JP2006299289A - Alloy type temperature-sensitive element material, and temperature fuse using the same - Google Patents
Alloy type temperature-sensitive element material, and temperature fuse using the same Download PDFInfo
- Publication number
- JP2006299289A JP2006299289A JP2005117798A JP2005117798A JP2006299289A JP 2006299289 A JP2006299289 A JP 2006299289A JP 2005117798 A JP2005117798 A JP 2005117798A JP 2005117798 A JP2005117798 A JP 2005117798A JP 2006299289 A JP2006299289 A JP 2006299289A
- Authority
- JP
- Japan
- Prior art keywords
- weight
- alloy
- temperature
- parts
- tin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 79
- 239000000956 alloy Substances 0.000 title claims abstract description 79
- 239000000463 material Substances 0.000 title claims abstract description 26
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims abstract description 34
- 229910052738 indium Inorganic materials 0.000 claims abstract description 32
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims abstract description 32
- 239000011701 zinc Substances 0.000 claims abstract description 30
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims abstract description 29
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 29
- 229910052797 bismuth Inorganic materials 0.000 claims abstract description 22
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims abstract description 21
- 239000000203 mixture Substances 0.000 claims description 18
- 229910052793 cadmium Inorganic materials 0.000 abstract description 7
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 abstract description 7
- 230000004907 flux Effects 0.000 description 16
- 238000002844 melting Methods 0.000 description 14
- 230000008018 melting Effects 0.000 description 14
- 239000006023 eutectic alloy Substances 0.000 description 11
- 239000000919 ceramic Substances 0.000 description 6
- 229920005989 resin Polymers 0.000 description 5
- 239000011347 resin Substances 0.000 description 5
- 238000002425 crystallisation Methods 0.000 description 4
- 230000008025 crystallization Effects 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 239000012071 phase Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 230000002159 abnormal effect Effects 0.000 description 3
- 239000004020 conductor Substances 0.000 description 3
- 239000003822 epoxy resin Substances 0.000 description 3
- 229910000743 fusible alloy Inorganic materials 0.000 description 3
- 229920000647 polyepoxide Polymers 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- RSWGJHLUYNHPMX-UHFFFAOYSA-N Abietic-Saeure Natural products C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C(O)=O RSWGJHLUYNHPMX-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- KHPCPRHQVVSZAH-HUOMCSJISA-N Rosin Natural products O(C/C=C/c1ccccc1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 KHPCPRHQVVSZAH-HUOMCSJISA-N 0.000 description 2
- 229910020994 Sn-Zn Inorganic materials 0.000 description 2
- 229910009069 Sn—Zn Inorganic materials 0.000 description 2
- 229910009071 Sn—Zn—Bi Inorganic materials 0.000 description 2
- 239000012190 activator Substances 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000007790 solid phase Substances 0.000 description 2
- 229920001187 thermosetting polymer Polymers 0.000 description 2
- KHPCPRHQVVSZAH-UHFFFAOYSA-N trans-cinnamyl beta-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OCC=CC1=CC=CC=C1 KHPCPRHQVVSZAH-UHFFFAOYSA-N 0.000 description 2
- 229910000967 As alloy Inorganic materials 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910001128 Sn alloy Inorganic materials 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010891 electric arc Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000005243 fluidization Methods 0.000 description 1
- 239000000383 hazardous chemical Substances 0.000 description 1
- RHZWSUVWRRXEJF-UHFFFAOYSA-N indium tin Chemical compound [In].[Sn] RHZWSUVWRRXEJF-UHFFFAOYSA-N 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 238000005563 spheronization Methods 0.000 description 1
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 1
- 238000002076 thermal analysis method Methods 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Images
Landscapes
- Fuses (AREA)
Abstract
Description
本発明は、電気機器や電子機器等に用いられる合金型感温素子材料およびそれを用いた温度ヒューズに関するものである。詳しくは、動作温度が概ね90℃〜109℃である温度ヒューズ用の感温素子として使用する、In−Sn−Zn系合金並びにIn−Sn−Zn−Bi系合金及びそれを用いた温度ヒューズに関するものである。 The present invention relates to an alloy-type thermosensitive element material used for electrical equipment, electronic equipment, and the like, and a thermal fuse using the same. Specifically, the present invention relates to an In—Sn—Zn alloy, an In—Sn—Zn—Bi alloy, and a thermal fuse using the same, which are used as a temperature sensitive element for a thermal fuse having an operating temperature of approximately 90 ° C. to 109 ° C. Is.
電気電子機器(以下機器)が故障等により異常な状態となった時、場合によっては機器が高温となり、火災の原因となることがある。これを防止するために機器の異常な温度上昇を感知して電気の通電を遮断する温度ヒューズが使用されている(例えば下記の特許文献1)。
この温度ヒューズは、所定の温度で溶融する合金線を感温素子とし、その両端にリード線を接続し、感温素子表面にフラックスを塗布した後に容器に収納、封止した構造となっている。また、上記フラックスには、ロジンを基剤として、それに合金表面の酸化物を除去するための活性剤、並びに融点調整用に各種樹脂、ワックス等を添加したものが使用されている。上記活性剤には、各種アミン類のハロゲン化水素酸塩や各種の有機酸等が用いられる。 This temperature fuse has a structure in which an alloy wire that melts at a predetermined temperature is used as a temperature sensing element, lead wires are connected to both ends thereof, flux is applied to the surface of the temperature sensing element, and then housed and sealed in a container. . In addition, the flux includes a rosin as a base, an activator for removing oxides on the alloy surface, and various resins, waxes and the like for adjusting the melting point. Examples of the activator include hydrohalides of various amines and various organic acids.
上記温度ヒューズの動作機構は次の通りである。機器が故障などにより異常な状態となり高温になると感温素子が溶融し、感温素子に塗布されたフラックスの作用で酸化物が除去され、自身の持つ表面張力の発現とリード線への濡れ作用により、溶融した感温素子がリード線端部に凝集・分断され、このことにより電気回路が遮断される。なお、この感温素子の凝集を一般に球状化と呼ぶ。 The operating mechanism of the thermal fuse is as follows. When the device becomes abnormal due to failure or other conditions, the temperature sensing element melts and the oxide is removed by the action of the flux applied to the temperature sensing element, manifesting its own surface tension and wetting the lead wire. As a result, the melted temperature sensitive element is agglomerated and divided at the end portion of the lead wire, whereby the electric circuit is interrupted. The aggregation of the temperature sensitive elements is generally called spheroidization.
こういった、前述の動作機構を有する温度ヒューズでは、その動作温度は合金がフラックスの作用により球状化する温度でほぼ決定される。一方、合金の熱分析的概念で、液相温度、固相温度というファクターがあるが、当該温度ヒューズの動作温度という観点からは必ずしも重要ではない。なぜなら、その合金の組成によっては液相温度よりも低い温度で球状化が起こる場合があるからである。従って、感温素子がフラックスの作用により球状化する温度が重要なファクターであると言える。 In such a thermal fuse having the above-described operating mechanism, the operating temperature is substantially determined by the temperature at which the alloy is spheroidized by the action of the flux. On the other hand, the thermal analysis concept of the alloy has factors such as a liquid phase temperature and a solid phase temperature, which are not necessarily important from the viewpoint of the operating temperature of the thermal fuse. This is because spheroidization may occur at a temperature lower than the liquidus temperature depending on the composition of the alloy. Therefore, it can be said that the temperature at which the thermosensitive element spheroidizes due to the action of the flux is an important factor.
また、球状化する温度と共に、球状化がスムーズに行われるかどうかも重要なファクターである。溶融した合金の流動性が悪い場合やシャーベット状の半溶融状態の場合、フラックスの作用によっても球状化の速さが遅く緩慢であり、製品ベースでの動作温度のバラツキの原因となり、またリード線間の必要な離隔距離に到達するまでの時間が長くなり、遮断時の電気的アークの増大により電気的絶縁破壊が発生し、時には製品本体が破裂する恐れがある。従って、固相温度と液相温度が同じである共晶合金が優先的に用いられてきた。 In addition to the temperature at which spheroidization occurs, whether or not spheronization is performed smoothly is also an important factor. If the molten alloy has poor fluidity or a sherbet-like semi-molten state, the speed of spheroidization is slow and slow due to the action of the flux, causing variations in operating temperature on the product base, and lead wires. It takes a long time to reach the necessary separation distance between them, and an increase in the electric arc at the time of interruption may cause an electrical breakdown, sometimes causing the product body to burst. Therefore, eutectic alloys having the same solid phase temperature and liquid phase temperature have been preferentially used.
90℃台で動作する合金型感温素子としては、
(1)鉛32重量%、錫16重量%、ビスマス52重量%で構成される融点96℃の公知共晶合金、(2)インジウム44重量%、錫42重量%、カドミウム14重量%で構成される融点93℃の公知共晶合金がある。
As an alloy-type thermosensitive element that operates at the 90 ° C level,
(1) A known eutectic alloy having a melting point of 96 ° C. composed of 32% by weight of lead, 16% by weight of tin and 52% by weight of bismuth, and (2) composed of 44% by weight of indium, 42% by weight of tin and 14% by weight of cadmium. There is a known eutectic alloy having a melting point of 93 ° C.
一方、100℃台で動作する合金型感温素子としては、
(3)鉛20重量%、錫34重量%、ビスマス46重量%で構成される融点100℃の公知共晶合金、(4)錫26重量%、ビスマス54重量%、カドミウム20重量%で構成される融点103℃の公知共晶合金がある。
On the other hand, as an alloy type temperature sensing element operating at a temperature of 100 ° C.,
(3) Known eutectic alloy having a melting point of 100 ° C. composed of 20% by weight of lead, 34% by weight of tin, and 46% by weight of bismuth, and (4) composed of 26% by weight of tin, 54% by weight of bismuth, and 20% by weight of cadmium. There is a known eutectic alloy having a melting point of 103 ° C.
ここで、上記合金を直径φ0.7mmの線に押し出し加工し、長さ約5mmに切断したものの両端に、直径φ0.6mmの錫メッキ銅線を溶着し、この合金部にフラックスを塗布した後、外径約φ2.5mm、内径約φ1.5mm,長さ約10mmの筒状セラミックケースに挿入し、セラミックケース両端の開口部を熱硬化性エポキシ樹脂で封止したものをIEC60691に規定された方法で動作温度を測定した場合、上記合金の球状化温度よりも2〜3℃高いことが知られている。従って、合金の球状化温度+(2〜3℃)が動作温度として予想できる。 Here, after extruding the above alloy into a wire with a diameter of 0.7 mm and cutting it to a length of about 5 mm, a tin-plated copper wire with a diameter of φ0.6 mm is welded to both ends, and a flux is applied to this alloy part IEC60691 defines that the ceramic case is inserted into a cylindrical ceramic case having an outer diameter of about 2.5 mm, an inner diameter of about 1.5 mm, and a length of about 10 mm, and the openings at both ends of the ceramic case are sealed with a thermosetting epoxy resin. It is known that when the operating temperature is measured by this method, it is 2 to 3 ° C. higher than the spheroidizing temperature of the alloy. Therefore, the spheroidizing temperature of the alloy + (2 to 3 ° C) can be expected as the operating temperature.
したがって、上記(1)の公知共晶合金を用いれば、概ね98℃で動作するものを提供でき、(2)の公知共晶合金を用いれば、概ね95℃程度で動作するものを提供できる。また、(3)の公知共晶合金を用いれば、概ね102℃程度で動作するものを提供できる、(4)の公知共晶合金を用いれば、概ね105℃程度で動作するものを提供できる。 Therefore, if the known eutectic alloy (1) is used, it is possible to provide one that operates at about 98 ° C., and using the known eutectic alloy (2) can provide one that operates at about 95 ° C. In addition, when the known eutectic alloy (3) is used, an alloy that operates at about 102 ° C. can be provided, and when the known eutectic alloy (4) is used, an alloy that operates at approximately 105 ° C. can be provided.
近年、環境保全の観点から有害な物質の使用を禁止しようという動きが盛んになり、EU(欧州連合)でも「鉛を含む有害物質規制(RoHS指令)」において、鉛、水銀、カドミウム、六価クロムといった物質は原則的に規制対象となっており、機器に使用される配線材料、接続材科、搭載部品も上記物質を含まないものへの転換が求められている。 In recent years, the movement to ban the use of harmful substances from the viewpoint of environmental conservation has become active, and in the EU (European Union) "Leader Hazardous Substances Regulation (RoHS Directive)" lead, mercury, cadmium, hexavalent Substances such as chromium are subject to regulation in principle, and there is a need to convert wiring materials, connection materials, and mounted parts used in equipment to those that do not contain the above substances.
前述の物質の規制により、今まで合金型感温素子材科として用いられてきた鉛、カドミウムが使用できなくなったため、これらを含まない合金型感温素子材料並びにこれを用いた温度ヒューズが求められている。 Lead and cadmium, which have been used as alloy type thermosensitive element materials until now, can no longer be used due to the above-mentioned substance restrictions, so an alloy type thermosensitive element material that does not contain them and a thermal fuse using the same are required. ing.
本発明は、このような事情に鑑みなされたもので、従来用いられてきた鉛、カドミウムを含まない合金型感温素子材料並びにこれを用いた90℃〜100℃台で動作する温度ヒューズの提供をその目的とする。 The present invention has been made in view of such circumstances, and provides an alloy type thermosensitive element material that does not contain lead and cadmium, and a thermal fuse that operates on the order of 90 ° C. to 100 ° C. using the same. Is the purpose.
上記目的を達成するため、本発明の第1の合金型感温素子材料は、インジウムが52±5重量%、残部が錫で構成される合金100重量部に対し、亜鉛が1重量部以上6重量部以下で添加された組成であることを要旨とする。 In order to achieve the above object, the first alloy-type thermosensitive element material of the present invention has a zinc content of at least 6 parts by weight with respect to 100 parts by weight of an alloy composed of 52 ± 5% by weight of indium and the balance of tin. The gist is that the composition is added in an amount of not more than parts by weight.
また、上記目的を達成するため、本発明の第2の合金型感温素子材料は、インジウムが52±5重量%、残部が錫で構成される合金100重量部に対し、亜鉛が1重量部以上5重量部未満、ビスマスが5重量部以上9重量部未満添加された組成であることを要旨とする。 In order to achieve the above object, the second alloy type thermosensitive element material of the present invention is composed of 1 ± 1 part by weight of zinc with respect to 100 parts by weight of an alloy composed of 52 ± 5% by weight of indium and the balance of tin. The gist is that the composition is added in an amount of less than 5 parts by weight and bismuth in an amount of 5 parts by weight to less than 9 parts by weight.
上記目的を達成するため、本発明の第1の温度ヒューズは、インジウムが52±5重量%、残部が錫で構成される合金100重量部に対し、亜鉛が1重量部以上6重量部以下で添加された組成である合金型感温素子材料が用いられたことを要旨とする。 In order to achieve the above object, the first thermal fuse of the present invention is composed of 1 to 6 parts by weight of zinc with respect to 100 parts by weight of an alloy composed of 52 ± 5% by weight of indium and the balance of tin. The gist is that an alloy type thermosensitive element material having an added composition is used.
また、上記目的を達成するため、本発明の第2の温度ヒューズは、インジウムが52±5重量%、残部が錫で構成される合金100重量部に対し、亜鉛が1重量部以上5重量部未満、ビスマスが5重量部以上9重量部未満添加された組成である合金型感温素子材料が用いられたことを要旨とする。 In order to achieve the above object, the second thermal fuse of the present invention is composed of 1 to 5 parts by weight of zinc with respect to 100 parts by weight of an alloy composed of 52 ± 5% by weight of indium and the balance of tin. The main point is that an alloy type temperature sensitive element material having a composition in which bismuth is added in an amount of 5 parts by weight or more and less than 9 parts by weight is used.
本発明者は前述の課題のうち、100℃台で動作する温度ヒューズを提供する手段として、インジウム−錫系の融点117℃〜119℃の共晶合金に注目した。そしてその動作温度を低下させ100℃台で球状化させるべく、種々の試行を繰り返し、亜鉛・ビスマスを添加することで俊敏に動作する感温素子が得られることを見出し、本発明に至った。 Among the problems described above, the present inventor has focused on an eutectic alloy having an indium-tin melting point of 117 ° C. to 119 ° C. as a means for providing a thermal fuse operating at a temperature of 100 ° C. In order to lower the operating temperature and make it spherical at a temperature of 100 ° C., various trials were repeated, and it was found that a temperature sensitive element that operates agilely can be obtained by adding zinc and bismuth.
従来用いられてきた鉛、カドミウムを含まない合金型感温素子材料並びにこれを用いた90℃〜110℃で動作する温度ヒューズが得られた。 An alloy type thermosensitive element material which does not contain lead and cadmium, and a thermal fuse operating at 90 ° C. to 110 ° C. using the same have been obtained.
つぎに、本発明の実施の形態を詳しく説明する。 Next, embodiments of the present invention will be described in detail.
図1は、本発明が適用される温度ヒューズを示す図である。この温度ヒューズ1は、一対のリード導体2間にヒューズエレメント3が設けられている。このヒューズエレメント3は、合金型感温素子材料である低融点の可溶合金4と、この可溶合金4に塗布されたロジン系のフラックス5とで構成されている。このフラックス5は可溶合金4の酸化防止や、可溶合金4が溶断した際にその球状化分断を促すために塗布されたものである。
FIG. 1 is a diagram showing a thermal fuse to which the present invention is applied. In the thermal fuse 1, a
上記ヒューズエレメント3はセラミックス、絶縁性の樹脂成形品等からなる円筒状の絶縁ケース6内に収納され、かつ絶縁ケース6の両端の開口部はエポキシ樹脂等の封止樹脂7によって塞がれ、また、この封止樹脂7により一対のリード導体2、ヒューズエレメント3は固定されている。
The
まず、In−Sn−Zn系合金による合金型感温素子材料について説明する。 First, an alloy type temperature sensitive element material made of an In—Sn—Zn alloy will be described.
本発明者は、100℃台で動作する温度ヒューズを提供するため、インジウム−錫系で融点117℃〜119℃の2元共晶合金に着目し、インジウム52重量%、錫48重量%の組成比率の合金をベース合金として亜鉛を添加することにより、融点を低下させ100℃台で球状化させることができることを見出した。 The present inventor paid attention to a binary eutectic alloy having a melting point of 117 ° C. to 119 ° C. and having a melting point of 117 ° C. to 119 ° C. in order to provide a thermal fuse operating at a temperature of 100 ° C. It has been found that by adding zinc with a ratio alloy as a base alloy, the melting point can be lowered and spheroidized at a temperature of 100 ° C.
そして、インジウム52重量%、錫48重量%で構成される合金100gに対して、亜鉛を1gから順に添加量を増やした合金をそれぞれ調整し、下記の表1に示すサンプルを得た。 Then, with respect to 100 g of the alloy composed of 52% by weight of indium and 48% by weight of tin, the alloys in which the addition amount of zinc was sequentially increased from 1 g were adjusted to obtain samples shown in Table 1 below.
上記各サンプルを線状に加工し、フラックスを塗布して、温度制御可能なプレートの上に置いて加熱し溶融・球状化させ、近傍のプレート表面の温度を読み取り球状化温度を測定し、球状化のスムーズ度を観測したところ、下記の表1の結果を得た。 Each of the above samples is processed into a linear shape, flux is applied, placed on a temperature-controllable plate, heated to melt and spheroidize, the temperature of the nearby plate surface is read, the spheroidizing temperature is measured, and the spherical shape is measured. When the smoothness of crystallization was observed, the results shown in Table 1 below were obtained.
上記表1からわかるように、インジウム(In)52重量%、錫(Sn)48重量%からなる合金100gに対して亜鉛(Zn)を1〜6gの割合の範囲内で添加すれば105〜110℃でスムーズに球状化し、この合金を感温素子に用いれば、105〜110℃で良好に動作する温度ヒューズを提供できることがわかる。 As can be seen from Table 1 above, if zinc (Zn) is added within a range of 1 to 6 g with respect to 100 g of an alloy composed of 52% by weight of indium (In) and 48% by weight of tin (Sn), 105 to 110 It can be seen that a thermal fuse that operates smoothly at 105 to 110 ° C. can be provided if it is spheroidized smoothly at ° C. and this alloy is used as a temperature sensitive element.
このように、従来、電機電子機器のプリント配線板に用いられるハンダにおいて、亜鉛は流動化を低下させてハンダ付け性を阻害するものとされていたが、合金型感温素子の用途であれば一定量までなら問題なく球状化してスムーズに動作することが見出された。 Thus, conventionally, in solder used for printed wiring boards of electrical and electronic equipment, zinc was supposed to reduce fluidization and hinder solderability, but if it is an application of an alloy type temperature sensitive element It was found that it works smoothly without spheroidizing up to a certain amount.
なお、亜鉛の添加量が1重量部未満では、球状化温度が110℃以下まで低下せず、製品化したときの動作温度として110℃以下にならず、反対に6重量部を超えると、球状化がスムーズに起こり難くなる。 In addition, when the addition amount of zinc is less than 1 part by weight, the spheroidizing temperature does not decrease to 110 ° C. or lower, and the operating temperature when commercialized does not become 110 ° C. or lower. It becomes difficult to make it smooth.
ただし、球状化性を低下させない範囲内での亜鉛の添加量では、後述の90〜100℃で動作する温度ヒューズに用いる合金型感温素子としての性能、つまり球状化温度を90〜100℃まで低下させることはできなかった。 However, with the addition amount of zinc within a range not deteriorating the spheroidizing property, the performance as an alloy-type thermosensitive element used for a thermal fuse operating at 90 to 100 ° C. described later, that is, the spheroidizing temperature is 90 to 100 ° C. It could not be reduced.
上述したように、本発明では、インジウム52重量%、錫48重量%を基準の組成として構成される合金をベースとし、この合金100重量部に対して亜鉛を1重量部以上6重量部以下添加した。 As described above, in the present invention, based on an alloy composed of 52% by weight of indium and 48% by weight of tin as a reference composition, 1 to 6 parts by weight of zinc is added to 100 parts by weight of this alloy. did.
ここで、上記インジウム52重量%、錫48重量%を基準値とするベース合金は、上記基準の組成を挟んで球状化に差し支えない範囲で組成を若千の変動させて使用することができる。例えば、インジウム54重量%、錫46重量%としても、融点はほとんど変化せず、固液共存相の温度幅が狭いため、球状化に問題は無く使用することができる。また、インジウム50重量%、錫50重量%としても同様に、融点はほとんど変化せず、固液共存相の温度幅が狭いため、球状化に問題は無く使用することができる。 Here, the base alloy having the reference values of 52% by weight of indium and 48% by weight of tin can be used by changing the composition by a few thousand within a range in which the composition of the reference may be sandwiched. For example, even if 54% by weight of indium and 46% by weight of tin are used, the melting point hardly changes and the temperature range of the solid-liquid coexisting phase is narrow. Similarly, even when 50 wt% indium and 50 wt% tin are used, the melting point hardly changes and the temperature range of the solid-liquid coexisting phase is narrow.
そして、上記ベースの合金は、インジウム52±5重量%、残部が錫で構成される合金とすれば、球状化に問題は無く使用することができる。このベース合金100重量部に対して亜鉛を1重量部以上6重量部以下添加することにより、インジウム44.3〜56.5重量%、錫40.57〜52.5重量%、亜鉛0.99〜5.7重量%、残部が不可避的不純物からなる組成範囲である本発明の合金型感温素子材料を得ることができた。 If the alloy of the base is an alloy composed of 52 ± 5% by weight of indium and the balance of tin, the spheroidization can be used without any problem. By adding 1 to 6 parts by weight of zinc to 100 parts by weight of this base alloy, 44.3 to 56.5% by weight of indium, 40.57 to 52.5% by weight of tin, 0.99 of zinc It was possible to obtain an alloy type temperature sensitive element material of the present invention having a composition range of 5.7% by weight and the balance consisting of inevitable impurities.
つぎに、In−Sn−Zn−Bi系合金による合金型感温素子材料について説明する。 Next, an alloy type temperature sensitive element material made of an In—Sn—Zn—Bi alloy will be described.
本発明者は前述の課題のうち90〜100℃で動作する温度ヒューズを提供する手段として、90〜100℃で球状化させるべく、ビスマス(Bi)の添加を試みた。インジウム52重量%、錫48重量%で構成されるベース合金100gに対して、ビスマスを1gから順に添加量を増やした合金を調整し、下記の表2に示すサンプルを得た。 The present inventor tried to add bismuth (Bi) as a means for providing a thermal fuse operating at 90 to 100 ° C. among the above-mentioned problems in order to make it spherical at 90 to 100 ° C. With respect to 100 g of the base alloy composed of 52% by weight of indium and 48% by weight of tin, an alloy in which the addition amount of bismuth was sequentially increased from 1 g was prepared, and samples shown in Table 2 below were obtained.
上記各サンプルを線状に加工し、フラックスを塗布して、温度制御可能なプレートの上に置いて加熱し溶融・球状化させ、近傍のプレート表面の温度を読み取り球状化温度を測定し、球状化のスムーズ度を観測したところ、下記の表2の結果を得た。 Each of the above samples is processed into a linear shape, flux is applied, placed on a temperature-controllable plate, heated to melt and spheroidize, the temperature of the nearby plate surface is read, the spheroidizing temperature is measured, and the spherical shape is measured. When the smoothness of crystallization was observed, the results shown in Table 2 below were obtained.
上記表2に示す通り、ビスマスの添加量が概ね7gまでであれば、105〜115℃でスムーズに球状化しており、前記亜鉛の添加と同様に105〜115℃で動作させるための合金型感温素子材料を提供することが可能であるが、ビスマスの添加量を10gまで増やしても球状化温度は100℃以下にならず、また球状化が緩慢であり採用には不適であった。15gの添加でようやく球状化温度が98℃と、90℃台になったが、これも球状化が緩慢であり90℃台で動作させるための合金型感温素子としての採用には不適であった。 As shown in Table 2 above, when the added amount of bismuth is up to about 7 g, it is smoothly spheroidized at 105 to 115 ° C., and feels like an alloy for operating at 105 to 115 ° C. as with the addition of zinc. Although it was possible to provide a temperature element material, the spheroidizing temperature did not fall below 100 ° C. even when the amount of bismuth added was increased to 10 g, and the spheroidization was slow, which was unsuitable for use. With the addition of 15 g, the spheroidizing temperature finally reached 98 ° C. and in the 90 ° C. range, but this spheroidization was slow and it was unsuitable for use as an alloy type thermosensitive element for operation at the 90 ° C. level. It was.
そして、本発明者はさらなる鋭意研究の結果、上記ベース合金に対してビスマスと亜鉛の両方を添加することが有効であることを見出した。 As a result of further intensive studies, the present inventor has found that it is effective to add both bismuth and zinc to the base alloy.
そして、インジウム52重量%、錫48重量%で構成されるベース合金100gに対して、亜鉛を0.5〜5g添加し、さらにビスマスを0.1〜10g添加した合金を調整し、下記の表3および表4に示すサンプルを得た。 Then, an alloy in which 0.5 to 5 g of zinc and 0.1 to 10 g of bismuth are further added to 100 g of a base alloy composed of 52 wt% indium and 48 wt% tin is prepared as shown in the following table. 3 and the samples shown in Table 4 were obtained.
上記各サンプルを線状に加工し、フラックスを塗布して、温度制御可能なプレートの上に置いて加熱し溶融・球状化させ、近傍のプレート表面の温度を読み取り球状化温度を測定し、球状化のスムーズ度を観測したところ、下記の表3および表4の結果を得た。 Each of the above samples is processed into a linear shape, flux is applied, placed on a temperature-controllable plate, heated to melt and spheroidize, the temperature of the nearby plate surface is read, the spheroidizing temperature is measured, and the spherical shape is measured. As a result, the results shown in Tables 3 and 4 below were obtained.
このように、本発明では、インジウム52重量%、錫48重量%で構成されるベース合金100重量部に対して、亜鉛を1重量部以上5重量部未満添加し、さらにビスマスを5重量部以上9重量部未満添加した。この合金型感温素子材料により、球状化温度を90〜105℃で制御し、この温度範囲で動作する温度ヒューズが得られた。 Thus, in the present invention, zinc is added in an amount of 1 to 5 parts by weight and bismuth is 5 parts by weight or more to 100 parts by weight of a base alloy composed of 52% by weight of indium and 48% by weight of tin. Less than 9 parts by weight were added. With this alloy type thermosensitive element material, a spheroidizing temperature was controlled at 90 to 105 ° C., and a thermal fuse operating in this temperature range was obtained.
なお、亜鉛の添加量が1重量部未満では、球状化温度が100℃以下まで低下せず、反対に5重量部以上だと、球状化がスムーズに起こり難くなる。また、ビスマスの添加量が5重量部未満では、球状化温度が100℃以下まで低下せず、反対に9重量部以上では、球状化がスムーズに起こり難くなる。 In addition, if the addition amount of zinc is less than 1 part by weight, the spheroidization temperature does not decrease to 100 ° C. or less, and conversely if it is 5 parts by weight or more, spheroidization is difficult to occur. On the other hand, if the amount of bismuth added is less than 5 parts by weight, the spheroidization temperature does not decrease to 100 ° C. or less, whereas if it is 9 parts by weight or more, spheroidization does not occur smoothly.
この実施例の場合も、上記インジウム52重量%、錫48重量%を基準値とする合金は、上記基準の組成を挟んで球状化に差し支えない範囲で組成を若千の変動させて使用することができる。例えば、インジウム54重量%、錫46重量%としても、融点はほとんど変化せず、固液共存相の温度幅が狭いため、球状化に問題は無く使用することができる。また、インジウム50重量%、錫50重量%としても同様に、融点はほとんど変化せず、固液共存相の温度幅が狭いため、球状化に問題は無く使用することができる。 Also in this example, the alloy having the reference values of 52% by weight of indium and 48% by weight of tin should be used with the composition varied by a few thousand within a range that may cause spheroidization with the composition of the reference in between. Can do. For example, even if 54% by weight of indium and 46% by weight of tin are used, the melting point hardly changes and the temperature range of the solid-liquid coexisting phase is narrow. Similarly, even when 50 wt% indium and 50 wt% tin are used, the melting point hardly changes and the temperature range of the solid-liquid coexisting phase is narrow.
そして、上記ベースの合金は、インジウム52±5重量%、残部が錫で構成される合金とすれば、球状化に問題は無く使用することができる。このベース合金100重量部に対して亜鉛を1重量部以上5重量部未満添加し、さらにビスマスを5重量部以上9重量部未満添加することにより、インジウム41.2〜53.8重量%、錫37.7〜50重量%、亜鉛0.9〜4.3重量%、ビスマス4.7〜7.8重量%、残部が不可避的不純物からなる組成範囲である本発明の合金型感温素子材料が得られた。 If the alloy of the base is an alloy composed of 52 ± 5% by weight of indium and the balance of tin, the spheroidization can be used without any problem. By adding 1 to 5 parts by weight of zinc to 100 parts by weight of this base alloy, and further adding 5 to 9 parts by weight of bismuth, 41.2 to 53.8% by weight of indium, tin Alloy type thermosensitive element material of the present invention having a composition range of 37.7 to 50% by weight, zinc 0.9 to 4.3% by weight, bismuth 4.7 to 7.8% by weight, and the balance consisting of inevitable impurities was gotten.
インジウム52重量%、錫48重量%で構成される合金1000gに対して、亜鉛を30g、ビスマスを70gの割合で添加した合金(In:47.27重量%−Sn:43.64重量%−Zn:2.73重量%−Bi:6.36重量%)を直径φ0.8mmの線に押し出し加工し、6mmに切断したものの両端に、直径φ0.6mmの錫メッキ銅線を溶着し、この合金部にフラックスを塗布した後、外径φ3mm、内径φ2mm,長さ10mmの筒状セラミックケースに挿入し、セラミックケース両端の開口部を熱硬化性エポキシ樹脂で封止したものをIEC60691に規定された方法で動作温度を測定した。下記の表5はその結果である。表5からわかるように、動作温度98.5℃を中心として98〜99℃の範囲内で動作していることがわかる。 An alloy (In: 47.27 wt% -Sn: 43.64 wt% -Zn) with an addition of 30 g of zinc and 70 g of bismuth to 1000 g of an alloy composed of 52 wt% indium and 48 wt% tin. : 2.73 wt%-Bi: 6.36 wt%) was extruded into a wire with a diameter of φ0.8 mm, and a tin-plated copper wire with a diameter of φ0.6 mm was welded to both ends of the cut piece. After applying flux to the part, it was inserted into a cylindrical ceramic case having an outer diameter of 3 mm, an inner diameter of 2 mm, and a length of 10 mm, and the openings at both ends of the ceramic case were sealed with a thermosetting epoxy resin as defined in IEC60691 The operating temperature was measured by the method. Table 5 below shows the results. As can be seen from Table 5, it can be seen that the device operates within a range of 98 to 99 ° C. with an operating temperature of 98.5 ° C. as the center.
つぎに、インジウム52重量%、錫48重量%を基準組成とするベース合金のインジウムと錫の組成を変化させて効果を確認した。 Next, the effect was confirmed by changing the composition of indium and tin in the base alloy having 52% by weight of indium and 48% by weight of tin as reference compositions.
まず、インジウム配合比を47重量%〜57重量%の間で変化させて残部を錫としたベース合金を調整し、各ベース合金100重量部に対して亜鉛を3重量部添加したサンプルを得た。 First, a base alloy in which the indium blending ratio was changed between 47 wt% and 57 wt% to make the balance tin was prepared, and a sample in which 3 wt parts of zinc was added to 100 wt parts of each base alloy was obtained. .
上記各サンプルを線状に加工し、フラックスを塗布して、温度制御可能なプレートの上に置いて加熱し溶融・球状化させ、近傍のプレート表面の温度を読み取り球状化温度を測定し、球状化のスムーズ度を観測したところ、下記の表6の結果を得た。 Each of the above samples is processed into a linear shape, flux is applied, placed on a temperature-controllable plate, heated to melt and spheroidize, the temperature of the nearby plate surface is read, the spheroidizing temperature is measured, and the spherical shape is measured. When the smoothness of crystallization was observed, the results shown in Table 6 below were obtained.
つぎに、インジウム配合比を47重量%〜57重量%の間で変化させて残部を錫としたベース合金を調整し、各ベース合金100重量部に対して亜鉛を1重量部、ビスマスを6重量部添加したサンプルを得た。 Next, the base alloy with tin as the balance is adjusted by changing the indium blending ratio between 47 wt% and 57 wt%, and 1 wt part of zinc and 6 wt% of bismuth with respect to 100 wt parts of each base alloy. A partially added sample was obtained.
上記各サンプルを線状に加工し、フラックスを塗布して、温度制御可能なプレートの上に置いて加熱し溶融・球状化させ、近傍のプレート表面の温度を読み取り球状化温度を測定し、球状化のスムーズ度を観測したところ、下記の表7の結果を得た。 Each of the above samples is processed into a linear shape, flux is applied, placed on a temperature-controllable plate, heated to melt and spheroidize, the temperature of the nearby plate surface is read, the spheroidizing temperature is measured, and the spherical shape is measured. When the smoothness of crystallization was observed, the results shown in Table 7 below were obtained.
これらの結果から、ベースの合金組成としてIn52±5重量%、残部Snをベースの合金とすれば問題なく使用できることがわかった。 From these results, it was found that if the base alloy composition is In52 ± 5 wt% and the remaining Sn is the base alloy, it can be used without any problem.
1:温度ヒューズ
2:リード導体
3:ヒューズエレメント
4:可溶合金
5:フラックス
6:絶縁ケース
7:封止樹脂
1: thermal fuse 2: lead conductor 3: fuse element 4: fusible alloy 5: flux 6: insulating case 7: sealing resin
Claims (4)
An alloy having a composition in which zinc is added by 1 to 5 parts by weight and bismuth by 5 to 9 parts by weight with respect to 100 parts by weight of an alloy composed of 52 ± 5% by weight of indium and the balance of tin. A thermal fuse characterized by using a type thermosensitive material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005117798A JP2006299289A (en) | 2005-04-15 | 2005-04-15 | Alloy type temperature-sensitive element material, and temperature fuse using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005117798A JP2006299289A (en) | 2005-04-15 | 2005-04-15 | Alloy type temperature-sensitive element material, and temperature fuse using the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006299289A true JP2006299289A (en) | 2006-11-02 |
Family
ID=37467942
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005117798A Pending JP2006299289A (en) | 2005-04-15 | 2005-04-15 | Alloy type temperature-sensitive element material, and temperature fuse using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006299289A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007113050A (en) * | 2005-10-19 | 2007-05-10 | Senju Metal Ind Co Ltd | Alloy for thermal fuse |
JP2008153144A (en) * | 2006-12-20 | 2008-07-03 | Matsushita Electric Ind Co Ltd | Thermal fuse and manufacturing method thereof |
JP2010172903A (en) * | 2009-01-27 | 2010-08-12 | Nec Schott Components Corp | Thermosensitive material and method for manufacturing the same, thermal fuse, and circuit protection element |
-
2005
- 2005-04-15 JP JP2005117798A patent/JP2006299289A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007113050A (en) * | 2005-10-19 | 2007-05-10 | Senju Metal Ind Co Ltd | Alloy for thermal fuse |
JP2008153144A (en) * | 2006-12-20 | 2008-07-03 | Matsushita Electric Ind Co Ltd | Thermal fuse and manufacturing method thereof |
JP2010172903A (en) * | 2009-01-27 | 2010-08-12 | Nec Schott Components Corp | Thermosensitive material and method for manufacturing the same, thermal fuse, and circuit protection element |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4001757B2 (en) | Alloy type temperature fuse | |
EP1343187B1 (en) | Alloy type thermal fuse and fuse element thereof | |
JP3841257B2 (en) | Alloy type temperature fuse | |
JP4369008B2 (en) | Alloy type temperature fuse | |
JP2819408B2 (en) | Alloy type temperature fuse | |
JP2004055164A (en) | Alloy type thermal fuse and wire material for thermal fuse element | |
JP2004043894A (en) | Alloy type thermal fuse and wire member for thermal fuse element | |
JP2006299289A (en) | Alloy type temperature-sensitive element material, and temperature fuse using the same | |
JP4409705B2 (en) | Alloy type temperature fuse | |
JP4409747B2 (en) | Alloy type thermal fuse | |
JP3885995B2 (en) | Thermal fuse | |
WO2016072253A1 (en) | Circuit element and method for manufacturing circuit element | |
EP1343186B1 (en) | Alloy type thermal fuse and fuse element thereof | |
JP4946419B2 (en) | Thermal fuse and manufacturing method thereof | |
JP2005276577A (en) | Fusible alloy type thermal fuse | |
JP2005285561A (en) | Use method for alloy-type temperature fuse, and the alloy-type temperature fuse | |
JP2004247269A (en) | Tubular casing type alloyed thermal fuse | |
JP4222055B2 (en) | Alloy for thermal fuse | |
JPH06342620A (en) | Thermal fuse | |
JP2007113024A (en) | Fusible alloy type thermal fuse | |
JP2005019179A (en) | Thermal fuse | |
JP2000182492A (en) | Alloy-type temperature fuse | |
JPH1140025A (en) | Thermal alloy fuse | |
JP2007031775A (en) | Pb-free fusible alloy type thermal fuse | |
JP2010077459A (en) | Element for thermal fuse, and alloy-type thermal fuse |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Effective date: 20080617 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20081021 |