
より具体例には、2官能(メタ)アクリレート{エチレ
ングリコールジ(メタ)アクリレート、プロピレングリ
コールジ(メタ)アクリレート、アジピン酸・ジネオペ
ンチルグリコールエステルジ(メタ)アクリレート、重
合度2以上のポリエチレングリコールジ(メタ)アクリ
レート、重合度2以上のポリプロピレングリコールジ
(メタ)アクリレート、ポリオキシエチレン/ポリオキ
シプロピレン共重合体のジ(メタ)アクリレート、ブタ
ンジオールジ(メタ)アクリレート、ヘキサメチレング
リコールジ(メタ)アクリレート等}、3官能(メタ)
アクリレート{トリメチロールプロパントリ(メタ)ア
クリレート、グリセリントリ(メタ)アクリレート、グ
リセリンのエチレンオキシド付加物のトリ(メタ)アク
リレート、グリセリンのプロピレンオキシド付加物のト
リ(メタ)アクリレート、グリセリンのエチレンオキシ
ド、プロピレンオキシド付加物のトリ(メタ)アクリレ
ート等}、4官能以上の多官能(メタ)アクリレート
{ペンタエリスリトールテトラ(メタ)アクリレート、
ジグリセリンヘキサ(メタ)アクリレート等}が挙げら
れる。これらのモノマーを単独もしくは、併用して用い
ることができる。
Illustrative examples of the acrylate monomer include bifunctional or higher functional unsaturated monomers.
More specific examples include bifunctional (meth) acrylates {ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, adipic acid / dineopentyl glycol ester di (meth) acrylate, polyethylene glycol having a degree of polymerization of 2 or more. Di (meth) acrylate, polypropylene glycol di (meth) acrylate having a degree of polymerization of 2 or more, polyoxyethylene / polyoxypropylene copolymer di (meth) acrylate, butanediol di (meth) acrylate, hexamethylene glycol di (meth) ) Acrylate etc.} trifunctional (meth)
Acrylate {Trimethylolpropane tri (meth) acrylate, glycerin tri (meth) acrylate, tri (meth) acrylate of ethylene oxide adduct of glycerin, tri (meth) acrylate of propylene oxide adduct of glycerin, ethylene oxide of glycerin, propylene oxide addition Object tri (meth) acrylate, etc.}, tetrafunctional or higher polyfunctional (meth) acrylate {pentaerythritol tetra (meth) acrylate,
And diglycerin hexa (meth) acrylate}. These monomers can be used alone or in combination.

【0059】前記アクリレートモノマーには、物性調整
等の目的で1官能モノマーを添加することもできる。該
一官能モノマーの例としては、不飽和カルボン酸{アク
リル酸、メタクリル酸、クロトン酸、けい皮酸、ビニル
安息香酸、マレイン酸、フマール酸、イタコン酸、シト
ラコン酸、メサコン酸、メチレンマロン酸、アコニット
酸等}、不飽和スルホン酸{スチレンスルホン酸、アク
リルアミド−2−メチルプロパンスルホン酸等}又はそ
れらの塩(Li塩、Na塩、K塩、アンモニウム塩、テ
トラアルキルアンモニウム塩等)、またこれらの不飽和
カルボン酸をC1〜C18の脂肪族又は脂環式アルコー
ル、アルキレン(C2〜C4)グリコール、ポリアルキ
レン(C2〜C4)グリコール等で部分的にエステル化
したもの(メチルマレート、モノヒドロキシエチルマレ
ート、など)、及びアンモニア、1級又は2級アミンで
部分的にアミド化したもの(マレイン酸モノアミド、N
−メチルマレイン酸モノアミド、N,N−ジエチルマレ
イン酸モノアミドなど)、(メタ)アクリル酸エステル
[C1〜C18の脂肪族(メチル、エチル、プロピル、
ブチル、2−エチルヘキシル、ステアリル等)アルコー
ルと(メタ)アクリル酸とのエステル、又はアルキレン
(C2〜C4)グリコール(エチレングリコール、プロ
ピレングリコール、1,4−ブタンジオール等)及びポ
リアルキレン(C2〜C4)グリコール(ポリエチレン
グリコール、ポリプロピレングリコール)と(メタ)ア
クリル酸とのエステル];(メタ)アクリルアミド又は
N−置換(メタ)アクリルアミド[(メタ)アクリルア
ミド、N−メチル(メタ)アクリルアミド、N−メチロ
ール(メタ)アクリルアミド等];ビニルエステル又は
アリルエステル[酢酸ビニル、酢酸アリル等];ビニル
エーテル又はアリルエーテル[ブチルビニルエーテル、
ドデシルアリルエーテル等];不飽和ニトリル化合物
[(メタ)アクリロニトリル、クロトンニトリル等];
不飽和アルコール[(メタ)アリルアルコール等];不
飽和アミン[(メタ)アリルアミン、ジメチルアミノエ
チル(メタ)アクリルレート、ジエチルアミノエチル
(メタ)アクリレート等];複素環含有モノマー[N−
ビニルピロリドン、ビニルピリジン等];オレフィン系
脂肪族炭化水素[エチレン、プロピレン、ブチレン、イ
ソブチレン、ペンテン、(C6〜C50)α−オレフィ
ン等];オレフィン系脂環式炭化水素[シクロペンテ
ン、シクロヘキセン、シクロヘプテン、ノルボルネン
等];オレフィン系芳香族炭化水素[スチレン、α−メ
チルスチレン、スチルベン等];不飽和イミド[マレイ
ミド等];ハロゲン含有モノマー[塩化ビニル、塩化ビ
ニリデン、フッ化ビニリデン、ヘキサフルオロプロピレ
ン等]等が挙げられる。
A monofunctional monomer may be added to the acrylate monomer for the purpose of adjusting physical properties and the like. Examples of the monofunctional monomer include unsaturated carboxylic acids {acrylic acid, methacrylic acid, crotonic acid, cinnamic acid, vinylbenzoic acid, maleic acid, fumaric acid, itaconic acid, citraconic acid, mesaconic acid, methylenemalonic acid, Aconitic acid, etc., unsaturated sulfonic acid {styrene sulfonic acid, acrylamido-2-methylpropane sulfonic acid, etc.} or salts thereof (Li salt, Na salt, K salt, ammonium salt, tetraalkyl ammonium salt, etc.), and these Unsaturated carboxylic acids partially esterified with C1-C18 aliphatic or alicyclic alcohols, alkylene (C2-C4) glycols, polyalkylene (C2-C4) glycols, etc. (methyl malate, monohydroxyethylmercohol). Rate, etc.) and partially amides with ammonia, primary or secondary amines The ones (maleic acid monoamide, N
-Methyl maleic acid monoamide, N, N-diethyl maleic acid monoamide, etc.), (meth) acrylic acid ester [C1-C18 aliphatic (methyl, ethyl, propyl,
Butyl, 2-ethylhexyl, stearyl, etc.) ester of alcohol and (meth) acrylic acid, or alkylene (C2-C4) glycol (ethylene glycol, propylene glycol, 1,4-butanediol, etc.) and polyalkylene (C2-C4). ) Ester of glycol (polyethylene glycol, polypropylene glycol) and (meth) acrylic acid]; (meth) acrylamide or N-substituted (meth) acrylamide [(meth) acrylamide, N-methyl (meth) acrylamide, N-methylol ( (Meth) acrylamide etc.]; vinyl ester or allyl ester [vinyl acetate, allyl acetate etc.]; vinyl ether or allyl ether [butyl vinyl ether,
Dodecyl allyl ether, etc.]; Unsaturated nitrile compounds [(meth) acrylonitrile, crotonnitrile, etc.];
Unsaturated alcohol [(meth) allyl alcohol, etc.]; Unsaturated amine [(meth) allylamine, dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, etc.]; Heterocycle-containing monomer [N-
Vinylpyrrolidone, vinylpyridine, etc.]; olefinic aliphatic hydrocarbons [ethylene, propylene, butylene, isobutylene, pentene, (C6-C50) α-olefins, etc.]; olefinic alicyclic hydrocarbons [cyclopentene, cyclohexene, cycloheptene, Norbornene, etc.]; olefinic aromatic hydrocarbons [styrene, α-methylstyrene, stilbene, etc.]; unsaturated imides [maleimide, etc.]; halogen-containing monomers [vinyl chloride, vinylidene chloride, vinylidene fluoride, hexafluoropropylene, etc.], etc. Is mentioned.

【0060】前記エポキシモノマーについて例示する
と、グリシジルエーテル類{ビスフェノールAジグリシ
ジルエーテル、ビスフェノールFジグリシジルエーテ
ル、臭素化ビスフェノールAジグリシジルエーテル、フ
ェノールノボラックグリシジルエーテル、クレゾールノ
ボラックグリシジルエーテル等}、グリシジルエステル
類{ヘキサヒドロフタル酸グリシジルエステル、ダイマ
ー酸グリシジルエステル等}、グリシジルアミン類{ト
リグリシジルイソシアヌレート、テトラグリシジルジア
ミノフェニルメタン等}、線状脂肪族エポキサイド類
{エポキシ化ポリブタジエン、エポキシ化大豆油等}、
脂環族エポキサイド類{3,4エポキシ−6メチルシク
ロヘキシルメチルカルボキシレート、3,4エポキシシ
クロヘキシルメチルカルボキシレート等}等が挙げられ
る。これらのエポキシ樹脂は、単独もしくは硬化剤を添
加して硬化させて使用することができる。
Examples of the epoxy monomer include glycidyl ethers {bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, brominated bisphenol A diglycidyl ether, phenol novolac glycidyl ether, cresol novolac glycidyl ether, etc.}, glycidyl esters { Hexahydrophthalic acid glycidyl ester, dimer acid glycidyl ester, etc.}, glycidyl amines {triglycidyl isocyanurate, tetraglycidyl diaminophenylmethane, etc.}, linear aliphatic epoxides {epoxidized polybutadiene, epoxidized soybean oil, etc.},
Alicyclic epoxides {3,4 epoxy-6 methylcyclohexyl methyl carboxylate, 3,4 epoxy cyclohexyl methyl carboxylate, etc.} and the like can be mentioned. These epoxy resins can be used alone or after curing by adding a curing agent.

【0061】該硬化剤の例としては、脂肪族ポリアミン
類{ジエチレントリアミン、トリエチレンテトラミン、
3,9−(3−アミノプロピル)−2,4,8,10−
テトロオキサスピロ[5,5]ウンデカン等}、芳香族
ポリアミン類{メタキシレンジアミン、ジアミノフェニ
ルメタン等}、ポリアミド類{ダイマー酸ポリアミド
等}、酸無水物類{無水フタル酸、テトラヒドロメチル
無水フタル酸、ヘキサヒドロ無水フタル酸、無水トリメ
リット酸、無水メチルナジック酸}、フェノール類{フ
ェノールノボラック等}、ポリメルカプタン{ポリサル
ファイド等}、第三アミン類{トリス(ジメチルアミノ
メチル)フェノール、2−エチル−4−メチルイミダゾ
ール等}、ルイス酸錯体{三フッ化ホウ素・エチルアミ
ン錯体等}等が挙げられる。
Examples of the curing agent include aliphatic polyamines {diethylenetriamine, triethylenetetramine,
3,9- (3-aminopropyl) -2,4,8,10-
Tetrooxaspiro [5,5] undecane, etc., aromatic polyamines {meta-xylylenediamine, diaminophenylmethane, etc.}, polyamides {dimer acid polyamide, etc.}, acid anhydrides {phthalic anhydride, tetrahydromethyl phthalic anhydride , Hexahydrophthalic anhydride, trimellitic anhydride, methyl nadic acid anhydride}, phenols {phenol novolac, etc.}, polymercaptans {polysulfide, etc.}, tertiary amines {tris (dimethylaminomethyl) phenol, 2-ethyl-4 -Methylimidazole, etc.}, Lewis acid complex {boron trifluoride / ethylamine complex, etc.} and the like.

【0062】前記イソシアネート基を有するモノマーに
ついて例示すると、トルエンジイソシアネート、ジフェ
ニルメタンジイソシアネート、1,6−ヘキサメチレン
ジイソシアネート、2,2,4(2,2,4)−トリメ
チル−ヘキサメチレンジイソシアネート、p−フェニレ
ンジイソシアネート、4,4’−ジシクロヘキシルメタ
ンジイソシアネート、3,3’−ジメチルジフェニル
4,4’−ジイソシアネート、ジアニシジンジイソシア
ネート、m−キシレンジイソシアネート、トリメチルキ
シレンジイソシアネート、イソフォロンジイソシアネー
ト、1,5−ナフタレンジイソシアネート、trans
−1,4−シクロヘキシルジイソシアネート、リジンジ
イソシアネート等が挙げられる。
Examples of the monomer having an isocyanate group include toluene diisocyanate, diphenylmethane diisocyanate, 1,6-hexamethylene diisocyanate, 2,2,4 (2,2,4) -trimethyl-hexamethylene diisocyanate, p-phenylene diisocyanate. , 4,4'-dicyclohexylmethane diisocyanate, 3,3'-dimethyldiphenyl 4,4'-diisocyanate, dianisidine diisocyanate, m-xylene diisocyanate, trimethyl xylene diisocyanate, isophorone diisocyanate, 1,5-naphthalene diisocyanate, trans
Examples include -1,4-cyclohexyl diisocyanate and lysine diisocyanate.

【0063】前記イソシアネート基を有するモノマーを
架橋するにあたって、ポリオール類及びポリアミン類
[2官能化合物{水、エチレングリコール、プロピレン
グリコール、ジエチレングリコール、ジプロピレングリ
コール等}、3官能化合物{グリセリン、トリメチロー
ルプロパン、1,2,6−ヘキサントリオール、トリエ
タノールアミン等}、4官能化合物{ペンタエリスリト
ール、エチレンジアミン、トリレンジアミン、ジフェニ
ルメタンジアミン、テトラメチロールシクロヘキサン、
メチルグルコシド等}、5官能化合物{2,2,6,6
−テトラキス(ヒドロキシメチル)シクロヘキサノー
ル、ジエチレントリアミンなど}、6官能化合物{ソル
ビトール、マンニトール、ズルシトール等}、8官能化
合物{スークロース等}]、及びポリエーテルポリオー
ル類{前記ポリオール又はポリアミンのプロピレンオキ
サイド及び/又はエチレンオキサイド付加物}、ポリエ
ステルポリオール[前記ポリオールと多塩基酸{アジピ
ン酸、o,m,p−フタル酸、コハク酸、アゼライン
酸、セバシン酸、リシノール酸}との縮合物、ポリカプ
ロラクトンポリオール{ポリε−カプロラクトン等}、
ヒドロキシカルボン酸の重縮合物等]等、活性水素を有
する化合物を併用することができる。
In crosslinking the monomer having an isocyanate group, polyols and polyamines [difunctional compounds {water, ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, etc.] and trifunctional compounds {glycerin, trimethylolpropane, 1,2,6-hexanetriol, triethanolamine, etc.}, tetrafunctional compound {pentaerythritol, ethylenediamine, tolylenediamine, diphenylmethanediamine, tetramethylolcyclohexane,
Methyl glucoside etc.}, 5-functional compound {2,2,6,6
-Tetrakis (hydroxymethyl) cyclohexanol, diethylenetriamine, etc., 6-functional compounds {sorbitol, mannitol, dulcitol, etc.}, 8-functional compounds {sucrose, etc.}, and polyether polyols {propylene oxide and / or the polyol or polyamine. Ethylene oxide adduct}, polyester polyol [condensation product of the above-mentioned polyol and polybasic acid {adipic acid, o, m, p-phthalic acid, succinic acid, azelaic acid, sebacic acid, ricinoleic acid}, polycaprolactone polyol {poly ε-caprolactone, etc.},
A compound having active hydrogen, such as a polycondensate of hydroxycarboxylic acid, etc., can be used in combination.

【0064】該架橋反応にあたって、触媒を併用するこ
とができる。該触媒について例示すると、有機スズ化合
物類、トリアルキルホスフィン類、アミン類[モノアミ
ン類{N,N−ジメチルシクロヘキシルアミン、トリエ
チルアミン等}、環状モノアミン類{ピリジン、N−メ
チルモルホリン等}、ジアミン類{N,N,N’,N’
−テトラメチルエチレンジアミン、N,N,N’,N’
−テトラメチル1,3−ブタンジアミン等}、トリアミ
ン類{N,N,N’,N’−ペンタメチルジエチレント
リアミン等}、ヘキサミン類{N,N,N’N’−テト
ラ(3−ジメチルアミノプロピル)−メタンジアミン
等}、環状ポリアミン類{ジアザビシクロオクタン(D
ABCO)、N,N’−ジメチルピペラジン、1,2−
ジメチルイミダゾール、1,8−ジアザビシクロ(5,
4,0)ウンデセン−7(DBU)等}等、及びそれら
の塩類等が挙げられる。
A catalyst may be used in combination in the crosslinking reaction. Examples of the catalyst include organic tin compounds, trialkylphosphines, amines [monoamines {N, N-dimethylcyclohexylamine, triethylamine, etc.], cyclic monoamines {pyridine, N-methylmorpholine, etc.}, diamines { N, N, N ', N'
-Tetramethylethylenediamine, N, N, N ', N'
-Tetramethyl 1,3-butanediamine, etc.}, triamines {N, N, N ', N'-pentamethyldiethylenetriamine, etc.}, hexamines {N, N, N'N'-tetra (3-dimethylaminopropyl) ) -Methanediamine, etc.}, cyclic polyamines {diazabicyclooctane (D
ABCO), N, N'-dimethylpiperazine, 1,2-
Dimethylimidazole, 1,8-diazabicyclo (5,5
4,0) undecene-7 (DBU), etc., and salts thereof.

【0065】本発明に係る非水電解質電池は、電解液
を、例えば、非水電解質電池用セパレータと正極と負極
とを積層する前又は積層した後に注液し、最終的に、外
装材で封止することによって好適に作製される。また、
正極と負極とが非水電解質電池用セパレータを介して積
層された発電要素を巻回してなる非水電解質電池におい
ては、電解液は、前記巻回の前後に発電要素に注液され
るのが好ましい。注液法としては、常圧で注液すること
も可能であるが、真空含浸方法や加圧含浸方法も使用可
能である。
In the non-aqueous electrolyte battery according to the present invention, the electrolytic solution is injected before or after the non-aqueous electrolyte battery separator, the positive electrode and the negative electrode are laminated, and finally sealed with an exterior material. It is preferably made by stopping. Also,
In a non-aqueous electrolyte battery in which a positive electrode and a negative electrode are wound around a power-generating element laminated via a separator for a non-aqueous electrolyte battery, an electrolytic solution is injected into the power-generating element before and after the winding. preferable. As the injection method, it is possible to inject at normal pressure, but a vacuum impregnation method or a pressure impregnation method can also be used.

【0066】外装体としては、非水電解質電池の軽量化
の観点から、薄い材料が好ましく、例えば、金属箔を樹
脂フィルムで挟み込んだ構成の金属樹脂複合材料が好ま
しい。金属箔の具体例としては、アルミニウム、鉄、ニ
ッケル、銅、ステンレス鋼、チタン、金、銀等、ピンホ
ールのない箔であれば限定されないが、好ましくは軽量
且つ安価なアルミニウム箔が好ましい。また、電池外部
側の樹脂フィルムとしては、ポリエチレンテレフタレー
トフィルム,ナイロンフィルム等の突き刺し強度に優れ
た樹脂フィルムを、電池内部側の樹脂フィルムとして
は、ポリエチレンフィルム,ナイロンフィルム等の、熱
融着可能であり、且つ耐溶剤性を有するフィルムが好ま
しい。
From the viewpoint of reducing the weight of the non-aqueous electrolyte battery, the outer package is preferably a thin material, for example, a metal-resin composite material in which a metal foil is sandwiched between resin films. Specific examples of the metal foil include, but are not limited to, aluminum, iron, nickel, copper, stainless steel, titanium, gold, silver, and the like, as long as they are pinhole-free foils, and are preferably lightweight and inexpensive aluminum foils. As the resin film on the outside of the battery, a resin film having excellent puncture strength such as polyethylene terephthalate film or nylon film can be heat-sealed as the resin film on the inside of the battery such as polyethylene film or nylon film. A film that is present and has solvent resistance is preferable.

【0067】[0067]

【実施例】以下、本発明のさらなる詳細を実施例により
説明するが、本発明はこれらの記述に限定されるもので
はない。
The present invention will be described in more detail below with reference to examples, but the present invention is not limited to these descriptions.

【0068】(実施例1)本発明電池における非水電解
質電池の断面図を図1に示す。
(Example 1) A cross-sectional view of a non-aqueous electrolyte battery in the battery of the present invention is shown in FIG.

【0069】本発明における非水電解質電池は、正極
1、負極2、及びセパレータ3からなる極群4と、非水
電解質と、金属樹脂複合材料5から構成されている。正
極1は、正極合剤11が正極集電体12上に塗布されて
なる。また、負極2は、負極合剤21が負極集電体22
上に塗布されてなる。非水電解質は極群4に含浸されて
いる。フィルム状の金属樹脂複合材料5は、極群4を覆
い、その四方を熱溶着により封止されている。
The non-aqueous electrolyte battery according to the present invention is composed of a positive electrode group 1, a negative electrode 2, and a separator 3, a group of electrodes 4, a non-aqueous electrolyte, and a metal-resin composite material 5. The positive electrode 1 is formed by coating the positive electrode mixture 11 on the positive electrode current collector 12. In the negative electrode 2, the negative electrode mixture 21 is the negative electrode current collector 22.
It is applied on top. The non-aqueous electrolyte is impregnated in the pole group 4. The film-shaped metal-resin composite material 5 covers the pole group 4, and its four sides are sealed by heat welding.

【0070】次に、上記構成の電池の製造方法を説明す
る。
Next, a method of manufacturing the battery having the above structure will be described.

【0071】正極1は次のようにして得た。まず、正極
活物質であるLiCoO2と、導電剤であるアセチレン
ブラックとを混合し、さらに結着剤としてポリフッ化ビ
ニリデンのN−メチル−2−ピロリドン溶液を混合し、
この混合物をアルミ箔からなる正極集電体12の片面に
塗布した後、乾燥し、正極合剤11の厚みが0.1mm
となるようにプレスした。以上の工程により正極1を得
た。
The positive electrode 1 was obtained as follows. First, LiCoO2, which is a positive electrode active material, and acetylene black, which is a conductive agent, are mixed, and a N-methyl-2-pyrrolidone solution of polyvinylidene fluoride as a binder is further mixed,
This mixture is applied to one surface of the positive electrode current collector 12 made of aluminum foil and then dried, so that the thickness of the positive electrode mixture 11 is 0.1 mm.
Pressed so that The positive electrode 1 was obtained through the above steps.

【0072】また、負極2は、次のようにして得た。ま
ず、負極活物質であるグラファイトと、結着剤であるポ
リフッ化ビニリデンのN−メチル−2−ピロリドン溶液
とを混合し、この混合物を銅箔からなる負極集電体22
の片面に塗布した後、乾燥し、負極合剤21厚みが0.
1mmとなるようにプレスした。以上の工程により負極
2を得た。
The negative electrode 2 was obtained as follows. First, graphite, which is a negative electrode active material, and an N-methyl-2-pyrrolidone solution of polyvinylidene fluoride, which is a binder, are mixed, and this mixture is used as a negative electrode current collector 22 made of a copper foil.
Of the negative electrode mixture 21 having a thickness of 0.
It pressed so that it might become 1 mm. Negative electrode 2 was obtained through the above steps.

【0073】一方、セパレータ3にはポリエチレン製微
多孔膜(厚さ25μm、開孔率50%)を用いた。
On the other hand, a polyethylene microporous film (thickness 25 μm, porosity 50%) was used for the separator 3.

【0074】極群4は、正極合剤11と負極合剤21と
を対向させ、その間にセパレータ3を配し、正極1、セ
パレータ3、負極2の順に積層することにより、構成し
た。
The electrode group 4 was constructed by placing the positive electrode mixture 11 and the negative electrode mixture 21 facing each other, disposing the separator 3 therebetween, and laminating the positive electrode 1, the separator 3 and the negative electrode 2 in this order.

【0075】非水電解質は、エチレンカーボネート、プ
ロピレンカーボネート及びジエチルカーボネートを体積
比5:4:1の割合で混合した混合溶媒1リットルに、
1モルのLiPF6を溶解させ、さらにビニレンカーボ
ネートを1重量%、ビニルエチレンカーボネートを1重
量%混合することにより得た。
The non-aqueous electrolyte was prepared by mixing 1 liter of a mixed solvent prepared by mixing ethylene carbonate, propylene carbonate and diethyl carbonate at a volume ratio of 5: 4: 1.
It was obtained by dissolving 1 mol of LiPF6 and further mixing 1 wt% of vinylene carbonate and 1 wt% of vinyl ethylene carbonate.

【0076】次に、非水電解質中に極群4を浸漬させる
ことにより、極群4に非水電解質を含浸させた。さら
に、フィルム状の金属樹脂複合材料5で極群4を覆い、
その四方を熱溶着により封止した。
Next, the electrode group 4 was immersed in the non-aqueous electrolyte to impregnate the electrode group 4 with the non-aqueous electrolyte. Further, the pole group 4 is covered with a film-shaped metal resin composite material 5,
The four sides were sealed by heat welding.

【0077】以上の製法により得られた非水電解質電池
を本発明電池Aとする。なお、本発明電池Aの設計容量
は、10mAhである。
The non-aqueous electrolyte battery obtained by the above manufacturing method is referred to as Battery A of the present invention. The designed capacity of the battery A of the present invention is 10 mAh.

【0078】(実施例2)非水電解質として、エチレン
カーボネート、プロピレンカーボネート及びジエチルカ
ーボネートを体積比5:4:1の割合で混合した混合溶
媒1リットルに、1モルのLiPF6を溶解させ、さら
にジフェニルビニレンカーボネートを1重量%、4−メ
チル−4−ビニル−1,3−ジオキサン−2−オンを1
重量%混合したものを用いた以外は、実施例1と同一の
原料及び製法により、容量10mAhの非水電解質電池
を作製し、本発明電池Bとした。
Example 2 As a non-aqueous electrolyte, 1 mol of LiPF6 was dissolved in 1 liter of a mixed solvent in which ethylene carbonate, propylene carbonate and diethyl carbonate were mixed at a volume ratio of 5: 4: 1, and further diphenyl was added. 1% by weight of vinylene carbonate and 1% of 4-methyl-4-vinyl-1,3-dioxan-2-one
A non-aqueous electrolyte battery having a capacity of 10 mAh was produced by the same raw material and production method as in Example 1 except that the mixture of 1% by weight was used.

【0079】(比較例1)非水電解質として、エチレン
カーボネート、プロピレンカーボネート及びジエチルカ
ーボネートを体積比5:4:1の割合で混合した混合溶
媒1リットルに、1モルのLiPF6を溶解させ、さら
にビニレンカーボネートを2重量%混合したものを用い
た以外は、実施例1と同一の原料及び製法により、容量
10mAhの非水電解質電池を作製し、比較電池Cとし
た。
Comparative Example 1 As a non-aqueous electrolyte, 1 mol of LiPF6 was dissolved in 1 liter of a mixed solvent in which ethylene carbonate, propylene carbonate and diethyl carbonate were mixed at a volume ratio of 5: 4: 1, and vinylene was further added. A non-aqueous electrolyte battery having a capacity of 10 mAh was prepared as Comparative Battery C by the same raw material and manufacturing method as in Example 1, except that a mixture of 2% by weight of carbonate was used.

【0080】(比較例2)非水電解質として、エチレン
カーボネート、プロピレンカーボネート及びジエチルカ
ーボネートを体積比5:4:1の割合で混合した混合溶
媒1リットルに、1モルのLiPF6を溶解させ、さら
にビニルエチレンカーボネートを2重量%混合したもの
を用いた以外は、実施例1と同一の原料及び製法によ
り、容量10mAhの非水電解質電池を作製し、比較電
池Dとした。
(Comparative Example 2) As a non-aqueous electrolyte, 1 mol of LiPF6 was dissolved in 1 liter of a mixed solvent prepared by mixing ethylene carbonate, propylene carbonate and diethyl carbonate at a volume ratio of 5: 4: 1. A non-aqueous electrolyte battery having a capacity of 10 mAh was prepared as a comparative battery D by the same raw material and manufacturing method as in Example 1, except that a mixture of 2% by weight of ethylene carbonate was used.

【0081】(比較例3)非水電解質として、エチレン
カーボネート、プロピレンカーボネート及びジエチルカ
ーボネートを体積比5:4:1の割合で混合した混合溶
媒1リットルに、1モルのLiPF6を溶解させたもの
を用いた以外は、実施例1と同一の原料及び製法によ
り、容量10mAhの非水電解質電池を作製し、比較電
池Eとした。
(Comparative Example 3) A non-aqueous electrolyte prepared by dissolving 1 mol of LiPF6 in 1 liter of a mixed solvent prepared by mixing ethylene carbonate, propylene carbonate and diethyl carbonate at a volume ratio of 5: 4: 1. A non-aqueous electrolyte battery having a capacity of 10 mAh was produced by the same raw material and production method as in Example 1 except that the comparative battery E was used.

【0082】(電池性能試験)次に、本発明電池A、B
及び比較電池C、D、Eについて、初充電容量、初放電
容量及び高温保存後回復容量を測定した。なお、「初充
電」とは、組み立てた電池に対して最初に行う充電のこ
とをいい、「初放電」とは、前記初充電の後に行う最初
の放電のことをいう。初充電容量は、20℃において、
電流2mA、電圧4.2V、2時間の定電流定電圧充電
を行い、通電電気量を測定して求めた。初放電容量は、
初充電後、20℃において、電流2mA、終止電圧2.
7Vの定電流放電を行って求めた。ここで、前記初充電
容量に対する初放電容量の比を百分率で求め、初期充放
電効率とした。
(Battery Performance Test) Next, batteries A and B of the present invention
The initial charge capacity, the initial discharge capacity and the recovery capacity after high temperature storage were measured for Comparative Batteries C, D and E. The "initial charge" refers to the first charge performed on the assembled battery, and the "initial discharge" refers to the first discharge performed after the initial charge. The initial charge capacity is 20 ℃,
The current was 2 mA, the voltage was 4.2 V, and the constant current and constant voltage charging was performed for 2 hours, and the amount of electricity supplied was measured to obtain the value. The initial discharge capacity is
After initial charging, at 20 ° C., current 2 mA, final voltage 2.
It was determined by performing a constant current discharge of 7V. Here, the ratio of the initial discharge capacity to the initial charge capacity was obtained as a percentage and defined as the initial charge / discharge efficiency.

【0083】さらに、高温保存後回復容量は、次のよう
にして求めた。まず、電流2mA、電圧4.2V、2時
間の定電流定電圧充電を行った各電池を60℃で20日
保存後、20℃において、電流2mA、終止電圧2.7
Vの定電流放電を行い、続いて同一条件での充放電を3
サイクル繰り返し、該3サイクル目の放電容量を求め
た。該3サイクル目の放電容量を「高温保存後回復容
量」とした。以上の結果を表1に示す。
Further, the recovery capacity after high temperature storage was determined as follows. First, each battery charged with a constant current and constant voltage for 2 hours at a current of 2 mA and a voltage of 4.2 V was stored at 60 ° C. for 20 days, and then at 20 ° C., a current of 2 mA and a final voltage of 2.7.
Perform constant current discharge of V, then charge and discharge under the same conditions 3
The cycle was repeated and the discharge capacity at the third cycle was obtained. The discharge capacity at the third cycle was defined as "recovery capacity after high temperature storage". The above results are shown in Table 1.

【0084】[0084]

【表1】 [Table 1]

【0085】表1に示すように、比較電池Eは、初充電
容量が設計容量の約2倍と非常に大きくなり、且つ、初
放電容量は非常に小さいものであった。これは、初充電
中に非水電解質中のプロピレンカーボネートがグラファ
イト負極上で分解し、可逆容量が低下したためと考えら
れる。
As shown in Table 1, the comparative battery E had a very large initial charge capacity of about twice the design capacity and a very small initial discharge capacity. It is considered that this is because propylene carbonate in the non-aqueous electrolyte was decomposed on the graphite negative electrode during the initial charge, and the reversible capacity was decreased.

【0086】一方、比較電池Cは、初充電容量は設計容
量の約1.21倍であり、初放電容量は設計容量の約
0.85倍であった。また、比較電池Dは、初充電容量
は設計容量の約1.25倍であり、初放電容量は設計容
量の約0.87倍であった。これは、初充電中に非水電
解質中のビニレンカーボネートもしくはビニルエチレン
カーボネートがグラファイト負極上で分解することによ
り、グラファイト負極表面にリチウムイオン透過性の保
護被膜を形成するため、プロピレンカーボネートの分解
が抑制されるが、ビニレンカーボネート又はビニルエチ
レンカーボネートの分解に消費される電気量が大きく、
且つ、余剰のビニレンカーボネート又はビニルエチレン
カーボネートが正極上で分解するため、初放電容量が低
くなったものと考えられ、電池性能が必ずしも充分改善
されたとは言えない。また。高温保存後回復容量も比較
電池Cは初放電容量の約0.5倍、比較電池Dは初放電
容量の約0.67倍であり、高温保存による性能の劣化
が見られた。
On the other hand, the comparative battery C had an initial charge capacity of about 1.21 times the designed capacity and an initial discharge capacity of about 0.85 times the designed capacity. In Comparative Battery D, the initial charge capacity was about 1.25 times the designed capacity, and the initial discharge capacity was about 0.87 times the designed capacity. This is because the vinylene carbonate or vinyl ethylene carbonate in the non-aqueous electrolyte decomposes on the graphite negative electrode during the initial charge to form a lithium ion-permeable protective coating on the surface of the graphite negative electrode, thus suppressing the decomposition of propylene carbonate. However, the amount of electricity consumed for the decomposition of vinylene carbonate or vinyl ethylene carbonate is large,
In addition, since excess vinylene carbonate or vinyl ethylene carbonate decomposes on the positive electrode, it is considered that the initial discharge capacity becomes low, and the battery performance is not necessarily sufficiently improved. Also. The recovery capacity after high temperature storage was about 0.5 times the initial discharge capacity of the comparative battery C and about 0.67 times the initial discharge capacity of the comparative battery D, and the deterioration of the performance due to the high temperature storage was observed.

【0087】これに対し、本発明電池A、Bは、比較電
池C、D、Eと比較して、初充電容量及び初放電容量が
ともに優れており、高いエネルギー密度を有する非水電
解質電池であることが確認された。これは、初充電時に
環内にπ結合を有する環状カーボネートであるビニレン
カーボネート又はジフェニルビニレンカーボネートと、
環外にのみπ結合を有する環状カーボネートであるビニ
ルエチレンカーボネート又は4−メチル−4−ビニル−
1,3−ジオキサン−2−オンがグラファイト負極上で
分解し、グラファイト負極表面にリチウムイオン透過性
の保護被膜を形成するが、環内にπ結合を有する環状カ
ーボネートを含有し、且つ、環外にのみπ結合を有する
環状カーボネートを両方含有する相乗効果により、いず
れか単独で含有する場合に比較し、負極表面に形成され
るリチウムイオン透過性の保護被膜が、緻密で、且つ、
リチウムイオン透過性に優れたものとなるため、プロピ
レンカーボネートの分解を確実に抑制できるためと考え
られる。さらに、高温保存回復容量は、初放電容量の約
0.9倍であり、充放電効率が高く、高いエネルギー密
度を有するだけでなく、優れた保存性能を有する非水電
解質電池とすることができることが確認された。
On the other hand, the batteries A and B of the present invention are superior to the comparative batteries C, D and E in both initial charge capacity and initial discharge capacity, and are non-aqueous electrolyte batteries having a high energy density. It was confirmed that there is. This is vinylene carbonate or diphenyl vinylene carbonate, which is a cyclic carbonate having a π bond in the ring during initial charging,
Vinyl ethylene carbonate or 4-methyl-4-vinyl-which is a cyclic carbonate having a π bond only in the exocyclic
1,3-dioxan-2-one decomposes on the graphite negative electrode to form a lithium ion-permeable protective coating on the surface of the graphite negative electrode, which contains a cyclic carbonate having a π bond in the ring and is exocyclic. Due to the synergistic effect of containing both cyclic carbonates having only a π bond, the lithium ion-permeable protective coating formed on the negative electrode surface is dense, and
It is considered that since the lithium ion permeability is excellent, the decomposition of propylene carbonate can be surely suppressed. Further, the high temperature storage and recovery capacity is about 0.9 times the initial discharge capacity, and the non-aqueous electrolyte battery has not only high charge / discharge efficiency and high energy density but also excellent storage performance. Was confirmed.

【0088】[0088]

【発明の効果】以上、説明したように、本発明によれ
ば、請求項1に記載したように、正極と、負極と、非水
電解質とから少なくとも構成される非水電解質電池にお
いて、前記非水電解質は、環内にπ結合を有するカーボ
ネートを1種以上含有し、且つ、環外にのみπ結合を有
するカーボネートを1種以上含有していることにより、
初充電時に、π結合を有する環状カーボネートがグラフ
ァイト負極上で分解し、グラファイト負極表面にリチウ
ムイオン透過性の保護被膜を形成するため、非水電解質
を構成するその他の有機溶媒の分解を確実に抑制できる
ので、2サイクル目以降の充放電を充分に行うことがで
き、充放電効率を向上させることができるが、このと
き、環内にπ結合を有するカーボネートと、環外にのみ
π結合を有するカーボネートとを混合して用いることに
より、驚くべきことに、前記環内にπ結合を有するカー
ボネート及び環外にのみπ結合を有するカーボネートの
添加量を少量とした場合においても、負極表面に形成さ
れるリチウムイオン透過性の保護被膜が、特に緻密で、
且つ、リチウムイオン透過性に優れたものとなるため、
非水電解質を構成するその他の有機溶媒の分解をより効
果的に抑制できる。即ち、前記環内にπ結合を有するカ
ーボネート又は前記環外にのみπ結合を有するカーボネ
ートをそれぞれ単独で用いた場合の添加量と、前記環内
にπ結合を有するカーボネート及び環外にのみπ結合を
有するカーボネートを混合して用いた場合の添加量とを
同一とした場合において電池性能を比較すると、混合し
て用いた後者の方が、充放電効率が高く、高いエネルギ
ー密度を有し、サイクル性能や保存性能に優れた非水電
解質電池を提供できる。
As described above, according to the present invention, as described in claim 1, in the non-aqueous electrolyte battery comprising at least a positive electrode, a negative electrode and a non-aqueous electrolyte, The water electrolyte contains at least one carbonate having a π bond inside the ring, and at least one carbonate having a π bond only outside the ring,
At the time of initial charge, the cyclic carbonate with π bond decomposes on the graphite negative electrode and forms a lithium ion permeable protective coating on the graphite negative electrode surface, so the decomposition of other organic solvents that make up the non-aqueous electrolyte is reliably suppressed. Therefore, the charge and discharge in the second and subsequent cycles can be sufficiently performed, and the charge and discharge efficiency can be improved. However, at this time, the carbonate having a π bond inside the ring and the π bond only outside the ring are included. By using a mixture with a carbonate, surprisingly, even when the addition amount of the carbonate having a π bond inside the ring and the carbonate having a π bond only outside the ring is small, it is formed on the negative electrode surface. The lithium ion-permeable protective coating is particularly dense,
And since it becomes excellent in lithium ion permeability,
It is possible to more effectively suppress the decomposition of the other organic solvent that constitutes the non-aqueous electrolyte. That is, the amount of addition when the carbonate having a π bond in the ring or the carbonate having a π bond only outside the ring is used alone, and the carbonate having a π bond in the ring and the π bond only outside the ring When comparing the battery performance in the case where the addition amount when the carbonate having a mixture is used is the same, the latter used as a mixture has a higher charge / discharge efficiency, a high energy density, and a cycle. A non-aqueous electrolyte battery having excellent performance and storage performance can be provided.

【0089】また、本発明によれば、請求項2に記載し
たように、前記環内にπ結合を有する環状カーボネート
を(化1)に示される構造を有しているものとすること
により、非水電解質を構成するその他の有機溶媒の分解
を効果的に抑制でき、2サイクル目以降の充放電を充分
に行うことができ、充放電効率を向上させることができ
る。
Further, according to the present invention, as described in claim 2, the cyclic carbonate having a π bond in the ring has a structure shown in (Chemical Formula 1), Decomposition of other organic solvents constituting the non-aqueous electrolyte can be effectively suppressed, charge and discharge in the second and subsequent cycles can be sufficiently performed, and charge and discharge efficiency can be improved.

【0090】また、本発明によれば、請求項3に記載し
たように、前記環外にのみπ結合を有する環状カーボネ
ートは、(化2)に示される構造を有しているものとす
ることにより、非水電解質を構成するその他の有機溶媒
の分解を効果的に抑制でき、2サイクル目以降の充放電
を充分に行うことができ、充放電効率を向上させること
ができる。
Further, according to the present invention, as described in claim 3, the cyclic carbonate having a π bond only outside the ring has the structure shown in (formula 2). As a result, the decomposition of the other organic solvent that constitutes the non-aqueous electrolyte can be effectively suppressed, the charge and discharge in the second cycle and thereafter can be sufficiently performed, and the charge and discharge efficiency can be improved.

【0091】また、本発明によれば、請求項4に記載し
たように、前記非水電解質は、前記環内にπ結合を有す
るカーボネートとしてビニレンカーボネートを含有して
いることにより、非水電解質を構成するその他の有機溶
媒の分解をさらに効果的に抑制でき、2サイクル目以降
の充放電を充分に行うことができ、充放電効率を向上さ
せることができる。
Further, according to the present invention, as described in claim 4, the non-aqueous electrolyte contains vinylene carbonate as a carbonate having a π bond in the ring. Decomposition of other organic solvents constituting the composition can be suppressed more effectively, charging and discharging in the second and subsequent cycles can be sufficiently performed, and charging and discharging efficiency can be improved.

【0092】また、本発明によれば、請求項5に記載し
たように、前記非水電解質は、前記環外にのみπ結合を
有するカーボネートとしてビニルエチレンカーボネート
を含有していることにより、非水電解質を構成するその
他の有機溶媒の分解をさらに効果的に抑制でき、2サイ
クル目以降の充放電を充分に行うことができ、充放電効
率を向上させることができる。
Further, according to the present invention, as described in claim 5, the non-aqueous electrolyte contains vinyl ethylene carbonate as a carbonate having a π bond only outside the ring. The decomposition of the other organic solvent that constitutes the electrolyte can be suppressed more effectively, the charge and discharge in the second and subsequent cycles can be sufficiently performed, and the charge and discharge efficiency can be improved.

【0093】また、本発明によれば、請求項6に記載し
たように、前記非水電解質は、1種以上のπ結合を有さ
ない環状カーボネートをさらに含有していることによ
り、上記効果が効果的に得られる。よって、より安全性
に優れ、充放電効率が高く、高いエネルギー密度を有す
る非水電解質電池とすることができる。
According to the present invention, as described in claim 6, since the non-aqueous electrolyte further contains one or more kinds of cyclic carbonates having no π bond, the above effect can be obtained. Effectively obtained. Therefore, a non-aqueous electrolyte battery having higher safety, higher charge / discharge efficiency, and higher energy density can be obtained.

【0094】また、本発明によれば、請求項7に記載し
たように、前記非水電解質は、前記π結合を有さない環
状カーボネートとして、エチレンカーボネート、プロピ
レンカーボネート及びブチレンカーボネートからなる群
から選ばれる少なくとも1種を含有していることによ
り、これら高誘電率を有し、耐酸化性に優れる有機溶媒
の特性を生かすことができるため、上記効果がより効果
的に得られる。
Further, according to the present invention, as described in claim 7, the non-aqueous electrolyte is selected from the group consisting of ethylene carbonate, propylene carbonate and butylene carbonate as the cyclic carbonate having no π bond. By containing at least one of the above, it is possible to take advantage of the characteristics of the organic solvent having such a high dielectric constant and excellent oxidation resistance, and thus the above effects can be obtained more effectively.

【0095】また、本発明によれば、請求項8に記載し
たように、前記負極は、グラファイトを主要構成成分と
することにより、高作動電圧を有し、高エネルギー密度
である非水電解質電池を提供できる。
According to the present invention, as described in claim 8, the negative electrode has a high operating voltage and a high energy density in the non-aqueous electrolyte battery by using graphite as a main constituent component. Can be provided.

【0096】また、本発明によれば、請求項9に記載し
たように、前記非水電解質電池は、外装体に金属樹脂複
合材料を用いることにより、薄形形状で小形軽量化され
た非水電解質電池を提供できる。
Further, according to the present invention, as described in claim 9, the non-aqueous electrolyte battery uses a metal-resin composite material for an outer casing, and thus has a thin shape and is made compact and lightweight. An electrolyte battery can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の非水電解質電池の断面図である。FIG. 1 is a cross-sectional view of a non-aqueous electrolyte battery of the present invention.

【符号の説明】[Explanation of symbols]

1 正極 11 正極合剤 12 正極集電体 2 負極合剤 21 負極合剤 22 負極集電体 3 セパレータ 4 極群 5 金属樹脂複合材料 1 positive electrode 11 Positive electrode mixture 12 Positive electrode current collector 2 Negative electrode mixture 21 Negative electrode mixture 22 Negative electrode current collector 3 separator 4 pole group 5 Metal resin composite materials

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H029 AJ02 AJ03 AJ04 AJ05 AJ07 AJ12 AK02 AK03 AK05 AK06 AK07 AK16 AK18 AL02 AL06 AL07 AL11 AL12 AM02 AM03 AM05 AM07 DJ02 HJ02    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 5H029 AJ02 AJ03 AJ04 AJ05 AJ07                       AJ12 AK02 AK03 AK05 AK06                       AK07 AK16 AK18 AL02 AL06                       AL07 AL11 AL12 AM02 AM03                       AM05 AM07 DJ02 HJ02

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 正極と、負極と、非水電解質とから少な
くとも構成される非水電解質電池において、前記非水電
解質は、環内にπ結合を有するカーボネートを1種以上
含有し、且つ、環外にのみπ結合を有するカーボネート
を1種以上含有していることを特徴とする非水電解質電
池。
1. A non-aqueous electrolyte battery comprising at least a positive electrode, a negative electrode and a non-aqueous electrolyte, wherein the non-aqueous electrolyte contains at least one carbonate having a π bond in the ring, and A non-aqueous electrolyte battery containing at least one kind of carbonate having a π bond only outside.
【請求項2】 前記環内にπ結合を有する環状カーボネ
ートは、(化1)に示される構造を有していることを特
徴とする請求項1記載の非水電解質電池。 【化1】
2. The non-aqueous electrolyte battery according to claim 1, wherein the cyclic carbonate having a π bond in the ring has a structure represented by (Chemical Formula 1). [Chemical 1]
【請求項3】 前記環外にのみπ結合を有する環状カー
ボネートは、(化2)に示される構造を有していること
を特徴とする請求項1又は2記載の非水電解質電池。 【化2】
3. The non-aqueous electrolyte battery according to claim 1, wherein the cyclic carbonate having a π bond only outside the ring has a structure shown in (Chemical Formula 2). [Chemical 2]
【請求項4】 前記非水電解質は、前記環内にπ結合を
有するカーボネートとしてビニレンカーボネートを含有
している請求項1〜3のいずれかに記載の非水電解質電
池。
4. The nonaqueous electrolyte battery according to claim 1, wherein the nonaqueous electrolyte contains vinylene carbonate as a carbonate having a π bond in the ring.
【請求項5】 前記非水電解質は、前記環外にのみπ結
合を有するカーボネートとしてビニルエチレンカーボネ
ートを含有している請求項1〜4のいずれかに記載の非
水電解質電池。
5. The non-aqueous electrolyte battery according to claim 1, wherein the non-aqueous electrolyte contains vinyl ethylene carbonate as a carbonate having a π bond only outside the ring.
【請求項6】 前記非水電解質は、1種以上のπ結合を
有さない環状カーボネートをさらに含有している請求項
1〜5のいずれかに記載の非水電解質電池。
6. The nonaqueous electrolyte battery according to claim 1, wherein the nonaqueous electrolyte further contains one or more kinds of cyclic carbonates having no π bond.
【請求項7】 前記非水電解質は、前記π結合を有さな
い環状カーボネートとして、エチレンカーボネート、プ
ロピレンカーボネート及びブチレンカーボネートからな
る群から選ばれる少なくとも1種を含有している請求項
6記載の非水電解質電池。
7. The non-aqueous electrolyte according to claim 6, wherein the cyclic carbonate having no π bond contains at least one selected from the group consisting of ethylene carbonate, propylene carbonate and butylene carbonate. Water electrolyte battery.
【請求項8】 前記負極は、グラファイトを主要構成成
分としてなる請求項1〜7のいずれかに記載の非水電解
質電池。
8. The non-aqueous electrolyte battery according to claim 1, wherein the negative electrode contains graphite as a main constituent component.
【請求項9】 前記非水電解質電池は、外装体に金属樹
脂複合材料を用いたことを特徴とする請求項1〜8のい
ずれかに記載の非水電解質電池。
9. The non-aqueous electrolyte battery according to claim 1, wherein the non-aqueous electrolyte battery uses a metal resin composite material for an outer package.
JP2001345006A 2001-11-09 2001-11-09 Non-aqueous electrolyte battery Pending JP2003151621A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001345006A JP2003151621A (en) 2001-11-09 2001-11-09 Non-aqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001345006A JP2003151621A (en) 2001-11-09 2001-11-09 Non-aqueous electrolyte battery

Publications (1)

Publication Number Publication Date
JP2003151621A true JP2003151621A (en) 2003-05-23

Family

ID=19158429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001345006A Pending JP2003151621A (en) 2001-11-09 2001-11-09 Non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP2003151621A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004259677A (en) * 2003-02-27 2004-09-16 Sanyo Electric Co Ltd Lithium secondary battery
JP2004273153A (en) * 2003-03-05 2004-09-30 Sony Corp Battery
JP2005322634A (en) * 2004-04-09 2005-11-17 Sony Corp Electrolyte and battery using the same
JP2007172968A (en) * 2005-12-21 2007-07-05 Sony Corp Electrolyte and battery
US7767340B2 (en) 2005-02-22 2010-08-03 Panasonic Corporation Non-aqueous electrolyte secondary battery and method of producing coating for negative electrode active material thereof
JP2012109206A (en) * 2010-10-21 2012-06-07 Mitsubishi Chemicals Corp Nonaqueous electrolyte, and nonaqueous electrolyte battery
US8470475B2 (en) 2004-04-07 2013-06-25 Panasonic Corporation Non-aqueous electrolyte secondary battery
CN103947031A (en) * 2011-11-22 2014-07-23 吉坤日矿日石能源株式会社 Organic electrolyte and organic electrolyte storage battery
US10084203B2 (en) 2012-05-16 2018-09-25 Fujifilm Corporation Non-aqueous secondary battery and non-aqueous liquid electrolyte for secondary battery
JP2023515856A (en) * 2020-10-27 2023-04-14 エルジー エナジー ソリューション リミテッド Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery containing the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001023684A (en) * 1999-07-02 2001-01-26 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery
JP2001057236A (en) * 1999-08-19 2001-02-27 Mitsui Chemicals Inc Non-aqueous electrolyte and secondary battery using the same
JP2001057238A (en) * 1999-08-19 2001-02-27 Mitsui Chemicals Inc Non-aqueous electrolyte and secondary battery using the same
JP2001229966A (en) * 2000-02-10 2001-08-24 Mitsui Chemicals Inc Gel-type electrolyte and lithium battery
JP2001297790A (en) * 2000-04-11 2001-10-26 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery
JP2002324580A (en) * 2001-02-23 2002-11-08 Mitsubishi Chemicals Corp Non-aqueous electrolyte secondary battery
JP2002343430A (en) * 2001-05-22 2002-11-29 Mitsubishi Chemicals Corp Non-aqueous electrolyte secondary battery
JP2003203675A (en) * 2001-10-26 2003-07-18 Toshiba Corp Nonaqueous electrolyte and nonaqueous electrolyte secondary cell

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001023684A (en) * 1999-07-02 2001-01-26 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery
JP2001057236A (en) * 1999-08-19 2001-02-27 Mitsui Chemicals Inc Non-aqueous electrolyte and secondary battery using the same
JP2001057238A (en) * 1999-08-19 2001-02-27 Mitsui Chemicals Inc Non-aqueous electrolyte and secondary battery using the same
JP2001229966A (en) * 2000-02-10 2001-08-24 Mitsui Chemicals Inc Gel-type electrolyte and lithium battery
JP2001297790A (en) * 2000-04-11 2001-10-26 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery
JP2002324580A (en) * 2001-02-23 2002-11-08 Mitsubishi Chemicals Corp Non-aqueous electrolyte secondary battery
JP2002343430A (en) * 2001-05-22 2002-11-29 Mitsubishi Chemicals Corp Non-aqueous electrolyte secondary battery
JP2003203675A (en) * 2001-10-26 2003-07-18 Toshiba Corp Nonaqueous electrolyte and nonaqueous electrolyte secondary cell

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004259677A (en) * 2003-02-27 2004-09-16 Sanyo Electric Co Ltd Lithium secondary battery
JP2004273153A (en) * 2003-03-05 2004-09-30 Sony Corp Battery
US8470475B2 (en) 2004-04-07 2013-06-25 Panasonic Corporation Non-aqueous electrolyte secondary battery
JP2005322634A (en) * 2004-04-09 2005-11-17 Sony Corp Electrolyte and battery using the same
US7767340B2 (en) 2005-02-22 2010-08-03 Panasonic Corporation Non-aqueous electrolyte secondary battery and method of producing coating for negative electrode active material thereof
US7967874B2 (en) 2005-02-22 2011-06-28 Panasonic Corporation Non-aqueous electrolyte secondary battery and method of producing coating for negative electrode active material thereof
JP2007172968A (en) * 2005-12-21 2007-07-05 Sony Corp Electrolyte and battery
JP2012109206A (en) * 2010-10-21 2012-06-07 Mitsubishi Chemicals Corp Nonaqueous electrolyte, and nonaqueous electrolyte battery
CN103947031A (en) * 2011-11-22 2014-07-23 吉坤日矿日石能源株式会社 Organic electrolyte and organic electrolyte storage battery
EP2784868A4 (en) * 2011-11-22 2015-11-11 Jx Nippon Oil & Energy Corp ORGANIC ELECTROLYTE AND ORGANIC ELECTROLYTE STORAGE BATTERY
US9419307B2 (en) 2011-11-22 2016-08-16 Jx Nippon Oil & Energy Corporation Organic electrolyte and organic electrolyte storage battery
CN103947031B (en) * 2011-11-22 2017-07-11 吉坤日矿日石能源株式会社 Organic system electrolyte and organic system electrolyte accumulator
US10084203B2 (en) 2012-05-16 2018-09-25 Fujifilm Corporation Non-aqueous secondary battery and non-aqueous liquid electrolyte for secondary battery
JP2023515856A (en) * 2020-10-27 2023-04-14 エルジー エナジー ソリューション リミテッド Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery containing the same
JP7368634B2 (en) 2020-10-27 2023-10-24 エルジー エナジー ソリューション リミテッド Nonaqueous electrolyte for lithium secondary batteries and lithium secondary batteries containing the same

Similar Documents

Publication Publication Date Title
JP4951855B2 (en) Non-aqueous electrolyte battery
JP4207111B2 (en) Non-aqueous electrolyte battery
JP4415521B2 (en) Non-aqueous electrolyte battery
JP4503209B2 (en) Non-aqueous electrolyte battery
JP4366901B2 (en) Non-aqueous electrolyte battery
JP2002270152A (en) Lithium secondary battery
JP4415522B2 (en) Non-aqueous electrolyte battery
JP2004281218A (en) Non-aqueous electrolyte and non-aqueous electrolyte battery
JP2003151621A (en) Non-aqueous electrolyte battery
JP4042036B2 (en) Non-aqueous electrolyte battery
JP4239467B2 (en) Non-aqueous electrolyte battery
JP3968771B2 (en) Non-aqueous electrolyte battery
JP4561170B2 (en) Non-aqueous electrolyte flame retardancy imparting agent, method of using the same, non-aqueous electrolyte and non-aqueous electrolyte battery
JP2004342463A (en) Carbon material for non-aqueous electrolyte battery, electrode for non-aqueous electrolyte battery using the same, and non-aqueous electrolyte battery
JP2002237305A (en) Non-aqueous electrolyte battery
JP4022718B2 (en) Non-aqueous electrolyte battery
JP4355887B2 (en) Non-aqueous electrolyte battery
JP2003217658A (en) Nonaqueous electrolyte battery
JP4306147B2 (en) Non-aqueous electrolyte battery
JP4752135B2 (en) Lithium battery
JP4474749B2 (en) Non-aqueous electrolyte battery
JP3994251B2 (en) Non-aqueous electrolyte battery
JP2002352803A (en) Lithium secondary battery
JP2002231307A (en) Non-aqueous electrolyte and non-aqueous electrolyte battery
JP4474741B2 (en) Non-aqueous electrolyte battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040924

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070604

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071011