JP2003100278A - Nonaqueous electrolyte secondary battery - Google Patents
Nonaqueous electrolyte secondary batteryInfo
- Publication number
- JP2003100278A JP2003100278A JP2001293294A JP2001293294A JP2003100278A JP 2003100278 A JP2003100278 A JP 2003100278A JP 2001293294 A JP2001293294 A JP 2001293294A JP 2001293294 A JP2001293294 A JP 2001293294A JP 2003100278 A JP2003100278 A JP 2003100278A
- Authority
- JP
- Japan
- Prior art keywords
- negative electrode
- layer
- copper
- positive electrode
- secondary battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000011255 nonaqueous electrolyte Substances 0.000 title claims abstract description 35
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 49
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 48
- 239000010949 copper Substances 0.000 claims abstract description 42
- 229910052802 copper Inorganic materials 0.000 claims abstract description 41
- 229910052751 metal Inorganic materials 0.000 claims abstract description 37
- 239000002184 metal Substances 0.000 claims abstract description 37
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 22
- 229910000881 Cu alloy Inorganic materials 0.000 claims abstract description 10
- 229910000990 Ni alloy Inorganic materials 0.000 claims abstract description 8
- 239000000463 material Substances 0.000 claims description 24
- 239000007774 positive electrode material Substances 0.000 claims description 6
- 239000007773 negative electrode material Substances 0.000 claims description 3
- 239000000126 substance Substances 0.000 claims 1
- 238000011084 recovery Methods 0.000 abstract description 7
- 230000000052 comparative effect Effects 0.000 description 16
- 238000003466 welding Methods 0.000 description 14
- 239000011888 foil Substances 0.000 description 13
- 239000000203 mixture Substances 0.000 description 13
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 12
- -1 polypropylene Polymers 0.000 description 12
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 11
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 11
- 229910001416 lithium ion Inorganic materials 0.000 description 11
- 239000002033 PVDF binder Substances 0.000 description 10
- 229910052782 aluminium Inorganic materials 0.000 description 10
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical group [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 10
- 239000003575 carbonaceous material Substances 0.000 description 10
- 229910052744 lithium Inorganic materials 0.000 description 10
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 10
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 10
- DHKHKXVYLBGOIT-UHFFFAOYSA-N 1,1-Diethoxyethane Chemical compound CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 description 8
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 8
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 8
- 239000011889 copper foil Substances 0.000 description 8
- 238000013461 design Methods 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- 238000007789 sealing Methods 0.000 description 8
- 238000004804 winding Methods 0.000 description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 6
- 238000007600 charging Methods 0.000 description 6
- 239000011248 coating agent Substances 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- 238000004090 dissolution Methods 0.000 description 6
- 239000008151 electrolyte solution Substances 0.000 description 6
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 6
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 5
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 5
- 229910013716 LiNi Inorganic materials 0.000 description 5
- 229910021383 artificial graphite Inorganic materials 0.000 description 5
- 239000011230 binding agent Substances 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000009784 over-discharge test Methods 0.000 description 5
- 229920000049 Carbon (fiber) Polymers 0.000 description 4
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 4
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 4
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 4
- 239000004917 carbon fiber Substances 0.000 description 4
- 150000001786 chalcogen compounds Chemical class 0.000 description 4
- 239000006258 conductive agent Substances 0.000 description 4
- 239000003792 electrolyte Substances 0.000 description 4
- 239000011302 mesophase pitch Substances 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 4
- 239000004810 polytetrafluoroethylene Substances 0.000 description 4
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 4
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 3
- 239000006230 acetylene black Substances 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 239000003125 aqueous solvent Substances 0.000 description 3
- YOCUPQPZWBBYIX-UHFFFAOYSA-N copper nickel Chemical compound [Ni].[Cu] YOCUPQPZWBBYIX-UHFFFAOYSA-N 0.000 description 3
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 3
- 238000007772 electroless plating Methods 0.000 description 3
- 239000012212 insulator Substances 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000012046 mixed solvent Substances 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- JWUJQDFVADABEY-UHFFFAOYSA-N 2-methyltetrahydrofuran Chemical compound CC1CCCO1 JWUJQDFVADABEY-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229910000570 Cupronickel Inorganic materials 0.000 description 2
- 229910013063 LiBF 4 Inorganic materials 0.000 description 2
- 229910013733 LiCo Inorganic materials 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 239000011149 active material Substances 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 238000003411 electrode reaction Methods 0.000 description 2
- 238000010828 elution Methods 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 229910003455 mixed metal oxide Inorganic materials 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- HNJBEVLQSNELDL-UHFFFAOYSA-N pyrrolidin-2-one Chemical compound O=C1CCCN1 HNJBEVLQSNELDL-UHFFFAOYSA-N 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 2
- KPZGRMZPZLOPBS-UHFFFAOYSA-N 1,3-dichloro-2,2-bis(chloromethyl)propane Chemical compound ClCC(CCl)(CCl)CCl KPZGRMZPZLOPBS-UHFFFAOYSA-N 0.000 description 1
- 229910001316 Ag alloy Inorganic materials 0.000 description 1
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 1
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910000733 Li alloy Inorganic materials 0.000 description 1
- 229910010238 LiAlCl 4 Inorganic materials 0.000 description 1
- 229910015015 LiAsF 6 Inorganic materials 0.000 description 1
- 229910013709 LiNi 1-x M Inorganic materials 0.000 description 1
- 229910013870 LiPF 6 Inorganic materials 0.000 description 1
- 229910000861 Mg alloy Inorganic materials 0.000 description 1
- 229910001096 P alloy Inorganic materials 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- RIRXDDRGHVUXNJ-UHFFFAOYSA-N [Cu].[P] Chemical compound [Cu].[P] RIRXDDRGHVUXNJ-UHFFFAOYSA-N 0.000 description 1
- JFBZPFYRPYOZCQ-UHFFFAOYSA-N [Li].[Al] Chemical compound [Li].[Al] JFBZPFYRPYOZCQ-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- CXRFFSKFQFGBOT-UHFFFAOYSA-N bis(selanylidene)niobium Chemical compound [Se]=[Nb]=[Se] CXRFFSKFQFGBOT-UHFFFAOYSA-N 0.000 description 1
- 229930188620 butyrolactone Natural products 0.000 description 1
- OJIJEKBXJYRIBZ-UHFFFAOYSA-N cadmium nickel Chemical compound [Ni].[Cd] OJIJEKBXJYRIBZ-UHFFFAOYSA-N 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 150000005678 chain carbonates Chemical class 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 238000010281 constant-current constant-voltage charging Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- DJWBVXORGIEBLG-UHFFFAOYSA-N copper gold iron Chemical compound [Cu][Fe][Au] DJWBVXORGIEBLG-UHFFFAOYSA-N 0.000 description 1
- 229910001431 copper ion Inorganic materials 0.000 description 1
- IYRDVAUFQZOLSB-UHFFFAOYSA-N copper iron Chemical compound [Fe].[Cu] IYRDVAUFQZOLSB-UHFFFAOYSA-N 0.000 description 1
- YCKOAAUKSGOOJH-UHFFFAOYSA-N copper silver Chemical compound [Cu].[Ag].[Ag] YCKOAAUKSGOOJH-UHFFFAOYSA-N 0.000 description 1
- 150000003983 crown ethers Chemical class 0.000 description 1
- 150000005676 cyclic carbonates Chemical class 0.000 description 1
- 150000004292 cyclic ethers Chemical class 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- HEPLMSKRHVKCAQ-UHFFFAOYSA-N lead nickel Chemical compound [Ni].[Pb] HEPLMSKRHVKCAQ-UHFFFAOYSA-N 0.000 description 1
- 150000002641 lithium Chemical class 0.000 description 1
- 239000001989 lithium alloy Substances 0.000 description 1
- MHCFAGZWMAWTNR-UHFFFAOYSA-M lithium perchlorate Chemical compound [Li+].[O-]Cl(=O)(=O)=O MHCFAGZWMAWTNR-UHFFFAOYSA-M 0.000 description 1
- 229910003002 lithium salt Inorganic materials 0.000 description 1
- 159000000002 lithium salts Chemical class 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 description 1
- 229910052982 molybdenum disulfide Inorganic materials 0.000 description 1
- 229910021382 natural graphite Inorganic materials 0.000 description 1
- 229910017464 nitrogen compound Inorganic materials 0.000 description 1
- 150000002830 nitrogen compounds Chemical class 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 238000009783 overcharge test Methods 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920000131 polyvinylidene Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 150000003464 sulfur compounds Chemical class 0.000 description 1
- 229920006027 ternary co-polymer Polymers 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- CFJRPNFOLVDFMJ-UHFFFAOYSA-N titanium disulfide Chemical compound S=[Ti]=S CFJRPNFOLVDFMJ-UHFFFAOYSA-N 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Connection Of Batteries Or Terminals (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、非水電解質二次電
池に関し、特に耐過放電性に優れた高出力型の非水電解
質二次電池に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to a high power type non-aqueous electrolyte secondary battery having excellent over-discharge resistance.
【0002】[0002]
【従来の技術】近年、非水電解液を使用したリチウムイ
オン二次電池やポリマーリチウム二次電池が携帯電話等
の電子機器に広く使用されている。これらの二次電池
は、従来のニッケル−カドミウム電池やニッケル−水素
電池に比べ軽量で、かつ4V級の高い起電力を有すると
いう特徴があり、その優れた性能が注目されている。2. Description of the Related Art In recent years, lithium ion secondary batteries and polymer lithium secondary batteries using non-aqueous electrolytes have been widely used in electronic devices such as mobile phones. These secondary batteries are characterized by being lighter in weight than conventional nickel-cadmium batteries and nickel-hydrogen batteries and having high electromotive force of 4 V class, and their excellent performance is drawing attention.
【0003】そこで最近、このリチウム二次電池をモー
ター駆動機器の電源として使用するアイデアも活発化し
てきている。このような用途では、従来のリチウム二次
電池に比べ高い出力特性が要求される。Therefore, recently, the idea of using this lithium secondary battery as a power source for a motor drive device has been activated. In such applications, higher output characteristics are required as compared with conventional lithium secondary batteries.
【0004】電池を高出力化するには、電池の内部抵抗
を極力低減する必要がある。そのためには、電極、電池
部材を低抵抗化し、集電効率を高めることが重要であ
る。In order to increase the output of a battery, it is necessary to reduce the internal resistance of the battery as much as possible. For that purpose, it is important to reduce the resistance of the electrode and the battery member to improve the current collection efficiency.
【0005】ところで、従来のリチウムイオン電池は、
正極集電体にアルミ箔、負極集電体に銅箔を用い、各集
電体の上に電池活物質を塗布固着し、セパレータ、負
極、セパレ-タ、正極、セパレータの順に捲回積層し、捲
回された発電要素である電極群を金属ケースに収納して
なる。特に、円筒形のリチウムイオン電池は生産性・量
産性に優れているほか、捲回構造体という形状の特徴か
ら電池電極反応が電極部位によらず均一に起リやすいた
めリチウムイオン電池の開発の中心になってきた。図4
は、従来の円筒型電池を説明する断面図である。円筒型
電池は、負極端子を兼ねる金属ケース4内に、正極アル
ミ箔集電体に正極活物質を塗布形成した正極シート7と
負極銅箔集電体(図示せず)に負極活物質(図示せず)
を塗布形成した負極シート9を正極シート7より大きい
幅のセパレータ8を介して積層捲回してなる発電要素で
ある電極群6で構成されている。負極シート9の捲回終
端部側の銅箔に短冊状のニッケル製負極リードタブ15
を超音波溶接等で接続し、その負極リードタブ15のそ
の他方は負極端子を兼ねる金属ケースの金属ケース4の
底部に抵抗溶接等で接合している。また、この導電性の
金属ケース4の上部には、正極端子を兼ねる電池蓋11
に電池内部の異常な圧力上昇時に内部の圧力を開放し電
流路を遮断する電流遮断機能及び圧力を開放する圧力開
放機能を有する安全弁板1を圧接し、安全弁板1の電池
内部側に部位する壁板に正極シート7の捲回始端部側の
アルミ箔に短冊状のアルミ製正極リードタブ13をレー
ザー溶接等で接続封口密閉してなるものである。ここ
で、3は金属製リング、5は底絶縁板、10は封口体、
12はシール用絶縁体(ガスケット)である。By the way, the conventional lithium ion battery is
Aluminum foil is used for the positive electrode current collector, and copper foil is used for the negative electrode current collector, and the battery active material is applied and fixed onto each current collector, and the separator, the negative electrode, the separator, the positive electrode, and the separator are wound and laminated in this order. The electrode group, which is the wound power generation element, is housed in a metal case. In particular, the cylindrical lithium-ion battery has excellent productivity and mass productivity, and because of the shape of the wound structure, the battery electrode reaction is likely to occur uniformly regardless of the electrode site. It has become the center. Figure 4
FIG. 7 is a cross-sectional view illustrating a conventional cylindrical battery. The cylindrical battery includes a positive electrode sheet 7 in which a positive electrode active material is applied to a positive electrode aluminum foil current collector and a negative electrode copper foil current collector (not shown) in a metal case 4 which also serves as a negative electrode terminal. (Not shown)
It is composed of an electrode group 6 which is a power generation element formed by laminating and winding a negative electrode sheet 9 formed by coating with a separator 8 having a width larger than that of the positive electrode sheet 7. A strip of nickel-made negative electrode lead tab 15 on the copper foil on the winding terminal side of the negative electrode sheet 9.
Are connected by ultrasonic welding or the like, and the other side of the negative electrode lead tab 15 is joined by resistance welding or the like to the bottom portion of the metal case 4 of the metal case which also serves as the negative electrode terminal. In addition, a battery lid 11 also serving as a positive electrode terminal is provided above the conductive metal case 4.
When the abnormal pressure rises inside the battery, the safety valve plate 1 having a current cut-off function that releases the internal pressure and shuts off the current path and a pressure release function that releases the pressure is pressed against the inside of the battery. A strip-shaped aluminum positive electrode lead tab 13 is connected and sealed by laser welding or the like on an aluminum foil on the winding start end side of the positive electrode sheet 7 on the wall plate. Here, 3 is a metal ring, 5 is a bottom insulating plate, 10 is a sealing body,
Reference numeral 12 is a sealing insulator (gasket).
【0006】しかしながら、この電池の様に負極リード
タブとしてニッケルを用いると、大電流連続放電を行っ
た場合の電圧降下(IR損失)が大きく、出力特性が低
下してしまうという問題がある。However, when nickel is used as the negative electrode lead tab as in this battery, there is a problem that a large voltage drop (IR loss) occurs when a large current continuous discharge is performed and output characteristics are deteriorated.
【0007】そこで、負極リードタブとしてニッケルの
替わりに、より低抵抗な銅を用いるとする方法も検討さ
れている。Therefore, a method of using copper, which has a lower resistance, instead of nickel as the negative electrode lead tab has been studied.
【0008】ところが、このような電池において誤使用
や電池が使用される機器の電子回路の暗電流及び電池の
保護回路の消費電流等により過放電状態になり、0V以
下にまで達すると転極し、負極の集電体である銅および
負極の銅リードタブが、下記(1)式のような銅の溶解
反応によって、銅イオンとして電解液中に溶出してしま
う。However, such a battery is over-discharged due to misuse, dark current of an electronic circuit of equipment in which the battery is used, consumption current of a battery protection circuit, etc. The copper as the current collector of the negative electrode and the copper lead tab of the negative electrode are eluted as copper ions in the electrolytic solution by the dissolution reaction of copper as shown in the following formula (1).
【0009】
Cu → Cu2+ + 2e-・・・・・・・・・・・・・・・・・・・・・・・・・・・(1)
この銅の溶出により負極の集電体および銅リードタブ部
の電流路が減少し、出力特性が大幅に低下してしまう。
さらに銅の溶出が進むと、銅リードタブが破断してしま
い、電池として機能しなくなるという問題がある。[0009] Cu → Cu 2+ + 2e - · · ························· (1) the current collector of the negative electrode by the dissolution of the copper The current path between the body and the copper lead tab portion is reduced, and the output characteristics are significantly reduced.
Further, as the elution of copper further progresses, the copper lead tab breaks, and there is a problem that the battery does not function as a battery.
【0010】また、溶出した銅は正極表面に析出し、セ
パレータを突き破ってショートを引き起こす。このよう
な状態になると再び充電を行っても回復しないので、電
池としては使用不可能になってしまうという問題があっ
た。Further, the eluted copper is deposited on the surface of the positive electrode and breaks through the separator to cause a short circuit. In such a state, there is a problem that it cannot be used as a battery because it does not recover even if it is charged again.
【0011】[0011]
【発明が解決しようとする課題】以上に記載したよう
に、負極リードタブとして銅を用いた従来のリチウムイ
オン電池においては、過放電状態になると転極し、負極
の集電体である銅および負極の銅リードタブが溶解反応
を起して電解液中に溶出するため、電流路が減少して出
力特性が低下したり、さらに銅の溶出が進むと、銅リー
ドタブの破断やショートを引き起こし、電池として機能
しなくなるという問題がある。As described above, in the conventional lithium ion battery using copper as the negative electrode lead tab, it is poled when it is in an overdischarged state, and copper and the negative electrode which are current collectors of the negative electrode. Since the copper lead tab of No. 1 causes a dissolution reaction and elutes in the electrolytic solution, the current path decreases and output characteristics deteriorate, and further elution of copper causes breakage and short circuit of the copper lead tab, resulting in a battery. There is a problem that it will not work.
【0012】本発明は上記問題に鑑みて成されたもの
で、万が一過放電状態になっても容量回復性に優れた高
出力型の非水電解質二次電池を提供しようとするもので
ある。The present invention has been made in view of the above problems, and it is an object of the present invention to provide a high output type non-aqueous electrolyte secondary battery which is excellent in capacity recovery even in the event of an over-discharge state.
【0013】[0013]
【課題を解決するための手段】本発明は上記課題を解決
するためになされたものである。すなわち、本発明の非
水電解質二次電池は、正極活物質が正極集電体上に形成
された正極と、この正極に隣接して形成され非水電解質
を含有するセパレータと、前記正極に前記セパレータを
介して対向し負極活物質が負極集電体上に形成された負
極と、前記正極、前記セパレータ、及び前記負極を収納
する導電性ケースと、この導電性ケースと前記負極集電
体を電気的に接続する金属リードタブ材とを具備する非
水電解質二次電池において、前記金属リードタブ材が銅
或いは銅合金の第1層とニッケル或いはニッケル合金の
第2層を含む多層構造を有し、前記第2層が負極端子を
兼ねる前記導電性ケースと電気的に接触する事を特徴と
する。The present invention has been made to solve the above problems. That is, the non-aqueous electrolyte secondary battery of the present invention, the positive electrode active material is a positive electrode formed on the positive electrode current collector, a separator containing a non-aqueous electrolyte formed adjacent to the positive electrode, and the positive electrode A negative electrode having a negative electrode active material formed on a negative electrode current collector facing each other with a separator interposed therebetween, the positive electrode, the separator, and a conductive case containing the negative electrode, and the conductive case and the negative electrode current collector. A non-aqueous electrolyte secondary battery comprising a metal lead tab material electrically connected, wherein the metal lead tab material has a multilayer structure including a first layer of copper or copper alloy and a second layer of nickel or nickel alloy, The second layer is in electrical contact with the conductive case that also serves as a negative electrode terminal.
【0014】また、本発明の非水電解質二次電池は、上
記発明において、前記金属リードタブ材は、前記第2
層、前記第1層、及びニッケル或いはニッケル合金の第
3層が順次積層して形成された多層構造を有し、この第
3層が前記負極に直接電気的に接続される事を特徴とす
る。Further, the non-aqueous electrolyte secondary battery of the present invention is the above-mentioned invention, wherein the metal lead tab material is the second one.
A multilayer structure in which a layer, the first layer, and a third layer of nickel or nickel alloy are sequentially stacked, and the third layer is directly electrically connected to the negative electrode. .
【0015】このような構成とすることにより、リード
タブ部での電圧降下(IR損失)が小さいため高出力
で、また、万が一電池が過放電状態になっても銅の溶解
反応が生じにくいため、過放電時の容量回復性を改善す
ることができる。With this structure, the voltage drop (IR loss) at the lead tab portion is small, so that the output is high, and even if the battery should be over-discharged, the copper dissolution reaction is unlikely to occur. It is possible to improve the capacity recovery during over-discharge.
【0016】前記金属リードタブ材の銅合金としては、
具体的には、銅−ニッケル合金、銅−鉄合金、銅−銀合
金、銅−りん合金等が挙げられる。As the copper alloy of the metal lead tab material,
Specifically, a copper-nickel alloy, a copper-iron alloy, a copper-silver alloy, a copper-phosphorus alloy, etc. are mentioned.
【0017】前記銅合金における添加元素の含有率は、
1重量%以下が好ましい。さらに好ましくは0.05重
量%以下である。添加元素の含有率がこの範囲を超える
と電気導電性が低下し、高出力特性を損なう恐れがあ
る。The content of the additional element in the copper alloy is
It is preferably 1% by weight or less. More preferably, it is 0.05% by weight or less. If the content of the additive element exceeds this range, the electrical conductivity may decrease, and high output characteristics may be impaired.
【0018】また、前記ニッケル合金における添加元素
の含有率は、同様な理由から、1重量%以下とすること
が好ましい
また、前記金属リードタブ材において、銅或いは銅合金
からなる第1層の厚さをT1、ニッケル或いはニッケル
合金からなる第2層及び第3層の厚さを、それぞれ
T2、T3とした時に、
T2=T3、かつ(T2+T3)/ T1 ≦ 1
とすると、高出力特性が得られるため好ましい。The content of the additional element in the nickel alloy is preferably 1% by weight or less for the same reason. Further, in the metal lead tab material, the thickness of the first layer made of copper or copper alloy. Is T 1 , and the thicknesses of the second and third layers made of nickel or nickel alloy are T 2 and T 3 , respectively, T 2 = T 3 and (T 2 + T 3 ) / T 1 ≦ 1 In that case, high output characteristics can be obtained, which is preferable.
【0019】[0019]
【発明の実施の形態】以下、本発明に係わる非水電解質
二次電池の一例(例えば円筒型非水電解質二次電池)を
図1を参照として説明する。
(本発明に係る金属リードタブ材の形態)まず、本発明
に係る金属リードタブ材14について、詳細に説明す
る。14は金属リードタブ材であり、電極群6内に収容
された負極集電体(図示せず)と導電性の金属ケース4
を電気的に接続する様な多層構造になっている。この負
極リードタブ14は、全厚さが0.1mmで幅4mmの
短冊状材料から成り、幅4mmで50μm厚の銅板から
なる第1層14−2を、厚さ25μmのニッケルの第2
層(図面上の層)及び第3層(図面下の層)14−1で
両側から挟み込んだ三層構造体を形成している。この様
に、多層構造体負極リードタブにおいては、金属ケース
4と接する側には比抵抗値の大きな材料を配置する事が
望ましく、この三層構造体ではニッケル層側となり、負
極リードタブ14と金属ケース4との抵抗溶接による接
続方法では優れた溶接性(強度、作業のしやすさ)を発
揮できる。また、多層構造体を形成する方法は、特に規
定するものではなく、例えば、銅板上へのニッケルの無
電解および電解メッキ、第1層の銅板とニッケル板との
第2層及び第3層のクラッド加工処理による方法等が挙
げられる。断面構造は特に三層構造にとらわれることな
く多層構造体である事が望ましい。ここで、この第1
層、第2層、第3層の間に別の金属例えば銅とニッケル
の合金、金、銀、或いはこれらの金属の2種以上の合金
等を介在させても良い。
(本発明の実施の形態に係る非水電解質二次電池の形
態)図1は、本発明の最も望ましい実施の形態に係る非
水電解質二次電池を示す断面図である。図4で説明した
従来の非水電解質二次電池と同一部分は重要な部分を除
き同一番号を付しその詳しい説明を省略する。BEST MODE FOR CARRYING OUT THE INVENTION An example of a non-aqueous electrolyte secondary battery according to the present invention (for example, a cylindrical non-aqueous electrolyte secondary battery) will be described below with reference to FIG. (Form of Metal Lead Tab Material According to the Present Invention) First, the metal lead tab material 14 according to the present invention will be described in detail. Reference numeral 14 denotes a metal lead tab material, and a negative electrode current collector (not shown) housed in the electrode group 6 and a conductive metal case 4
It has a multi-layer structure that electrically connects to each other. The negative electrode lead tab 14 is made of a strip-shaped material having a total thickness of 0.1 mm and a width of 4 mm, and a first layer 14-2 made of a copper plate having a width of 4 mm and a thickness of 50 μm and a second layer of nickel having a thickness of 25 μm.
A three-layer structure is formed by sandwiching the layer (layer on the drawing) and the third layer (layer on the drawing) 14-1 from both sides. As described above, in the multilayer structure negative electrode lead tab, it is desirable to dispose a material having a large specific resistance value on the side in contact with the metal case 4. In this three-layer structure, the material is on the nickel layer side, and the negative electrode lead tab 14 and the metal case are arranged. With the connection method by resistance welding with No. 4, excellent weldability (strength, workability) can be exhibited. The method for forming the multilayer structure is not particularly specified, and for example, electroless and electrolytic plating of nickel on a copper plate, the second layer and the third layer of the first layer copper plate and the nickel plate, A method using clad processing may be used. The cross-sectional structure is preferably a multi-layer structure without being restricted to a three-layer structure. Where this first
Another metal such as an alloy of copper and nickel, gold, silver, or an alloy of two or more of these metals may be interposed between the layers, the second layer, and the third layer. (Form of Non-Aqueous Electrolyte Secondary Battery According to Embodiment of the Present Invention) FIG. 1 is a cross-sectional view showing a non-aqueous electrolyte secondary battery according to a most preferable embodiment of the present invention. The same parts as those of the conventional non-aqueous electrolyte secondary battery described with reference to FIG. 4 are designated by the same reference numerals except important parts, and detailed description thereof will be omitted.
【0020】例えば、ニッケルめっき鉄からなる負極端
子を兼ねる金属ケース4内に、電極反応面積を広くする
構成となるように、正極アルミ箔に正極活物質を塗布形
成した正極シート7と負極銅箔に負極活物質を塗布形成
した負極シート9を正極シートより大きい負極シートよ
り大きい幅でしかも薄いセパレータ8を介して積層捲回
してなる発電要素である電極群6で構成・収納されてい
る。セパレータ8は、例えば不織布、ポリプロピレン微
多孔フィルム、ポリエチレン微多孔フィルム、ポリエチ
レン−ポリプロピレン微多孔積層フィルムから形成され
る。短冊状で銅を主構成物とする多層構造体負極リード
タブ14は、負極シート9の捲回終端部側の銅箔に超音
波溶接等で接続され、その負極リードタブ14のその他
方は負極端子を兼ねる金属ケースの底部に抵抗溶接で接
合している。また、この金属ケースの上部には、正極端
子を兼ねる電池蓋11に電池内部の異常な圧力上昇時に
内部の圧力を開放し電流路を遮断する電流遮断機能及び
圧力を開放する圧力開放機能を有する安全弁板を圧接
し、安全弁板の電池内部側に部位する壁板に正極シート
7の捲回始端部側のアルミ箔に短冊状のアルミ製正極リ
ードタブ13をレーザー溶接等で接続封口密閉して形成
される。For example, in a metal case 4 made of nickel-plated iron which also serves as a negative electrode terminal, a positive electrode sheet 7 and a negative electrode copper foil in which a positive electrode active material is applied and formed on a positive electrode aluminum foil so as to widen the electrode reaction area. A negative electrode sheet 9 having a negative electrode active material applied thereon is laminated and wound with a width larger than the negative electrode sheet and larger than the negative electrode sheet with a thin separator 8 interposed between the electrode group 6 and the electrode group 6. The separator 8 is formed of, for example, a non-woven fabric, a polypropylene microporous film, a polyethylene microporous film, or a polyethylene-polypropylene microporous laminated film. The strip-shaped multi-layered structure negative electrode lead tab 14 whose main constituent is copper is connected to the copper foil on the winding terminal end side of the negative electrode sheet 9 by ultrasonic welding or the like, and the other of the negative electrode lead tabs 14 is a negative electrode terminal. It is joined to the bottom of the double metal case by resistance welding. In addition, on the upper part of the metal case, the battery lid 11 also serving as the positive electrode terminal has a current cut-off function for releasing the internal pressure to cut off the current path and a pressure release function for releasing the pressure when the pressure inside the battery is abnormally increased. The safety valve plate is pressure-welded, and a strip-shaped aluminum positive electrode lead tab 13 is formed on the aluminum foil on the winding start end side of the positive electrode sheet 7 by laser welding or the like on the wall plate located on the battery inner side of the safety valve plate. To be done.
【0021】次に、正極7、負極9およびセパレータ8
内に含浸させた電解液を具体的に説明する。
a)正極7
正極7は、例えば正極活物質、導電剤および結着剤を適
当な溶媒に分散させて得られる正極合剤塗液を金属箔か
らなる正極集電体の片側、もしくは両面に塗布すること
により作製する。Next, the positive electrode 7, the negative electrode 9 and the separator 8
The electrolytic solution impregnated inside will be specifically described. a) Positive electrode 7 For the positive electrode 7, for example, a positive electrode mixture coating liquid obtained by dispersing a positive electrode active material, a conductive agent and a binder in an appropriate solvent is applied to one side or both sides of a positive electrode current collector made of a metal foil. It is produced by
【0022】正極活物質としては、LiCoO2、ある
いは組成式LiCo1-xMxO2、LiNi1-xMxO2(但
し、Mは1種以上の元素、xは0<x≦0.5を示す)
で表されるリチウム複合金属酸化物を使用することがで
きる。具体的にはLiCo1- xNixO2、LiNi1-xC
oxO2、LiNi1-x-yCoxByO2、LiNi1-x-yC
oxAlyO2、LiNi1-x-yCoxMnyO2、LiNi
1-x-yCoxSnyO2等を挙げることができる。(x、y
は0<x≦0.5、0≦y<0.5、かつ0<x+y≦
0.5を示す)また、これらのリチウム複合金属酸化物
を2種以上混合したものを用いていも良い。As the positive electrode active material, LiCoO 2 or composition formulas LiCo 1-x M x O 2 and LiNi 1-x M x O 2 (where M is at least one element and x is 0 <x ≦ 0 .5)
A lithium mixed metal oxide represented by can be used. Specifically, LiCo 1- x Ni x O 2 , LiNi 1-x C
o x O 2, LiNi 1- xy Co x B y O 2, LiNi 1-xy C
o x Al y O 2, LiNi 1-xy Co x Mn y O 2, LiNi
1-xy Co x Sn y O 2 and the like can be mentioned. (X, y
Is 0 <x ≦ 0.5, 0 ≦ y <0.5, and 0 <x + y ≦
Also, a mixture of two or more of these lithium mixed metal oxides may be used.
【0023】前記導電剤としては、例えばアセチレンブ
ラック、カーボンブラック、人工黒鉛、天然黒鉛等を用
いることができる。As the conductive agent, for example, acetylene black, carbon black, artificial graphite or natural graphite can be used.
【0024】前記結着剤としては、例えばポリテトラフ
ルオロエチレン(PTFE)、ポリフッ化ビニリデン
(PVdF)、PVdFの水素もしくはフッ素のうち、
少なくとも1つを他の置換基で置換した変性PVdF、
フッ化ビニリデン−6フッ化プロピレンの共重合体、ポ
リフッ化ビニリデン−テトラフルオロエチレン−6フッ
化プロピレンの3元共重合体等を用いることができる。Examples of the binder include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), hydrogen or fluorine of PVdF, and
Modified PVdF in which at least one is substituted with another substituent,
A copolymer of vinylidene fluoride-6-fluorinated propylene, a ternary copolymer of polyvinylidene fluoride-tetrafluoroethylene-6-propylene fluoride, or the like can be used.
【0025】前記結着剤を分散させるための有機溶媒と
しては、N−メチル−2−ピロリドン(NMP)、ジメ
チルホルムアミド(DMF)等が使用される。As the organic solvent for dispersing the binder, N-methyl-2-pyrrolidone (NMP), dimethylformamide (DMF) and the like are used.
【0026】金属箔集電体としては、例えば厚さ10〜
30μmのアルミニウム箔、ステンレス箔、チタン箔等
を挙げることができる。The metal foil current collector has a thickness of 10 to 10, for example.
Examples include 30 μm aluminum foil, stainless steel foil, titanium foil, and the like.
【0027】b)負極9
負極9は、例えばリチウムイオンを吸蔵・放出する炭素
質物またはカルコゲン化合物を含むもの、軽金属等から
なる。中でもリチウムイオンを吸蔵・放出する炭素質物
またはカルコゲン化合物を含む負極は、前記二次電池の
サイクル寿命などの電池特性が向上するために好まし
い。B) Negative Electrode 9 The negative electrode 9 is made of, for example, a carbonaceous material that absorbs and releases lithium ions or a material containing a chalcogen compound, a light metal, or the like. Above all, a negative electrode containing a carbonaceous material or a chalcogen compound that occludes / releases lithium ions is preferable because battery characteristics such as cycle life of the secondary battery are improved.
【0028】リチウムイオンを吸蔵・放出する炭素質物
としては、例えばコークス、炭素繊維、熱分解気相炭素
物、黒鉛、樹脂焼成体、メソフェーズピッチ系炭素繊維
またはメソフェーズ球状カーボンの焼成体などを挙げる
ことができる。中でも、2500℃以上で黒鉛化したメ
ソフェーズピッチ系炭素繊維またはメソフェーズ球状カ
ーボンを用いると電極容量が高くなるため好ましい。Examples of the carbonaceous material which occludes / releases lithium ions include coke, carbon fiber, pyrolytic vapor-phase carbonaceous material, graphite, resin fired body, mesophase pitch carbon fiber or mesophase spherical carbon fired body. You can Above all, it is preferable to use mesophase pitch carbon fiber or mesophase spherical carbon graphitized at 2500 ° C. or higher because the electrode capacity increases.
【0029】リチウムイオンを吸蔵・放出するカルコゲ
ン化合物としては、二硫化チタン(TiS2)、二硫化
モリブデン(MoS2)、セレン化ニオブ(NbSe2)
などを挙げることができる。このようなカルコゲン化合
物を負極に用いると、二次電池の電圧は降下するものの
負極の容量が増加するため、二次電池の容量が向上され
る。更に、負極はリチウムイオンの拡散速度が大きいた
め、二次電池の急速充放電性能が向上される。Examples of chalcogen compounds that absorb and release lithium ions include titanium disulfide (TiS 2 ), molybdenum disulfide (MoS 2 ), and niobium selenide (NbSe 2 ).
And so on. When such a chalcogen compound is used for the negative electrode, the voltage of the secondary battery drops, but the capacity of the negative electrode increases, so that the capacity of the secondary battery is improved. Further, since the negative electrode has a high diffusion rate of lithium ions, the rapid charge / discharge performance of the secondary battery is improved.
【0030】軽金属としては、アルミニウム、アルミニ
ウム合金、マグネシウム合金、リチウム金属、リチウム
合金などを挙げることができる。Examples of the light metal include aluminum, aluminum alloy, magnesium alloy, lithium metal, lithium alloy and the like.
【0031】負極(例えば炭素材からなる負極)は、具
体的には炭素材、導電剤および結着剤を適当な溶媒に分
散させて得られる負極合剤を金属箔からなる集電体に片
側、もしくは両面に塗布することにより作製する。The negative electrode (for example, a negative electrode made of a carbon material) is, specifically, a negative electrode mixture obtained by dispersing a carbon material, a conductive agent and a binder in an appropriate solvent, on one side of a current collector made of a metal foil. Alternatively, it is prepared by coating on both sides.
【0032】結着剤としては、例えばポリテトラフルオ
ロエチレン(PTFE)、ポリフッ化ビニリデン(PV
dF)、エチレン−プロピレン−ジエン共重合体(EP
DM)、スチレン−ブタジエンゴム(SBR)等を用い
ることができる。Examples of the binder include polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PV).
dF), ethylene-propylene-diene copolymer (EP
DM), styrene-butadiene rubber (SBR) and the like can be used.
【0033】金属箔集電体としては、例えば銅箔、ニッ
ケル箔等を用いることができるが、電気化学的な安定性
および捲回時の柔軟性等を考慮すると、銅箔がもっとも
好ましく、電解銅・無電解銅、ならびに光沢・無光沢に
関わらず使用できる。銅合金で銅と同様に使用すること
ができる。この場合、銅にニッケル、鉄等の金属を0.
05重量%程度添加する事で銅合金がられる。一方、こ
のときの箔の厚さとしては、6μm以上20μm以下で
あることが好ましい。As the metal foil current collector, for example, copper foil, nickel foil and the like can be used. However, in consideration of electrochemical stability and flexibility during winding, copper foil is most preferable and electrolytic Can be used with copper, electroless copper, and with or without gloss. It can be used similarly to copper in a copper alloy. In this case, copper, metal such as nickel, iron, etc.
Copper alloy can be obtained by adding about 05% by weight. On the other hand, the thickness of the foil at this time is preferably 6 μm or more and 20 μm or less.
【0034】c)電解液 電解液は非水溶媒に電解質を溶解した組成を有する。C) Electrolyte The electrolytic solution has a composition in which an electrolyte is dissolved in a non-aqueous solvent.
【0035】非水溶媒としては、例えばプロピレンカー
ボネート(PC)、エチレンカーボネート(EC)など
の環状カーボネート、例えばジメチルカーボネート(D
MC)、メチルエチルカーボネート(MEC)、ジエチ
ルカーボネート(DEC)などの鎖状カーボネート、
1,2−ジメトキシエタン(DME)、ジエトキシエタ
ン(DEE)などの鎖状エーテル、テトラヒドロフラン
(THF)や2−メチルテトラヒドロフラン(2−Me
THF)などの環状エーテルやクラウンエーテル、γ−
ブチロラクトン(γ−BL)などの脂肪酸エステル、ア
セトニトリル(AN)などの窒素化合物、スルホラン
(SL)やジメチルスルホキシド(DMSO)などの硫
黄化合物などから選ばれる少なくとも1種を用いること
ができる。Examples of the non-aqueous solvent include cyclic carbonates such as propylene carbonate (PC) and ethylene carbonate (EC), such as dimethyl carbonate (D).
Chain carbonate such as MC), methyl ethyl carbonate (MEC), diethyl carbonate (DEC),
Chain ethers such as 1,2-dimethoxyethane (DME) and diethoxyethane (DEE), tetrahydrofuran (THF) and 2-methyltetrahydrofuran (2-Me
THF) and other cyclic ethers and crown ethers, γ-
At least one selected from fatty acid esters such as butyrolactone (γ-BL), nitrogen compounds such as acetonitrile (AN), and sulfur compounds such as sulfolane (SL) and dimethyl sulfoxide (DMSO) can be used.
【0036】中でも、EC、PC、γ−BLから選ばれ
る少なくとも1種からなるものや、EC、PC、γ−B
Lから選ばれる少なくとも1種とDMC、MEC、DE
C、DME、DEE、THF、2−MeTHF、ANか
ら選ばれる少なくとも1種とからなる混合溶媒を用いる
ことが望ましい。また、負極に前記リチウムイオンを吸
蔵・放出する炭素質物を含むものを用いる場合に、負極
を備えた二次電池のサイクル寿命を向上させる観点か
ら、ECとPCとγ−BL、ECとPCとMEC、EC
とPCとDEC、ECとPCとDEE、ECとAN、E
CとMEC、PCとDMC、PCとDEC、またはEC
とDECからなる混合溶媒を用いることが望ましい。Among them, at least one selected from EC, PC and γ-BL, EC, PC and γ-B
At least one selected from L and DMC, MEC, DE
It is desirable to use a mixed solvent containing at least one selected from C, DME, DEE, THF, 2-MeTHF, and AN. Further, when a negative electrode containing a carbonaceous material that absorbs and releases the lithium ions is used, from the viewpoint of improving the cycle life of the secondary battery including the negative electrode, EC and PC and γ-BL, and EC and PC are used. MEC, EC
And PC and DEC, EC and PC and DEE, EC and AN, E
C and MEC, PC and DMC, PC and DEC, or EC
It is desirable to use a mixed solvent consisting of and DEC.
【0037】電解質としては、例えば過塩素酸リチウム
(LiClO4)、六フッ化リン酸リチウム(LiP
F6)、ホウフッ化リチウム(LiBF4)、六フッ化砒
素リチウム(LiAsF6)、トリフルオロメタスルホ
ン酸リチウム(LiCF3SO3)、四塩化アルミニウム
リチウム(LiAlCl4)、ビストリフルオロメチル
スルホニルイミドリチウム[LiN(CF3SO2)2]
などのリチウム塩を挙げることができる。中でもLiP
F6、LiBF4、LiN(CF3SO2)2を用いると、
導電性や安全性が向上されるために好ましい。Examples of the electrolyte include lithium perchlorate (LiClO 4 ) and lithium hexafluorophosphate (LiP).
F 6 ), lithium borofluoride (LiBF 4 ), lithium hexafluoroarsenide (LiAsF 6 ), lithium trifluorometasulfonate (LiCF 3 SO 3 ), lithium aluminum tetrachloride (LiAlCl 4 ), bistrifluoromethylsulfonylimide lithium [LiN (CF 3 SO 2 ) 2 ]
Examples thereof include lithium salts. Above all, LiP
If F 6 , LiBF 4 , and LiN (CF 3 SO 2 ) 2 are used,
It is preferable because conductivity and safety are improved.
【0038】電解質の非水溶媒に対する溶解量は、0.
5モル/L〜2.0モル/Lの範囲にすることが好まし
い。The amount of the electrolyte dissolved in the non-aqueous solvent was 0.
It is preferably in the range of 5 mol / L to 2.0 mol / L.
【0039】以上詳述したように、前記多層構造からな
る金属リードタブ材を用いた本発明に係る非水電解質二
次電池では、リードタブ部での電圧降下(IR損失)が
小さく、また、万が一電池が過放電状態になっても銅の
溶解反応が生じにくいため、高出力で、かつ容量回復性
に優れた非水電解質二次電池を得ることができる。As described above in detail, in the non-aqueous electrolyte secondary battery according to the present invention using the metal lead tab material having the above-mentioned multilayer structure, the voltage drop (IR loss) at the lead tab portion is small, and by any chance Since the dissolution reaction of copper is unlikely to occur even in the overdischarge state, a non-aqueous electrolyte secondary battery with high output and excellent capacity recovery can be obtained.
【0040】なお、前述した実施例においては、円筒形
非水電解質二次電池に適用した例を説明したが、角型の
非水電解質二次電池にも同様に適用することができる。In the above-mentioned embodiment, the example applied to the cylindrical non-aqueous electrolyte secondary battery has been described, but the present invention can also be applied to the rectangular non-aqueous electrolyte secondary battery.
【0041】[0041]
【実施例】以下に、本発明の詳細を実施例に沿って説明
する。EXAMPLES The details of the present invention will be described below with reference to examples.
【0042】(実施例1)この実施例1は、図1に示し
た構造のリチウムイオン二次電池に関するものでその製
造手順に沿って電池構造およびその特性について詳細な
説明をする。(Embodiment 1) This embodiment 1 relates to a lithium ion secondary battery having the structure shown in FIG. 1, and the battery structure and its characteristics will be described in detail along with its manufacturing procedure.
【0043】ポリフッ化ビニリデンをN−メチル−2−
ピロリドンに溶解させた溶液に、LiCoO2粉末(平
均粒径:10μm)と、導電剤としてのアセチレンブラ
ックおよび人造黒鉛を加えて撹拌混合し、LiCoO2
90.3重量%、アセチレンブラック2.5重量%、人
造黒鉛3重量%、ポリフッ化ビニリデン4重量%からな
る正極合剤塗液を調製した。この正極合剤塗液をアルミ
ニウム箔(1N30、厚さ20μm)の両面に塗布し、
乾燥した後、圧延機を用いて厚さ139μm前記正極の
合剤層の空隙率が25%になるように加圧成形して正極
電極7を作製した。Polyvinylidene fluoride was added to N-methyl-2-
LiCoO 2 powder (average particle size: 10 μm), acetylene black as a conductive agent, and artificial graphite were added to a solution dissolved in pyrrolidone, and the mixture was stirred and mixed to obtain LiCoO 2
A positive electrode mixture coating liquid composed of 90.3% by weight, acetylene black 2.5% by weight, artificial graphite 3% by weight, and polyvinylidene fluoride 4% by weight was prepared. This positive electrode mixture coating liquid is applied to both sides of an aluminum foil (1N30, thickness 20 μm),
After drying, a positive electrode 7 was prepared by pressure molding using a rolling mill so that the mixture layer of the positive electrode had a porosity of 25%.
【0044】一方、メソフェーズピッチを原料としたメ
ソフェーズピッチ炭素繊維(MCF)をアルゴンガス雰
囲気下、1000℃で炭素化した後、平均繊維長30μ
m、平均繊維径11μm、粒度1〜80μmで90体積
%が存在するように、かつ粒径0.5μm以下の粒子が
5%以下になる様に適度に粉砕した後、アルゴン雰囲気
下で3000℃にて黒鉛化することにより炭素質物を製
造した。次いで、ポリフッ化ビニリデンをN−メチル−
2−ピロリドンに溶解させた溶液に炭素質物と人造黒鉛
を加えて撹拌混合し、合剤組成が炭素質物86.5重量
%、人造黒鉛9.5重量%、ポリフッ化ビニリデン4重
量%からなる負極合剤塗液を調製した。これを銅箔(N
C−WS、厚さ12μm)の両面に塗布し、乾燥した
後、圧延機で加圧成形することにより厚さ124μmの
負極を作製した。この際、成形後の正極の設計容量に対
する負極の設計対向電極容量の比(容量バランス)が、
1.05以上1.15以下になるように充填密度と電極
長さを調節した。On the other hand, the mesophase pitch carbon fiber (MCF) made from mesophase pitch was carbonized at 1000 ° C. in an argon gas atmosphere, and then the average fiber length was 30 μm.
m, an average fiber diameter of 11 μm, a particle size of 1 to 80 μm, and 90% by volume, and appropriately pulverized so that particles having a particle size of 0.5 μm or less become 5% or less, and then 3000 ° C. in an argon atmosphere. A carbonaceous material was produced by graphitizing with. Then, polyvinylidene fluoride was added to N-methyl-
A carbonaceous material and artificial graphite are added to a solution dissolved in 2-pyrrolidone, and the mixture is stirred and mixed, and the negative electrode mixture composition is 86.5% by weight of carbonaceous material, 9.5% by weight of artificial graphite, and 4% by weight of polyvinylidene fluoride. A mixture coating solution was prepared. This is copper foil (N
(C-WS, thickness 12 μm) was applied on both surfaces, dried and then pressure-molded by a rolling mill to prepare a negative electrode having a thickness of 124 μm. At this time, the ratio (capacity balance) of the negative electrode design counter electrode capacity to the positive electrode design capacity after molding is
The packing density and the electrode length were adjusted so as to be 1.05 or more and 1.15 or less.
【0045】負極リードタブ14としては、全厚さが
0.1mmで幅4mmの短冊状材料から成り、幅4mm
で50μm厚の銅板からなる第1層を、厚さ25μmの
ニッケルの第2層及び第3層で両側から挟み込んだ三層
構造体(ニッケル14-1と銅14-2のクラッド処理加
工品)を用いた。これを、超音波溶接機により溶接した
後、正極、ポリエチレン製多孔質フィルムからなるセパ
レータおよび負極をそれぞれこの順序で積層し、負極が
外側に位置するように渦巻き状に捲回した。この時、正
・負極共電極先端部および末端部には活物質が塗布搭載
されていない部分を設け捲回により電極群6を作製し
た。The negative electrode lead tab 14 is made of a strip material having a total thickness of 0.1 mm and a width of 4 mm, and has a width of 4 mm.
A three-layer structure in which the first layer consisting of a 50 μm thick copper plate is sandwiched from both sides by a second layer and a third layer of nickel with a thickness of 25 μm (clad processed product of nickel 14-1 and copper 14-2) Was used. After welding this with an ultrasonic welding machine, a positive electrode, a separator made of a polyethylene porous film, and a negative electrode were laminated in this order, and were spirally wound so that the negative electrode was located outside. At this time, the positive electrode and the negative electrode were provided with a portion where the active material was not applied and mounted on the front and end portions of the electrode, and the electrode group 6 was produced by winding.
【0046】この電極群6を有底円筒状容器内4に収納
し、負極リード14を有底円筒状容器4の底部に抵抗溶
接接続し、正極リード13を有底円筒状容器4の正極端
子11に配置する封口体10にレーザー溶接接続した。The electrode group 6 is housed in the bottomed cylindrical container 4, the negative electrode lead 14 is resistance welded to the bottom of the bottomed cylindrical container 4, and the positive electrode lead 13 is the positive electrode terminal of the bottomed cylindrical container 4. Laser sealing connection was made to the sealing body 10 arranged at 11.
【0047】つづいて、有底円筒状容器内4に、エチレ
ンカーボネート(EC)とメチルエチルカーボネート
(MEC)の混合溶媒(混合体積比1:2)に六フッ化
リン酸リチウム(LiPF6)を1M溶解した非水電解
液を注液し、電極群に非水電解液を十分に含浸させた。Subsequently, in a bottomed cylindrical container 4, lithium hexafluorophosphate (LiPF 6 ) was added to a mixed solvent of ethylene carbonate (EC) and methyl ethyl carbonate (MEC) (mixing volume ratio 1: 2). A 1 M dissolved non-aqueous electrolytic solution was injected to sufficiently impregnate the electrode group with the non-aqueous electrolytic solution.
【0048】そして、有底円筒状容器内4は、絶縁体
(ガラス・樹脂やセラミックス)12を介した正極端子
11および圧力開放弁(ラプチャー)1を装填して有底
円筒状容器内4と共に封口体10によって、封口体10
の境界全周部は機械的なかしめ構造にて封口密閉され
た。予め薄肉部を設けた破断圧力15kg/cm2とし
た電流遮断弁機構及び破断圧力20kg/cm2とした
圧力開放弁(ラプチャー)1機構を設けた構造と成って
いる。The bottomed cylindrical container 4 is loaded with the positive electrode terminal 11 and the pressure release valve (rupture) 1 via the insulator (glass, resin or ceramics) 12 and together with the bottomed cylindrical container 4. By the sealing body 10, the sealing body 10
The entire circumference of the boundary was sealed and sealed by a mechanical caulking structure. It has a structure in which a current cutoff valve mechanism having a breaking pressure of 15 kg / cm 2 and a pressure release valve (rupture) 1 mechanism having a breaking pressure of 20 kg / cm 2 provided with a thin portion in advance is provided.
【0049】以上のようにして、設計定格容量1600
mAhの円筒形非水電解質二次電池(18650サイズ
(直径18mm、高さ65mm))を組み立てた。As described above, the design rated capacity 1600
A mAh cylindrical non-aqueous electrolyte secondary battery (18650 size (diameter 18 mm, height 65 mm)) was assembled.
【0050】(実施例2)負極リードタブ14として、
全厚さが0.1mmで幅4mmの短冊状材料から成り、
幅4mmで30μm厚の銅板からなる第1層を、厚さ3
5μmのニッケルの第2層及び第3層で両側から挟み込
んだ三層構造体(クラッド処理加工品)を用いたこと以
外は、実施例1と同様にして設計定格容量1600mA
hの円筒形非水電解質二次電池(18650サイズ(直
径18mm、高さ65mm))を組み立てた。Example 2 As the negative electrode lead tab 14,
Made of strip-shaped material with a total thickness of 0.1 mm and a width of 4 mm,
The thickness of the first layer made of a copper plate having a width of 4 mm and a thickness of 30 μm is 3 mm.
A design rated capacity of 1600 mA was obtained in the same manner as in Example 1 except that a three-layer structure (clad processed product) sandwiched from both sides by a second layer and a third layer of 5 μm nickel was used.
A cylindrical non-aqueous electrolyte secondary battery (18650 size (diameter 18 mm, height 65 mm)) of h was assembled.
【0051】(実施例3)負極リードタブ14として、
全厚さが0.1mmで幅4mmの短冊状材料から成り、
幅4mmで50μm厚の銅−ニッケル合金(ニッケル:
0.05重量%)板からなる第1層を、厚さ25μmの
ニッケルの第2層及び第3層で両側から挟み込んだ三層
構造体(クラッド処理加工品)を用いたこと以外は、実
施例1と同様にして設計定格容量1600mAhの円筒
形非水電解質二次電池(18650サイズ(直径18m
m、高さ65mm))を組み立てた。Example 3 As the negative electrode lead tab 14,
Made of strip-shaped material with a total thickness of 0.1 mm and a width of 4 mm,
Copper-nickel alloy with a width of 4 mm and a thickness of 50 μm (nickel:
(0.05% by weight), except that a three-layer structure (clad processed product) in which a first layer made of a plate was sandwiched from both sides by a second layer and a third layer of nickel having a thickness of 25 μm was used. Cylindrical non-aqueous electrolyte secondary battery (18650 size (diameter 18 m
m, height 65 mm)) was assembled.
【0052】(実施例4)負極リードタブ14として、
全厚さが0.1mmで幅4mmの短冊状材料から成り、
幅4mmで50μm厚の銅−鉄金(鉄:0.05重量
%)板からなる第1層を、厚さ25μmのニッケルの第
2層及び第3層で両側から挟み込んだ三層構造体(クラ
ッド処理加工品)を用いたこと以外は、実施例1と同様
にして設計定格容量1600mAhの円筒形非水電解質
二次電池(18650サイズ(直径18mm、高さ65
mm))を組み立てた。Example 4 As the negative electrode lead tab 14,
Made of strip-shaped material with a total thickness of 0.1 mm and a width of 4 mm,
A three-layer structure in which a first layer made of a copper-iron-gold (iron: 0.05% by weight) plate having a width of 4 mm and a thickness of 50 μm is sandwiched from both sides by a second layer and a third layer of nickel having a thickness of 25 μm ( A cylindrical non-aqueous electrolyte secondary battery (18650 size (diameter 18 mm, height 65 mm) having a design rated capacity of 1600 mAh was used in the same manner as in Example 1 except that a clad processed product) was used.
mm)) was assembled.
【0053】(実施例5)負極リードタブ14として、
全厚さが0.1mmで幅4mmの短冊状材料から成り、
幅4mmで50μm厚の銅板からなる第1層を、厚さ2
5μmのニッケル−銅合金(銅:1重量%)の第2層及
び第3層で両側から挟み込んだ三層構造体(クラッド処
理加工品)を用いたこと以外は、実施例1と同様にして
設計定格容量1600mAhの円筒形非水電解質二次電
池(18650サイズ(直径18mm、高さ65m
m))を組み立てた。Example 5 As the negative electrode lead tab 14,
Made of strip-shaped material with a total thickness of 0.1 mm and a width of 4 mm,
The first layer made of a copper plate having a width of 4 mm and a thickness of 50 μm has a thickness of 2 mm.
In the same manner as in Example 1 except that a three-layer structure (clad processed product) sandwiched from both sides by a second layer and a third layer of a 5 μm nickel-copper alloy (copper: 1% by weight) was used. Cylindrical non-aqueous electrolyte secondary battery with design rated capacity of 1600 mAh (18650 size (diameter 18 mm, height 65 m
m)) was assembled.
【0054】(実施例6)負極リードタブ14として、
幅4mmで0.1mm厚の銅板の両面及び側面に、厚さ
2μmのニッケルめっきを施した三層構造体(無電解め
っき処理加工品)を用いたこと以外は、実施例1と同様
にして設計定格容量1600mAhの円筒形非水電解質
二次電池(18650サイズ(直径18mm、高さ65
mm))を組み立てた。Example 6 As the negative electrode lead tab 14,
The same procedure as in Example 1 was performed except that a three-layer structure (electroless plating processed product) having a thickness of 2 μm and having a thickness of 2 μm applied to both sides and sides of a copper plate having a width of 4 mm and a thickness of 0.1 mm was used. Cylindrical non-aqueous electrolyte secondary battery with a design rated capacity of 1600 mAh (18650 size (diameter 18 mm, height 65
mm)) was assembled.
【0055】(実施例7)負極リードタブ14として、
幅4mmで0.1mm厚の銅板の両面及び側面に、厚さ
1μmのニッケルめっきを施した三層構造体(無電解め
っき処理加工品)を用いたこと以外は、実施例1と同様
にして設計定格容量1600mAhの円筒形非水電解質
二次電池(18650サイズ(直径18mm、高さ65
mm))を組み立てた。Example 7 As the negative electrode lead tab 14,
The same procedure as in Example 1 was performed except that a three-layer structure (electroless plating processed product) in which a copper plate having a width of 4 mm and a thickness of 0.1 mm was plated with nickel having a thickness of 1 μm was used. Cylindrical non-aqueous electrolyte secondary battery with a design rated capacity of 1600 mAh (18650 size (diameter 18 mm, height 65
mm)) was assembled.
【0056】(実施例8)負極リードタブ14として、
幅4mmで0.1mm厚の銅板の両面及び側面に、厚さ
2μmのニッケルめっきを施した三層構造体(電解めっ
き処理加工品)を用いたこと以外は、実施例1と同様に
して設計定格容量1600mAhの円筒形非水電解質二
次電池(18650サイズ(直径18mm、高さ65m
m))を組み立てた。Example 8 As the negative electrode lead tab 14,
Designed in the same manner as in Example 1 except that a three-layer structure (electrolytically plated processed product) in which a copper plate having a width of 4 mm and a thickness of 0.1 mm and having a thickness of 2 μm was plated on both sides and side surfaces was used. Cylindrical non-aqueous electrolyte secondary battery (18650 size (diameter 18 mm, height 65 m
m)) was assembled.
【0057】(比較例1)材質が銅(厚さ0.1mm)
からなる負極リードタブを用いたこと以外は、実施例1
と同様にして非水電解質二次電池(18650サイズ)
を組み立てた。(Comparative Example 1) Material is copper (thickness 0.1 mm)
Example 1 except that a negative electrode lead tab consisting of
Non-aqueous electrolyte secondary battery (18650 size)
Assembled.
【0058】(比較例2)材質がニッケル(厚さ0.1
mm)からなる負極リードタブを用いた以外は、実施例
1と同様にして非水電解質二次電池(18650サイ
ズ)を組み立てた。(Comparative Example 2) The material is nickel (thickness: 0.1).
mm non-aqueous electrolyte secondary battery (18650 size) was assembled in the same manner as in Example 1 except that the negative electrode lead tabs were used.
【0059】以上のようにして得られた実施例1〜実施
例8、及び比較例1〜比較例2の非水電解質二次電池を
所定個数用意し、出力特性を評価した。この出力特性を
規定する方法として、ここでは2つの電流値で放電した
際に得られる各放電容量の比で規定する方法を採用し
た。すなわち、電池の公称容量である1600mAhを
1時間で放電する1600mAの電流を1Cとした時
に、0.2Cで放電した時の放電容量(0.2C)、5
Cで放電した時の放電容量(5C)をそれぞれ測定し、
2つの放電容量の比である放電容量(5C)/放電容量
(0.2C)の値を大電流放電容量比とし、以下、本文
中で使用することとする。なお、この際、充電は0.2
Cの電流値で4.2Vまで充電を行い、4.2Vの定電
圧で保持する定電流−定電圧充電を計8時間行った。大
電流放電容量比の値を表1に示す。A predetermined number of the non-aqueous electrolyte secondary batteries of Examples 1 to 8 and Comparative Examples 1 and 2 obtained as described above were prepared and the output characteristics were evaluated. As a method of defining this output characteristic, here, a method of defining the ratio of each discharge capacity obtained when discharging at two current values is adopted. That is, when the current of 1600 mA that discharges 1600 mAh, which is the nominal capacity of a battery, in 1 hour is 1 C, the discharge capacity (0.2 C) when discharged at 0.2 C, 5
The discharge capacity (5C) when discharged at C was measured,
The value of discharge capacity (5C) / discharge capacity (0.2C), which is the ratio of the two discharge capacities, is defined as the large current discharge capacity ratio, and will be used in the following text. At this time, charging is 0.2
Charging was performed up to 4.2 V with a current value of C, and constant current-constant voltage charging with a constant voltage of 4.2 V was performed for a total of 8 hours. The values of the large current discharge capacity ratio are shown in Table 1.
【0060】表1より明らかなように、本発明に係る多
層構造からなる負極リードタブを用いた実施例1〜実施
例8、及び銅からなる負極リードタブを用いた比較例1
は、大電流放電比がいずれも90%以上であり、出力特
性に優れることが確認できた。As is clear from Table 1, Examples 1 to 8 using the negative electrode lead tab having the multilayer structure according to the present invention and Comparative Example 1 using the negative electrode lead tab made of copper.
It was confirmed that each of the large current discharge ratios was 90% or more and the output characteristics were excellent.
【0061】これに対し、ニッケル製リードタブを用い
た比較例2は、大電流放電比が90%未満であり、実施
例1〜実施例8及び比較例1に比べると、あまり良くな
かった。On the other hand, Comparative Example 2 using the nickel lead tab had a large current discharge ratio of less than 90%, which was not so good as compared with Examples 1 to 8 and Comparative Example 1.
【0062】次に、実施例1〜実施例8及び比較例1〜
比較例2の各電池について、過放電状態を想定し、過放
電試験を実施した。過放電試験は、1mAの電流値で強
制的に連続放電を行った。Next, Examples 1 to 8 and Comparative Examples 1 to
With respect to each battery of Comparative Example 2, an over-discharge test was performed assuming an over-discharged state. In the over-discharge test, continuous discharge was forcibly performed at a current value of 1 mA.
【0063】実施例1及び実施例2について、過放電試
験時の放電時間と電池電圧特性を示したのが図2であ
る。この図2に示すように、実施例1の電池では、30
時間を越えても電池電圧の極性が変わることなく放電を
続けることができた。FIG. 2 shows the discharge time and the battery voltage characteristic in the overdischarge test for Examples 1 and 2. As shown in FIG. 2, in the battery of Example 1, 30
It was possible to continue discharging without changing the polarity of the battery voltage even if the time was exceeded.
【0064】一方、比較例1の電池は、5時間を越えた
あたりから極性の反転が生じ、明らかに無理な過放電の
状態に入ったことが示されている。特に、8時間の手前
で1V以上の転極状態となっていることが分かる。On the other hand, in the battery of Comparative Example 1, it was shown that the polarity inversion occurred after about 5 hours, and it was clearly put into an excessively overdischarged state. In particular, it can be seen that the polarization state is 1 V or more 8 hours before.
【0065】次に、過放電試験の後、実施例1〜実施例
8及び比較例1〜比較例2の各電池を再び充電して、そ
の容量回復性を調べた。図3は、実施例1及び比較例1
について、過放電試験後の充電時間と充電電流の挙動特
性を示したものである。Next, after the over-discharge test, the batteries of Examples 1 to 8 and Comparative Examples 1 and 2 were recharged to examine their capacity recoverability. FIG. 3 shows Example 1 and Comparative Example 1.
Regarding the behavior characteristics of charging time and charging current after the over-discharge test.
【0066】図3に示すように、実施例1の電池におい
ては、充電開始から徐々に電池電圧が上昇し、2時間後
には満充電状態に達することができた。As shown in FIG. 3, in the battery of Example 1, the battery voltage was gradually increased from the start of charging, and the fully charged state could be reached after 2 hours.
【0067】これに対し、比較例1の電池では、転極し
てしまったため電池電圧は全く上昇せず二次電池として
の機能を得ることができなかった。On the other hand, in the battery of Comparative Example 1, the battery voltage did not rise at all because of the reversal of the polarity, and the function as the secondary battery could not be obtained.
【0068】このようにして容量回復性を調べた結果を
表1に併せて示した。評価ランクとして、試験用サンプ
ルを各実施例共に100個作製し、過充電試験の後、正
常に容量が回復した電池の100個に対する割合で表
し、Aランクは100%から90%以上、Bランクは9
0%未満、80%以上、Cランクは80%未満とした。The results of examining the capacity recoverability as described above are also shown in Table 1. As an evaluation rank, 100 test samples were prepared in each of the examples and expressed as a ratio to 100 batteries whose capacity was normally restored after an overcharge test. A rank is 100% to 90% or more, and B rank is Is 9
Less than 0%, 80% or more, and C rank less than 80%.
【0069】表1から明らかなように、本発明に係る多
層構造からなる負極リードタブを用いた実施例1〜実施
例8の電池では、容量回復性が非常に優れていた。As is clear from Table 1, the batteries of Examples 1 to 8 using the negative electrode lead tab having the multilayer structure according to the present invention were very excellent in capacity recovery.
【0070】一方、銅製の負極リードタブを用いた比較
例1の電池は、容量回復性が極めて悪かった。
(比較例3)負極リードタブとして、全厚さが0.1m
mで幅4mmの短冊状材料から成り、幅4mmで50μ
m厚のニッケル板からなる第1層を、厚さ25μmの銅
の第2層及び第3層で両側から挟み込んだ三層構造体
(クラッド処理加工品)を用いた。これを、実施例1と
同様にして負極集電体に超音波溶接機により溶接した
後、正極、ポリエチレン製多孔質フィルムからなるセパ
レータおよび負極をそれぞれこの順序で積層し、負極が
外側に位置するように渦巻き状に捲回し、電極群を作製
した。On the other hand, the battery of Comparative Example 1 using the copper negative electrode lead tab had extremely poor capacity recovery. (Comparative Example 3) As a negative electrode lead tab, the total thickness is 0.1 m.
made of strip-shaped material with a width of 4 mm and a width of 4 mm and 50 μm
A three-layer structure (clad processed product) was used in which a first layer made of an m-thick nickel plate was sandwiched from both sides by a second layer and a third layer of copper having a thickness of 25 μm. This is welded to the negative electrode current collector by an ultrasonic welding machine in the same manner as in Example 1, and then the positive electrode, the separator made of a polyethylene porous film and the negative electrode are laminated in this order, and the negative electrode is located outside. Thus, the electrode group was produced by spirally winding.
【0071】この電極群を有底円筒状容器内に収納し、
前記負極リードを前記有底円筒状容器の底部に実施例1
と同条件で抵抗溶接しようとしたが、溶接できなかっ
た。そこで、抵抗溶接機の溶接出力(電圧ないしは電
流、及び時間)を上げて再度行ったが、やはり溶接でき
なかった。This electrode group was housed in a cylindrical container with a bottom,
Example 1 The negative electrode lead is provided on the bottom of the bottomed cylindrical container.
I tried to perform resistance welding under the same conditions as above, but could not weld. Therefore, the welding output (voltage or current, and time) of the resistance welding machine was increased and the operation was performed again, but the welding was still unsuccessful.
【0072】[0072]
【表1】 [Table 1]
【0073】[0073]
【発明の効果】以上詳述したように、本発明によれば、
電池が過放電状態になっても銅の溶解反応が生じにくい
ため、容量回復性に優れた非水電解質二次電池を提供す
ることができる。As described in detail above, according to the present invention,
Even if the battery is in the over-discharged state, the dissolution reaction of copper hardly occurs, so that it is possible to provide a non-aqueous electrolyte secondary battery having excellent capacity recovery.
【図面の簡単な説明】[Brief description of drawings]
【図1】 本発明の実施例1に係わる電池の断面図。FIG. 1 is a sectional view of a battery according to a first embodiment of the present invention.
【図2】 本発明の実施例1及び比較例1の放電特性を
説明する図。FIG. 2 is a diagram illustrating discharge characteristics of Example 1 and Comparative Example 1 of the present invention.
【図3】 本発明の実施例1及び比較例1の充電特性を
説明する図。FIG. 3 is a diagram illustrating charging characteristics of Example 1 and Comparative Example 1 of the present invention.
【図4】 従来例の電池を示す断面図。FIG. 4 is a cross-sectional view showing a conventional battery.
1・・・ラプチャー機能を有する金属破裂板 3・・・金属製リング 4・・・金属ケース(容器) 5・・・底絶縁板 6・・・電極群 7・・・正極 8・・・セパレータ 9・・・負極 10・・・封口体 11・・・正極端子 12・・・シール用絶縁体(ガスケット) 13・・・正極リードタブ 14・・・負極リードタブ 1 ... Metal rupture plate with rupture function 3 ... Metal ring 4 ... Metal case (container) 5 ... Bottom insulation plate 6 ... Electrode group 7 ... Positive electrode 8: Separator 9 ... Negative electrode 10 ... Sealing body 11 ... Positive electrode terminal 12 ... Insulator for sealing (gasket) 13 ... Positive electrode lead tab 14 ... Negative electrode lead tab
───────────────────────────────────────────────────── フロントページの続き (72)発明者 神田 基 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝研究開発センター内 Fターム(参考) 5H022 AA09 CC08 CC19 CC23 CC30 EE01 EE03 ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Motoko Kanda 1st Komukai Toshiba-cho, Sachi-ku, Kawasaki-shi, Kanagawa Inside the Toshiba Research and Development Center F-term (reference) 5H022 AA09 CC08 CC19 CC23 CC30 EE01 EE03
Claims (2)
極と、この正極に隣接して形成され非水電解質を含有す
るセパレータと、前記正極に前記セパレータを介して対
向し負極活物質が負極集電体上に形成された負極と、前
記正極、前記セパレータ、及び前記負極を収納する導電
性ケースと、この導電性ケースと前記負極集電体を電気
的に接続する金属リードタブ材とを具備する非水電解質
二次電池において、前記金属リードタブ材が銅或いは銅
合金の第1層とニッケル或いはニッケル合金の第2層を
含む多層構造を有し、前記第2層が負極端子を兼ねる前
記導電性ケースと電気的に接触する事を特徴とする非水
電解質二次電池。1. A positive electrode having a positive electrode active material formed on a positive electrode current collector, a separator formed adjacent to the positive electrode and containing a non-aqueous electrolyte, and a negative electrode active material facing the positive electrode through the separator. A negative electrode having a substance formed on a negative electrode current collector, a conductive case accommodating the positive electrode, the separator, and the negative electrode, and a metal lead tab material electrically connecting the conductive case and the negative electrode current collector. And a metal lead tab material having a multilayer structure including a first layer of copper or a copper alloy and a second layer of nickel or a nickel alloy, the second layer serving as a negative electrode terminal. A non-aqueous electrolyte secondary battery, which is in electrical contact with the electrically conductive case that also serves as a battery.
記第1層、及びニッケル或いはニッケル合金の第3層が
順次積層して形成された多層構造を有し、この第3層が
前記負極に直接電気的に接続される事を特徴とする請求
項1記載の非水電解質二次電池。2. The metal lead tab material has a multi-layer structure in which the second layer, the first layer, and a third layer of nickel or nickel alloy are sequentially laminated, and the third layer is the The non-aqueous electrolyte secondary battery according to claim 1, wherein the non-aqueous electrolyte secondary battery is directly electrically connected to the negative electrode.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001293294A JP2003100278A (en) | 2001-09-26 | 2001-09-26 | Nonaqueous electrolyte secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001293294A JP2003100278A (en) | 2001-09-26 | 2001-09-26 | Nonaqueous electrolyte secondary battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003100278A true JP2003100278A (en) | 2003-04-04 |
Family
ID=19115120
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001293294A Pending JP2003100278A (en) | 2001-09-26 | 2001-09-26 | Nonaqueous electrolyte secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003100278A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005135634A (en) * | 2003-10-28 | 2005-05-26 | Toshiba Corp | Nonaqueous electrolyte secondary battery |
JP2006221890A (en) * | 2005-02-09 | 2006-08-24 | Matsushita Electric Ind Co Ltd | battery |
JP2007273258A (en) * | 2006-03-31 | 2007-10-18 | Sanyo Electric Co Ltd | Battery |
JP2010003696A (en) * | 2008-06-20 | 2010-01-07 | Samsung Sdi Co Ltd | Electrode tab, and lithium secondary battery including it |
JP2010118355A (en) * | 2003-08-20 | 2010-05-27 | Samsung Sdi Co Ltd | Electrolytic solution for lithium secondary battery and lithium secondary battery containing the same |
US20100273033A1 (en) * | 2009-04-27 | 2010-10-28 | Masato Fujikawa | Secondary battery |
JP2015506085A (en) * | 2012-02-07 | 2015-02-26 | エルジー・ケム・リミテッド | Secondary battery with new structure |
US9281542B2 (en) | 2012-10-03 | 2016-03-08 | Kabushiki Kaisha Toyota Jidoshokki | Electricity storage device and welding method |
EP3035410A4 (en) * | 2013-09-27 | 2016-06-29 | Lg Chemical Ltd | SECONDARY BATTERY COMPRISING A LOW-RESISTANCE ELECTRODE TAB |
CN109768208A (en) * | 2018-12-29 | 2019-05-17 | 深圳市比克动力电池有限公司 | Negative tab for lithium ion battery |
WO2024135364A1 (en) | 2022-12-23 | 2024-06-27 | パナソニックエナジー株式会社 | Secondary battery |
-
2001
- 2001-09-26 JP JP2001293294A patent/JP2003100278A/en active Pending
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010118355A (en) * | 2003-08-20 | 2010-05-27 | Samsung Sdi Co Ltd | Electrolytic solution for lithium secondary battery and lithium secondary battery containing the same |
JP2005135634A (en) * | 2003-10-28 | 2005-05-26 | Toshiba Corp | Nonaqueous electrolyte secondary battery |
JP2006221890A (en) * | 2005-02-09 | 2006-08-24 | Matsushita Electric Ind Co Ltd | battery |
JP2007273258A (en) * | 2006-03-31 | 2007-10-18 | Sanyo Electric Co Ltd | Battery |
JP2010003696A (en) * | 2008-06-20 | 2010-01-07 | Samsung Sdi Co Ltd | Electrode tab, and lithium secondary battery including it |
US20100273033A1 (en) * | 2009-04-27 | 2010-10-28 | Masato Fujikawa | Secondary battery |
JP2015506085A (en) * | 2012-02-07 | 2015-02-26 | エルジー・ケム・リミテッド | Secondary battery with new structure |
US9281542B2 (en) | 2012-10-03 | 2016-03-08 | Kabushiki Kaisha Toyota Jidoshokki | Electricity storage device and welding method |
EP3035410A4 (en) * | 2013-09-27 | 2016-06-29 | Lg Chemical Ltd | SECONDARY BATTERY COMPRISING A LOW-RESISTANCE ELECTRODE TAB |
JP2016536770A (en) * | 2013-09-27 | 2016-11-24 | エルジー・ケム・リミテッド | Secondary battery with low resistance electrode tab |
US10347897B2 (en) | 2013-09-27 | 2019-07-09 | Lg Chem, Ltd. | Secondary battery with electrode tab made of copper-nickel alloy |
CN109768208A (en) * | 2018-12-29 | 2019-05-17 | 深圳市比克动力电池有限公司 | Negative tab for lithium ion battery |
WO2024135364A1 (en) | 2022-12-23 | 2024-06-27 | パナソニックエナジー株式会社 | Secondary battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4454950B2 (en) | Nonaqueous electrolyte secondary battery | |
JP5109359B2 (en) | Nonaqueous electrolyte secondary battery | |
EP2262037A1 (en) | Lithium secondary battery using ionic liquid | |
US9831532B2 (en) | Nonaqueous electrolyte secondary battery | |
JP2006134762A (en) | Secondary battery | |
US8003243B2 (en) | Spirally wound secondary battery with uneven termination end portions | |
US20230361292A1 (en) | Electrode, nonaqueous electrolyte battery, and battery pack | |
JP2002237334A (en) | Double collector type negative electrode structure for alkaline metal ion battery | |
GB2357896A (en) | Lithium secondary battery and battery device comprising same | |
JP2006344505A (en) | Electrolyte solution and battery | |
JP4591674B2 (en) | Lithium ion secondary battery | |
JP2003123767A (en) | Collector, electrode, and battery | |
JP2003100278A (en) | Nonaqueous electrolyte secondary battery | |
JP4876495B2 (en) | Electrolyte for lithium ion secondary battery and lithium ion secondary battery | |
JPH06349493A (en) | Secondary battery | |
WO2012101693A1 (en) | Negative electrode collector for lithium ion batteries, and lithium ion battery | |
JP2005347222A (en) | Electrolyte liquid and battery | |
JP4849291B2 (en) | Secondary battery | |
JP2005293960A (en) | Negative electrode for lithium ion secondary battery and lithium ion secondary battery | |
JP2006286532A (en) | Battery | |
KR20040087936A (en) | Electrolytic Solution and Battery Using It | |
JP4834284B2 (en) | Nonaqueous electrolyte secondary battery | |
JP3798737B2 (en) | Nonaqueous electrolyte secondary battery | |
WO2003067688A1 (en) | Nonaqueous electrolyte secondary cell | |
JP4222292B2 (en) | Secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040901 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040910 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20050204 |