JP2003051404A - Rare earth bond magnet - Google Patents
Rare earth bond magnetInfo
- Publication number
- JP2003051404A JP2003051404A JP2001237258A JP2001237258A JP2003051404A JP 2003051404 A JP2003051404 A JP 2003051404A JP 2001237258 A JP2001237258 A JP 2001237258A JP 2001237258 A JP2001237258 A JP 2001237258A JP 2003051404 A JP2003051404 A JP 2003051404A
- Authority
- JP
- Japan
- Prior art keywords
- molecular weight
- rare earth
- average molecular
- pps resin
- resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910052761 rare earth metal Inorganic materials 0.000 title claims abstract description 16
- 229920005989 resin Polymers 0.000 claims abstract description 40
- 239000011347 resin Substances 0.000 claims abstract description 40
- 239000006247 magnetic powder Substances 0.000 claims abstract description 12
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 11
- 239000000956 alloy Substances 0.000 claims abstract description 11
- 150000002910 rare earth metals Chemical class 0.000 claims abstract description 11
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 9
- 229910052742 iron Inorganic materials 0.000 claims abstract description 4
- 239000004734 Polyphenylene sulfide Substances 0.000 claims description 28
- 229920000069 polyphenylene sulfide Polymers 0.000 claims description 28
- 238000000465 moulding Methods 0.000 abstract description 7
- 230000001747 exhibiting effect Effects 0.000 abstract 1
- 239000000203 mixture Substances 0.000 abstract 1
- 238000002347 injection Methods 0.000 description 8
- 239000007924 injection Substances 0.000 description 8
- 238000005452 bending Methods 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 229910000859 α-Fe Inorganic materials 0.000 description 3
- 229910001172 neodymium magnet Inorganic materials 0.000 description 2
- 229910000521 B alloy Inorganic materials 0.000 description 1
- 229910017495 Nd—F Inorganic materials 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000005121 nitriding Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/057—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
- H01F1/0571—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
- H01F1/0575—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
- H01F1/0578—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together bonded together
Landscapes
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Powder Metallurgy (AREA)
- Hard Magnetic Materials (AREA)
- Permanent Field Magnets Of Synchronous Machinery (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明はNd−Fe−B系等
の希土類鉄系合金磁性紛とポリフェニレンサルファイド
(PPS)樹脂を混合して成形される希土類ボンド磁石
に関し、特に自動車電装モータ用永久磁石のような高温
環境下で使用される希土類ボンド磁石に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rare earth bond magnet molded by mixing a rare earth iron-based alloy magnetic powder such as Nd-Fe-B system and polyphenylene sulfide (PPS) resin, and more particularly to a permanent magnet for an automobile electric motor. The present invention relates to a rare earth bonded magnet used in a high temperature environment such as.
【0002】[0002]
【従来の技術】磁性紛に樹脂を混合して射出や圧縮によ
り成形したボンド磁石は、寸法精度が高く、薄肉品や複
雑な形状のものにも対応できる等の優れた特徴を有する
ことから注目されている。一方、高温環境下で使用され
るステアリングモータやスタータモータ等の自動車電装
モータでは従来、焼結フェライト磁石が多用されてお
り、その最大磁気性能(BH)maxは40kJ/m3程度であ
る。これを、耐熱性のあるPPS樹脂を使用した希土類
ボンド磁石で代替して、より小型で耐久性に優れた永久
磁石を得ることが試みられている。2. Description of the Related Art Bond magnets made by mixing resin with magnetic powder and molding it by injection or compression have high dimensional accuracy and are excellent in that they can be used for thin-walled products and those with complicated shapes. Has been done. On the other hand, conventionally, a sintered ferrite magnet is often used in an electric motor vehicle motor such as a steering motor or a starter motor used in a high temperature environment, and its maximum magnetic performance (BH) max is about 40 kJ / m3. It has been attempted to replace this with a rare earth bonded magnet using a heat-resistant PPS resin to obtain a smaller permanent magnet having excellent durability.
【0003】[0003]
【発明が解決しようとする課題】しかし、耐熱性のある
PPS樹脂は融点が高いため、特に射出成形においてそ
の流動性を確保しようとすると磁性紛の体積含率は50
vol%が限界で、これによると(BH)maxは焼結フェラ
イト磁石よりもかなり小さい30kJ/m3程度にしかなら
ない。However, since the heat-resistant PPS resin has a high melting point, the volume fraction of magnetic powder is 50 when an attempt is made to ensure its fluidity especially in injection molding.
The vol% is the limit, and according to this, (BH) max is only about 30 kJ / m3, which is considerably smaller than that of the sintered ferrite magnet.
【0004】そこで、本発明はこのような課題を解決す
るもので、PPS樹脂を使用して高温環境下での使用が
可能で、磁気性能に優れかつ成形容易な希土類ボンド磁
石を提供することを目的とする。Therefore, the present invention solves such a problem, and provides a rare earth bonded magnet which can be used in a high temperature environment by using a PPS resin, has excellent magnetic performance and is easy to form. To aim.
【0005】[0005]
【課題を解決するための手段】上記目的を達成するため
に、本発明は、希土類鉄系合金磁性紛とPPS樹脂を混
合して成形されるボンド磁石において、PPS樹脂とし
て重量平均分子量が異なる二種類のものを含むものであ
る。これら二種のPPS樹脂の重量平均分子量の比αは
1(1を除く)〜20の範囲とするのが良く、かつ重量
平均分子量の小さな樹脂の容積に対する重量平均分子量
の大きな樹脂の容積の比βは0.1〜20の範囲にする
のが良い。さらに好ましくは、αは2〜10の範囲と
し、βは0.5〜10の範囲とするのが良い。ここで、
高分子量側のPPS樹脂は成形後の機械的強度を支配
し、低分子量側のPPS樹脂は成形時の樹脂流動性を改
善する。したがって、αを1に近づけると二種類のPP
S樹脂の分子量が同程度になるため成形性向上の効果が
少ない。また、αを20よりも大きくすると、低分子量
側のPPS樹脂が成形中に熱分解して成形品の機械的強
度が低下する。βを0.1よりも小さくすると低分子量
PPS樹脂が主体となるため、成形時の熱分解によって
成形品の機械的強度が低下する。一方、βを20よりも
大きくすると高分子量PPS樹脂が主体となって、成形
時の樹脂流動性が悪くなる。In order to achieve the above object, the present invention provides a bonded magnet formed by mixing a rare earth iron-based alloy magnetic powder and a PPS resin, the PPS resin having different weight average molecular weights. It includes those of various kinds. The ratio α of the weight average molecular weights of these two types of PPS resins is preferably in the range of 1 (excluding 1) to 20, and the ratio of the volume of the resin having a large weight average molecular weight to the volume of the resin having a small weight average molecular weight. β is preferably in the range of 0.1 to 20. More preferably, α is in the range of 2 to 10 and β is in the range of 0.5 to 10. here,
The high molecular weight PPS resin controls the mechanical strength after molding, and the low molecular weight PPS resin improves the resin fluidity during molding. Therefore, if α is brought close to 1, two types of PP
Since the molecular weight of the S resin is about the same, the effect of improving the moldability is small. On the other hand, when α is larger than 20, the PPS resin on the low molecular weight side is thermally decomposed during molding and the mechanical strength of the molded product is reduced. When β is made smaller than 0.1, the low molecular weight PPS resin is mainly used, so that the mechanical strength of the molded product decreases due to thermal decomposition during molding. On the other hand, when β is set to be larger than 20, the high molecular weight PPS resin becomes the main component and the resin fluidity at the time of molding deteriorates.
【0006】希土類系合金磁性紛としては、R−Fe−
B系(ここでRはYを含む希土類元素のうちの少なくと
も1種を含むものである)合金が使用でき、具体的には
Nd−Fe−B系合金、Pr−Fe−B系合金、あるい
はこれら合金のFeの一部をCoで置換したもの等が使
用できる。また、希土類系合金磁性紛として、Smを主
とする希土類元素とNを基本成分とするもの、例えばS
m2Fe17合金を窒化したSm2Fe17N3を使用するこ
ともできる。Rare-earth alloy magnetic powders include R-Fe-
B-based alloys (where R is at least one of rare earth elements including Y) can be used, and specifically, Nd-Fe-B-based alloys, Pr-Fe-B-based alloys, or these alloys. It is possible to use those obtained by substituting a part of Fe in Co in Co. Further, as a rare earth alloy magnetic powder, a rare earth element mainly containing Sm and N as a basic component, for example, S
It is also possible to use Sm2Fe17N3 obtained by nitriding an m2Fe17 alloy.
【0007】[0007]
【発明の実施の形態】表1には、磁性粉としてNd−F
e−B系合金を使用し、磁性紛の容積率(V3)を6
1.7%として、PPS樹脂の配合割合を種々変化させ
て外径40mmφ×内径30mmφ×高さ25mmのリング状
磁石を射出成形した際の、それぞれ射出圧力、成形体密
度、曲げ破壊強度、および(BH)max値を実施例1〜
3、比較例1,2として示す。なお、上記磁性紛はより
具体的にはマグネクエンチインターナショナル社のMQ
P−B磁性紛であり、これにPPS樹脂を混合して2軸
混練機で造粒したものを射出成形した。BEST MODE FOR CARRYING OUT THE INVENTION In Table 1, Nd-F is used as a magnetic powder.
Using e-B alloy, the volume ratio (V3) of magnetic powder is 6
When the ring-shaped magnet having an outer diameter of 40 mmφ, an inner diameter of 30 mmφ and a height of 25 mm is injection molded by variously changing the compounding ratio of PPS resin to 1.7%, the injection pressure, the compact density, the bending fracture strength, and The (BH) max value is calculated as in Examples 1 to 1.
3 and Comparative Examples 1 and 2. The magnetic powder is more specifically MQ of Magnequench International.
P-B magnetic powder, which was mixed with PPS resin and granulated by a biaxial kneader, was injection-molded.
【0008】(実施例1)高分子量側のPPS樹脂(P
PS1)の重量平均分子量(Mw1)を100000と
し、その容積率を26.8%とした。また、低分子量側
のPPS樹脂(PPS2)の重量平均分子量(Mw2)
を18000とし、その容積率を11.5%とした。こ
の場合の分子量比αは5.56、容積比βは2.33で
ある。この時の射出圧力は60(MPa)と十分低く、
かつ成形品の曲げ破壊強度は55(MPa)となって十
分な機械的強度も有する。加えて、最大磁気性能(B
H)maxは55.7kJ/m3と、従来の焼結フェライト磁石
のものを凌駕している。Example 1 High molecular weight PPS resin (P
The weight average molecular weight (Mw1) of PS1) was 100,000, and the volume ratio thereof was 26.8%. Also, the weight average molecular weight (Mw2) of the low molecular weight PPS resin (PPS2)
Was set to 18000, and the volume ratio was set to 11.5%. In this case, the molecular weight ratio α is 5.56 and the volume ratio β is 2.33. The injection pressure at this time was as low as 60 (MPa),
In addition, the bending fracture strength of the molded product is 55 (MPa), which also has sufficient mechanical strength. In addition, the maximum magnetic performance (B
H) max is 55.7 kJ / m3, which exceeds that of conventional sintered ferrite magnets.
【0009】(実施例2)高分子量側のPPS樹脂(P
PS1)の重量平均分子量(Mw1)を100000と
し、その容積率を3.5%とした。また、低分子量側の
PPS樹脂(PPS2)の重量平均分子量(Mw2)を
83000とし、その容積率を34.8%とした。この
場合の分子量比αは1.20、容積比βは0.10であ
る。この時の射出圧力は80(MPa)とやや高くな
り、成形品の曲げ破壊強度は29(MPa)と、実施例
1に較べると低下するものの必要な機械的強度は有す
る。最大磁気性能(BH)maxは55.8kJ/m3と十分な
大きさである。(Example 2) High molecular weight PPS resin (P
The weight average molecular weight (Mw1) of PS1) was 100,000 and the volume ratio thereof was 3.5%. The weight average molecular weight (Mw2) of the low molecular weight PPS resin (PPS2) was 83000, and the volume ratio thereof was 34.8%. In this case, the molecular weight ratio α is 1.20 and the volume ratio β is 0.10. The injection pressure at this time was 80 (MPa), which was slightly high, and the bending fracture strength of the molded product was 29 (MPa), which is lower than that of Example 1, but has the necessary mechanical strength. The maximum magnetic performance (BH) max is 55.8 kJ / m3, which is a sufficient size.
【0010】(実施例3)高分子量側のPPS樹脂(P
PS1)の重量平均分子量(Mw1)を100000と
し、その容積率を35.9%とした。また、低分子量側
のPPS樹脂(PPS2)の重量平均分子量(Mw2)
を83000とし、その容積率を2.4%とした。この
場合の分子量比αは1.20、容積比βは15.0であ
る。この時の射出圧力は95(MPa)と高くなるもの
の、未だ許容できる範囲内にあり、一方、成形品の曲げ
破壊強度は34(MPa)と十分な機械的強度を有す
る。そして、最大磁気性能(BH)maxは54.3kJ/m3
と十分な大きさである。(Example 3) High molecular weight PPS resin (P
The weight average molecular weight (Mw1) of PS1) was 100,000 and the volume ratio was 35.9%. Also, the weight average molecular weight (Mw2) of the low molecular weight PPS resin (PPS2)
Was set to 83000 and the volume ratio was set to 2.4%. In this case, the molecular weight ratio α is 1.20 and the volume ratio β is 15.0. Although the injection pressure at this time is as high as 95 (MPa), it is still within the allowable range, and the bending fracture strength of the molded product is 34 (MPa), which is sufficient mechanical strength. And the maximum magnetic performance (BH) max is 54.3 kJ / m3
And is big enough.
【0011】(比較例1)本比較例では、重量平均分子
量(Mw1)100000のPPS樹脂を一種のみ使用
した。この場合は、樹脂の流動性が悪いために115
(MPa)と高い射出圧力が必要になるとともに、成形
品の曲げ破壊強度は28(MPa)と小さくなる。そし
て、最大磁気性能(BH)maxが39.8kJ/m3と大きく
低下する。Comparative Example 1 In this comparative example, only one PPS resin having a weight average molecular weight (Mw1) of 100,000 was used. In this case, since the fluidity of the resin is poor, 115
(MPa) and a high injection pressure are required, and the bending fracture strength of the molded product becomes as small as 28 (MPa). Then, the maximum magnetic performance (BH) max is greatly reduced to 39.8 kJ / m3.
【0012】(比較例2)高分子量側のPPS樹脂(P
PS1)の重量平均分子量(Mw1)を100000と
し、その容積率を19.2%とした。また、低分子量側
のPPS樹脂(PPS2)の重量平均分子量(Mw2)
を4700とし、その容積率を19.2%とした。この
場合の分子量比αは21.3、容積比βは1.0であ
る。この時の射出圧力は61(MPa)と十分に低く、
最大磁気性能(BH)maxも55.0kJ/m3と大きいが、
成形品の曲げ破壊強度は22(MPa)と非常に小さく
なる。(Comparative Example 2) PPS resin (P
The weight average molecular weight (Mw1) of PS1) was 100,000 and the volume ratio thereof was 19.2%. Also, the weight average molecular weight (Mw2) of the low molecular weight PPS resin (PPS2)
Was set to 4700 and the volume ratio was set to 19.2%. In this case, the molecular weight ratio α is 21.3 and the volume ratio β is 1.0. The injection pressure at this time was 61 (MPa), which was sufficiently low.
Maximum magnetic performance (BH) max is as large as 55.0 kJ / m3,
The bending fracture strength of the molded product is very small at 22 (MPa).
【0013】図1は上記各実施例1〜3および比較例2
のα,βの値をプロットしたもので、これより、αは1
(1を除く)〜20の範囲、βは0.1〜20の範囲と
するのが良く、さらに好ましくは、αは2〜10の範
囲、βは0.5〜10の範囲とするのが良い。FIG. 1 shows each of Examples 1 to 3 and Comparative Example 2 described above.
This is a plot of the values of α and β of
(Excluding 1) to 20 and β are preferably in the range of 0.1 to 20, more preferably α is in the range of 2 to 10 and β is in the range of 0.5 to 10. good.
【0014】[0014]
【表1】 [Table 1]
【0015】[0015]
【発明の効果】以上のように、本発明の希土類ボンド磁
石によれば、PPS樹脂を使用して高温環境下での使用
が可能であるとともに、磁気性能に優れしかも成形容易
である。As described above, according to the rare earth bonded magnet of the present invention, it is possible to use the PPS resin in a high temperature environment, and it is excellent in magnetic performance and easy to form.
【図1】実施例と比較例における樹脂の分子量比(α)
と容積比(β)の値をプロットした図である。FIG. 1 is a molecular weight ratio (α) of resins in Examples and Comparative Examples.
It is the figure which plotted the value of the volume ratio (β).
Claims (2)
サルファイド樹脂を混合して成形されるボンド磁石にお
いて、前記ポリフェニレンサルファイド樹脂として重量
平均分子量の異なる二種類のものを含むことを特徴とす
る希土類ボンド磁石。1. A bond magnet molded by mixing a rare earth iron-based alloy magnetic powder and a polyphenylene sulfide resin, wherein the polyphenylene sulfide resin contains two kinds of different weight average molecular weights. .
ド樹脂の重量平均分子量の比が1(1を除く)〜20の
範囲にあり、かつ重量平均分子量の小さな樹脂の容積に
対する重量平均分子量の大きな樹脂の容積の比が0.1
〜20の範囲にある請求項1に記載の希土類ボンド磁
石。2. The weight average molecular weight ratio of the two types of polyphenylene sulfide resins is in the range of 1 (excluding 1) to 20, and the volume of the resin having a large weight average molecular weight is large relative to the volume of the resin having a small weight average molecular weight. Ratio of 0.1
The rare earth bonded magnet according to claim 1, which is in a range of -20.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001237258A JP2003051404A (en) | 2001-08-06 | 2001-08-06 | Rare earth bond magnet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001237258A JP2003051404A (en) | 2001-08-06 | 2001-08-06 | Rare earth bond magnet |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003051404A true JP2003051404A (en) | 2003-02-21 |
Family
ID=19068366
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001237258A Pending JP2003051404A (en) | 2001-08-06 | 2001-08-06 | Rare earth bond magnet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003051404A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007124845A (en) * | 2005-10-31 | 2007-05-17 | Denso Corp | Fuel pump |
-
2001
- 2001-08-06 JP JP2001237258A patent/JP2003051404A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007124845A (en) * | 2005-10-31 | 2007-05-17 | Denso Corp | Fuel pump |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4968519B2 (en) | Permanent magnet and method for manufacturing the same | |
CN1033899A (en) | Corrosion resisting rare-earth metal magnet | |
JP2003051404A (en) | Rare earth bond magnet | |
JP2003124012A (en) | Composite magnet, composite magnetic material, and motor | |
JPH09283358A (en) | Manufacture of r-fe-b sintered magnet | |
JP3164179B2 (en) | Rare earth bonded magnet | |
JP6513623B2 (en) | Method of manufacturing isotropic bulk magnet | |
JP3391704B2 (en) | Rare earth magnet | |
JP3481739B2 (en) | High heat resistant bonded magnet | |
JP3229435B2 (en) | Method for producing sintered R-Fe-B magnet by injection molding method | |
JP2002343623A (en) | Plastic sheet magnet molded body and manufacturing method therefor | |
US6652767B2 (en) | Composition for plastic magnet | |
JPS6180805A (en) | Permanent magnet material | |
JP2619653B2 (en) | Rare earth magnet | |
JP2002175909A (en) | Bonded magnetic having superior thermal stability, and its manufacturing method | |
KR100315628B1 (en) | Manufacturing method of permanent magnet for bond magnet | |
JP2004270016A (en) | Powder for dust core | |
JPH06145705A (en) | Rare earth magnet powder, rare earth bond magnet and composition for rare earth bond magnet | |
JPS62261102A (en) | Bonded magnet for starter motor | |
JP2005008945A (en) | Fe AND Fe-Ni BASED FINE POWDER HAVING HIGH FREQUENCY PROPERTY, AND ELECTRONIC COMPONENT OBTAINED BY USING THE SAME | |
JPS601808A (en) | Permanent magnet | |
JPH03129802A (en) | Resin bonded rare-earth magnet | |
JP2010056418A (en) | Half-hard bond magnet | |
JP2008041916A (en) | Semi-hard magnetic powder and semi-hard bonded magnet | |
JPS63147302A (en) | Permanent magnet material composition and its molding method |