JP2003147461A - Thermal fuse - Google Patents
Thermal fuseInfo
- Publication number
- JP2003147461A JP2003147461A JP2001348369A JP2001348369A JP2003147461A JP 2003147461 A JP2003147461 A JP 2003147461A JP 2001348369 A JP2001348369 A JP 2001348369A JP 2001348369 A JP2001348369 A JP 2001348369A JP 2003147461 A JP2003147461 A JP 2003147461A
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- thermal fuse
- composition
- temperature
- fusible
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H37/00—Thermally-actuated switches
- H01H37/74—Switches in which only the opening movement or only the closing movement of a contact is effected by heating or cooling
- H01H37/76—Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material
- H01H2037/768—Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material characterised by the composition of the fusible material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H37/00—Thermally-actuated switches
- H01H37/74—Switches in which only the opening movement or only the closing movement of a contact is effected by heating or cooling
- H01H37/76—Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material
- H01H37/761—Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material with a fusible element forming part of the switched circuit
Landscapes
- Fuses (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、保護素子のエレメント
が特定温度で溶融する低融点可溶合金を用いた温度ヒュ
−ズに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a temperature fuse using a low melting point fusible alloy in which an element of a protective element melts at a specific temperature.
【0002】[0002]
【従来の技術】電気・電子機器等を過熱損傷から保護す
る保護素子として、特定温度で動作して回路を遮断する
温度ヒューズが用いられている。この温度ヒュ−ズで特
に可溶合金型温度ヒューズは、エレメントとなる感温材
として特定温度で溶融する低融点合金を用いて、この低
融点合金に通電し、周囲温度の過昇により低融点合金が
溶融して回路を遮断するものである。2. Description of the Related Art As a protective element for protecting electric and electronic devices from overheat damage, a thermal fuse which operates at a specific temperature and interrupts a circuit is used. Especially in this temperature fuse, the fusible alloy type thermal fuse uses a low melting point alloy that melts at a specific temperature as a temperature sensitive material to be an element, and the low melting point alloy is energized to have a low melting point due to an excessive rise in ambient temperature. The alloy melts and breaks the circuit.
【0003】さらに、低融点合金と抵抗体とを具備し、
抵抗体の通電加熱により低融点合金を強制的に溶断させ
る抵抗内臓型温度ヒューズと称される保護素子もある。Further, it comprises a low melting point alloy and a resistor,
There is also a protective element called a resistance built-in type thermal fuse that forcibly blows out the low melting point alloy by heating the resistor with electricity.
【0004】上記の可溶合金型温度ヒューズは、保温コ
タツ、炊飯器等の家電製品、液晶テレビや複写機器等の
OA機器、照明機器などに保護素子として用いられてい
る。この内145±5℃の範囲の動作温度を有する可溶
合金には、従来50Sn-32Pb-18Cd(wt.%)三元合金(145℃)
など人体に有害な重金属である鉛やカドミウムを10w
t.%以上含有する物であった。しかも上記の家電製品や
OA機器等は、これらの組立て部品に分解するのが困難
なので、最近、そのまま廃棄された電気・電子機器から
雨水などの作用により有害金属が溶出し、地下水に染み
込み深刻な汚染をもたらしていることが、地球環境上の
問題となり改良が必要とされている。The fusible alloy type thermal fuse is used as a protective element in heat insulating kotatsu, home electric appliances such as rice cookers, OA equipment such as liquid crystal televisions and copying machines, and lighting equipment. Among these, the conventional 50Sn-32Pb-18Cd (wt.%) Ternary alloy (145 ° C) is used as the fusible alloy with an operating temperature range of 145 ± 5 ° C.
10w of lead and cadmium which are heavy metals harmful to human body
The content was t.% or more. Moreover, since it is difficult to disassemble the above-mentioned home electric appliances and OA equipment into these assembled parts, harmful metals are eluted from the electrical and electronic equipment that has been recently discarded by the action of rainwater and soak into groundwater. Contamination has become a global environmental problem and needs improvement.
【0005】ところで、温度ヒューズの可溶合金は、特
定の温度で球状溶断させる必要上、できれば単一の溶融
点を持つ共晶合金組成が好ましい。当該温度帯の140
〜150℃付近においてPb及びCdを含有しない共晶組成
は43Sn‐57Bi(wt.%)二元共晶(139℃)が知られている
が、溶融温度が若干低すぎるため、そのまま現行145℃
の温度ヒューズに用いることができない。また、Sn-Bi
共晶合金は半金属のBiを57%含んでいることもあり、比
較的脆い性質を有し加工上の制約も多い。By the way, the fusible alloy of the thermal fuse preferably has a eutectic alloy composition having a single melting point, because it is necessary to be spherically fused at a specific temperature. 140 of the temperature range
It is known that 43Sn-57Bi (wt.%) Binary eutectic (139 ° C) is a eutectic composition that does not contain Pb and Cd in the vicinity of 150 ° C, but the melting temperature is a little too low.
It cannot be used as a thermal fuse. Also, Sn-Bi
The eutectic alloy may contain 57% of Bi, which is a semimetal, has a relatively brittle property, and has many processing restrictions.
【0006】共晶組成以外の組成では、固相線温度以上
の温度で合金は溶け始め、液相線温度で完全に液状に溶
融する。このときの固相線温度と液相線温度の差を固液
共存域と言うが、温度ヒューズを一定の温度でバラツキ
なく溶断させるためには、この固液共存域ができるだけ
小さい合金組成を選択することが重要である。実用上、
温度ヒューズの可溶合金には固液共存域が5℃未満であ
ることが求められる。With a composition other than the eutectic composition, the alloy begins to melt at a temperature above the solidus temperature and completely melts into a liquid at the liquidus temperature. The difference between the solidus temperature and the liquidus temperature at this time is called the solid-liquid coexistence region.In order to melt the thermal fuse at a constant temperature without variation, select an alloy composition with the smallest possible solid-liquid coexistence region. It is important to. In practice,
The fusible alloy of the thermal fuse is required to have a solid-liquid coexistence region of less than 5 ° C.
【0007】上述に加えて、電源回路に直列に実装され
る温度ヒューズの特性上から、かかる温度ヒューズの内
部抵抗値は長期の高温保管によっても変化せず10mΩ以
下であることが、省エネルギーの面や動作温度の安定性
の上からも望ましい。In addition to the above, due to the characteristics of the thermal fuse mounted in series with the power supply circuit, the internal resistance value of the thermal fuse does not change even after long-term high temperature storage and is 10 mΩ or less, which is an energy saving aspect. It is also desirable from the standpoint of stability of operating temperature.
【0008】[0008]
【発明が解決しようとする課題】本発明は、かかる上記
の問題点を考慮して、可溶合金にPb及びCdを使用しない
環境対応型の可溶合金型温度ヒューズを提供することを
目的とする。SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and an object thereof is to provide an environment-friendly fusible alloy type thermal fuse in which Pb and Cd are not used in the fusible alloy. To do.
【0009】[0009]
【課題を解決するための手段】本発明の請求項1に関る
可溶合金型温度ヒューズは、感温素子にBiを50 wt%〜58
wt%、Sbを4 wt%〜7 wt%、残部Snの可溶合金を使用する
ことで140〜150℃の動作温度を有する温度ヒュー
ズを可能としたものである。A fusible alloy type thermal fuse according to claim 1 of the present invention contains Bi in an amount of 50 wt% to 58 in a temperature sensitive element.
By using a fusible alloy of wt%, Sb of 4 wt% to 7 wt%, and the balance of Sn, a thermal fuse having an operating temperature of 140 to 150 ° C. is possible.
【0010】本発明は43Sn‐57Bi(wt.%)二元共晶点付近
の約140±2℃の溶融点を持つSn-Bi二元合金系を基
本として、これに適量のSbを加え三元合金とすることに
よって、固液共存域の幅を抑えながら145±2℃付近
まで溶融温度を上昇させ得ることに特徴がある。The present invention is based on a Sn-Bi binary alloy system having a melting point of about 140 ± 2 ° C. near the 43Sn-57Bi (wt.%) Binary eutectic point, to which an appropriate amount of Sb is added to form a triple alloy. The use of the original alloy is characterized in that the melting temperature can be raised to around 145 ± 2 ° C. while suppressing the width of the solid-liquid coexistence region.
【0011】このとき、Sbの適切な量は4 wt%〜7 wt%
の範囲である。それ以外の場合、例えばSbの量が3wt%
である合金組成の固液共存域は約7℃もあり、温度ヒュ
ーズ可溶合金として安定な溶断を期待できないものであ
った。また、Snに対するSbの固溶限である7 wt%を超え
てSbを含有した合金組成では極端に合金が硬く脆くなり
細線加工が困難であった。At this time, an appropriate amount of Sb is 4 wt% to 7 wt%
Is the range. In other cases, for example, the amount of Sb is 3 wt%
The solid-liquid coexistence range of the alloy composition was about 7 ° C., and it was not possible to expect stable fusing as a temperature fuse fusible alloy. Further, with an alloy composition containing Sb in excess of 7 wt%, which is the solid solubility limit of Sb with respect to Sn, the alloy became extremely hard and brittle, and fine wire processing was difficult.
【0012】上記の可溶合金には、線の塑性加工性を向
上させ内部抵抗を低減させる目的で動作温度に支障をき
たすことなく請求項2に記載する範囲でCuを添加するこ
ともできる。Cu may be added to the above-mentioned fusible alloy within the range described in claim 2 without impairing the operating temperature for the purpose of improving the plastic workability of the wire and reducing the internal resistance.
【0013】上記の可溶合金には、線の塑性加工性を向
上させ内部抵抗を低減させる目的で動作温度に支障をき
たすことなく請求項3に記載する範囲でAgを添加するこ
ともできる。It is also possible to add Ag to the above-mentioned fusible alloy within the range described in claim 3 without impairing the operating temperature for the purpose of improving the plastic workability of the wire and reducing the internal resistance.
【0014】請求項1に記載の母材合金に対するCuとAg
の添加効果を比較すると、共に母材合金の塑性向上さ
せ、内部抵抗を低減させ得るが、Cuは線の塑性加工性を
向上させる効果が顕著であり、一方、Agについては線の
内部抵抗を低減させる効果により優れていることがわか
った。Cu and Ag for the base alloy according to claim 1
Comparing the effects of addition, the effects of improving the plasticity of the base alloy and reducing the internal resistance can be obtained, but Cu has a remarkable effect of improving the plastic workability of the wire, while Ag has the effect of increasing the internal resistance of the wire. It was found that the effect of reducing was superior.
【0015】[0015]
【発明の実施の形態】本発明はアキシャル型温度ヒュー
ズ、ラジアル型温度ヒューズ、薄型温度ヒューズ、抵抗
内臓型ヒューズ等に使用でき、特定の型式に限定される
ものではないが、以下に実施形態の一例としてアキシャ
ル型温度ヒューズの実施形態を用いて説明する。BEST MODE FOR CARRYING OUT THE INVENTION The present invention can be applied to an axial type thermal fuse, a radial type thermal fuse, a thin type thermal fuse, a resistor built-in type fuse, etc., and is not limited to a specific type, but the following embodiments will be described. As an example, an embodiment of an axial type thermal fuse will be described.
【0016】図1は、温度ヒューズの実施形態を示し、
アキシャル型温度ヒューズの断面図である。図1におい
て、付した符号とその部材名称は、つぎに示す通りであ
る。
1,2:端子リード(Sn-Cuめっき銅線)
3:可溶合金
4:フラックス(ロジン、ワックス、活性剤)
5:絶縁物のケース(アルミナセラミック碍管)
6,7:封止樹脂(エポキシ樹脂)FIG. 1 shows an embodiment of a thermal fuse,
It is sectional drawing of an axial type thermal fuse. In FIG. 1, the reference numerals and their member names are as follows. 1, 2: Terminal lead (Sn-Cu plated copper wire) 3: Soluble alloy 4: Flux (rosin, wax, activator) 5: Insulator case (alumina ceramic insulator tube) 6, 7: Sealing resin (epoxy resin)
【0017】実施形態は、Sn-Cuめっき銅線からなる端
子リ−ド1,2に、可溶合金3を抵抗溶接により接合し
た後、可溶合金4をロジン、ワックス、活性剤からなる
フラックス4で被覆し、アルミナセラミック碍管5中に
挿入して、エポキシ系封止樹脂6,7によりケース端部
を封止して形成できる。なお、端子リ−ド1,2のSn-Cu
めっき銅線は、必要に応じてAgめっき銅線、Snめっき銅
線、Niめっき銅線等に変更でき、Sn-Cuめっき銅線に限
定されるものではない。In the embodiment, the fusible alloy 3 is joined to the terminal leads 1 and 2 made of Sn-Cu-plated copper wire by resistance welding, and then the fusible alloy 4 is made of rosin, wax and an activator flux. It can be formed by covering with 4 and inserting it into an alumina ceramic porcelain tube 5 and sealing the case end with epoxy-based sealing resins 6 and 7. In addition, Sn-Cu of terminal leads 1 and 2
The plated copper wire can be changed to an Ag-plated copper wire, a Sn-plated copper wire, a Ni-plated copper wire, etc., if necessary, and is not limited to the Sn-Cu-plated copper wire.
【0018】上記実施形態の温度ヒューズにおいて、可
溶合金3にφ0.3〜0.7mm線を使用でき、また必要に応じ
て同一の断面積を有するテープ状合金の平角片も使用で
きる。In the thermal fuse of the above-mentioned embodiment, the fusible alloy 3 can use a wire of φ0.3 to 0.7 mm, and if necessary, a rectangular piece of tape-shaped alloy having the same cross-sectional area can also be used.
【0019】本発明の温度ヒューズ可溶合金は、合金鋳
塊の押出し加工により製造され、その後必要に応じてテ
ープ状に圧延加工することもできる。The thermal fuse-fusible alloy of the present invention can be produced by extruding an alloy ingot, and then rolled into a tape if necessary.
【0020】また、将来本発明の趣旨を逸脱しない範囲
において、可溶合金3の線径は要求に応じてφ0.3以下
とすることができ、また、要求に応じてφ0.7mm以上に
変更することもできる。Further, the wire diameter of the fusible alloy 3 can be set to φ0.3 or less according to the requirement and changed to φ0.7 mm or more according to the requirement without departing from the scope of the present invention in the future. You can also do it.
【0021】[0021]
【実施例】(実施例1)請求項1の範囲にあるBiを52.1
wt%、Sbを4.9 wt%、Sn を43wt%とした組成のφ0.6mm線
を押出し加工により作製し、この合金線を実施形態の温
度ヒューズに適用した。実施例1の温度ヒューズ30個に
10mAの検知電流を通電しながら、1℃/分の割合で温
度上昇する恒温槽(気相)中で動作させたところ動作温度
範囲は145±2℃であった。また、135℃で500時間,1000
時間,2000時間それぞれ保管した実施例1の温度ヒュー
ズ各10個を試験したところ内部抵抗値5±2mΩの範囲を
保持でき、高温保管後も動作温度145±2℃の初期範囲を
維持できる事がわかった。(Example) (Example 1) 52.1 for Bi within the scope of claim 1
A φ0.6 mm wire having a composition of wt%, Sb of 4.9 wt% and Sn of 43 wt% was produced by extrusion, and this alloy wire was applied to the thermal fuse of the embodiment. 30 thermal fuses of Example 1
When operating in a thermostatic chamber (gas phase) in which the temperature rises at a rate of 1 ° C / min while applying a detection current of 10 mA, the operating temperature range was 145 ± 2 ° C. Also, at 135 ℃ for 500 hours, 1000
Each of the 10 thermal fuses of Example 1 stored for 20 hours and 2000 hours was tested, and it was possible to maintain the internal resistance value range of 5 ± 2mΩ and maintain the initial range of operating temperature of 145 ± 2 ℃ even after high temperature storage. all right.
【0022】(実施例2)請求項1に記載の合金100
重量部に対してCuを1重量部添加した組成のφ0.6mm線
を押出し加工により作製し、この合金線を実施形態の温
度ヒューズに適用した。この温度ヒューズ30個を実施例
1と同様の方法で評価ところ動作温度範囲を変化させず
に内部抵抗値を4±1mΩと低くできることがわかった。
さらにCuの添加量を詳細に検討した結果、請求項1の合
金100重量部に対してCuの添加量が0.1〜1.1重量部の
範囲内にあるとき動作温度を変化させずに内部抵抗値を
低下させることができた。(Example 2) The alloy 100 according to claim 1
A φ0.6 mm wire having a composition in which 1 part by weight of Cu was added to parts by weight was produced by extrusion, and this alloy wire was applied to the thermal fuse of the embodiment. When 30 thermal fuses were evaluated in the same manner as in Example 1, it was found that the internal resistance value could be lowered to 4 ± 1 mΩ without changing the operating temperature range.
Furthermore, as a result of detailed examination of the Cu addition amount, when the Cu addition amount is within the range of 0.1 to 1.1 parts by weight with respect to 100 parts by weight of the alloy of claim 1, the internal resistance value is changed without changing the operating temperature. Could be lowered.
【0023】(実施例3)請求項1に記載の合金100
重量部に対してAgを0.5重量部添加した組成のφ0.6mm線
を押出し加工により作製し、この合金線を実施形態の温
度ヒューズに適用した。この温度ヒューズ30個を実施例
1と同様の方法で評価したところ動作温度範囲を変化さ
せずに内部抵抗値を3.5±0.5mΩと低くできることがわ
かった。さらにAgの添加量を詳細に検討した結果、請求
項1の合金100重量部に対してAgの添加量が0.1〜2.6
重量部の範囲内にあるとき動作温度を変化させずに内部
抵抗値を低下させることができた。(Example 3) The alloy 100 according to claim 1
A φ0.6 mm wire having a composition in which 0.5 parts by weight of Ag was added to parts by weight was produced by extrusion, and this alloy wire was applied to the thermal fuse of the embodiment. When 30 thermal fuses were evaluated in the same manner as in Example 1, it was found that the internal resistance value could be lowered to 3.5 ± 0.5 mΩ without changing the operating temperature range. Furthermore, as a result of detailed examination of the addition amount of Ag, the addition amount of Ag was 0.1 to 2.6 with respect to 100 parts by weight of the alloy of claim 1.
When it was within the range of parts by weight, the internal resistance value could be lowered without changing the operating temperature.
【0024】[0024]
【比較例】Sbの量を4wt%以下にした合金組成:53Bi-44
Sn-3Sbを用いた実施形態の温度ヒューズは、動作温度範
囲が137〜146℃と安定せず実用の温度ヒューズに
至らなかった。また、Sbの量を7wt%以上とした組成:5
0Bi-42Sn-8Sbのφ0.6mm線を押出し加工により作製を試
みたが、硬すぎるため作製できなかった。[Comparative Example] Alloy composition with Sb content of 4 wt% or less: 53Bi-44
The thermal fuse of the embodiment using Sn-3Sb was unstable in the operating temperature range of 137 to 146 ° C. and could not reach a practical thermal fuse. Further, the composition in which the amount of Sb is 7 wt% or more: 5
An attempt was made to extrude a φ0.6 mm wire of 0Bi-42Sn-8Sb by extrusion, but it could not be made because it was too hard.
【0025】[0025]
【発明の効果】以上に説明したように本発明は、140
〜150℃で動作可能な信頼性の優れた合金型温度ヒュ
ーズをPbやCdを含有しない合金で実現するものである。As described above, the present invention provides 140
An alloy type thermal fuse with excellent reliability that can operate at up to 150 ° C is realized with an alloy containing no Pb or Cd.
【0026】[0026]
【図1】本発明の一実施形態であるアキシャル型温度ヒ
ューズの断面図FIG. 1 is a cross-sectional view of an axial type thermal fuse that is an embodiment of the present invention.
1、2 端子リ−ド 3 可溶合金 4 フラックス 5 絶縁物のケ−ス 6、7 封止樹脂 1 and 2 terminal leads 3 Soluble alloy 4 flux 5 Insulation case 6, 7 sealing resin
Claims (3)
接続し、絶縁物のケ−スに挿入し、上記絶縁物のケ−ス
より端子リ−ドを導出する端部を封止してなる温度ヒュ
ーズにおいて、上記可溶合金にBiを50 wt.%〜58 wt.
%、Sbを4 wt.%〜wt.%7、残部Sn の組成からなる合金を
使用することを特徴とする温度ヒュ−ズ。1. [Schott1] A terminal lead is connected to both ends of a fusible alloy, the terminal lead is inserted into the case of an insulating material and the terminal lead is led out from the case of the insulating material. In the sealed thermal fuse, 50 wt.% To 58 wt.% Of Bi is added to the fusible alloy.
%, Sb is 4 wt.% To wt.% 7, and the balance is a temperature fuse characterized by using an alloy having a composition of Sn.
縁物のケ−スに挿入し、上記絶縁物のケ−スより端子リ
−ドを導出する端部を封止してなる温度ヒューズにおい
て、上記可溶合金にBiを50 wt.%〜58 wt.%、Sbを4 wt.
%〜7 wt.%、残部Sn の組成を有する合金100重量部に
対してCuを0.1〜1.1重量部添加した合金を使用すること
を特徴とする温度ヒュ−ズ。2. A terminal lead is connected to both ends of a fusible alloy, the terminal lead is inserted into the case of an insulating material, and the end portion for leading out the terminal lead from the case of the insulating material is sealed. In the thermal fuse consisting of 50 wt.% To 58 wt.% Bi and 4 wt.
% To 7 wt.% And 0.1 to 1.1 parts by weight of Cu added to 100 parts by weight of an alloy having a composition of Sn as the balance, a temperature fuse characterized in that it is used.
縁物のケ−スに挿入し、上記絶縁物のケ−スより端子リ
−ドを導出する端部を封止してなる温度ヒューズにおい
て、上記可溶合金にBiを50 wt.%〜58 wt.%、Sbを4 wt.
%〜7 wt.%、残部Sn の組成を有する合金100重量部に
対してAgを0.1〜2.6重量部添加した合金を使用するこ
とを特徴とする温度ヒュ−ズ。3. A terminal lead is connected to both ends of a fusible alloy, the terminal lead is inserted into a case of an insulating material, and an end portion for leading out the terminal lead from the case of the insulating material is sealed. In the thermal fuse consisting of 50 wt.% To 58 wt.% Bi and 4 wt.
% To 7 wt.% And 0.1 to 2.6 parts by weight of Ag added to 100 parts by weight of alloy having a composition of Sn, the temperature fuse being characterized by using.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001348369A JP3885995B2 (en) | 2001-11-14 | 2001-11-14 | Thermal fuse |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001348369A JP3885995B2 (en) | 2001-11-14 | 2001-11-14 | Thermal fuse |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003147461A true JP2003147461A (en) | 2003-05-21 |
JP3885995B2 JP3885995B2 (en) | 2007-02-28 |
Family
ID=19161197
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001348369A Expired - Lifetime JP3885995B2 (en) | 2001-11-14 | 2001-11-14 | Thermal fuse |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3885995B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1381066A3 (en) * | 2002-07-11 | 2004-01-28 | Uchihashi Estec Co., Ltd. | Alloy type thermal fuse and wire member for a thermal fuse element |
WO2007075763A1 (en) * | 2005-12-19 | 2007-07-05 | Honeywell International, Inc. | Modified and doped solder alloys for electrical interconnects, methods of production and uses thereof |
CN102321829A (en) * | 2011-10-24 | 2012-01-18 | 南京信息工程大学 | Silver-free low-melting-point Sn-Bi Pb-free solder alloy and preparation method thereof |
US11062869B2 (en) | 2017-12-12 | 2021-07-13 | Schott Japan Corporation | Temperature sensitive pellet type thermal fuse |
-
2001
- 2001-11-14 JP JP2001348369A patent/JP3885995B2/en not_active Expired - Lifetime
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1381066A3 (en) * | 2002-07-11 | 2004-01-28 | Uchihashi Estec Co., Ltd. | Alloy type thermal fuse and wire member for a thermal fuse element |
US6963264B2 (en) | 2002-07-11 | 2005-11-08 | Uchihashi Estec Co., Ltd. | Alloy type thermal fuse and wire member for a thermal fuse element |
WO2007075763A1 (en) * | 2005-12-19 | 2007-07-05 | Honeywell International, Inc. | Modified and doped solder alloys for electrical interconnects, methods of production and uses thereof |
CN102321829A (en) * | 2011-10-24 | 2012-01-18 | 南京信息工程大学 | Silver-free low-melting-point Sn-Bi Pb-free solder alloy and preparation method thereof |
US11062869B2 (en) | 2017-12-12 | 2021-07-13 | Schott Japan Corporation | Temperature sensitive pellet type thermal fuse |
Also Published As
Publication number | Publication date |
---|---|
JP3885995B2 (en) | 2007-02-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6911892B2 (en) | Alloy type thermal fuse and fuse element thereof | |
GB2038093A (en) | Fused electrolytic capacitor assembly | |
EP1343187B1 (en) | Alloy type thermal fuse and fuse element thereof | |
JP3841257B2 (en) | Alloy type temperature fuse | |
JP2001291459A (en) | Alloy temperature fuse | |
JP2003147461A (en) | Thermal fuse | |
JPH06325670A (en) | Alloy type temperature fuse | |
JP2003034831A (en) | Thermal fuse and fusible alloy therefor | |
JP2004043894A (en) | Alloy type thermal fuse and wire member for thermal fuse element | |
JP4375713B2 (en) | Thermal fuse | |
JP3901028B2 (en) | Lead-free thermal fuse | |
JP4338377B2 (en) | Lead-free alloy type thermal fuse | |
JP2001266723A (en) | Alloy-type thermal-fuse | |
EP1343186B1 (en) | Alloy type thermal fuse and fuse element thereof | |
JP2003249155A (en) | Thermal fuse composed of lead-free alloy | |
JP2005276577A (en) | Fusible alloy type thermal fuse | |
JP2516469B2 (en) | Alloy type temperature fuse | |
JP2004035929A (en) | Lead-free alloy type thermal fuse | |
JP2001143592A (en) | Fuse alloy | |
JP2002150906A (en) | Alloy-type thermal fuse | |
JPS58142505A (en) | Overload fusion resistor | |
JP2006299289A (en) | Alloy type temperature-sensitive element material, and temperature fuse using the same | |
JP2004247269A (en) | Tubular casing type alloyed thermal fuse | |
JP2001135216A (en) | Alloy-type thermal fuse | |
JP2007113024A (en) | Fusible alloy type thermal fuse |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040324 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050712 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060911 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061024 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20061116 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20061116 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3885995 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101201 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111201 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121201 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131201 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |