[go: up one dir, main page]

JP2003109597A - Electrode material and manufacturing method thereof, electrode and battery - Google Patents

Electrode material and manufacturing method thereof, electrode and battery

Info

Publication number
JP2003109597A
JP2003109597A JP2001294817A JP2001294817A JP2003109597A JP 2003109597 A JP2003109597 A JP 2003109597A JP 2001294817 A JP2001294817 A JP 2001294817A JP 2001294817 A JP2001294817 A JP 2001294817A JP 2003109597 A JP2003109597 A JP 2003109597A
Authority
JP
Japan
Prior art keywords
electrode
water
electrode material
binder
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001294817A
Other languages
Japanese (ja)
Other versions
JP4050024B2 (en
Inventor
Keiko Matsubara
恵子 松原
Toshiaki Tsuno
利章 津野
Teru Takakura
輝 高椋
Kiin Chin
揆允 沈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung SDI Co Ltd
Original Assignee
Samsung SDI Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung SDI Co Ltd filed Critical Samsung SDI Co Ltd
Priority to JP2001294817A priority Critical patent/JP4050024B2/en
Priority to KR10-2002-0014073A priority patent/KR100441525B1/en
Priority to CNB021414491A priority patent/CN100438142C/en
Priority to US10/251,671 priority patent/US6869730B2/en
Publication of JP2003109597A publication Critical patent/JP2003109597A/en
Application granted granted Critical
Publication of JP4050024B2 publication Critical patent/JP4050024B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrode material with high charging/discharging capacity and excellent cycle property. SOLUTION: An active material is bound by a binder containing water-soluble aniline group conductive polymer, rubber group latex, and water-soluble polymer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、リチウム二次電池
等に好適に使用できる電極材料及びその製造方法、電極
並びに電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode material suitable for a lithium secondary battery and the like, a method for producing the same, an electrode and a battery.

【0002】[0002]

【従来の技術】小型軽量化及び高性能化が進んでいる携
帯電子機器のニーズに応えるため、リチウム二次電池の
高容量化が急務となっている。リチウム二次電池の高容
量化のためには活物質の単位重量あたりの容量を増加さ
せることはもちろん重要であるが、極板内の活物質以外
の割合を極力減らし、活物質をより多く入れることがで
きるようにすることも重要である。
2. Description of the Related Art In order to meet the needs of portable electronic devices, which are becoming smaller and lighter and have higher performance, there is an urgent need to increase the capacity of lithium secondary batteries. Increasing the capacity per unit weight of the active material is of course important for increasing the capacity of the lithium secondary battery, but reduce the proportion of the active material other than the active material in the electrode plate as much as possible and add more active material. It is also important to be able to do so.

【0003】現在負極板の結着剤として広く用いられて
いるポリフッ化ビニリデン(PVdF)は、N-メチル-2
-ピロリドンのような有機溶剤に溶解する樹脂である。
PVdFは、本来は接着剤ではないが、黒鉛材料との相
性が良く、これを概ね黒鉛の8〜10%程度添加することに
よって高い結着力をもった極板を作成することが可能と
なる。しかし、PVdFは繊維が密に詰まったような状
態で活物質を覆うため、容量、効率ともに活物質が本来
持っている電池性能を低下させる要因となる。また、活
物質へのリチウムイオンの円滑な挿入・脱離が行われる
ためには、電極のインピーダンスを極力低下させること
が有用な手段であるが、一般的に結着剤は非導電性物質
であるため、出来る限り結着剤の量を減らすとともに、
結着剤そのものの導電性を向上させる必要がある。導電
性高分子を結着剤に組み入れることができれば、従来の
結着剤では得られない電池特性を得ることができる可能
性がある。また、PVdFは高い接着力を有するものの
柔軟性に乏しい。そのため、天然黒鉛のように面間隔が
狭く、充放電による膨張収縮率が高い材料を活物質とし
て用いると、結合が破壊されてサイクル特性が低下しや
すい傾向がある。そこで、結着剤に弾性を付与し、充放
電にともなう膨脹収縮を柔軟に吸収するさせる必要があ
る。さらに、PVdFのように溶剤系結着剤の場合は、
安全性や製造時の溶剤回収などの問題点があるため、水
系の結着剤であることが望まれている。
Polyvinylidene fluoride (PVdF), which is currently widely used as a binder for negative electrode plates, is N-methyl-2.
-A resin that dissolves in organic solvents such as pyrrolidone.
PVdF is not originally an adhesive, but has good compatibility with a graphite material, and by adding approximately 8% to 10% of graphite, it becomes possible to prepare an electrode plate having a high binding force. However, PVdF covers the active material in a state in which the fibers are densely packed, and thus both the capacity and the efficiency are factors that reduce the battery performance originally possessed by the active material. Further, in order to smoothly insert and release lithium ions into and from the active material, it is a useful means to reduce the impedance of the electrode as much as possible, but generally the binder is a non-conductive material. Therefore, while reducing the amount of binder as much as possible,
It is necessary to improve the conductivity of the binder itself. If the conductive polymer can be incorporated into the binder, it may be possible to obtain battery characteristics that cannot be obtained with conventional binders. Further, PVdF has high adhesive strength, but is poor in flexibility. Therefore, when a material such as natural graphite having a narrow surface spacing and a high expansion / shrinkage rate due to charging / discharging is used as the active material, the bond tends to be broken and the cycle characteristics tend to deteriorate. Therefore, it is necessary to impart elasticity to the binder so as to flexibly absorb expansion and contraction due to charge and discharge. Furthermore, in the case of a solvent-based binder such as PVdF,
Because of problems such as safety and solvent recovery during production, it is desired that the binder be an aqueous binder.

【0004】一方、リチウム電池用に使用されている水
系結着剤としては、スチレン−ブタジエンゴム(SB
R)のようなゴム系ラテックスがある。SBRは弾性が
高く、セルロースなどの増粘剤とともに使用することに
より、充放電にともなう電極の膨脹収縮を緩和すること
が期待されているが、これらゴム系ラテックス結着剤は
点接着であり、PVdFに比べ活物質との接触面積が狭
い。そのため、接着力が弱く、極板からの活物質の脱落
や活物質同士の結着性の低下を招やすく、サイクル特性
がPVdFに比べ劣る傾向がある。特に、人造黒鉛は一
般的に比表面積が小さい上に濡れ性が悪く、人造黒鉛の
結着剤としてゴム系ラテックスと増粘剤のみの合材を用
いた場合、数100回以上の充放電に耐える十分な接着性
を得ることは難しい。
On the other hand, as a water-based binder used for lithium batteries, styrene-butadiene rubber (SB
There are rubber latexes such as R). SBR has a high elasticity, and it is expected to reduce expansion and contraction of the electrode due to charging and discharging by using it together with a thickener such as cellulose. However, these rubber-based latex binders are point-adhesive, The contact area with the active material is smaller than that of PVdF. Therefore, the adhesive strength is weak, the active material is likely to come off from the electrode plate, the binding property between the active materials is deteriorated, and the cycle characteristics tend to be inferior to PVdF. In particular, artificial graphite generally has a small specific surface area and poor wettability, and when a mixture of rubber latex and a thickener is used as a binder for artificial graphite, charging and discharging is performed several hundred times or more. It is difficult to obtain sufficient adhesion to withstand.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記事情に
鑑みてなされたものであって、活物質間あるいは活物質
と集電体の結着性に優れ、柔軟性を備え、高い充放電容
量と優れたサイクル特性を備えると共に安全性や溶剤回
収の問題もない電極材料及びその製造方法を提供し、ま
たこの電極材料を有する負極電極及びリチウム二次電池
を提供することを課題とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and is excellent in the binding property between active materials or between an active material and a current collector, has flexibility, and has high charge / discharge. It is an object of the present invention to provide an electrode material having a capacity and excellent cycle characteristics and having no problems of safety and solvent recovery and a method for producing the same, and to provide a negative electrode and a lithium secondary battery having the electrode material.

【0006】[0006]

【課題を解決するための手段】本発明者らは、上記課題
を検討した結果、水溶性アニリン系導電性高分子と水溶
性高分子とを含む結着剤が、従来の結着剤に代わる有効
な結着剤であることを見出した。また、本発明者らはさ
らに検討を進めた結果、水溶性アニリン系導電性高分子
及び水溶性高分子に、さらにゴム系ラテックスを加える
と、充放電に伴う活物質の膨張収縮を吸収する柔軟性も
兼ね備え、サイクル特性に優れた電極を作成できる結着
剤となることを見出した。
As a result of examining the above problems, the present inventors have found that a binder containing a water-soluble aniline-based conductive polymer and a water-soluble polymer replaces the conventional binder. It was found to be an effective binder. In addition, as a result of further study by the present inventors, when a rubber-based latex was further added to the water-soluble aniline-based conductive polymer and the water-soluble polymer, the flexibility of absorbing expansion and contraction of the active material due to charge and discharge was observed. It has been found that the binder also has excellent properties and can be used to form an electrode having excellent cycle characteristics.

【0007】すなわち、本発明の電極材料は、活物質と
結着剤とを含む電極材料であって、前記結着剤が、水溶
性アニリン系導電性高分子とゴム系ラテックスと水溶性
高分子とを含むことを特徴とする。水系結着剤は一般的
にセルロースなどの水溶性高分子を増粘剤として使用す
るが、本発明では、水溶性高分子は単なる増粘剤として
の役割だけでなく、水溶性アニリン系導電性高分子と併
用することにより高い接着性を生み出す結着剤としての
役割を担っている。さらにゴム系ラテックスを併用する
ことにより、柔軟性を向上させることができる。係る電
極材料においては、従来の結着剤を使用する場合と比較
して、半分以下の結着剤の使用で充分な結着性を持たせ
ることができる。そのため、活物質が有効に機能し、単
位重量あたりの充放電容量が増加するとともに、結着剤
が少ない分、より多くの活物質を電極に使用することが
できるために、電池全体の容量が増加する。また、ゴム
系ラテックスを併用することにより、結着剤が柔軟性に
富むため、充放電に伴う活物質の膨張収縮を吸収するこ
とができ、優れたサイクル特性を備える電極材料とする
ことができる。また、水系の結着剤であるので、安全性
や溶剤回収の問題を解消することができる。
That is, the electrode material of the present invention is an electrode material containing an active material and a binder, wherein the binder is a water-soluble aniline-based conductive polymer, a rubber-based latex, and a water-soluble polymer. It is characterized by including and. A water-based binder generally uses a water-soluble polymer such as cellulose as a thickener, but in the present invention, the water-soluble polymer not only serves as a thickener but also has a water-soluble aniline-based conductive property. It plays a role as a binder that produces high adhesiveness when used in combination with a polymer. Further, by using a rubber-based latex together, flexibility can be improved. In such an electrode material, sufficient binding properties can be provided by using less than half the amount of the binder as compared with the case of using the conventional binder. Therefore, the active material functions effectively, the charge / discharge capacity per unit weight increases, and more active material can be used for the electrode due to the smaller amount of the binder, so that the capacity of the entire battery is reduced. To increase. In addition, by using the rubber-based latex together, the binder is rich in flexibility, so that the expansion and contraction of the active material due to charge and discharge can be absorbed, and an electrode material having excellent cycle characteristics can be obtained. .. Further, since it is a water-based binder, it is possible to solve the problems of safety and solvent recovery.

【0008】また、本発明の電極材料の製造方法は、活
物質と、水溶性アニリン系導電性高分子、ゴム系ラテッ
クス及び水溶性高分子を含む結着剤と、水とを混練した
後、乾燥させることを特徴とする。係る電極材料の製造
方法によれば、従来の結着剤を使用する場合と比較し
て、半分以下の結着剤の使用で充分な結着性を持たせる
ことができる。また、結着剤が柔軟性に富むため、充放
電に伴う活物質の膨張収縮を吸収することができる。ま
た、導電性高分子ポリアニリンを含有しているため、リ
チウムイオンの挿入・脱離が円滑に行われ、高い電流密
度での充放電においてもサイクル劣化を抑制できる。そ
のため、高い充放電容量と優れたサイクル特性を備える
電極材料とすることができる。また、溶媒として水を使
用するので、安全性や溶剤回収の問題を解消することが
できる。
In the method for producing an electrode material of the present invention, after kneading an active material, a water-soluble aniline-based conductive polymer, a binder containing a rubber-based latex and a water-soluble polymer, and water, It is characterized by being dried. According to such a method for manufacturing an electrode material, sufficient binding properties can be provided by using less than half the amount of the binder as compared with the case of using the conventional binder. Moreover, since the binder is highly flexible, it is possible to absorb expansion and contraction of the active material due to charge and discharge. Further, since the conductive polymer polyaniline is contained, insertion / desorption of lithium ions are smoothly carried out, and cycle deterioration can be suppressed even in charging / discharging at a high current density. Therefore, an electrode material having high charge / discharge capacity and excellent cycle characteristics can be obtained. Moreover, since water is used as the solvent, the problems of safety and solvent recovery can be solved.

【0009】次に、本発明の電極は、先のいずれかの電
極材料を備えたことを特徴とする。この場合、エネルギ
ー密度が高く、サイクル特性に優れた電極とすることが
できる。特に、これを負極電極として構成した場合に、
高い電池特性を得ることができる。また、本発明の電池
は、かかる電極を、正極及び/又は負極として備えたこ
とを特徴とする。係る電池によれば、エネルギー密度が
高く、サイクル特性に優れた電池とすることができる。
本発明の電池は、リチウム二次電池やニッケル水素電池
等として構成できるが、特にリチウム二次電池として構
成した場合に高い電池特性を得ることができる。
Next, the electrode of the present invention is characterized by including any one of the above electrode materials. In this case, an electrode having high energy density and excellent cycle characteristics can be obtained. Especially when this is configured as a negative electrode,
High battery characteristics can be obtained. Further, the battery of the present invention is characterized by including such an electrode as a positive electrode and / or a negative electrode. According to such a battery, it is possible to obtain a battery having high energy density and excellent cycle characteristics.
The battery of the present invention can be configured as a lithium secondary battery, a nickel hydrogen battery, or the like, and particularly when configured as a lithium secondary battery, high battery characteristics can be obtained.

【0010】[0010]

【発明の実施の形態】以下、本発明の実施の形態を説明
する。本実施形態の電極材料は、活物質を結着剤で結着
したものである。本実施形態に用いる活物質としては、
天然黒鉛、人造黒鉛、天然黒鉛、人造黒鉛、膨脹黒鉛、
炭素繊維、フェノール樹脂焼成品のような難黒鉛炭素
類、アセチレンブラック、ケッチェンブラックなどのカ
ーボンブラック類、カーボンナノチューブ、フラーレ
ン、活性炭、などの炭素および黒鉛材料、さらにはLiと
合金可能なAl, Si,Sn, Ag, Bi, Mg, Zn, In, Ge, Pb, P
d, Pt, Tiなどの金属、およびこれらの元素を含む化合
物、またはこれらの金属および化合物と炭素および黒鉛
材料との複合化物、リチウム含有窒化物がリチウム二次
電池の負極材そして使用可能な材料があげられるが、正
極活物質に対しても本発明の材料を結着剤として使用し
ても差し支えない。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below. The electrode material of this embodiment is obtained by binding an active material with a binder. As the active material used in this embodiment,
Natural graphite, artificial graphite, natural graphite, artificial graphite, expanded graphite,
Carbon fiber, non-graphite carbons such as fired products of phenolic resin, carbon blacks such as acetylene black, Ketjen black, carbon and graphite materials such as carbon nanotubes, fullerenes, activated carbon, and Al that can be alloyed with Li, Si, Sn, Ag, Bi, Mg, Zn, In, Ge, Pb, P
Metals such as d, Pt, and Ti, compounds containing these elements, or composites of these metals and compounds with carbon and graphite materials, and lithium-containing nitrides as negative electrode materials for lithium secondary batteries and usable materials. However, the material of the present invention may be used as a binder for the positive electrode active material.

【0011】本実施形態に用いる結着剤は、水溶性アニ
リン系導電性高分子と水溶性高分子およびゴム系ラテッ
クスとをすべて含むものである。水溶性アニリン系導電
性高分子としては、ポリアニリンスルフォン酸、ポリア
ニリンスルフォン酸、ポリアニリンカルボン酸等を採用
することができるが、ポリアニリンスルフォン酸とする
ことが好ましい。ポリアニリンスルフォン酸はリチウム
二次電池の負極材として一般的に用いられている炭素材
料との相互作用が強く、高い決着性を生み出すことがで
きる。また、これら水溶性アニリン系高分子に含まれる
ポリアニリンは導電性の高分子であり、これを使用した
電極のインピーダンスを他の高分子結着剤を用いた場合
に比べ低減させることができる。ポリアニリンを含有し
た水溶性高分子の作成方法はたとえば特開2000-219739
に示されている。水溶性アニリン系導電性高分子と活物
質だけでは十分な接着力を得ることができないが、これ
と水溶性高分子を混合することにより、活物質間および
活物質と集電体間の高い接着力を得ると同時に、均一な
電極を作成するために必要な粘度および塗工性を与える
ことができる。水溶性高分子を導入することにより接着
性は向上するが、電極の柔軟性は損なわれる。そこで、
ゴム系ラテックスを水溶性アニリン系導電性高分子およ
び水溶性高分子と併用することにより、電極の柔軟性が
非常に向上し、充放電に伴う電極の膨脹収縮を柔軟に吸
収し、その結果優れたサイクル特性を達成することがで
きる。また、上記結着剤は従来の結着剤に比べて少ない
量で十分な接着性をもつため、活物質を有効に活用する
ことによって高い電池容量をえることができる。
The binder used in this embodiment contains all of the water-soluble aniline-based conductive polymer, the water-soluble polymer and the rubber-based latex. As the water-soluble aniline-based conductive polymer, polyaniline sulfonic acid, polyaniline sulfonic acid, polyaniline carboxylic acid and the like can be adopted, but polyaniline sulfonic acid is preferable. Polyaniline sulfonic acid has a strong interaction with a carbon material generally used as a negative electrode material of a lithium secondary battery, and can generate high bondability. Further, polyaniline contained in these water-soluble aniline-based polymers is a conductive polymer, and the impedance of the electrode using this can be reduced as compared with the case of using another polymer binder. A method for producing a water-soluble polymer containing polyaniline is described in, for example, Japanese Patent Laid-Open No. 2000-219739.
Is shown in. Sufficient adhesion cannot be obtained only with the water-soluble aniline conductive polymer and the active material, but by mixing this with the water-soluble polymer, high adhesion between the active material and between the active material and the current collector can be achieved. The force can be obtained while at the same time providing the viscosity and coatability required to create a uniform electrode. By introducing a water-soluble polymer, the adhesiveness is improved, but the flexibility of the electrode is impaired. Therefore,
By using rubber-based latex in combination with water-soluble aniline-based conductive polymer and water-soluble polymer, the flexibility of the electrode is greatly improved, and the expansion and contraction of the electrode due to charge and discharge is flexibly absorbed, resulting in excellent results. It is possible to achieve excellent cycle characteristics. In addition, since the binder has sufficient adhesiveness in a smaller amount than the conventional binders, it is possible to obtain a high battery capacity by effectively utilizing the active material.

【0012】この水溶性アニリン系導電性高分子は、電
極材料全体に対して0.1〜10重量%の比率で含まれ
ることが好ましい。0.1重量%より少ないと活物質間
および活物質と集電体の間の決着力が低下するため好ま
しくなく、10重量%より多い電池容量の低下およびイ
ンピーダンス増加による高電流特性の劣化を招くので好
ましくない。また、結着剤と活物質および水から構成さ
れる塗料の集電体への塗工性も低下するので好ましくな
い。また、より好ましい比率は、0.3〜2重量%であ
る。
The water-soluble aniline-based conductive polymer is preferably contained in the electrode material in a proportion of 0.1 to 10% by weight. If it is less than 0.1% by weight, the binding force between the active materials and between the active material and the current collector is reduced, which is not preferable, and the amount of more than 10% by weight is lowered and the high current characteristics are deteriorated due to an increase in impedance. It is not preferable. Further, the coating property of the coating material composed of the binder, the active material and water on the current collector is also deteriorated, which is not preferable. Further, a more preferable ratio is 0.3 to 2% by weight.

【0013】また、水溶性高分子としては、ポリビニル
アルコール、カルボキシメチルセルロース、ポリビニル
ピロリドン、ポリアクリル酸、ポリメタクリル酸、ポリ
エチレンオキシド、ポリアクリルアミド、ポリ−N−イ
ソプロピルアクリルアミド、ポリ−N,N−ジメチルア
クリルアミド、ポリエチレンイミン、ポリオキシエチレ
ン、ポリ(2−メトキシエトキシエチレン)、ポリ(3
−モルフィリニルエチレン)、ポリビニルスルホン酸、
ポリビニリデンフルオライド、アミロース、等が挙げら
れるが、ポリビニルアルコールとすることが好ましい。
ポリビニルアルコールは充放電に伴う劣化や析出物がな
く、安定した充放電が行われ、高い充放電容量と優れた
サイクル特性を達成することができる。
As the water-soluble polymer, polyvinyl alcohol, carboxymethyl cellulose, polyvinyl pyrrolidone, polyacrylic acid, polymethacrylic acid, polyethylene oxide, polyacrylamide, poly-N-isopropylacrylamide, poly-N, N-dimethylacrylamide. , Polyethyleneimine, polyoxyethylene, poly (2-methoxyethoxyethylene), poly (3
-Morphinyl ethylene), polyvinyl sulfonic acid,
Polyvinylidene fluoride, amylose and the like can be mentioned, but polyvinyl alcohol is preferable.
Polyvinyl alcohol is free from deterioration and deposits associated with charge and discharge, can be stably charged and discharged, and can achieve high charge and discharge capacity and excellent cycle characteristics.

【0014】この水溶性高分子は、前記電極材料に対し
て0.1〜10重量%の比率で含まれることが好まし
い。0.1重量%より少ないと結着剤と活物質および水
からなる塗料の粘度が低すぎて均一な電極を作成するこ
とが難しく、結着性も低下する。また10重量%より多
いと逆に粘度が上がりすぎて塗工性が著しく低下すると
ともに、電極の柔軟性も低下し、さらに電極内の活物質
の割合が減少することによる電池容量の低減を招くので
好ましくない。より好ましい比率は、0.3〜3重量%
である。
The water-soluble polymer is preferably contained in the electrode material in a ratio of 0.1 to 10% by weight. If it is less than 0.1% by weight, the viscosity of the coating material comprising the binder, the active material and water is too low to make it difficult to form a uniform electrode, and the binding property is also lowered. On the other hand, if the content is more than 10% by weight, the viscosity will be excessively increased, the coatability will be remarkably lowered, the flexibility of the electrode will be lowered, and the ratio of the active material in the electrode will be reduced, resulting in reduction of the battery capacity. It is not preferable. A more preferable ratio is 0.3 to 3% by weight.
Is.

【0015】また、ゴム系ラテックスとしては、スチレ
ンブタジエンゴム、ニトリルブタジエンゴム、メチルメ
タクリレートブタジエンゴム、クロロブレンゴム等を採
用することかできるが、スチレンブタジエンゴムとする
ことが好ましい。これにより、高い柔軟性の電極が作成
でき、優れたサイクル特性を達成することができる。
As the rubber latex, styrene-butadiene rubber, nitrile-butadiene rubber, methylmethacrylate-butadiene rubber, chlorobrene rubber or the like can be adopted, but styrene-butadiene rubber is preferable. Thereby, a highly flexible electrode can be prepared and excellent cycle characteristics can be achieved.

【0016】このゴム系ラテックスは、前記電極材料に
対して0.1〜10重量%の比率で含まれることが好ま
しい。0.1重量%より少ないと十分な柔軟性を得るこ
とができず、10重量%より多いと逆に電極が固くなっ
てしまう。また結着剤の合計量が増えるために電池容量
の低下を招くので好ましくない
This rubber-based latex is preferably contained in a proportion of 0.1 to 10% by weight based on the electrode material. If it is less than 0.1% by weight, sufficient flexibility cannot be obtained, and if it is more than 10% by weight, the electrode is hardened. In addition, the total amount of the binder increases, which causes a decrease in battery capacity, which is not preferable.

【0017】また、水溶性アニリン系導電性高分子と水
溶性高分子とゴム系ラテックスの合計量は、前記電極材
料に対して10重量%以下の比率、より好ましくは5%以
下の比率で含まれることが好ましい。10重量%より多
いと電極インピーダンスの増大、電池容量の低下を招く
とともに、電極の柔軟性も損なわれるので好ましくな
い。
The total amount of the water-soluble aniline-based conductive polymer, the water-soluble polymer and the rubber-based latex is 10% by weight or less, more preferably 5% or less with respect to the electrode material. Preferably. When it is more than 10% by weight, the electrode impedance increases, the battery capacity decreases, and the flexibility of the electrode is impaired, which is not preferable.

【0018】また、本実施形態の電極材料には、活物質
と結着剤との他に、カーボンブラック、気相成長炭素繊
維などの導電剤、および電池特性向上のため金属、金属
化合物、酸化物等他の成分を必要に応じて加えても差し
支えない。
The electrode material of this embodiment includes, in addition to the active material and the binder, a conductive agent such as carbon black and vapor grown carbon fiber, and a metal, a metal compound, and an oxide for improving the battery characteristics. Other ingredients such as things may be added if necessary.

【0019】本実施形態の電極材料は、電極材料と水と
を混練したペーストを乾燥することにより製造できる。
この乾燥は、実際上は負極電極の集電体上でなされる。
すなわち、電極材料と水とを混練りしたペーストを金属
箔若しくは金属網からなる集電体に塗布して乾燥するこ
とにより、負極電極が構成できる。この乾燥にあたり、
結着剤に用いる水溶性高分子がポリビニルアルコールで
ある場合は、乾燥温度を150℃以下とすることが好ま
しい。150℃より高い温度で乾燥すると、ポリビニル
アルコールが分解してしまうとともに、水溶性アニリン
系高分子由来の電気抵抗が増加するために好ましくな
い。
The electrode material of the present embodiment can be manufactured by drying a paste prepared by kneading the electrode material and water.
This drying is actually done on the current collector of the negative electrode.
That is, a negative electrode can be formed by applying a paste prepared by kneading an electrode material and water onto a current collector made of a metal foil or a metal net and drying the paste. In this drying,
When the water-soluble polymer used for the binder is polyvinyl alcohol, the drying temperature is preferably 150 ° C or lower. Drying at a temperature higher than 150 ° C. is not preferable because the polyvinyl alcohol is decomposed and the electric resistance derived from the water-soluble aniline-based polymer increases.

【0020】本実施形態の電極材料によれば、従来の結
着剤を使用する場合と比較して、半分以下の結着剤の使
用で充分な結着性を持たせることができる。そのため、
高い電池容量を得ることが出来る。また柔軟性に富んで
いるため、優れたサイクル特性を備える電極材料とする
ことができる。また、導電性高分子ポリアニリンを含有
しているため、リチウムイオンの挿入・脱離が円滑に行
われ、高い電流密度での充放電においてもサイクル劣化
を抑制できる。また、水系の結着剤であるので、安全性
や溶剤回収の問題を解消することができる。なお、上記
実施形態の電極材料は、負極材料として説明したが、上
記結着剤を使用して正極材料として構成できることはも
ちろんである。
According to the electrode material of the present embodiment, it is possible to provide sufficient binding property by using less than half the amount of the binder as compared with the case of using the conventional binder. for that reason,
A high battery capacity can be obtained. Further, since it is highly flexible, it can be an electrode material having excellent cycle characteristics. Further, since the conductive polymer polyaniline is contained, insertion / desorption of lithium ions are smoothly carried out, and cycle deterioration can be suppressed even in charging / discharging at a high current density. Further, since it is a water-based binder, it is possible to solve the problems of safety and solvent recovery. Although the electrode material of the above embodiment is described as a negative electrode material, it is needless to say that the electrode material can be configured as a positive electrode material by using the binder.

【0021】次に、本実施形態の負極電極は、上述のよ
うに、集電体上に本実施形態の電極材料を塗布乾燥した
ものである。負極電極は、特に限定されないが、負極端
子も兼ねる負極缶の底部に着設されている。
Next, the negative electrode of this embodiment is obtained by applying the electrode material of this embodiment onto the current collector and drying it, as described above. The negative electrode is not particularly limited, but is attached to the bottom of the negative electrode can that also serves as the negative electrode terminal.

【0022】また、本実施形態のリチウム二次電池は、
この負極電極と、リチウムの吸蔵・放出が可能な正極電
極、及び有機電解質とにより構成することができる。正
極電極としては、例えば、LiMn24、LiCo
2、LiNiO2、LiFeO2、V25、TiS、M
oS等のリチウムの吸蔵、放出が可能な正極電極材料
や、有機ジスルフィド化合物または有機ポリスルフィド
化合物等の正極電極材料を含むものが例示できる。正極
電極も、特に限定されないが、正極端子も兼ねる正極缶
の底部に着設されている。
Further, the lithium secondary battery of this embodiment is
This negative electrode, a positive electrode capable of inserting and extracting lithium, and an organic electrolyte can be used. Examples of the positive electrode include LiMn 2 O 4 and LiCo
O 2 , LiNiO 2 , LiFeO 2 , V 2 O 5 , TiS, M
Examples thereof include a positive electrode material capable of inserting and extracting lithium such as oS and a positive electrode material such as an organic disulfide compound or an organic polysulfide compound. The positive electrode is also not particularly limited, but is attached to the bottom of the positive electrode can that also serves as the positive electrode terminal.

【0023】有機電解質としては、例えば、非プロトン
性溶媒にリチウム塩が溶解されてなる有機電解液を例示
できる。非プロトン性溶媒としては、プロピレンカーボ
ネート、エチレンカーボネート、ブチレンカーボネー
ト、ベンゾニトリル、アセトニトリル、テトラヒドロフ
ラン、2−メチルテトラヒドロフラン、γ−ブチロラク
トン、ジオキソラン、4−メチルジオキソラン、N、N
−ジメチルホルムアミド、ジメチルアセトアミド、ジメ
チルスルホキシド、ジオキサン、1,2−ジメトキシエ
タン、スルホラン、ジクロロエタン、クロロベンゼン、
ニトロベンゼン、ジメチルカーボネート、メチルエチル
カーボネート、ジエチルカーボネート、メチルプロピル
カーボネート、メチルイソプロピルカーボネート、エチ
ルブチルカーボネート、ジプロピルカーボネート、ジイ
ソプロピルカーボネート、ジブチルカーボネート、ジエ
チレングリコール、ジメチルエーテル等の非プロトン性
溶媒、あるいはこれらの溶媒のうちの二種以上を混合し
た混合溶媒を例示でき、特にプロピレンカーボネート、
エチレンカーボネート、ブチレンカーボネートのいずれ
か1つを必ず含むとともにジメチルカーボネート、メチ
ルエチルカーボネート、ジエチルカーボネートのいずれ
か1つを必ず含むことが好ましい。
As the organic electrolyte, for example, an organic electrolyte solution in which a lithium salt is dissolved in an aprotic solvent can be exemplified. Examples of the aprotic solvent include propylene carbonate, ethylene carbonate, butylene carbonate, benzonitrile, acetonitrile, tetrahydrofuran, 2-methyltetrahydrofuran, γ-butyrolactone, dioxolane, 4-methyldioxolane, N, N.
-Dimethylformamide, dimethylacetamide, dimethylsulfoxide, dioxane, 1,2-dimethoxyethane, sulfolane, dichloroethane, chlorobenzene,
Aprotic solvent such as nitrobenzene, dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, methyl propyl carbonate, methyl isopropyl carbonate, ethyl butyl carbonate, dipropyl carbonate, diisopropyl carbonate, dibutyl carbonate, diethylene glycol, dimethyl ether, etc., or these solvents A mixed solvent obtained by mixing two or more of the above can be exemplified, and particularly propylene carbonate,
It is preferable that at least one of ethylene carbonate and butylene carbonate is always contained and at least one of dimethyl carbonate, methyl ethyl carbonate and diethyl carbonate is always contained.

【0024】また、リチウム塩としては、LiPF6
LiBF4、LiSbF6、LiAsF6、LiClO4
LiCF3SO3、Li(CF3SO22N、LiC49
SO3、LiSbF6、LiAlO4、LiAlCl4、Li
N(Cx2x+1SO2)(Cy2 y十1SO2)(ただし
x、yは自然数)、LiCl、LiI等のうちの1種ま
たは2種以上のリチウム塩を混合させてなるものを例示
でき、特にLiPF6、LiBF4のいずれか1つを含む
ものが好ましい。またこの他に、リチウム二次電池の有
機電解液として従来から知られているものを用いること
もできる。
Further, as the lithium salt, LiPF 6 ,
LiBF 4, LiSbF 6, LiAsF 6 , LiClO 4,
LiCF 3 SO 3 , Li (CF 3 SO 2 ) 2 N, LiC 4 F 9
SO 3 , LiSbF 6 , LiAlO 4 , LiAlCl 4 , Li
N (C x F 2x + 1 SO 2) (C y F 2 y tens 1 SO 2) (provided that x, y is a natural number), LiCl, by mixing one or more lithium salts of such LiI The following can be exemplified, and one containing any one of LiPF 6 and LiBF 4 is particularly preferable. In addition to this, it is also possible to use a conventionally known organic electrolytic solution for a lithium secondary battery.

【0025】また有機電解質は、ポリエチレンオキシ
ド、ポリビニルアルコール等のポリマーに上記記載のリ
チウム塩のいずれかを混合させたものや、膨潤性の高い
ポリマーに有機電解液を含浸させたもの等、いわゆるポ
リマー電解質を用いても良い。
The organic electrolyte is a so-called polymer such as a polymer obtained by mixing any of the above-mentioned lithium salts with a polymer such as polyethylene oxide or polyvinyl alcohol, or a polymer having a high swelling property impregnated with an organic electrolyte solution. An electrolyte may be used.

【0026】本実施形態のリチウム二次電池は、上記の
正極電極と負極電極の何れか、あるいは双方にリチウム
を吸蔵させる電解処理を行った後、上記の正極電池が着
設された正極缶と、負極電極が着設された負極缶とを、
有機電解質を封入しつつ、絶縁パッキンを介して合わせ
ることにより組み立てられる。
The lithium secondary battery of the present embodiment is subjected to an electrolytic treatment in which either or both of the positive electrode and the negative electrode described above absorb lithium, and then a positive electrode can to which the positive battery is attached. , The negative electrode can with the negative electrode attached,
It is assembled by encapsulating an organic electrolyte and fitting them together through an insulating packing.

【0027】本実施形態の負極電極及びリチウム二次電
池によれば、本実施形態の電極材料をリチウムの担持体
として用いているので、エネルギー密度が高く、サイク
ル特性に優れたリチウム二次電池を構成することができ
る。
According to the negative electrode and the lithium secondary battery of the present embodiment, since the electrode material of the present embodiment is used as a lithium carrier, a lithium secondary battery having a high energy density and excellent cycle characteristics can be obtained. Can be configured.

【0028】なお、上記実施形態ではコイン型のリチウ
ム二次電池としたが、例えば、円筒形、角形、あるいは
シート型等の種々の形状に構成することができる。
Although a coin-type lithium secondary battery is used in the above embodiment, various shapes such as a cylindrical shape, a prismatic shape, and a sheet-type can be adopted.

【0029】[0029]

【実施例】[実施例1]96重量%の天然黒鉛と、2重
量%のポリビニルアルコール(PVA)と、ポリアニリ
ンスルフォン酸(PASA)として、1重量%の三菱レ
イヨン製導電性塗工液aquaPASS(以下PASS
と略称する。)と、スチレン−ブタジエンゴム(SB
R)と、水とを混合し、攪拌機を用いて15分攪拌し、
ペースト状負極用合剤を調製し銅箔に塗布した。これを
60℃で30分予備乾燥後、120℃で24時間真空乾
燥した。このようにして、厚さ100μmの電極材料を
銅箔上に積層した。そして、電極材料を積層させた銅箔
を直径13mmの円形に打ち抜いて1ton/cm2
圧力で圧延し、負極電極とした。この負極電極を作用極
とし、円形に打ち抜いた金属リチウム箔(正極電極)を
対極とし、作用極と対極との間に多孔質ポリプロピレン
フィルムからなるセパレータを挿入し、電解液としてジ
メチルカーボネート(DMC)、ジエチルカーボネート
(DEC)及びエチレンカーボネート(EC)の混合溶
媒に溶質としてLiPF6が1(モル/L)の濃度とな
るように溶解させたものを用いて、コイン型のテストセ
ルを作成した。
Example 1 96% by weight of natural graphite, 2% by weight of polyvinyl alcohol (PVA) and 1% by weight of polyaniline sulfonic acid (PASSA) as a conductive coating liquid aquaPASS (produced by Mitsubishi Rayon Co., Ltd.). Below is PASS
Is abbreviated. ) And styrene-butadiene rubber (SB
R) and water are mixed and stirred with a stirrer for 15 minutes,
A paste-like negative electrode mixture was prepared and applied to a copper foil. This was pre-dried at 60 ° C. for 30 minutes and then vacuum dried at 120 ° C. for 24 hours. Thus, the electrode material having a thickness of 100 μm was laminated on the copper foil. Then, the copper foil laminated with the electrode material was punched into a circle having a diameter of 13 mm and rolled at a pressure of 1 ton / cm 2 to obtain a negative electrode. This negative electrode was used as a working electrode, a metal lithium foil punched in a circle (positive electrode) was used as a counter electrode, a separator made of a porous polypropylene film was inserted between the working electrode and the counter electrode, and dimethyl carbonate (DMC) was used as an electrolytic solution. A coin-type test cell was prepared by using LiPF 6 dissolved in a mixed solvent of diethyl carbonate (DEC) and ethylene carbonate (EC) as a solute to a concentration of 1 (mol / L).

【0030】このテストセルを用いて充放電試験を行っ
た。まず、充放電電流密度を0.2Cとし、充電終止電
圧を0V(L i/L i+)、放電終止電圧を1.5V
(Li/ Li+)とした充放電試験を4回行った。次い
で、充放電電流密度を1Cとし、充電終止電圧を0V
(L i/L i+)、放電終止電圧を1.5V(L i/
Li+)とした充放電試験を50回行った。なお、すべ
ての充電は定電流/定電圧で行い、定電圧充電の終止電
流は0.01Cとした。そして、電極材料の1サイクル
目(0.2C)における放電容量及び充放電効率を求め
た。また、5サイクル目(1Cの1サイクル目)の放電
容量を求めた。さらに、また、54サイクル目(1Cの
50サイクル目)の放電容量を1サイクル目の放電容量
で除した容量比(54th/1st)を求めた。これらの結果を
表1に示す。
A charge / discharge test was conducted using this test cell. First, the charge / discharge current density is 0.2 C, the charge end voltage is 0 V (L i / L i + ), and the discharge end voltage is 1.5 V.
The charge / discharge test with (Li / Li + ) was performed 4 times. Next, the charge / discharge current density is set to 1C, and the charge end voltage is 0V.
(L i / L i + ), the discharge end voltage is 1.5 V (L i /
The charge and discharge test with Li + ) was performed 50 times. Note that all charging was performed at constant current / constant voltage, and the termination current of constant voltage charging was 0.01C. Then, the discharge capacity and charge / discharge efficiency in the first cycle (0.2 C) of the electrode material were obtained. Further, the discharge capacity at the fifth cycle (first cycle of 1C) was obtained. Furthermore, a capacity ratio (54th / 1st) was obtained by dividing the discharge capacity at the 54th cycle (50th cycle of 1C) by the discharge capacity at the 1st cycle. The results are shown in Table 1.

【0031】[実施例2]95重量%の天然黒鉛と、2
重量%のPVAと、1重量%のPASSと、2重量%の
SBRと、水とを混合してペースト状負極用合剤を調製
した以外は実施例1と同様にして、コイン型のテストセ
ルを作成した。そして、このコイン型テストセルについ
て、実施例1と同様の充放電試験を行った。結果を表1
に併せて示す。
[Example 2] 95% by weight of natural graphite and 2
A coin type test cell was carried out in the same manner as in Example 1 except that a paste-like negative electrode mixture was prepared by mixing PVA of 1% by weight, PASS of 1% by weight, SBR of 2% by weight, and water. It was created. Then, the same charge-discharge test as in Example 1 was performed on this coin-type test cell. The results are shown in Table 1.
Are also shown.

【0032】[実施例3]94重量%の天然黒鉛と、2
重量%のPVAと、1重量%のPASSと、3重量%の
SBRと、水とを混合してペースト状負極用合剤を調製
した以外は実施例1と同様にして、コイン型のテストセ
ルを作成した。そして、このコイン型テストセルについ
て、実施例1と同様の充放電試験を行った。結果を表1
に併せて示す。
[Example 3] 94% by weight of natural graphite and 2
A coin-shaped test cell was prepared in the same manner as in Example 1 except that a paste-like negative electrode mixture was prepared by mixing 1% by weight of PVA, 1% by weight of PASS, 3% by weight of SBR, and water. It was created. Then, the same charge-discharge test as in Example 1 was performed on this coin-type test cell. The results are shown in Table 1.
Are also shown.

【0033】[比較例1]90重量%の天然黒鉛と、1
0重量%のポリフッ化ビニリデン(PVdF)と、N-メ
チル-2-ピロリドン(NMP)とを混合してペースト状
負極用合剤を調製した以外は実施例1と同様にして、コ
イン型のテストセルを作成した。そして、このコイン型
テストセルについて、実施例1と同様の充放電試験を行
った。結果を表1に併せて示す。
Comparative Example 1 90% by weight of natural graphite and 1
A coin type test was performed in the same manner as in Example 1 except that 0% by weight of polyvinylidene fluoride (PVdF) and N-methyl-2-pyrrolidone (NMP) were mixed to prepare a mixture for a paste-like negative electrode. Created a cell. Then, the same charge-discharge test as in Example 1 was performed on this coin-type test cell. The results are also shown in Table 1.

【0034】[比較例2]96重量%の天然黒鉛と、2
重量%のPVAと、2重量%のPASSと、水とを混合
してペースト状負極用合剤を調製した以外は実施例1と
同様にして、コイン型のテストセルを作成した。そし
て、このコイン型テストセルについて、実施例1と同様
の充放電試験を行った。結果を表1に併せて示す。
Comparative Example 2 96% by weight of natural graphite and 2
A coin type test cell was prepared in the same manner as in Example 1 except that the paste-like negative electrode mixture was prepared by mixing PVA (wt%), PASS (wt%), and water. Then, the same charge-discharge test as in Example 1 was performed on this coin-type test cell. The results are also shown in Table 1.

【0035】[実施例4]96重量%の人造黒鉛と、2
重量%のPVAと、1重量%のPASSと、1重量%の
SBRと、水とを混合してペースト状負極用合剤を調製
した以外は実施例1と同様にして、コイン型のテストセ
ルを作成した。そして、このコイン型テストセルについ
て、実施例1と同様の充放電試験を行った。結果を表1
に併せて示す。
Example 4 96% by weight of artificial graphite and 2
A coin-shaped test cell was prepared in the same manner as in Example 1 except that a paste-like negative electrode mixture was prepared by mixing PVA (wt%), PASS (wt%), SBR (wt%), and water. It was created. Then, the same charge-discharge test as in Example 1 was performed on this coin-type test cell. The results are shown in Table 1.
Are also shown.

【0036】[比較例3]96重量%の人造黒鉛と、3
重量%のSBRと、1重量%のCMCと、水とを混合し
てペースト状負極用合剤を調製した以外は実施例1と同
様にして、コイン型のテストセルを作成した。そして、
このコイン型テストセルについて、実施例1と同様の充
放電試験を行った。結果を表1に併せて示す。
[Comparative Example 3] 96% by weight of artificial graphite and 3
A coin type test cell was prepared in the same manner as in Example 1 except that the paste-like negative electrode mixture was prepared by mixing SBR (1 wt%), CMC (1 wt%) and water. And
The same charge-discharge test as in Example 1 was performed on this coin-type test cell. The results are also shown in Table 1.

【0037】[比較例4]90重量%の人造黒鉛と、1
0重量%のPVdFと、NMPとを混合してペースト状
負極用合剤を調製した以外は実施例1と同様にして、コ
イン型のテストセルを作成した。そして、このコイン型
テストセルについて、実施例1と同様の充放電試験を行
った。結果を表1に併せて示す。
[Comparative Example 4] 90% by weight of artificial graphite and 1
A coin type test cell was prepared in the same manner as in Example 1 except that 0% by weight of PVdF and NMP were mixed to prepare a paste-like negative electrode mixture. Then, the same charge-discharge test as in Example 1 was performed on this coin-type test cell. The results are also shown in Table 1.

【0038】[比較例5]96重量%の人造黒鉛と、2
重量%のPVAと、2重量%のPASSと、水とを混合
してペースト状負極用合剤を調製した以外は実施例1と
同様にして、コイン型のテストセルを作成した。そし
て、このコイン型テストセルについて、実施例1と同様
の充放電試験を行った。結果を表1に併せて示す。
[Comparative Example 5] 96% by weight of artificial graphite and 2
A coin type test cell was prepared in the same manner as in Example 1 except that the paste-like negative electrode mixture was prepared by mixing PVA (wt%), PASS (wt%), and water. Then, the same charge-discharge test as in Example 1 was performed on this coin-type test cell. The results are also shown in Table 1.

【0039】[0039]

【表1】 [Table 1]

【0040】表1に示すように、活物質として天然黒
鉛、結着剤としてPVA2%ととPASS、SBRを各
1%使用した実施例1では、結着剤としてPVdFを使
用した比較例1と比較して高い放電容量と充放電効率が
得られた。また、容量維持率については、著しい向上が
認められた。また、これらの電池特性の向上は、PVA
とPASSを各2%使用した比較例2よりも顕著であっ
た。これは、SBRの添加により、結着剤に柔軟性が付
与され、充放電に伴う活物質の膨張収縮を吸収できるた
めと考えられる。
As shown in Table 1, in Example 1 using natural graphite as an active material, PVA 2% as a binder and 1% each of PASS and SBR, Comparative Example 1 using PVdF as a binder was used. Higher discharge capacity and higher charge / discharge efficiency were obtained in comparison. Also, the capacity retention rate was remarkably improved. In addition, the improvement of these battery characteristics is due to PVA
And PASS were each more prominent than Comparative Example 2 using 2%. This is considered to be because the addition of SBR imparts flexibility to the binder and can absorb expansion and contraction of the active material due to charge and discharge.

【0041】実施例2、3は、結着剤としてPVA、P
ASS、SBRを使用しているが、SBRの使用量を変
えたものである。いずれも、実施例1程は、電池特性の
向上が得られなかった。これは、SBRの量が多いと、
PASSの有する導電性が若干低下するためと考えられ
る。
In Examples 2 and 3, PVA and P were used as binders.
Although ASS and SBR are used, the amount of SBR used is changed. In all cases, the improvement in battery characteristics was not obtained as in Example 1. This is because when the amount of SBR is large,
It is considered that the conductivity of PASS is slightly lowered.

【0042】次に、活物質として人造黒鉛を使用する場
合であるが、人造黒鉛は天然黒鉛と比較して一般的に比
表面積が小さい上、濡れ性が悪い場合が多いので、SB
Rのような点接触の結着剤のみでは十分結着性を得るこ
とは困難である。実際、SBRとCMCとを用いた比較
例3をPVdFを使用した比較例4と比較すると何れの
特性も大きく下がっており、このことを裏付けている。
ところが、水系であっても、実施例4のようにPVAと
PASSとSBRとを使用すると、PVdFを用いた比
較例4と同等の放電容量と充放電効率が得られると共
に、比較例4よりも高い容量維持率が得られた。これ
は、PASSが電極内で活物質をコーティングすること
により高い接着性が得られると共に、表面の濡れ性も向
上して、活物質と結着剤とが良くなじんでいるためと考
えられる。また、これらの電池特性の向上は、PVAと
PASSを各2%使用した比較例5よりも顕著であっ
た。これは、SBRの添加により、結着剤に柔軟性が付
与され、充放電に伴う活物質の膨張収縮を吸収できるた
めと考えられる。
Next, artificial graphite is used as the active material. Since artificial graphite generally has a smaller specific surface area than natural graphite and often has poor wettability, SB is used.
It is difficult to obtain sufficient binding properties only with a point contact binder such as R. In fact, when Comparative Example 3 using SBR and CMC is compared with Comparative Example 4 using PVdF, all the characteristics are significantly lowered, which supports this.
However, even if it is an aqueous system, when PVA, PASS and SBR are used as in Example 4, the same discharge capacity and charge / discharge efficiency as in Comparative Example 4 using PVdF can be obtained, and more than in Comparative Example 4. A high capacity retention rate was obtained. It is considered that this is because PASS coats the active material in the electrode to obtain high adhesiveness and also improves the wettability of the surface so that the active material and the binder are well compatible with each other. Further, the improvement in these battery characteristics was more remarkable than that in Comparative Example 5 in which PVA and PASS were used in an amount of 2% each. This is considered to be because the addition of SBR imparts flexibility to the binder and can absorb expansion and contraction of the active material due to charge and discharge.

【0043】[0043]

【発明の効果】以上、詳細に説明したように、本発明の
電極材料及びその製造方法によれば、充来の結着剤を使
用する場合と比較して、半分以下の結着剤の使用で充分
な結着性を持たせることができる。また、結着剤が柔軟
性に富むため、充放電に伴う活物質の膨張収縮を吸収す
ることができる。そのため、高い充放電容量と優れたサ
イクル特性を備える電極材料とすることができる。ま
た、導電性高分子ポリアニリンを含有しているため、リ
チウムイオンの挿入・脱離が円滑に行われ、高い電流密
度での充放電においてもサイクル劣化を抑制できる。ま
た、水系の結着剤であるので、安全性や溶剤回収の問題
を解消することができる。また、本発明の電極及び電池
によれば、エネルギー密度が高く、サイクル特性に優れ
た電池を構成することができる。
As described above in detail, according to the electrode material and the method for producing the same of the present invention, less than half the amount of the binder is used as compared with the case of using the charged binder. Can give a sufficient binding property. Moreover, since the binder is highly flexible, it is possible to absorb expansion and contraction of the active material due to charge and discharge. Therefore, an electrode material having high charge / discharge capacity and excellent cycle characteristics can be obtained. Further, since the conductive polymer polyaniline is contained, insertion / desorption of lithium ions are smoothly carried out, and cycle deterioration can be suppressed even in charging / discharging at a high current density. Further, since it is a water-based binder, it is possible to solve the problems of safety and solvent recovery. Further, according to the electrode and the battery of the present invention, a battery having a high energy density and excellent cycle characteristics can be constructed.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高椋 輝 神奈川県横浜市鶴見区菅沢町2−7 株式 会社サムスン横浜研究所内 (72)発明者 沈 揆允 大韓民国天安市聖域洞 508 サムスンエ スディーアイ株式会社内 Fターム(参考) 5H029 AJ03 AJ05 AJ12 AK02 AK03 AK05 AK16 AL06 AL07 AL08 AL12 AM02 AM03 AM04 AM05 AM07 BJ03 CJ02 CJ08 DJ08 DJ16 EJ12 EJ13 HJ01 5H050 AA07 AA08 AA15 AA17 BA17 CA02 CA07 CA08 CA09 CA11 CA26 CB07 CB08 CB09 CB12 DA11 EA23 EA26 FA17 GA02 GA10 HA01    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Teru Takagura             2-7 Sugasawa-cho, Tsurumi-ku, Yokohama-shi, Kanagawa Stock             Samsung Yokohama Research Institute Co., Ltd. (72) Inventor             508 Samsung, Sanan-dong, Cheonan, Republic of Korea             Inside SDI Corporation F-term (reference) 5H029 AJ03 AJ05 AJ12 AK02 AK03                       AK05 AK16 AL06 AL07 AL08                       AL12 AM02 AM03 AM04 AM05                       AM07 BJ03 CJ02 CJ08 DJ08                       DJ16 EJ12 EJ13 HJ01                 5H050 AA07 AA08 AA15 AA17 BA17                       CA02 CA07 CA08 CA09 CA11                       CA26 CB07 CB08 CB09 CB12                       DA11 EA23 EA26 FA17 GA02                       GA10 HA01

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 活物質と結着剤とを含む電極材料であ
って、前記結着剤が、水溶性アニリン系導電性高分子と
ゴム系ラテックスと水溶性高分子とを含むことを特徴と
する電極材料。
1. An electrode material containing an active material and a binder, wherein the binder contains a water-soluble aniline-based conductive polymer, a rubber-based latex, and a water-soluble polymer. Electrode material.
【請求項2】 前記水溶性アニリン系導電性高分子
が、ポリアニリンスルフォン酸であることを特徴とする
請求項1に記載の電極材料。
2. The electrode material according to claim 1, wherein the water-soluble aniline-based conductive polymer is polyaniline sulfonic acid.
【請求項3】 前記水溶性アニリン系導電性高分子
が、前記電極材料に対して0.1〜10重量%の比率で
含まれることを特徴とする請求項1又は請求項2に記載
の電極材料。
3. The electrode according to claim 1, wherein the water-soluble aniline-based conductive polymer is contained in a ratio of 0.1 to 10% by weight with respect to the electrode material. material.
【請求項4】 前記ゴム系ラテックスが、前記電極材
料に対して0.1〜10重量%の比率で含まれることを
特徴とする請求項1から請求項3の何れかに記載の電極
材料。
4. The electrode material according to any one of claims 1 to 3, wherein the rubber-based latex is contained in a ratio of 0.1 to 10% by weight with respect to the electrode material.
【請求項5】 前記水溶性高分子が、ポリビニルアル
コールであることを特徴とする請求項1から請求項4の
何れかに記載の電極材料。
5. The electrode material according to claim 1, wherein the water-soluble polymer is polyvinyl alcohol.
【請求項6】 前記水溶性高分子が、前記電極材料に
対して0.1〜10重量%の比率で含まれることを特徴
とする請求項1から請求項5の何れかに記載の電極材
料。
6. The electrode material according to claim 1, wherein the water-soluble polymer is contained in a proportion of 0.1 to 10% by weight with respect to the electrode material. .
【請求項7】 活物質と、水溶性アニリン系導電性高
分子、ゴム系ラテックス及び水溶性高分子を含む結着剤
と、水とを混練した後、乾燥させることを特徴とする電
極材料の製造方法。
7. An electrode material characterized by kneading an active material, a binder containing a water-soluble aniline-based conductive polymer, a rubber-based latex and a water-soluble polymer, and water and then drying the mixture. Production method.
【請求項8】 前記水溶性アニリン系導電性高分子
が、ポリアニリンスルフォン酸であることを特徴とする
請求項7に記載の電極材料の製造方法。
8. The method for producing an electrode material according to claim 7, wherein the water-soluble aniline-based conductive polymer is polyanilinesulfonic acid.
【請求項9】 前記水溶性高分子が、ポリビニルアル
コールであることを特徴とする請求項7又は請求項8に
記載の電極材料の製造方法。
9. The method for producing an electrode material according to claim 7, wherein the water-soluble polymer is polyvinyl alcohol.
【請求項10】 請求項1から請求項6の何れかに記
載の電極材料を備えたことを特徴とする電極。
10. An electrode comprising the electrode material according to any one of claims 1 to 6.
【請求項11】 請求項10に記載の電極を備えたこ
とを特徴とする電池。
11. A battery comprising the electrode according to claim 10.
JP2001294817A 2001-09-26 2001-09-26 Electrode material and manufacturing method thereof, electrode and battery Expired - Fee Related JP4050024B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2001294817A JP4050024B2 (en) 2001-09-26 2001-09-26 Electrode material and manufacturing method thereof, electrode and battery
KR10-2002-0014073A KR100441525B1 (en) 2001-09-26 2002-03-15 Electrode material, preparation method of the electrode material, electrode and battery comprising the electrode
CNB021414491A CN100438142C (en) 2001-09-26 2002-08-30 Electrode material, method for preparing electrode material, electrode and battery comprising said electrode
US10/251,671 US6869730B2 (en) 2001-09-26 2002-09-20 Electrode material, method for preparing same, electrode, and battery comprising same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001294817A JP4050024B2 (en) 2001-09-26 2001-09-26 Electrode material and manufacturing method thereof, electrode and battery

Publications (2)

Publication Number Publication Date
JP2003109597A true JP2003109597A (en) 2003-04-11
JP4050024B2 JP4050024B2 (en) 2008-02-20

Family

ID=19116356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001294817A Expired - Fee Related JP4050024B2 (en) 2001-09-26 2001-09-26 Electrode material and manufacturing method thereof, electrode and battery

Country Status (2)

Country Link
JP (1) JP4050024B2 (en)
KR (1) KR100441525B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010529608A (en) * 2007-06-04 2010-08-26 コミサリア ア レネルジィ アトミーク エ オ ゼネ ルジイ アルテアナティーフ New composition for the production of electrodes, and electrodes and batteries obtained from the composition
US8697286B2 (en) 2008-12-02 2014-04-15 Samsung Electronics Co., Ltd. Anode active material, anode including the anode active material, method of manufacturing the anode, and lithium battery including the anode
JP2016062791A (en) * 2014-09-19 2016-04-25 コニカミノルタ株式会社 All-solid lithium ion battery
JP2016076342A (en) * 2014-10-03 2016-05-12 株式会社豊田中央研究所 Electrode for nonaqueous secondary battery, and nonaqueous secondary battery

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100958651B1 (en) 2004-01-17 2010-05-20 삼성에스디아이 주식회사 Anode for lithium secondary battery and lithium secondary battery using same
KR101442651B1 (en) * 2011-03-14 2014-09-23 주식회사 엘지화학 Binder for Secondary Battery Providing Excellent Power and Cycling Characteristics
KR101698764B1 (en) 2012-10-11 2017-01-23 삼성에스디아이 주식회사 Binder for electrode of lithium battery, binder composition including the binder and lithium battery containing the binder
KR102210219B1 (en) 2014-01-15 2021-01-29 삼성에스디아이 주식회사 Negative electrode for rechargeable lithium battery and rechargeable lithium battery including the same
KR102231209B1 (en) 2014-05-22 2021-03-22 삼성에스디아이 주식회사 Negative electrode for rechargeable lithium battery and rechargeable lithium battery including the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5529860A (en) * 1995-06-07 1996-06-25 Moltech Corporation Electroactive high storage capacity polyacetylene-co-polysulfur materials and electrolytic cells containing same
US5705689A (en) * 1995-06-19 1998-01-06 Associated Universities, Inc. Aza compounds as anion receptors
JP3286516B2 (en) * 1995-12-06 2002-05-27 三洋電機株式会社 Non-aqueous electrolyte secondary battery
JPH11111279A (en) * 1997-10-07 1999-04-23 Hitachi Maxell Ltd Hydrogen storage alloy electrode and nickel-metal hydride secondary battery using the same
KR100276656B1 (en) * 1998-09-16 2001-04-02 박찬구 Solid type secondary battery composed of thin film composite anode

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010529608A (en) * 2007-06-04 2010-08-26 コミサリア ア レネルジィ アトミーク エ オ ゼネ ルジイ アルテアナティーフ New composition for the production of electrodes, and electrodes and batteries obtained from the composition
US8697286B2 (en) 2008-12-02 2014-04-15 Samsung Electronics Co., Ltd. Anode active material, anode including the anode active material, method of manufacturing the anode, and lithium battery including the anode
JP2016062791A (en) * 2014-09-19 2016-04-25 コニカミノルタ株式会社 All-solid lithium ion battery
JP2016076342A (en) * 2014-10-03 2016-05-12 株式会社豊田中央研究所 Electrode for nonaqueous secondary battery, and nonaqueous secondary battery

Also Published As

Publication number Publication date
KR100441525B1 (en) 2004-07-23
KR20030026815A (en) 2003-04-03
JP4050024B2 (en) 2008-02-20

Similar Documents

Publication Publication Date Title
US10608247B2 (en) Negative electrode for secondary battery, method of fabricating the same and secondary battery including the same
JP4049328B2 (en) Cathode for lithium secondary battery and lithium secondary battery including the same
JP4137350B2 (en) Negative electrode material for lithium secondary battery, electrode for lithium secondary battery, lithium secondary battery, and method for producing negative electrode material for lithium secondary battery
CN100472855C (en) Anode for lithium secondary battery and lithium secondary battery using the same
KR20200038168A (en) Multi-layered Anode Comprising Silicon-based Compound and Lithium Secondary Battery Comprising the Same
US6869730B2 (en) Electrode material, method for preparing same, electrode, and battery comprising same
CN100521296C (en) Cathode for chargeable lithium cell and chargeable lithium cell adopting same
KR20190042299A (en) Negative electrode for lithium secondary battery, and lithium secondary battery comprising the same
JP4160271B2 (en) Electrode for lithium secondary battery and lithium secondary battery
CN101447561A (en) Negative electrode for rechargeable lithium battery, and rechargeable lithium battery including the same
JP2971451B1 (en) Lithium secondary battery
JP4098505B2 (en) ELECTRODE MATERIAL FOR LITHIUM SECONDARY BATTERY AND METHOD FOR PRODUCING THE SAME, ELECTRODE FOR LITHIUM SECONDARY BATTERY, AND LITHIUM SECONDARY BATTERY
KR20190007398A (en) Negative electrode for lithium secondary battery, lithium secondary battery comprising the same, and preparing method thereof
CN101405898A (en) Non-aqueous electrolyte secondary batteries
KR20120069314A (en) Anode having improved adhesion for lithium secondary battery
JP2017134923A (en) Negative electrode for lithium secondary battery, lithium secondary battery, and production method thereof
EP3790078B1 (en) Functional separator, manufacturing method therefor, and lithium secondary battery comprising same
JP4050024B2 (en) Electrode material and manufacturing method thereof, electrode and battery
KR20200047273A (en) Binder for lithium secondary, negative electrode of lithium secondary battery and lithium secondary battery comprising the same
WO2015132845A1 (en) All-solid-state battery
JP3981866B2 (en) Method for producing positive electrode for lithium battery and positive electrode for lithium battery
JP5662746B2 (en) Lithium ion secondary battery
JP4659327B2 (en) Negative electrode for lithium secondary battery, lithium secondary battery, and method for producing negative electrode for lithium secondary battery
KR20210017619A (en) Anode for a lithium secondary battery which has different binder composition on different sides and method of the same
JP2005025963A (en) Nonaqueous electrolyte liquid secondary battery

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040812

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040812

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071128

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131207

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees