JP2003059536A - Nonaqueous electrolyte cell and its manufacturing method - Google Patents
Nonaqueous electrolyte cell and its manufacturing methodInfo
- Publication number
- JP2003059536A JP2003059536A JP2001243752A JP2001243752A JP2003059536A JP 2003059536 A JP2003059536 A JP 2003059536A JP 2001243752 A JP2001243752 A JP 2001243752A JP 2001243752 A JP2001243752 A JP 2001243752A JP 2003059536 A JP2003059536 A JP 2003059536A
- Authority
- JP
- Japan
- Prior art keywords
- battery
- separator
- porous polymer
- electrolyte
- positive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000011255 nonaqueous electrolyte Substances 0.000 title claims abstract description 38
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 26
- 239000005518 polymer electrolyte Substances 0.000 claims abstract description 44
- 238000010438 heat treatment Methods 0.000 claims abstract description 33
- 238000000034 method Methods 0.000 claims abstract description 18
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 54
- 239000011148 porous material Substances 0.000 claims description 28
- 239000001569 carbon dioxide Substances 0.000 claims description 27
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 27
- 239000003792 electrolyte Substances 0.000 claims description 13
- 238000002844 melting Methods 0.000 claims description 11
- 230000008018 melting Effects 0.000 claims description 11
- 238000009835 boiling Methods 0.000 claims description 4
- 238000010248 power generation Methods 0.000 claims description 4
- 239000008151 electrolyte solution Substances 0.000 abstract description 53
- 229920000642 polymer Polymers 0.000 abstract description 49
- 239000000243 solution Substances 0.000 abstract description 13
- -1 polyethylene terephthalate Polymers 0.000 description 21
- 239000002904 solvent Substances 0.000 description 18
- 239000007789 gas Substances 0.000 description 14
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 12
- 229910052744 lithium Inorganic materials 0.000 description 12
- 239000000203 mixture Substances 0.000 description 12
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 11
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 11
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 11
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 10
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 9
- 239000007773 negative electrode material Substances 0.000 description 9
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 8
- 239000004698 Polyethylene Substances 0.000 description 8
- 229920000573 polyethylene Polymers 0.000 description 8
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 7
- 239000002033 PVDF binder Substances 0.000 description 7
- 239000011737 fluorine Substances 0.000 description 7
- 229910052731 fluorine Inorganic materials 0.000 description 7
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 7
- 239000007774 positive electrode material Substances 0.000 description 7
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 6
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 6
- 230000002829 reductive effect Effects 0.000 description 6
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 5
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 5
- 239000011149 active material Substances 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 5
- 238000007599 discharging Methods 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- 229920001971 elastomer Polymers 0.000 description 5
- 239000000806 elastomer Substances 0.000 description 5
- 229910001416 lithium ion Inorganic materials 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 5
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 239000004743 Polypropylene Substances 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000000354 decomposition reaction Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 4
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 4
- 229910002804 graphite Inorganic materials 0.000 description 4
- 239000010439 graphite Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000012466 permeate Substances 0.000 description 4
- 229920002239 polyacrylonitrile Polymers 0.000 description 4
- 229920001155 polypropylene Polymers 0.000 description 4
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- 229920000049 Carbon (fiber) Polymers 0.000 description 3
- 229910013716 LiNi Inorganic materials 0.000 description 3
- XOBKSJJDNFUZPF-UHFFFAOYSA-N Methoxyethane Chemical compound CCOC XOBKSJJDNFUZPF-UHFFFAOYSA-N 0.000 description 3
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 239000004917 carbon fiber Substances 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 150000002576 ketones Chemical class 0.000 description 3
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 3
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 3
- 239000004926 polymethyl methacrylate Substances 0.000 description 3
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 3
- 229910052723 transition metal Inorganic materials 0.000 description 3
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- 229920000181 Ethylene propylene rubber Polymers 0.000 description 2
- 229910011715 LiNi0.80 Inorganic materials 0.000 description 2
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 239000006230 acetylene black Substances 0.000 description 2
- 150000004651 carbonic acid esters Chemical class 0.000 description 2
- 239000001768 carboxy methyl cellulose Substances 0.000 description 2
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 2
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000006258 conductive agent Substances 0.000 description 2
- 229920001940 conductive polymer Polymers 0.000 description 2
- 230000008602 contraction Effects 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 210000001787 dendrite Anatomy 0.000 description 2
- 229940113088 dimethylacetamide Drugs 0.000 description 2
- 239000007770 graphite material Substances 0.000 description 2
- 150000002484 inorganic compounds Chemical class 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 2
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 2
- 229910052808 lithium carbonate Inorganic materials 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- 229920000609 methyl cellulose Polymers 0.000 description 2
- 239000001923 methylcellulose Substances 0.000 description 2
- 235000010981 methylcellulose Nutrition 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 238000006864 oxidative decomposition reaction Methods 0.000 description 2
- 229920001451 polypropylene glycol Polymers 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229920003048 styrene butadiene rubber Polymers 0.000 description 2
- 150000003624 transition metals Chemical class 0.000 description 2
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 description 1
- LZDKZFUFMNSQCJ-UHFFFAOYSA-N 1,2-diethoxyethane Chemical compound CCOCCOCC LZDKZFUFMNSQCJ-UHFFFAOYSA-N 0.000 description 1
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 1
- AVFZOVWCLRSYKC-UHFFFAOYSA-N 1-methylpyrrolidine Chemical compound CN1CCCC1 AVFZOVWCLRSYKC-UHFFFAOYSA-N 0.000 description 1
- JWUJQDFVADABEY-UHFFFAOYSA-N 2-methyltetrahydrofuran Chemical compound CC1CCCO1 JWUJQDFVADABEY-UHFFFAOYSA-N 0.000 description 1
- SBUOHGKIOVRDKY-UHFFFAOYSA-N 4-methyl-1,3-dioxolane Chemical compound CC1COCO1 SBUOHGKIOVRDKY-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 229910000733 Li alloy Inorganic materials 0.000 description 1
- 229910015015 LiAsF 6 Inorganic materials 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910012387 LiCo0.9Al0.1O2 Inorganic materials 0.000 description 1
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- 229910010586 LiFeO 2 Inorganic materials 0.000 description 1
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 1
- 229910014302 LiMn1.85Al0.15O4 Inorganic materials 0.000 description 1
- 229910003005 LiNiO2 Inorganic materials 0.000 description 1
- 229910013870 LiPF 6 Inorganic materials 0.000 description 1
- RJUFJBKOKNCXHH-UHFFFAOYSA-N Methyl propionate Chemical compound CCC(=O)OC RJUFJBKOKNCXHH-UHFFFAOYSA-N 0.000 description 1
- AHVYPIQETPWLSZ-UHFFFAOYSA-N N-methyl-pyrrolidine Natural products CN1CC=CC1 AHVYPIQETPWLSZ-UHFFFAOYSA-N 0.000 description 1
- 229910002640 NiOOH Inorganic materials 0.000 description 1
- 229920002292 Nylon 6 Polymers 0.000 description 1
- 229920002302 Nylon 6,6 Polymers 0.000 description 1
- 229920002319 Poly(methyl acrylate) Polymers 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- 229920002873 Polyethylenimine Polymers 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 239000000010 aprotic solvent Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910021383 artificial graphite Inorganic materials 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000002134 carbon nanofiber Substances 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 150000004770 chalcogenides Chemical class 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 238000003411 electrode reaction Methods 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- XPFVYQJUAUNWIW-UHFFFAOYSA-N furfuryl alcohol Chemical compound OCC1=CC=CO1 XPFVYQJUAUNWIW-UHFFFAOYSA-N 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 238000005087 graphitization Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 229910000625 lithium cobalt oxide Inorganic materials 0.000 description 1
- FUJCRWPEOMXPAD-UHFFFAOYSA-N lithium oxide Chemical compound [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 description 1
- 229910001947 lithium oxide Inorganic materials 0.000 description 1
- 229910003002 lithium salt Inorganic materials 0.000 description 1
- 159000000002 lithium salts Chemical class 0.000 description 1
- BFZPBUKRYWOWDV-UHFFFAOYSA-N lithium;oxido(oxo)cobalt Chemical compound [Li+].[O-][Co]=O BFZPBUKRYWOWDV-UHFFFAOYSA-N 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 239000011302 mesophase pitch Substances 0.000 description 1
- 239000002905 metal composite material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229940017219 methyl propionate Drugs 0.000 description 1
- 239000011325 microbead Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 229910021382 natural graphite Inorganic materials 0.000 description 1
- 229910021470 non-graphitizable carbon Inorganic materials 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000005486 organic electrolyte Substances 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229920003214 poly(methacrylonitrile) Polymers 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920001195 polyisoprene Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920002620 polyvinyl fluoride Polymers 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- HNJBEVLQSNELDL-UHFFFAOYSA-N pyrrolidin-2-one Chemical compound O=C1CCCN1 HNJBEVLQSNELDL-UHFFFAOYSA-N 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 229910000314 transition metal oxide Inorganic materials 0.000 description 1
- BHZCMUVGYXEBMY-UHFFFAOYSA-N trilithium;azanide Chemical compound [Li+].[Li+].[Li+].[NH2-] BHZCMUVGYXEBMY-UHFFFAOYSA-N 0.000 description 1
- 229920005609 vinylidenefluoride/hexafluoropropylene copolymer Polymers 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、非水電解質電池お
よびその製造方法に関する。TECHNICAL FIELD The present invention relates to a non-aqueous electrolyte battery and a method for manufacturing the same.
【0002】[0002]
【従来の技術】携帯用電子機器の急速な発展のため、そ
の電源に用いる電池の高性能化が早急に求められてい
る。その電池の一つが負極に金属リチウムを用いたリチ
ウム二次電池である。リチウムは金属の中で最も低い電
位を示し、比重も小さいことから、リチウム電池は高エ
ネルギー密度となる。しかし、充放電の繰り返しによっ
てリチウムのデンドライトが析出するため、サイクル性
能と安全性とに問題があった。2. Description of the Related Art Due to the rapid development of portable electronic devices, there has been an urgent need to improve the performance of batteries used as the power source thereof. One of the batteries is a lithium secondary battery using metallic lithium for the negative electrode. Since lithium shows the lowest potential among metals and has a small specific gravity, lithium batteries have high energy density. However, since dendrites of lithium are deposited by repeated charging / discharging, there are problems in cycle performance and safety.
【0003】そこで、負極活物質にグラファイトやカー
ボンなどを用いたリチウムイオン二次電池が考案され
た。リチウムイオン二次電池ではデンドライトが生成し
にくいため、リチウム電池よりも安全性は改善された。Therefore, a lithium ion secondary battery using graphite or carbon as the negative electrode active material has been devised. Lithium-ion secondary batteries are less prone to dendrites, and thus have improved safety over lithium batteries.
【0004】[0004]
【発明が解決しようとする課題】リチウムイオン二次電
池などの非水電解質電池には、可燃性の電解液が多く含
まれていることから、外部からの加熱や内部短絡によっ
て電池温度が上昇した時、電解液と正・負極活物質とが
反応することによってガスが発生し、電池の安全性が損
なわれるという問題があった。そこで、電池内の電解液
量を減らすことによって安全性を改善することが考えら
れた。Since non-aqueous electrolyte batteries such as lithium ion secondary batteries contain a large amount of combustible electrolyte, the battery temperature rises due to external heating or internal short circuit. At this time, there is a problem that gas is generated due to the reaction between the electrolytic solution and the positive and negative electrode active materials, and the safety of the battery is impaired. Therefore, it was considered to improve safety by reducing the amount of electrolytic solution in the battery.
【0005】しかし、電解液量を正・負極板とセパレー
タとの全空孔体積に対して100%以下としたとき、電
池の高率放電性能が著しく低下するという問題があっ
た。その原因は、電解液が電池全体、特に多孔性の正極
板や負極板の内部、セパレータの孔中、極板とセパレー
タ間などに均一に浸透していないため、正・負極板間の
電流分布が不均一になるためであった。However, when the amount of the electrolytic solution is 100% or less with respect to the total pore volume of the positive and negative electrode plates and the separator, there is a problem that the high rate discharge performance of the battery is significantly reduced. The reason for this is that the electrolyte does not evenly permeate the entire battery, especially inside the porous positive and negative plates, in the pores of the separator, and between the plates and the separator. Was not uniform.
【0006】本発明はこれらの課題を解決するものであ
り、電解液量の少ない非水電解質電池の高率放電性能を
改善することを目的とする。The present invention solves these problems, and an object thereof is to improve the high rate discharge performance of a non-aqueous electrolyte battery having a small amount of electrolyte.
【0007】[0007]
【課題を解決するための手段】請求項1の発明は、非水
電解質電池の製造方法に関するもので、正・負極板の少
なくとも一方とセパレータとに有孔性ポリマー電解質を
備えた発電要素を作製する第1の工程と、前記発電要素
を電池容器に収納する第2の工程と、正・負極板とセパ
レータと有孔性ポリマー電解質との全空孔体積に対して
30%以上100%以下の非水電解液を注液する第3の
工程とを備えた非水電解質電池の製造方法において、第
3の工程後、前記電池を40℃以上の温度で加熱する工
程を有することを特徴とする。The invention of claim 1 relates to a method for producing a non-aqueous electrolyte battery, in which at least one of a positive electrode plate and a negative electrode plate and a separator are provided with a porous polymer electrolyte. And a second step of accommodating the power generation element in a battery container, and the total pore volume of the positive and negative electrode plates, the separator and the porous polymer electrolyte is 30% or more and 100% or less. A method of manufacturing a non-aqueous electrolyte battery, comprising a third step of injecting a non-aqueous electrolyte solution, characterized by comprising a step of heating the battery at a temperature of 40 ° C. or higher after the third step. .
【0008】請求項1の発明によれば、電池内での電解
液の分布は均一となり、高率放電性能に優れた非水電解
質電池が得られる。According to the invention of claim 1, the distribution of the electrolytic solution in the battery becomes uniform, and a non-aqueous electrolyte battery excellent in high rate discharge performance can be obtained.
【0009】請求項2の発明は、請求項1記載の非水電
解質電池の製造方法において、有孔性ポリマー電解質の
融点(Tpm)とセパレータの融点(Tsm)と電解液
の沸点(Teb)のうち、最も低い温度以下で電池を加
熱することを特徴とする。According to a second aspect of the present invention, in the method for producing a non-aqueous electrolyte battery according to the first aspect, the melting point (Tpm) of the porous polymer electrolyte, the melting point (Tsm) of the separator and the boiling point (Teb) of the electrolytic solution are set. Among them, the battery is characterized by being heated at the lowest temperature or lower.
【0010】請求項2の発明によれば、電池の優れた高
率放電性能を維持することができ、同時に電池の膨張を
防止することができる。According to the second aspect of the present invention, the excellent high rate discharge performance of the battery can be maintained, and at the same time, the expansion of the battery can be prevented.
【0011】請求項3の発明は、請求項1または2記載
の非水電解質電池の製造方法において、放電状態の電池
を加熱することを特徴とする。The invention of claim 3 is characterized in that, in the method for producing a non-aqueous electrolyte battery according to claim 1 or 2, the battery in a discharged state is heated.
【0012】請求項3の発明によれば、電池の高率放電
性能の低下を抑制することができる。According to the third aspect of the invention, it is possible to suppress the deterioration of the high rate discharge performance of the battery.
【0013】請求項4の発明は、請求項1、2または3
記載の製造方法で得られた非水電解質電池において、電
池内のガスが1体積%以上の二酸化炭素を含むことを特
徴とする。The invention of claim 4 is the invention of claim 1, 2 or 3.
The non-aqueous electrolyte battery obtained by the manufacturing method described above is characterized in that the gas in the battery contains 1% by volume or more of carbon dioxide.
【0014】請求項4の発明によれば、電池の高率放電
性能を著しく向上させることができる。According to the invention of claim 4, the high rate discharge performance of the battery can be remarkably improved.
【0015】[0015]
【発明の実施の形態】本発明の非水電解質電池の製造方
法は、正・負極板の少なくとも一方とセパレータとに有
孔性ポリマー電解質を備えた発電要素を作製する第1の
工程と、前記発電要素を電池容器に収納する第2の工程
と、正・負極板とセパレータと有孔性ポリマー電解質と
の全空孔体積に対して30%以上100%以下の非水電
解液を注液する第3の工程とを備えた非水電解質電池の
製造方法において、第3の工程後、前記電池を40℃以
上の温度で加熱する工程を有することを特徴とする。BEST MODE FOR CARRYING OUT THE INVENTION The method for producing a non-aqueous electrolyte battery of the present invention comprises a first step of producing a power generating element having a porous polymer electrolyte on at least one of the positive and negative electrode plates and a separator, and Second step of accommodating the power generating element in the battery container, and injecting 30% or more and 100% or less of the non-aqueous electrolyte solution with respect to the total pore volume of the positive / negative electrode plates, the separator and the porous polymer electrolyte The method for producing a non-aqueous electrolyte battery including the third step is characterized by including a step of heating the battery at a temperature of 40 ° C. or higher after the third step.
【0016】有孔性ポリマー電解質とは、有孔性ポリマ
ーと有機電解液とを組み合せたもので、ポリマーの孔部
分に有機電解液を含むことによって、孔部分をリチウム
イオンが移動でき、さらにポリマー部分が有機電解液で
湿潤または膨潤することによって、ポリマー中もリチウ
ムイオンが移動できるものである。さらに、有孔性ポリ
マー電解質が網目状構造であることが好ましく、さらに
三次元網目状構造であることが好ましい。また、その多
孔度は10%以上90%以下であることが好ましく、さ
らに30%以上90%以下であることが好ましく、さら
に40%以上80%以下であることが好ましい。The porous polymer electrolyte is a combination of a porous polymer and an organic electrolytic solution. By containing an organic electrolytic solution in the pores of the polymer, lithium ions can move through the pores, By wetting or swelling the part with the organic electrolyte, lithium ions can move in the polymer. Further, the porous polymer electrolyte preferably has a network structure, more preferably a three-dimensional network structure. The porosity is preferably 10% or more and 90% or less, more preferably 30% or more and 90% or less, and further preferably 40% or more and 80% or less.
【0017】本発明の、非水電解質電池の製造方法の第
1の工程では、正・負極板の少なくとも一方とセパレー
タとに有孔性ポリマー電解質を備えた発電要素を作製す
る。正・負極板は活物質を含む多孔性の合剤層を備えて
おり、有孔性ポリマー電解質を備えた極板とは、その合
剤層の孔の内部や合剤層表面に有孔性ポリマー電解質が
存在しているものを意味し、また、有孔性ポリマー電解
質を備えたセパレータとは、セパレータの孔中や表面に
有孔性ポリマー電解質が存在しているものを意味する。
また、発電要素は、これらの正・負極板とセパレータと
を組み合わせて作製することができる。In the first step of the method for producing a non-aqueous electrolyte battery of the present invention, a power generating element having a porous polymer electrolyte on at least one of the positive and negative electrode plates and the separator is produced. The positive and negative electrode plates are provided with a porous mixture layer containing an active material, and the electrode plate provided with a porous polymer electrolyte means that the mixture layer has pores inside or inside the mixture layer surface. The polymer electrolyte is present, and the separator provided with the porous polymer electrolyte means that the porous polymer electrolyte is present in the pores or on the surface of the separator.
Further, the power generation element can be manufactured by combining these positive and negative electrode plates and a separator.
【0018】有孔性ポリマー電解質は、極板の合剤層中
やセパレータの孔中の少なくとも一部に存在すればよい
が、これらの孔中に均一に分布していることが好まし
い。また、正・負極板の少なくとも一方に有孔性ポリマ
ー電解質が備えられていればよいが、正・負極板の両方
に有孔性ポリマー電解質が備えられていることが好まし
い。さらに、セパレータが有孔性ポリマー電解質であっ
てもよい。The porous polymer electrolyte may be present in at least a part of the mixture layer of the electrode plate or the pores of the separator, but it is preferable that it is uniformly distributed in these pores. Further, at least one of the positive and negative electrode plates may be provided with the porous polymer electrolyte, but it is preferable that both the positive and negative electrode plates are provided with the porous polymer electrolyte. Further, the separator may be a porous polymer electrolyte.
【0019】本発明の、非水電解質電池の製造方法の第
2の工程では、第1の工程で得られた発電要素を電池容
器に収納する。そして、第3の工程では、正・負極板と
セパレータと有孔性ポリマー電解質との全空孔体積に対
して30%以上100%以下の非水電解液を注液する。
全空孔体積に対する電解液量が100%を越えると、電
池内に余分の電解液が存在するため、電池の安全性が低
下する。また、全空孔体積に対する電解液量が30%未
満になると、電解液不足となり、電極反応がすすまず、
放電容量が低下してしまう。In the second step of the method for producing a non-aqueous electrolyte battery of the present invention, the power generating element obtained in the first step is housed in a battery container. Then, in the third step, 30% or more and 100% or less of a non-aqueous electrolyte solution is injected to the total pore volume of the positive and negative electrode plates, the separator and the porous polymer electrolyte.
When the amount of the electrolyte solution with respect to the total pore volume exceeds 100%, the safety of the battery is deteriorated because an extra electrolyte solution exists in the battery. Further, when the amount of the electrolytic solution with respect to the total pore volume is less than 30%, the electrolytic solution becomes insufficient, and the electrode reaction is slow.
The discharge capacity will decrease.
【0020】正・負極板とセパレータと有孔性ポリマー
電解質との全空孔体積に対して30%以上100%以下
の電解液量を含む電池内では、電解液量が少ないため、
電解液が多孔性の正極板や負極板の内部、セパレータの
孔中、極板とセパレータ間などに均一に浸透せず、偏在
していることから、電池の高率放電性能は十分でなかっ
た。また、正・負極板の少なくとも一方とセパレータと
に有孔性ポリマー電解質を備えた非水電解質電池におい
ても、有孔性ポリマー電解質が室温付近で電解液を十分
に吸収しないことから、その高率放電性能は十分でなか
った。Since the amount of the electrolyte solution is small in the battery containing the electrolyte solution amount of 30% or more and 100% or less with respect to the total pore volume of the positive and negative electrode plates, the separator and the porous polymer electrolyte,
The high rate discharge performance of the battery was not sufficient because the electrolyte was unevenly distributed inside the positive electrode plate or negative electrode plate, in the pores of the separator, between the electrode plate and the separator, etc. . Further, even in a non-aqueous electrolyte battery comprising a porous polymer electrolyte in at least one of the positive and negative electrode plates and the separator, since the porous polymer electrolyte does not sufficiently absorb the electrolyte solution at around room temperature, its high rate The discharge performance was not sufficient.
【0021】そこで本発明の非水電解質電池の製造方法
では、第3の工程後に、電池を40℃以上の温度で加熱
する工程を有することによって、極板やセパレータに備
えられた有孔性ポリマー電解質が電解液を十分に吸収す
るため、電解液が電池全体に浸透することから、電池の
温度を室温に戻した後でも、電池内での電解液の分布は
均一となり、その結果、その高率放電性能も良好とな
る。Therefore, the method for producing a non-aqueous electrolyte battery of the present invention has a step of heating the battery at a temperature of 40 ° C. or higher after the third step, so that the porous polymer provided in the electrode plate or the separator is provided. Since the electrolyte sufficiently absorbs the electrolyte solution, the electrolyte solution permeates the entire battery, and even after the battery temperature is returned to room temperature, the distribution of the electrolyte solution in the battery becomes uniform, and as a result, The rate discharge performance is also good.
【0022】非水電解質電池の製造において、通常、電
解液を注液する工程の後、電池容器を封口する工程や、
電池を充電する工程を経る。本発明においては、電池を
加熱する工程は、電解液を注液する第3の工程の後に行
えばよく、電池を加熱する工程と、電池容器を封口する
工程と、電池を充電する工程とは、どのような順序で行
ってもよい。In the manufacture of a non-aqueous electrolyte battery, usually, after the step of injecting the electrolytic solution, the step of sealing the battery container,
Go through the steps of charging the battery. In the present invention, the step of heating the battery may be performed after the third step of injecting the electrolytic solution, and the step of heating the battery, the step of sealing the battery container, and the step of charging the battery , In any order.
【0023】ここで、電池を加熱する温度としては、4
0℃以上が好ましく、さらに、有孔性ポリマー電解質に
電解液を十分に吸収させるためには、60℃以上とする
ことが好ましく、さらに80℃以上とすることが好まし
い。The temperature for heating the battery is 4
The temperature is preferably 0 ° C. or higher, more preferably 60 ° C. or higher, and further preferably 80 ° C. or higher in order to allow the porous polymer electrolyte to sufficiently absorb the electrolytic solution.
【0024】また、電池の加熱温度を、有孔性ポリマー
電解質の融点(Tpm)とセパレータの融点(Tsm)
と電解液の沸点(Teb)のうち、最も低い温度以下と
することを特徴とする。The heating temperature of the battery is determined by the melting point of the porous polymer electrolyte (Tpm) and the melting point of the separator (Tsm).
And the boiling point (Teb) of the electrolytic solution, the temperature is set to the lowest temperature or lower.
【0025】加熱温度を有孔性ポリマー電解質の融点
(Tpm)以下とすれば、有孔性ポリマー電解質の孔が
閉塞しにくく、電池の優れた高率放電性能を維持するこ
とができる。さらに、有孔性ポリマー電解質の融点をT
pmとしたとき、(Tpm−10)℃以下とすることが
好ましく、(Tpm−20)℃とすることが好ましい。When the heating temperature is not higher than the melting point (Tpm) of the porous polymer electrolyte, the pores of the porous polymer electrolyte are less likely to be blocked, and the excellent high rate discharge performance of the battery can be maintained. Furthermore, the melting point of the porous polymer electrolyte is T
When it is set to pm, it is preferable to set it as (Tpm-10) ° C or less, and it is preferred to set it as (Tpm-20) ° C.
【0026】電池の加熱温度がセパレータの融点(Ts
m)を超えると、セパレータの孔が塞がり、電池の高率
放電性能が著しく低下する。したがって、加熱温度をセ
パレータの融点(Tsm)以下とすれば、セパレータの
孔が閉塞せず、電池の優れた高率放電性能を維持するこ
とができる。さらに、加熱温度は、(Tsm−10)℃
以下が好ましく、(Tsm−20)℃以下がより好まし
い。The heating temperature of the battery depends on the melting point (Ts) of the separator.
When it exceeds m), the pores of the separator are closed and the high rate discharge performance of the battery is significantly reduced. Therefore, if the heating temperature is set to be equal to or lower than the melting point (Tsm) of the separator, the holes of the separator are not blocked, and the excellent high rate discharge performance of the battery can be maintained. Furthermore, the heating temperature is (Tsm-10) ° C.
The following is preferable, and (Tsm-20) ° C or less is more preferable.
【0027】さらに、加熱温度を電解液の沸点(Te
b)以下とすれば、電解液がガスとなって、電池の内圧
が上昇し、電池が膨張するのを防止することができる。Furthermore, the heating temperature is set to the boiling point (Te
In the case of b) or less, it is possible to prevent the electrolytic solution from becoming a gas, increasing the internal pressure of the battery, and expanding the battery.
【0028】本発明において、正・負極板とセパレータ
と有孔性ポリマー電解質との全空孔体積は、つぎのよう
に決定することができる。まず、非水電解質電池の充放
電を5回以上繰り返し、その電池から正極板と負極板と
セパレータと有孔性ポリマー電解質とを取り出す。つぎ
に、それらをジメチルカーボネート(DMC)などの溶
媒で洗浄し、乾燥してから、それらの空孔体積を水銀ポ
ロシメータで測定する。また、電池のサイクル性能をさ
らに向上させるためには、電解液量を40%以上とする
ことが好ましく、さらに、60%以上とすることが好ま
しい。In the present invention, the total pore volume of the positive and negative electrode plates, the separator and the porous polymer electrolyte can be determined as follows. First, charging / discharging the non-aqueous electrolyte battery is repeated 5 times or more, and the positive electrode plate, the negative electrode plate, the separator, and the porous polymer electrolyte are taken out from the battery. Next, they are washed with a solvent such as dimethyl carbonate (DMC), dried, and then their pore volume is measured with a mercury porosimeter. Moreover, in order to further improve the cycle performance of the battery, the amount of the electrolytic solution is preferably 40% or more, and more preferably 60% or more.
【0029】電池の加熱方法としては、恒温槽、ウオー
ターバス、オイルバス等を使用できる。また、加熱時間
は、電池の大きさや加熱温度に合わせて、最適な加熱時
間を選択すればよい。As a method of heating the battery, a constant temperature bath, a water bath, an oil bath or the like can be used. Further, as the heating time, an optimum heating time may be selected according to the size of the battery and the heating temperature.
【0030】また、本発明は、上記非水電解質電池の製
造方法において、放電状態の電池を加熱することを特徴
とする。充電状態の電池を加熱したとき、正・負極活物
質と電解液との反応が進行しやすいことから、電池の高
率放電性能が著しく低下する。したがって、本発明で
は、放電状態の電池を加熱することによって、電池の高
率放電性能の低下を抑制する。Further, the present invention is characterized in that in the above method for producing a non-aqueous electrolyte battery, the battery in a discharged state is heated. When the battery in the charged state is heated, the reaction between the positive and negative electrode active materials and the electrolytic solution is likely to proceed, so that the high rate discharge performance of the battery is significantly lowered. Therefore, in the present invention, by heating the battery in the discharged state, the deterioration of the high rate discharge performance of the battery is suppressed.
【0031】ここで、放電状態の電池とは、室温での放
電容量をCD(Ah)とした時、充電状態から一定容量
を放電した状態を意味する。ここで、充電状態からの放
電容量をCx(Ah)とした時、放電深度を(Cx/C
D)×100で定義する。本発明において、電池を加熱
する場合の放電深度は、20%以上が好ましく、さら
に、50%以上がより好ましく、70%以上が最も好ま
しい。Here, the battery in the discharged state means a state in which a constant capacity is discharged from the charged state when the discharge capacity at room temperature is C D (Ah). Here, when the discharge capacity from the charged state is Cx (Ah), the discharge depth is (Cx / C
D ) × 100. In the present invention, the depth of discharge when heating the battery is preferably 20% or more, more preferably 50% or more, and most preferably 70% or more.
【0032】また、本発明は、上記製造方法で得られた
非水電解質電池において、電池内のガスが1体積%以上
の二酸化炭素を含むことを特徴とする。ここで、二酸化
炭素の含有率は、(二酸化炭素の体積/(二酸化炭素の
体積+その他のガスの体積))×100/体積%で定義
される。それらのガスの体積は、ガスクロマトグラフに
よって測定できる。さらに、その含有率を10体積%以
上とすることが好ましく、さらに、30体積%以上とす
ることが好ましく、50体積%以上とすることが好まし
い。さらに、二酸化炭素以外のガスは特に限定されない
が、大量に存在し、そして安価である空気が好ましい。Further, the present invention is characterized in that in the non-aqueous electrolyte battery obtained by the above-mentioned manufacturing method, the gas in the battery contains 1% by volume or more of carbon dioxide. Here, the content rate of carbon dioxide is defined by (volume of carbon dioxide / (volume of carbon dioxide + volume of other gas)) × 100 / volume%. The volume of those gases can be measured by a gas chromatograph. Further, its content is preferably 10% by volume or more, more preferably 30% by volume or more, and preferably 50% by volume or more. Further, the gas other than carbon dioxide is not particularly limited, but air that is present in a large amount and is inexpensive is preferable.
【0033】電池を加熱したとき、正・負極活物質と電
解液との反応が促進され、その結果、その高率放電性能
が低下する。本発明では、電池内に適量の二酸化炭素を
あらかじめ入れることによって、電池の高率放電性能が
著しく向上する。その理由は、負極活物質の表面での二
酸化炭素の還元によって、炭酸リチウムの被膜がその表
面に形成され、その結果、電解液の還元分解が抑制され
るためである。さらに、正極板における電解液の酸化分
解生成物である二酸化炭素をあらかじめ電池内に入れる
ことによって、その分解反応の進行を抑制できるためで
あると考えられる。When the battery is heated, the reaction between the positive and negative electrode active materials and the electrolytic solution is promoted, and as a result, the high rate discharge performance is lowered. In the present invention, the high rate discharge performance of the battery is remarkably improved by previously inserting an appropriate amount of carbon dioxide into the battery. The reason is that reduction of carbon dioxide on the surface of the negative electrode active material forms a film of lithium carbonate on the surface, and as a result, reductive decomposition of the electrolytic solution is suppressed. Furthermore, it is considered that the progress of the decomposition reaction can be suppressed by previously putting carbon dioxide, which is a product of oxidative decomposition of the electrolytic solution in the positive electrode plate, into the battery.
【0034】有孔性ポリマー電解質としては、充放電に
よる活物質の体積の膨張・収縮に対応できる柔軟性があ
るものが好ましく、さらに、ポリマーが電解液で湿潤ま
たは膨潤することが好ましい。具体的には、ポリビニリ
デンフルオライド(PVdF)、ポリアクリロニトリル
(PAN)、ポリエチレンオキシド(PEO)、ポリプ
ロピレンオキシド(PPO)、ポリメチルメタクリレー
ト(PMMA)、ポリビニルフルオライド、ポリ塩化ビ
ニル、ポリ塩化ビニリデン、ポリメチルアクリレート、
ポリメタクリロニトリル、ポリビニルアセテート、ポリ
ビニルピロリドン、ポリエチレンテレフタレート、ポリ
ヘキサメチレンアジパミド、ポリカプロラクタム、ポリ
ビニルアルコール、ポリウレタン、ポリエチレンイミ
ン、ポリカーボネート、ポリテトラフルオロエチレン、
ポリエチレン、ポリプロピレン、ポリブタジエン、ポリ
スチレン、ポリイソプレン、カルボキシメチルセルロー
ス、メチルセルロースおよびこれらの誘導体を単独であ
るいは混合して用いることができる。The porous polymer electrolyte is preferably one having flexibility capable of responding to expansion / contraction of the volume of the active material due to charging / discharging, and further, the polymer is preferably wetted or swollen with an electrolytic solution. Specifically, polyvinylidene fluoride (PVdF), polyacrylonitrile (PAN), polyethylene oxide (PEO), polypropylene oxide (PPO), polymethyl methacrylate (PMMA), polyvinyl fluoride, polyvinyl chloride, polyvinylidene chloride, Polymethyl acrylate,
Polymethacrylonitrile, polyvinyl acetate, polyvinylpyrrolidone, polyethylene terephthalate, polyhexamethylene adipamide, polycaprolactam, polyvinyl alcohol, polyurethane, polyethyleneimine, polycarbonate, polytetrafluoroethylene,
Polyethylene, polypropylene, polybutadiene, polystyrene, polyisoprene, carboxymethyl cellulose, methyl cellulose and derivatives thereof can be used alone or in combination.
【0035】また、これらのポリマーを構成するモノマ
ーを組み合わせたものを用いることができる。具体的に
は、ビニリデンフルオライド/ヘキサフルオロプロピレ
ンコポリマー(P(VdF/HFP))、スチレンブタ
ジエンゴム、エチレンプロピレンゴム、スチレン系エラ
ストマー、フッ素系エラストマー、オレフィン系エラス
トマーなどを用いることをできる。それらのなかで、P
VdF、 P(VdF/HFP)、PAN、PEO、P
PO、PMMAおよびこれらの誘導体を単独あるいは混
合して使用することが好ましい。Further, a combination of the monomers constituting these polymers can be used. Specifically, vinylidene fluoride / hexafluoropropylene copolymer (P (VdF / HFP)), styrene butadiene rubber, ethylene propylene rubber, styrene elastomer, fluorine elastomer, olefin elastomer, etc. can be used. Among them, P
VdF, P (VdF / HFP), PAN, PEO, P
It is preferable to use PO, PMMA and their derivatives alone or in combination.
【0036】さらに、フッ素を含むポリマーがもっとも
好ましい。PVdFやP(VdF/HFP)などのフッ
素を含むポリマーは他のポリマーと比較すると電気化学
的に安定であるため、正・負極板およびセパレータのす
べてに使用することができる。Furthermore, polymers containing fluorine are most preferred. Polymers containing fluorine such as PVdF and P (VdF / HFP) are electrochemically stable as compared with other polymers, and therefore can be used for all positive and negative electrode plates and separators.
【0037】有孔性ポリマーの製造方法としては、ポリ
マーをその溶液から相分離させる方法が望ましい。その
方法としては、ポリマー溶液の加熱または冷却による温
度変化、ポリマー溶液の溶媒の蒸発による濃度変化など
が挙げられるが、特にポリマー溶液からの溶媒の抽出、
すなわち溶媒抽出法が好ましい。具体的には、ポリマー
溶液を、ポリマーと非相溶性であり、かつポリマー溶液
の第1の溶媒と相溶性である第2の溶媒中に浸漬するこ
とによって、第1の溶媒を抽出する方法である。その結
果、第1の溶媒を除去した部分が孔となるため、有孔性
ポリマーを製造できる。この方法では、ポリマーに円形
の孔が形成される。As a method for producing the porous polymer, a method of phase-separating the polymer from the solution is desirable. Examples of the method include temperature change due to heating or cooling of the polymer solution, concentration change due to evaporation of the solvent of the polymer solution, etc., but particularly extraction of the solvent from the polymer solution,
That is, the solvent extraction method is preferable. Specifically, a method of extracting the first solvent by immersing the polymer solution in a second solvent that is incompatible with the polymer and compatible with the first solvent of the polymer solution. is there. As a result, the portions where the first solvent has been removed become pores, so that a porous polymer can be produced. In this method, circular holes are formed in the polymer.
【0038】また、有孔性ポリマーの製造方法として、
温度に対するポリマーの溶解度の変化を利用するものも
好ましい。この方法では、ある温度でポリマーを第3の
溶媒に溶解してから、ポリマー溶液の温度を下げること
によって、ポリマーが過飽和となるため、その溶液中で
ポリマーと第3の溶媒とが相分離する。それから第3の
溶媒を除去することによって、有孔性ポリマーを製造で
きる。Further, as a method for producing a porous polymer,
Those that utilize the change in the solubility of the polymer with respect to temperature are also preferable. In this method, the polymer is supersaturated by dissolving the polymer in a third solvent at a certain temperature and then lowering the temperature of the polymer solution, so that the polymer and the third solvent are phase-separated in the solution. . The porous polymer can then be prepared by removing the third solvent.
【0039】上記方法で得られた有孔性ポリマーを、電
解液で湿潤または膨潤させることによって、有孔性ポリ
マー電解質とする。The porous polymer obtained by the above method is wetted or swollen with an electrolytic solution to obtain a porous polymer electrolyte.
【0040】有孔性ポリマーの製造方法に用いる第1の
溶媒としては、ポリマーが溶解できるものであればよ
く、具体的には、プロピレンカーボネート(PC)、エ
チレンカーボネート(EC)、ジメチルカーボネート
(DMC)、ジエチルカーボネート(DEC)、メチル
エチルカーボネート(MEC)などの炭酸エステル、ジ
メチルエーテル、ジエチルエーテル、エチルメチルエー
テル、テトラヒドロフランなどのエーテル、メチルエチ
ルケトン、アセトンなどのケトン、ジメチルホルムアミ
ド、ジメチルアセトアミド、1−メチル−ピロリジノ
ン、N−メチル−2−ピロリドン(NMP)などが挙げ
られる。The first solvent used in the method for producing the porous polymer may be any solvent capable of dissolving the polymer, and specifically, propylene carbonate (PC), ethylene carbonate (EC), dimethyl carbonate (DMC). ), Diethyl carbonate (DEC), carbonic acid ester such as methyl ethyl carbonate (MEC), dimethyl ether, diethyl ether, ethyl methyl ether, ether such as tetrahydrofuran, methyl ethyl ketone, ketone such as acetone, dimethyl formamide, dimethyl acetamide, 1-methyl- Examples thereof include pyrrolidinone and N-methyl-2-pyrrolidone (NMP).
【0041】また、第3の溶媒としては、ある温度での
ポリマーの溶解度が低く、そして、それより高い温度で
ポリマーが溶解しやすいものが好ましい。たとえば、メ
チルエチルケトン、アセトンなどのケトン、PC、E
C、DMC、DEC、MECなどの炭酸エステル、ジメ
チルエーテル、ジエチルエーテル、エチルメチルエーテ
ル、テトラヒドロフランなどのエーテル、ジメチルホル
ムアミドなどが好ましい。それらのなかでも、第3の溶
媒としては、ケトンが好ましく、とくにメチルエチルケ
トンが好ましい。The third solvent is preferably one in which the solubility of the polymer at a certain temperature is low and the polymer is easily dissolved at a higher temperature. For example, methyl ethyl ketone, ketones such as acetone, PC, E
Carbonic acid esters such as C, DMC, DEC and MEC, dimethyl ether, diethyl ether, ethyl methyl ether, ethers such as tetrahydrofuran, dimethylformamide and the like are preferable. Among them, the third solvent is preferably a ketone, particularly preferably methyl ethyl ketone.
【0042】また、第2の溶媒としては、ポリマーと非
相溶性であり、かつ第1の溶媒と相溶性であればよい。
たとえば、水、アルコール、アセトンなどが挙げられ
る。さらに、これらの混合溶液を使用してもよい。The second solvent may be any solvent that is incompatible with the polymer and compatible with the first solvent.
For example, water, alcohol, acetone, etc. may be mentioned. Furthermore, you may use these mixed solutions.
【0043】本発明では、電池内に二酸化炭素を入れて
から、その容器の穴を閉じることによって、1体積%以
上の二酸化炭素をあらかじめ含む電池を製作する。ここ
で、二酸化炭素を入れる工程は電解液を入れる工程の前
に実施してもよく、その後に実施してもよい。また、二
酸化炭素と電解液とを同時に入れてもよい。さらに、初
回充電の工程は二酸化炭素を入れる工程の前に実施して
もよく、その後に実施してもよい。In the present invention, a battery containing carbon dioxide in an amount of 1% by volume or more is manufactured by putting carbon dioxide into the battery and then closing the hole of the container. Here, the step of adding carbon dioxide may be performed before or after the step of adding the electrolytic solution. Further, carbon dioxide and the electrolytic solution may be added at the same time. Furthermore, the step of initial charging may be performed before or after the step of adding carbon dioxide.
【0044】また、電池に電解液を入れてから充放電を
繰り返すまでは、その液の分布が不均一であることか
ら、初回充電時に、二酸化炭素が電池内に入っているこ
とが好ましい。それによって、負極活物質の表面に均一
な被膜が形成され、ガスの発生を抑制できる。さらに、
電池の容器を閉じる工程は、初回充電の工程の前に実施
してもよく、その後に実施してもよい。Since the distribution of the electrolyte is non-uniform from the time the electrolyte is put into the battery until charging and discharging are repeated, carbon dioxide is preferably contained in the battery at the time of initial charging. As a result, a uniform film is formed on the surface of the negative electrode active material, and gas generation can be suppressed. further,
The step of closing the battery container may be performed before or after the initial charging step.
【0045】さらに、本発明では、電池を減圧してか
ら、そこに二酸化炭素を入れることが好ましい。そのと
き、電池を0.09MPa以下に減圧することが好まし
い。さらに、その圧力を、0.05MPa以下、さらに
0.01MPa以下とすることが好ましい。また、電池
の容器の穴を閉じた後のその中の圧力が、その外の圧力
以下であることが好ましい。Further, in the present invention, it is preferable that the pressure of the battery is reduced and then carbon dioxide is put therein. At that time, it is preferable to reduce the pressure of the battery to 0.09 MPa or less. Further, the pressure is preferably 0.05 MPa or less, more preferably 0.01 MPa or less. Further, the pressure inside the battery container after closing the hole is preferably equal to or lower than the pressure outside the hole.
【0046】電解液の溶媒としては、非プロトン性溶媒
が好ましい。具体的には、EC、PC、ブチレンカーボ
ネート、DMC、DEC、MEC、γ−ブチロラクト
ン、スルホラン、ジメチルスルホキシド、アセトニトリ
ル、ジメチルホルムアミド、ジメチルアセトアミド、
1、2−ジメトキシエタン、1、2−ジエトキシエタ
ン、テトラヒドロフラン、2−メチルテトラヒドロフラ
ン、1、3−ジオキソラン、メチルアセテート、NM
P、4−メチル−1、3−ジオキソラン、N−メチルピ
ロリジン、エチルメチルケトン、メチルプロピオネー
ト、アセトン、ジエチルエーテル、エチルメチルエーテ
ル、ジメチルエーテルなど、または、これらの混合物を
使用してもよい。As the solvent for the electrolytic solution, an aprotic solvent is preferable. Specifically, EC, PC, butylene carbonate, DMC, DEC, MEC, γ-butyrolactone, sulfolane, dimethyl sulfoxide, acetonitrile, dimethylformamide, dimethylacetamide,
1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane, methyl acetate, NM
P, 4-methyl-1,3-dioxolane, N-methylpyrrolidine, ethyl methyl ketone, methyl propionate, acetone, diethyl ether, ethyl methyl ether, dimethyl ether, etc., or mixtures thereof may be used.
【0047】さらに、電解液に含有させる塩としては、
LiPF6、LiBF4、LiAsF6、LiCl
O4、LiSCN、LiI、LiCF3SO3、 Li
C4F9SO3、 Li(CF3SO2)2N、LiC
l、LiBr、LiCF3CO2などのリチウム塩、ま
たは、これらの混合物が好ましい。Further, as the salt contained in the electrolytic solution,
LiPF 6 , LiBF 4 , LiAsF 6 , LiCl
O 4 , LiSCN, LiI, LiCF 3 SO 3 , Li
C 4 F 9 SO 3 , Li (CF 3 SO 2 ) 2 N, LiC
1, lithium salts such as LiBr, LiCF 3 CO 2 or mixtures thereof are preferred.
【0048】また、本発明の正極活物質としては、リチ
ウムの吸蔵・放出の可能な化合物であればよい。たとえ
ば、無機化合物としては、組成式LixMO2またはLi
yM2O4(ただし、Mは遷移金属、0≦x≦1、0≦y
≦2)で表される複合酸化物、トンネル状の孔を有する
酸化物、層状構造の金属カルコゲン化物などを用いるこ
とができる。その具体例としては、LiCoO2、Li
NiO2、LiMn2O4、NiOOH、LiFeO2、T
iS2、TiO2、V2O5、MnO2などが挙げられる。
また、その一部を他の元素で置換した無機化合物を用い
てもよく、例えば、LiCo0.9Al0.1O2、
LiMn1.85Al0.15O4、LiNi0.5M
n1.5O4、 Ni0.80Co0.20OOHなど
が挙げられる。また、有機化合物としては、たとえばポ
リアニリンなどの導電性ポリマーなどが挙げられる。さ
らに、それらの正極活物質を混合して用いてもよい。Further, the positive electrode active material of the present invention may be any compound capable of inserting and extracting lithium. For example, as the inorganic compound, the composition formula Li x MO 2 or Li
y M 2 O 4 (where M is a transition metal, 0 ≦ x ≦ 1, 0 ≦ y
A complex oxide represented by ≦ 2), an oxide having a tunnel-shaped hole, a metal chalcogenide having a layered structure, or the like can be used. Specific examples thereof include LiCoO 2 and Li.
NiO 2 , LiMn 2 O 4 , NiOOH, LiFeO 2 , T
Examples include iS 2 , TiO 2 , V 2 O 5 , MnO 2 and the like.
Alternatively, it is also possible to use inorganic compound obtained by substituting a part by another element, for example, LiCo 0.9 Al 0.1 O 2,
LiMn 1.85 Al 0.15 O 4 , LiNi 0.5 M
Examples include n 1.5 O 4 , Ni 0.80 Co 0.20 OOH, and the like. Examples of organic compounds include conductive polymers such as polyaniline. Further, those positive electrode active materials may be mixed and used.
【0049】特に本発明では、正極活物質としてニッケ
ル酸リチウムを使用した非水電解質電池のサイクル性能
が向上する。本発明でのニッケル酸リチウムはとくに限
定されないが、代表的なものとして、LiNiO2およ
びその一部を他の元素に置換したものがある。具体的に
は、LiNi0.80Co0.20O2、 LiNi
0.80Al0.20O2、LiNi0.80Co
0.17Al0.03O2が挙げられる。さらに、ニッ
ケル酸リチウムに他の活物質が含まれていても、本発明
は効果的である。たとえば、コバルト酸リチウム、マン
ガン酸リチウムなどとの混合物が挙げられる。Particularly in the present invention, nickel is used as the positive electrode active material.
Cycle performance of non-aqueous electrolyte battery using lithium oxide
Is improved. The lithium nickelate in the present invention is particularly limited.
Although not specified, as a typical one, LiNiO2And
And some of them are replaced with other elements. Specifically
Is LiNi0.80Co0.20OTwo, LiNi
0.80Al0.20OTwo, LiNi0.80Co
0.17Al0.03OTwoIs mentioned. In addition,
Even if the lithium kerate contains another active material, the present invention
Is effective. For example, lithium cobalt oxide, man
Examples thereof include a mixture with lithium cancerate and the like.
【0050】また、導電剤として、正極活物質にアセチ
レンブラックなどのカーボンブラック、グラファイト、
導電性ポリマーなどを混合してもよい。Further, as a conductive agent, carbon black such as acetylene black, graphite,
A conductive polymer or the like may be mixed.
【0051】負極活物質としては、たとえばグラファイ
ト、カーボンなどの炭素材料、Al、Si、Pb、S
n、Zn、Cdなどとリチウムとの合金、LiFe2O
3などの遷移金属複合酸化物、WO2、MoO2などの
遷移金属酸化物、Li3−xM xN(ただし、Mは遷移
金属、0≦x≦0.8)などの窒化リチウム、もしくは
金属リチウムなどが挙げられる。また、これらの混合物
を用いてもよい。炭素材料としては、コークス、メソカ
ーボンマイクロビーズ(MCMB)、メソフェーズピッ
チ系炭素繊維、熱分解気相成長炭素繊維などの易黒鉛化
性炭素、フェノール樹脂焼成体、ポリアクリロニトリル
系炭素繊維、擬等方性炭素、フルフリルアルコール樹脂
焼成体などの難黒鉛化性炭素、天然黒鉛、人造黒鉛、黒
鉛化MCMB、黒鉛化メソフェーズピッチ系炭素繊維、
黒鉛ウイスカーなどの黒鉛質材料、さらに、これらの混
合物がある。As the negative electrode active material, for example, graphite
Carbon materials such as gallium and carbon, Al, Si, Pb, S
An alloy of lithium with n, Zn, Cd, etc., LiFeTwoO
ThreeTransition metal composite oxides such as WOTwo, MoOTwoSuch as
Transition metal oxide, Li3-xM xN (however, M is a transition
Metal, lithium nitride such as 0 ≦ x ≦ 0.8), or
Examples include metallic lithium. Also a mixture of these
May be used. Carbon materials include coke and meso-ca
Carbon micro beads (MCMB), mesophase pick
Graphitization of H-based carbon fiber, pyrolysis vapor grown carbon fiber, etc.
Carbon, Phenol resin fired body, Polyacrylonitrile
-Based carbon fiber, pseudo-isotropic carbon, furfuryl alcohol resin
Non-graphitizable carbon such as fired body, natural graphite, artificial graphite, black
Leaded MCMB, graphitized mesophase pitch carbon fiber,
Graphite materials such as graphite whiskers, as well as blends of these
There is a compound.
【0052】正極板および負極板の集電体としては、
鉄、銅、アルミニウム、ステンレス、ニッケルなどを使
用することができる。また、その形状としては、シー
ト、発泡体、焼結多孔体、エキスパンド格子などのいず
れでもよい。さらに、前記集電体に任意の形状で穴を開
けたものでもよい。As the current collectors for the positive electrode plate and the negative electrode plate,
Iron, copper, aluminum, stainless steel, nickel and the like can be used. The shape may be any of sheet, foam, sintered porous body, expanded lattice, and the like. Further, the current collector may be perforated in any shape.
【0053】活物質と導電剤と集電体とを接着する結着
剤としては、充放電による活物質の体積の膨張・収縮に
対応できる柔軟性があるものが好ましいことから、有孔
性ポリマー電解質と同様のポリマーを使用することがで
きる。例えば、正極板の結着剤としては、電気化学的に
安定なフッ素を含むポリマーが好ましく、具体的には、
PVdF、P(VdF/HFP)、フッ素系エラストマ
ーなどのポリマーおよびこれらの誘導体を単独であるい
は混合して用いることができる。。一方、負極板の結着
剤としては、PVdF、P(VdF/HFP)、フッ素
系エラストマーなどのフッ素を含むポリマー、スチレン
ブタジエンゴム、エチレンプロピレンゴム、カルボキシ
メチルセルロース、メチルセルロースおよびこれらの誘
導体を単独であるいは混合して用いることができる。The binder for adhering the active material, the conductive agent and the current collector is preferably a flexible material capable of responding to expansion and contraction of the volume of the active material due to charge and discharge, and therefore the porous polymer. Polymers similar to the electrolyte can be used. For example, as the binder for the positive electrode plate, an electrochemically stable polymer containing fluorine is preferable, and specifically,
Polymers such as PVdF, P (VdF / HFP), and fluorine-based elastomers and their derivatives can be used alone or in combination. . On the other hand, as the binder for the negative electrode plate, PVdF, P (VdF / HFP), a fluorine-containing polymer such as a fluorine-based elastomer, styrene butadiene rubber, ethylene propylene rubber, carboxymethyl cellulose, methyl cellulose and derivatives thereof alone or It can be mixed and used.
【0054】セパレータとしては、ポリエチレン、ポリ
プロピレンなどポリオレフィンの微多孔性膜が好まし
い。また、ポリエチレンとポリプロピレンとを積層した
微多孔製膜を用いてもよい。As the separator, a microporous film of polyolefin such as polyethylene or polypropylene is preferable. Alternatively, a microporous film formed by laminating polyethylene and polypropylene may be used.
【0055】電池の容器としては、ステンレス、鉄、ア
ルミニウムなどの金属、アルミニウムなどの金属とポリ
マーとの積層体、ポリエチレン、ポリプロピレンなどの
ポリマーなどを使用することができる。As the battery container, a metal such as stainless steel, iron, or aluminum, a laminate of a metal such as aluminum and a polymer, a polymer such as polyethylene or polypropylene, or the like can be used.
【0056】[0056]
【実施例】以下、本発明の好適な実施例を用いて説明す
る。The preferred embodiments of the present invention will be described below.
【0057】[実施例1]まず、非水電解質電池の加熱
温度と高率放電性能との関係を検討した。Example 1 First, the relationship between the heating temperature and the high rate discharge performance of the non-aqueous electrolyte battery was examined.
【0058】正極板は、つぎのようにして製作した。ニ
ッケル酸リチウム(LiNi0.8 5Co
0.15O2)55wt%、アセチレンブラック2wt
%、PVdF4wt%、NMP39wt%を混合してか
ら、それを幅100mm、長さ600mm、厚さ20μ
mのアルミニウム箔の両面に塗布し、そして100℃で
乾燥した。The positive electrode plate was manufactured as follows. Lithium nickelate (LiNi 0.8 5 Co
0.15 O 2 ) 55 wt%, acetylene black 2 wt
%, PVdF 4 wt%, NMP 39 wt%, and then mix it with a width of 100 mm, a length of 600 mm, and a thickness of 20 μ.
m aluminum foil was applied to both sides and dried at 100 ° C.
【0059】負極板は、つぎのようにして製作した。グ
ラファイト50wt%、PVdF5wt%、NMP45
wt%を混合してから、それを幅100mm、長さ60
0mm、厚さ10μmの銅箔の両面に塗布し、そして1
00℃で乾燥した。The negative electrode plate was manufactured as follows. Graphite 50wt%, PVdF 5wt%, NMP45
After mixing wt%, it is 100mm in width and 60 in length
Apply to both sides of 0mm, 10μm thick copper foil, and 1
It was dried at 00 ° C.
【0060】つぎに、6および4wt%のP(VdF/
HFP)のNMP溶液中に正・負極板をそれぞれ浸漬す
ることによって、極板の孔中にポリマー溶液を含浸し
た。ここで、このP(VdF/HFP)のVdFとHF
Pとのモル比はVdF:HFP=95:5であり、実施
例中では、とくに断りのない限りこのポリマーを使用し
た。その後、その極板をローラーの間に通すことによっ
て、極板の表面の余分なポリマー溶液を取り除いた。さ
らに、正・負極板を0.001mol/lのリン酸水溶
液および脱イオン水にそれぞれ浸漬することによって、
NMPの抽出をおこない、極板の孔中および表面に有孔
性ポリマーを形成した。Next, 6 and 4 wt% P (VdF /
The polymer solution was impregnated into the holes of the electrode plate by immersing the positive and negative electrode plates in the NMP solution of HFP). Here, VdF and HF of this P (VdF / HFP)
The molar ratio with P was VdF: HFP = 95: 5, and this polymer was used in the examples unless otherwise specified. Then, the excess polymer solution on the surface of the electrode plate was removed by passing the electrode plate between rollers. Furthermore, by immersing the positive and negative electrode plates in 0.001 mol / l phosphoric acid aqueous solution and deionized water respectively,
NMP was extracted to form a porous polymer in and on the surface of the electrode plate.
【0061】その後、プレスをおこなうことによって、
正極板の厚さを270μmから165μmまで薄くして
から、幅26mm、長さ495mmのサイズに切断し
た。同様に、負極板の厚さを250μmから195μm
まで薄くしてから、幅27mm、長さ450mmのサイ
ズに切断した。Then, by pressing,
The positive electrode plate was thinned from 270 μm to 165 μm, and then cut into a size of 26 mm in width and 495 mm in length. Similarly, change the thickness of the negative electrode plate from 250 μm to 195 μm.
Then, it was cut into a size of width 27 mm and length 450 mm.
【0062】つぎに、有孔性ポリマーを備えたポリエチ
レンセパレータをつぎのような方法で製作した。ポリエ
チレンセパレータには、厚み20μm、幅29.5m
m、多孔度40%のものを使用した。はじめに、そのセ
パレータを20wt%のP(VdF/HFP)溶液に浸
漬してから、取り出した後、2本のローラーの間を通し
た。その後、そのセパレータを脱イオン水のなかに浸漬
してから、乾燥した。有孔性ポリマーを備えたポリエチ
レンセパレータの厚みは23μmであった。Next, a polyethylene separator provided with a porous polymer was produced by the following method. The polyethylene separator has a thickness of 20 μm and a width of 29.5 m.
m and porosity of 40% were used. First, the separator was immersed in a 20 wt% P (VdF / HFP) solution, taken out, and then passed between two rollers. Then, the separator was immersed in deionized water and then dried. The thickness of the polyethylene separator provided with the porous polymer was 23 μm.
【0063】つぎに、これらの正・負極板と有孔性ポリ
マーを備えたポリエチレンセパレータとを巻回してか
ら、高さ48.0mm、幅29.2mm、厚さ5.0m
mのアルミニウムの容器に挿入した。さらに、体積比
1:1のECとDECとの混合液に1mol/lのLi
PF6を加えた電解液を1.20g(正・負極板とセパ
レータと有孔性ポリマー電解質との全空孔体積に対して
100%の電解液量は2.00g、したがって、1.2
0gは全空孔体積の60%の電解液量)注入した。ここ
で有孔性ポリマーは、孔の部分に電解液を保持し、同時
にポリマー部分は電解液で膨潤して、有孔性ポリマー電
解質となる。Next, after winding the positive and negative electrode plates and a polyethylene separator provided with a porous polymer, a height of 48.0 mm, a width of 29.2 mm and a thickness of 5.0 m.
m aluminum container. Furthermore, 1 mol / l of Li was added to a mixed solution of EC and DEC having a volume ratio of 1: 1.
1.20 g of the electrolyte solution containing PF 6 (100% of the electrolyte solution volume is 2.00 g based on the total pore volume of the positive and negative electrode plates, the separator and the porous polymer electrolyte, and therefore 1.2
The amount of 0 g was 60% of the total pore volume of the electrolytic solution). Here, the porous polymer holds the electrolytic solution in the pores, and at the same time, the polymer portion swells with the electrolytic solution to become a porous polymer electrolyte.
【0064】その後、電池を0.008MPaの減圧下
に置いた後、二酸化炭素を電池内に入れてから、148
mAの電流値で1時間充電し、そして電池の容器の穴を
閉じることによって、公称容量740mAhの電池を製
作した。なお、電池の容器には非復帰式の安全弁を備え
た。Thereafter, the battery was placed under a reduced pressure of 0.008 MPa, carbon dioxide was put into the battery, and then 148
A battery with a nominal capacity of 740 mAh was made by charging at a current value of mA for 1 hour and closing the hole in the battery container. The container of the battery was equipped with a non-reset type safety valve.
【0065】その後、これらの電池を恒温槽中に入れ、
30℃〜120℃の温度で15分間加熱してから、室温
に放置した。つぎに、これらの電池を、つぎのような条
件で試験した。25℃で、148mA定電流で4.2V
まで充電し、さらに4.2Vで2時間充電した。つぎ
に、高率放電に相当する1480mA定電流で2.75
Vまで放電した。After that, these batteries were placed in a constant temperature bath,
It was heated at a temperature of 30 ° C to 120 ° C for 15 minutes and then left at room temperature. Next, these batteries were tested under the following conditions. 4.2V at 148mA constant current at 25 ℃
The battery was charged up to 4.2 V and further charged at 4.2 V for 2 hours. Next, 2.75 at a constant current of 1480 mA corresponding to high rate discharge.
Discharged to V.
【0066】電池の加熱温度と放電容量との関係を図1
に示す。図1から、40℃以上の温度で加熱することに
よって、放電容量は増加することがわかった。さらに、
加熱温度が60℃以上で放電容量は非常に増加し、80
℃〜100℃で放電容量は最も増大し、さらに、100
〜110℃でさえ放電容量は30℃で加熱した場合より
も増加することがわかった。しかし、120℃加熱で
は、放電容量は30℃で加熱した場合と同程度となっ
た。FIG. 1 shows the relationship between the heating temperature of the battery and the discharge capacity.
Shown in. From FIG. 1, it was found that heating at a temperature of 40 ° C. or higher increases the discharge capacity. further,
When the heating temperature is over 60 ℃, the discharge capacity increases greatly,
The discharge capacity increases most at 100 ° C to 100 ° C.
It was found that even at ˜110 ° C. the discharge capacity increased compared to heating at 30 ° C. However, when heated at 120 ° C, the discharge capacity was about the same as when heated at 30 ° C.
【0067】電池を40℃以上の温度で加熱することに
よって、有孔性ポリマー電解質が電解液を十分に吸収す
るため、電解液が電池全体に浸透する。したがって、そ
の温度を室温に戻した後でさえ、極板の合剤層内、セパ
レータの孔中、極板とセパレータ間などでの電解液の分
布は均一となり、その結果、その高率放電性能が向上し
たものと考えられる。By heating the battery at a temperature of 40 ° C. or higher, the porous polymer electrolyte sufficiently absorbs the electrolytic solution, so that the electrolytic solution permeates the entire battery. Therefore, even after returning the temperature to room temperature, the distribution of the electrolyte solution in the mixture layer of the electrode plate, in the holes of the separator, between the electrode plate and the separator becomes uniform, and as a result, its high rate discharge performance is improved. Is considered to have improved.
【0068】また、電池の加熱温度が120℃では、セ
パレータや有孔性ポリマー電解質の融点を超えているた
め、セパレータの孔が塞がり、その結果、電池の高率放
電性能が低下したものと考えられ、また、100〜11
0℃での放電性能の若干の低下の原因は有孔性ポリマー
電解質の孔が閉塞するためであると考えられる。Further, when the heating temperature of the battery is 120 ° C., the melting point of the separator or the porous polymer electrolyte is exceeded, so that the holes of the separator are closed, and as a result, the high rate discharge performance of the battery is deteriorated. Also, 100 to 11
It is considered that the cause of the slight decrease in the discharge performance at 0 ° C is that the pores of the porous polymer electrolyte are blocked.
【0069】[実施例2]つぎに、電解液量と高率放電
性能との関係を検討した。実施例1の電池において、
0.40g〜2.60gの電解液量(正・負極板とセパ
レータと有孔性ポリマー電解質との全空孔体積に対して
20%〜130%の電解液量)を注入したものを製作
し、それを80℃の温度で15分間加熱した。その後、
これらの電池の試験を、実施例1と同様の条件で実施し
た。[Example 2] Next, the relationship between the amount of electrolytic solution and the high rate discharge performance was examined. In the battery of Example 1,
An injection amount of 0.40 g to 2.60 g of electrolyte (20% to 130% of the total pore volume of the positive and negative electrode plates, the separator, and the porous polymer electrolyte) was injected. , It was heated at a temperature of 80 ° C. for 15 minutes. afterwards,
These batteries were tested under the same conditions as in Example 1.
【0070】電解液量と高率放電性能との関係を図2に
示す。図2から、全空孔体積に対して30%〜100%
の電解液量を含む電池では、放電容量が大きくなること
がわかった。つまり、電池を加熱することによって、電
解液量の少ない電池の高率放電性能が良好になることが
わかった。The relationship between the amount of electrolytic solution and the high rate discharge performance is shown in FIG. From FIG. 2, 30% to 100% of the total pore volume
It was found that the discharge capacity was increased in the battery containing the amount of electrolyte solution. That is, it was found that by heating the battery, the high rate discharge performance of the battery having a small amount of electrolyte was improved.
【0071】[実施例3]さらに、電池加熱時の、電池
の放電深度と放電容量との関係を検討した。実施例1の
電池を使用し、25℃で、148mA定電流で4.2V
まで充電し、さらに4.2Vで2時間充電した。つぎ
に、148mA定電流で2.75Vまで放電し、この時
の放電容量をCD(Ah)とし、この状態を電池の放電
深度100%とした。そして、放電深度0%の電池を、
148mA定電流で0.9CD(Ah)放電し、これを
放電深度90%の電池とした。同様にして、電池を一定
時間放電することにより、放電深度10%〜80%の電
池を製作した。つぎに、それらの電池を80℃で15分
間加熱してから、室温に放置した。その後、これの電池
を実施例1と同様の条件で充放電した。[Example 3] Furthermore, the relationship between the discharge depth and discharge capacity of the battery when the battery was heated was examined. Using the battery of Example 1, at 25 ° C., a constant current of 148 mA, 4.2 V
The battery was charged up to 4.2 V and further charged at 4.2 V for 2 hours. Next, the battery was discharged at a constant current of 148 mA to 2.75 V, the discharge capacity at this time was set to C D (Ah), and this state was set to a discharge depth of 100% of the battery. And a battery with a discharge depth of 0%
0.9 C D (Ah) was discharged at a constant current of 148 mA to obtain a battery having a discharge depth of 90%. Similarly, a battery having a discharge depth of 10% to 80% was manufactured by discharging the battery for a certain period of time. Next, the batteries were heated at 80 ° C. for 15 minutes and then left at room temperature. Then, the battery was charged and discharged under the same conditions as in Example 1.
【0072】電池加熱時の放電深度と放電容量の関係を
図3に示す。図3から、電池を少しでも放電した状態で
加熱すれば、まったく放電しない電池と比較して、放電
容量は増加することがわかった。特に、放電深度が20
%以上の電池を加熱した場合、放電深度が深くなるにし
たがって放電容量は増加することがわかった。放電状態
の電池を加熱することによって、正・負極活物質と電解
液との反応が進行しにくくなることから、高率放電性能
の低下を抑制するものと考えられる。FIG. 3 shows the relationship between the depth of discharge and the discharge capacity when the battery is heated. From FIG. 3, it was found that if the battery is heated in a slightly discharged state, the discharge capacity is increased as compared with the battery that is not discharged at all. Especially, the depth of discharge is 20
It was found that the discharge capacity increased as the depth of discharge deepened when the battery was heated at a rate of not less than%. By heating the battery in the discharged state, the reaction between the positive / negative electrode active material and the electrolytic solution is less likely to proceed, and it is considered that the deterioration of the high rate discharge performance is suppressed.
【0073】[実施例4]また、電池内ガス中の二酸化
炭素濃度と放電容量との関係を検討した。実施例1の電
池を使用し、電池内ガス中の二酸化炭素濃度を0、0.
5、1、10、20、30、40、50、60、70、
80、90および100体積%とし、これらの電池を放
電深度100%とし、80℃で15分間加熱してから、
室温に放置した。その後、これらの電池を実施例1と同
様の条件で充放電した。[Example 4] Further, the relationship between the carbon dioxide concentration in the gas in the battery and the discharge capacity was examined. Using the battery of Example 1, the carbon dioxide concentration in the gas in the battery was set to 0,0.
5, 1, 10, 20, 30, 40, 50, 60, 70,
80, 90 and 100% by volume, these batteries at a depth of discharge of 100% and heated at 80 ° C. for 15 minutes,
It was left at room temperature. Then, these batteries were charged and discharged under the same conditions as in Example 1.
【0074】電池内ガス中の二酸化炭素濃度と放電容量
との関係を図4に示す。図4から、電池内ガス中の二酸
化炭素濃度を1体積%以上とすることによって、放電容
量が増加することがわかった。さらに、電池内ガス中の
二酸化炭素濃度が高くなるにしたがって、放電容量は増
加することがわかった。このように、電池内に適量の二
酸化炭素をあらかじめ入れることによって、電池の高率
放電性能が著しく向上することがわかった。FIG. 4 shows the relationship between the carbon dioxide concentration in the gas in the battery and the discharge capacity. From FIG. 4, it was found that the discharge capacity was increased by setting the carbon dioxide concentration in the gas in the battery to be 1% by volume or more. Furthermore, it was found that the discharge capacity increased as the carbon dioxide concentration in the gas in the battery increased. As described above, it was found that the high-rate discharge performance of the battery was remarkably improved by previously inserting an appropriate amount of carbon dioxide into the battery.
【0075】その理由は、負極活物質の表面での二酸化
炭素の還元によって、炭酸リチウムの被膜がその表面に
形成され、その結果、高温での電解液の還元分解が抑制
されるためである。さらに、正極板での電解液の酸化分
解生成物の二酸化炭素をあらかじめ電池内に入れること
によって、高温でのその分解反応の進行を抑制できるた
めであると考えられる。The reason is that reduction of carbon dioxide on the surface of the negative electrode active material forms a film of lithium carbonate on the surface, and as a result, reductive decomposition of the electrolytic solution at high temperature is suppressed. Further, it is considered that the progress of the decomposition reaction at high temperature can be suppressed by previously inserting carbon dioxide, which is an oxidative decomposition product of the electrolytic solution in the positive electrode plate, into the battery.
【0076】[0076]
【発明の効果】本発明の非水電解質電池の製造方法は、
正・負極板の少なくとも一方とセパレータとに有孔性ポ
リマー電解質を備えた発電要素を作製する第1の工程
と、前記発電要素を電池容器に収納する第2の工程と、
正・負極板とセパレータと有孔性ポリマー電解質との全
空孔体積に対して30%以上100%以下の非水電解液
を注液する第3の工程とを備えた非水電解質電池の製造
方法において、第3の工程後、前記電池を40℃以上の
温度で加熱する工程を有することを特徴とするものであ
る。The method for producing a non-aqueous electrolyte battery of the present invention comprises:
A first step of producing a power generating element provided with a porous polymer electrolyte in at least one of the positive and negative electrode plates and a separator, and a second step of housing the power generating element in a battery container,
Manufacture of a non-aqueous electrolyte battery comprising a positive / negative electrode plate, a separator and a third step of injecting a non-aqueous electrolyte solution of 30% or more and 100% or less with respect to the total pore volume of the porous polymer electrolyte. The method is characterized by including a step of heating the battery at a temperature of 40 ° C. or higher after the third step.
【0077】電解液量の少ない電池内では、電解液が偏
在していることから、その電池の高率放電性能は十分で
なかった。また、正・負極板の少なくとも一方とセパレ
ータとに有孔性ポリマー電解質を備えた非水電解質電池
においても、そのポリマー電解質が室温付近で電解液を
十分に吸収しないことから、その性能は十分でなかっ
た。In the battery with a small amount of electrolyte, the electrolyte was unevenly distributed, so the high rate discharge performance of the battery was not sufficient. Further, even in a non-aqueous electrolyte battery having a porous polymer electrolyte in at least one of the positive and negative electrode plates and the separator, the performance is not sufficient because the polymer electrolyte does not sufficiently absorb the electrolytic solution near room temperature. There wasn't.
【0078】本発明の製造方法により、極板やセパレー
タに備えられた有孔性ポリマー電解質が電解液を十分に
吸収するため、電解液が電池全体に浸透することから、
電池の温度を室温に戻した後も、電池内での電解液の分
布は均一となり、その結果、電池の高率放電性能も良好
となる。According to the production method of the present invention, since the porous polymer electrolyte provided in the electrode plate or the separator sufficiently absorbs the electrolytic solution, the electrolytic solution permeates the entire battery,
Even after the temperature of the battery is returned to room temperature, the distribution of the electrolytic solution in the battery becomes uniform, and as a result, the high rate discharge performance of the battery also becomes good.
【図1】電池の加熱温度と放電容量との関係を示す図。FIG. 1 is a diagram showing a relationship between a heating temperature of a battery and a discharge capacity.
【図2】電解液量と放電容量との関係を示す図。FIG. 2 is a diagram showing a relationship between an electrolytic solution amount and a discharge capacity.
【図3】電池加熱時の放電深度と放電容量との関係を示
す図。FIG. 3 is a diagram showing the relationship between the depth of discharge and the discharge capacity when the battery is heated.
【図4】電池内の二酸化炭素の濃度と放電容量との関係
を示す図。FIG. 4 is a diagram showing a relationship between a carbon dioxide concentration in a battery and a discharge capacity.
Claims (4)
タとに有孔性ポリマー電解質を備えた発電要素を作製す
る第1の工程と、前記発電要素を電池容器に収納する第
2の工程と、正・負極板とセパレータと有孔性ポリマー
電解質との全空孔体積に対して30%以上100%以下
の非水電解液を注液する第3の工程とを備えた非水電解
質電池の製造方法において、第3の工程後、前記電池を
40℃以上の温度で加熱する工程を有することを特徴と
する非水電解質電池の製造方法。1. A first step of producing a power generation element including a porous polymer electrolyte on at least one of the positive and negative electrode plates and a separator, and a second step of housing the power generation element in a battery container. Manufacture of a non-aqueous electrolyte battery comprising a positive / negative electrode plate, a separator and a third step of injecting a non-aqueous electrolyte solution of 30% or more and 100% or less with respect to the total pore volume of the porous polymer electrolyte. A method for producing a non-aqueous electrolyte battery, which comprises a step of heating the battery at a temperature of 40 ° C. or higher after the third step in the method.
とセパレータの融点(Tsm)と電解液の沸点(Te
b)のうち、最も低い温度以下で電池を加熱することを
特徴とする請求項1記載の非水電解質電池の製造方法。2. The melting point (Tpm) of the porous polymer electrolyte.
And melting point of separator (Tsm) and boiling point of electrolyte (Te
The method for producing a non-aqueous electrolyte battery according to claim 1, wherein the battery is heated at the lowest temperature or lower in b).
する請求項1または2記載の非水電解質電池の製造方
法。3. The method for producing a non-aqueous electrolyte battery according to claim 1, wherein the battery in a discharged state is heated.
得られた非水電解質電池において、電池内のガスが1体
積%以上の二酸化炭素を含むことを特徴とする非水電解
質電池。4. The non-aqueous electrolyte battery obtained by the method according to claim 1, 2 or 3, wherein the gas in the battery contains 1% by volume or more of carbon dioxide.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001243752A JP2003059536A (en) | 2001-08-10 | 2001-08-10 | Nonaqueous electrolyte cell and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001243752A JP2003059536A (en) | 2001-08-10 | 2001-08-10 | Nonaqueous electrolyte cell and its manufacturing method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003059536A true JP2003059536A (en) | 2003-02-28 |
Family
ID=19073794
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001243752A Pending JP2003059536A (en) | 2001-08-10 | 2001-08-10 | Nonaqueous electrolyte cell and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003059536A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005190901A (en) * | 2003-12-26 | 2005-07-14 | Sanyo Electric Co Ltd | Manufacturing method for lithium secondary battery |
JP2005190977A (en) * | 2003-06-19 | 2005-07-14 | Sanyo Electric Co Ltd | Lithium secondary battery and its manufacturing method |
JP2006066164A (en) * | 2004-08-26 | 2006-03-09 | Sanyo Electric Co Ltd | Manufacturing method of lithium secondary battery |
JP2008071730A (en) * | 2006-08-14 | 2008-03-27 | Sony Corp | Nonaqueous electrolyte secondary battery |
JP2010113804A (en) * | 2008-10-08 | 2010-05-20 | Sumitomo Chemical Co Ltd | Non-aqueous electrolyte secondary battery |
JP2013077404A (en) * | 2011-09-29 | 2013-04-25 | Toshiba Corp | Manufacturing method of secondary battery |
JP2017520084A (en) * | 2014-05-20 | 2017-07-20 | ダイソン テクノロジー リミテッド | Method for manufacturing an electrochemical cell |
CN112310335A (en) * | 2019-07-31 | 2021-02-02 | 广东利元亨智能装备股份有限公司 | Diaphragm bag making device |
-
2001
- 2001-08-10 JP JP2001243752A patent/JP2003059536A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005190977A (en) * | 2003-06-19 | 2005-07-14 | Sanyo Electric Co Ltd | Lithium secondary battery and its manufacturing method |
JP2005190901A (en) * | 2003-12-26 | 2005-07-14 | Sanyo Electric Co Ltd | Manufacturing method for lithium secondary battery |
JP2006066164A (en) * | 2004-08-26 | 2006-03-09 | Sanyo Electric Co Ltd | Manufacturing method of lithium secondary battery |
JP2008071730A (en) * | 2006-08-14 | 2008-03-27 | Sony Corp | Nonaqueous electrolyte secondary battery |
JP2010113804A (en) * | 2008-10-08 | 2010-05-20 | Sumitomo Chemical Co Ltd | Non-aqueous electrolyte secondary battery |
JP2013077404A (en) * | 2011-09-29 | 2013-04-25 | Toshiba Corp | Manufacturing method of secondary battery |
JP2017520084A (en) * | 2014-05-20 | 2017-07-20 | ダイソン テクノロジー リミテッド | Method for manufacturing an electrochemical cell |
CN112310335A (en) * | 2019-07-31 | 2021-02-02 | 广东利元亨智能装备股份有限公司 | Diaphragm bag making device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3702318B2 (en) | Non-aqueous electrolyte battery electrode and non-aqueous electrolyte battery using the electrode | |
JP4961654B2 (en) | Nonaqueous electrolyte secondary battery | |
KR100390099B1 (en) | Nonaqueous electrolyte and nonaqueous electrolyte secondary cell | |
KR101201804B1 (en) | Negative active for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same | |
KR102402110B1 (en) | Pre-lithiation method of negative electrode for secondary battery | |
JP2001135359A (en) | Nonaqueous electrolyte battery | |
KR101582043B1 (en) | Lithium secondary battery with improved output and cycling characteristics | |
JP5058538B2 (en) | Lithium ion secondary battery | |
JP4332845B2 (en) | Non-aqueous electrolyte battery | |
KR20140135659A (en) | Non-aqueous electrolyte solution and lithium secondary battery including the same | |
JPWO2002091514A1 (en) | Non-aqueous electrolyte battery and method for manufacturing the same | |
JP3443773B2 (en) | Manufacturing method of non-aqueous electrolyte secondary battery | |
JPWO2018025469A1 (en) | Lithium ion secondary battery and method of manufacturing the same | |
US6730404B1 (en) | Composite active material and process for the production thereof, electrode and process for the production thereof, and non-aqueous electrolyte battery | |
JP2003059536A (en) | Nonaqueous electrolyte cell and its manufacturing method | |
JP3503697B2 (en) | Non-aqueous electrolyte battery | |
JP2002042868A (en) | Nonaqueous electrolyte battery and its manufacturing method | |
JP2004327331A (en) | Charge control method of nonaqueous electrolyte battery | |
JP4293756B2 (en) | Nonaqueous electrolyte secondary battery | |
JP2002343437A (en) | Nonaqueous electrolyte battery | |
JP2002093463A (en) | Nonaqueous electrolyte battery | |
JP2005310662A (en) | Nonaqueous electrolyte secondary battery | |
KR102721824B1 (en) | Electrolyte for lithium secondary battery and lithium secondary battery comprising the same | |
JP2003007280A (en) | Nonaqueous electrolyte secondary battery and manufacturing method thereof | |
JPH09320632A (en) | Organic electrolyte secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20051213 |