[go: up one dir, main page]

JP2619653B2 - Rare earth magnet - Google Patents

Rare earth magnet

Info

Publication number
JP2619653B2
JP2619653B2 JP62261208A JP26120887A JP2619653B2 JP 2619653 B2 JP2619653 B2 JP 2619653B2 JP 62261208 A JP62261208 A JP 62261208A JP 26120887 A JP26120887 A JP 26120887A JP 2619653 B2 JP2619653 B2 JP 2619653B2
Authority
JP
Japan
Prior art keywords
magnet
rare earth
resin
earth magnet
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62261208A
Other languages
Japanese (ja)
Other versions
JPH01103806A (en
Inventor
格 小此木
充 桜井
幸彦 塩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP62261208A priority Critical patent/JP2619653B2/en
Publication of JPH01103806A publication Critical patent/JPH01103806A/en
Application granted granted Critical
Publication of JP2619653B2 publication Critical patent/JP2619653B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0578Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together bonded together

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は磁石の基本組成がR、Fe、Bからなり樹脂結
合法でつくられた希土類磁石に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a rare earth magnet having a basic composition of R, Fe and B and made by a resin bonding method.

〔従来の技術〕[Conventional technology]

希土類金属、鉄、ボロンからなる希土類金属間化合物
の磁石化の試みは、例えばクーン等は(Fe.82.B.18).9
Rb.05Da.05の超急冷法リボンをアニールするとiHc=9KO
e、Br=5KG、但し(BH)maxが低い。(N.C.Koon他Ap11.
phys.Leter39.(10).1981.840−842)希土類・鉄・ボ
ロン系超急冷アモルファスリボンは粉末状でその諸特性
を測定することによって磁石化の可能性を論じている。
実用材料としての評価は見当たらない。
Attempts to magnetize rare earth intermetallic compounds composed of rare earth metals, iron and boron have been made, for example, by Kuhn et al. (Fe.82.B.18) .9
Annealing Rb.05Da.05 super quenching ribbon gives iHc = 9KO
e, Br = 5KG, but (BH) max is low. (NCKoon and other Ap11.
phys.Leter39. (10) .1981.840-842) Rare earth / iron / boron based ultra-quenched amorphous ribbons are in powder form and their properties are measured to discuss the possibility of magnetization.
No evaluation as a practical material is found.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

従来は、超急冷法の例えばNdFeB、PrFe、YFe、NdDyFe
B等の組成物の磁石物性に関する研究例が主体的であっ
た。
Conventionally, ultra-quenching methods such as NdFeB, PrFe, YFe, NdDyFe
Research examples on the magnet properties of compositions such as B were the main subjects.

また実用材料としてとらえれば基本組成が鉄なので、
大変酸化(錆)しやすい問題があった。
Also, if you consider it as a practical material, the basic composition is iron,
There was a problem that it was very easy to oxidize (rust).

また、実用永久磁石としてみれば、形状のつくりやす
さ、精度、量産性、磁石性など所望の特性が得られてい
ない。
Further, if it is considered as a practical permanent magnet, desired characteristics such as easiness of forming a shape, accuracy, mass productivity, and magnetism are not obtained.

本発明は前記問題を解決するもので、等方性の高性能
磁石を提供することを目的とする。
The present invention solves the above-mentioned problem, and an object of the present invention is to provide an isotropic high-performance magnet.

〔問題点を解決するための手段〕[Means for solving the problem]

本発明は,希土類元素,鉄,ボロンを主成分とし超急
冷法で製造された磁石粉末と,樹脂結合材とからなり,
前記磁石粉末と前記樹脂結合材との混合物を無磁場中で
射出成形,押出成形またはカレンダーロール成形して磁
気的に等方化してなる樹脂結合型の希土類磁石であっ
て,前記磁石粉末の粒径が3〜50μm,前記磁石粉末の含
有量が85〜85wt%であり,前記樹脂結合材は,熱可塑性
樹脂で構成され,その含有量が5〜15wt%であり,磁気
エネルギー積(BH)maxが3.5MGOe以上であり,成形され
た希土類磁石の密度が4.0g/cm3以上であることを特徴と
する希土類磁石である。
The present invention comprises a magnet powder mainly composed of a rare earth element, iron and boron and manufactured by a super-quenching method, and a resin binder,
A resin-bonded rare-earth magnet obtained by subjecting a mixture of the magnet powder and the resin binder to injection molding, extrusion molding or calender roll molding in a magnetic field-free state and magnetically isolating the mixture. The diameter is 3-50 μm, the content of the magnet powder is 85-85 wt%, the resin binder is made of thermoplastic resin, the content is 5-15 wt%, and the magnetic energy product (BH) max is at least 3.5MGOe, the density of the molded rare earth magnet is a rare-earth magnet, characterized in that it is 4.0 g / cm 3 or more.

超急冷法で製造された磁石粉末の大きさは170μm以
下好ましくは50μmから3μmの範囲である。微粉末化
は,ヘキサン,トルエンなどの有機溶剤を加えたボール
ミル又はアトライターミルなどで行う。
The size of the magnet powder produced by the rapid quenching method is 170 μm or less, preferably in the range of 50 μm to 3 μm. The pulverization is performed by a ball mill or an attritor mill to which an organic solvent such as hexane or toluene is added.

バインダーの有機物樹脂は熱可塑性樹脂を選択すれば
良い。
As the organic resin for the binder, a thermoplastic resin may be selected.

熱可塑性樹脂は、ナイロン6、66、12など、PP(ポリ
プロピレン)、EVA、PPS、PEEK等を磁石粉末と共に混練
機などを用いて混練物(コンパウンド)をつくる。その
量は、成形方式にもよるが、15重量%以下である。好ま
しくは10%〜5%の範囲である。また,射出成形,押出
成形,カレンダーロール成形などでは,混合物の流動性
が重要になるので,熱可塑性樹脂が用いられ,その樹脂
量は,5〜15wt%と多くする。
As the thermoplastic resin, a kneaded material (compound) is prepared by using a kneading machine with PP (polypropylene), EVA, PPS, PEEK, or the like, such as nylon 6, 66, 12, or the like, together with a magnet powder. The amount is up to 15% by weight, depending on the molding method. Preferably it is in the range of 10% to 5%. In addition, in injection molding, extrusion molding, calender roll molding, etc., the fluidity of the mixture is important, so a thermoplastic resin is used, and the amount of the resin is as large as 5 to 15 wt%.

以下に本発明の効果を具体的に実施例に従って詳述す
る。
Hereinafter, the effects of the present invention will be described in detail with reference to examples.

Nd29.8%,B0.8%,残部Feおよび不可避の不純物から
なる組成合金を高周波溶解炉で溶解,水冷銅ロール上に
吐出し超急冷法によってリボン状薄帯粉末を得た。その
大きさは10〜30μmであった。次に素原料は,以下の手
順で実用永久磁石材料とした。
A composition alloy consisting of 29.8% Nd, 0.8% B, the balance Fe and unavoidable impurities was melted in a high-frequency melting furnace, discharged onto a water-cooled copper roll, and a ribbon-shaped ribbon powder was obtained by a super-quenching method. Its size was 10-30 μm. Next, the raw material was made into a practical permanent magnet material by the following procedure.

粉末粒度177μm以下に粉砕した。もちろん,Arガス雰
囲気下でボールミル中で行った。
The powder was pulverized to a particle size of 177 μm or less. Of course, it was performed in a ball mill under an Ar gas atmosphere.

有機溶媒のダイフロン113(ダイキン工業製)を加え
アトライターミル中で約10分間粉砕した。粉末の量は10
kg,ダイフロン113 5kg,スチールボール20kgの量を容器
内に投入して行った。
An organic solvent, Daiflon 113 (manufactured by Daikin Industries, Ltd.), was added and pulverized in an attritor mill for about 10 minutes. 10 powder
kg, Daiflon 113 5 kg and steel balls 20 kg were put into the container.

FSSS(フィフシャーサブシーブサイザー)法による平
均粒度を測定した。約10μmの平均粒度であった。
The average particle size was measured by the FSSS (Fifshire subsieve sizer) method. The average particle size was about 10 μm.

バインダーは,ナイロン12を使用し磁石粉末との混練
は,280℃に加熱しながらスクリュー式混練機でコンパウ
ンドをつくった。
Nylon 12 was used as a binder, and compounding was performed with a screw-type kneader while heating to 280 ° C for kneading with magnetic powder.

この磁石粉末を用いて,射出成形によって永久磁石を
つくった。試料形状は,φ30×φ25×6mmのリング状で
ある。表1に製造条件と諸特性を示す。
Using this magnet powder, a permanent magnet was made by injection molding. The sample shape is a ring shape of φ30 × φ25 × 6mm. Table 1 shows the manufacturing conditions and various characteristics.

なお、比較例はSm(Co bal Cu0.07 Fe0.2 Zr0.0
2)8.0組成からなる2−17系希土類金属間化合物磁石粉
末である。
In addition, the comparative example is Sm (Co bal Cu0.07 Fe0.2 Zr0.0
2) 2-17 type rare earth intermetallic compound magnet powder having an 8.0 composition.

比較例と本発明法により得られた射出成形法で の比較でもやはり高い性能が得られた。このことは、Nd
Fe B粉末の高い磁気性能がそのまま、現出させるこ
とができた。
In the injection molding method obtained by the comparative example and the method of the present invention, In comparison, high performance was also obtained. This means that Nd
The high magnetic performance of Fe B powder was able to appear as it was.

このようにリング状の磁石でも、(BH)max4〜6MGOe
級の等方性磁石を得られた。このように、精密複雑形状
の等方性磁石の登場は、モータ、スピーカなどの小型、
高性能化に有効となるであろう。
Thus, even with a ring-shaped magnet, (BH) max4-6MGOe
A grade of isotropic magnet was obtained. Thus, the emergence of isotropic magnets of precise and complex shapes has led to smaller motors and speakers,
It will be effective for high performance.

本実施例は、ナイロン12を用いたが、熱可塑性の樹脂
であれば、PPS.PEEK.PPなど同様の効果を得られるもの
である。
In the present embodiment, nylon 12 is used, but similar effects such as PPS.PEEK.PP can be obtained with a thermoplastic resin.

〔発明の効果〕〔The invention's effect〕

以上述べたように本発明によれば、基本組成が希土類
金属、鉄、ボロンからなる超急冷法でつくられた磁石粉
末と,熱可塑性樹脂とからなるボンド型磁石は,樹脂の
種類,含有量,成形方法を所定に組み合わせることによ
り,成形性が良好で高い磁気特性を有する等方性磁石が
得られる。これを用いた機器は、例えばモータの高出力
化、小型化、ロッドレスシリンダー、スピーカー等へ低
コスト、高性能を実現できるなど多大の効果をもたらす
実用性の高い材料である。
As described above, according to the present invention, the bond type magnet composed of a magnet powder made of a rare earth metal, iron, and boron by a rapid quenching method and a thermoplastic resin, and the type and content of the resin By combining the molding methods in a predetermined manner, an isotropic magnet having good moldability and high magnetic properties can be obtained. A device using this is a highly practical material that brings great effects such as high output and small size of a motor, low cost and high performance for a rodless cylinder, a speaker, and the like.

フロントページの続き (72)発明者 塩原 幸彦 長野県諏訪市大和3丁目3番5号 セイ コーエプソン株式会社内 (56)参考文献 特開 昭63−146414(JP,A) 特開 昭59−211549(JP,A) 特開 昭63−262802(JP,A) 特開 昭61−174364(JP,A) センサー技術 1988年11月号(Vo l.8,No.12)P.44Continuation of the front page (72) Inventor Yukihiko Shiohara 3-5-5 Yamato, Suwa-shi, Nagano Seiko Epson Corporation (56) References JP-A-63-146414 (JP, A) JP-A-59-211549 (JP, A) JP-A-63-262802 (JP, A) JP-A-61-174364 (JP, A) Sensor technology November 1988 (Vol. 8, No. 12) 44

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】希土類元素,鉄,ボロンを主成分とし超急
冷法で製造された磁石粉末と,樹脂結合材とからなり,
前記磁石粉末と前記樹脂結合材との混合物を無磁場中で
射出成形,押出成形またはカレンダーロール成形して磁
気的に等方化してなる樹脂結合型の希土類磁石であっ
て, 前記磁石粉末の粒径が3〜50μm,前記磁石粉末の含有量
が85〜95wt%であり, 前記樹脂結合材は,熱可塑性樹脂で構成され,その含有
量が5〜15wt%であり, 磁気エネルギー積(BH)maxが3.5MGOe以上であり, 成形された希土類磁石の密度が4.0g/cm3以上であること
を特徴とする希土類磁石。
1. A magnet powder comprising a rare earth element, iron, and boron as main components and produced by a super-quenching method, and a resin binder.
A resin-bonded rare-earth magnet obtained by subjecting a mixture of the magnet powder and the resin binder to injection molding, extrusion molding or calender roll molding in a magnetic field without magnetic field, and magnetically isolating the mixture. The diameter is 3 to 50 μm, the content of the magnet powder is 85 to 95 wt%, the resin binder is made of a thermoplastic resin, the content is 5 to 15 wt%, and the magnetic energy product (BH) A rare earth magnet characterized by having a max of 3.5MGOe or more and the density of the formed rare earth magnet being 4.0g / cm 3 or more.
JP62261208A 1987-10-16 1987-10-16 Rare earth magnet Expired - Lifetime JP2619653B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62261208A JP2619653B2 (en) 1987-10-16 1987-10-16 Rare earth magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62261208A JP2619653B2 (en) 1987-10-16 1987-10-16 Rare earth magnet

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP7255320A Division JPH08181011A (en) 1995-10-02 1995-10-02 Rare earth magnets

Publications (2)

Publication Number Publication Date
JPH01103806A JPH01103806A (en) 1989-04-20
JP2619653B2 true JP2619653B2 (en) 1997-06-11

Family

ID=17358644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62261208A Expired - Lifetime JP2619653B2 (en) 1987-10-16 1987-10-16 Rare earth magnet

Country Status (1)

Country Link
JP (1) JP2619653B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130293038A1 (en) * 2011-01-20 2013-11-07 Panasonic Corporation Bonded magnet and motor provided with same
CN105206370B (en) * 2015-10-12 2017-11-03 北京工业大学 A kind of high temperature resistant isotropism NdFeB Bonded Magnets and preparation method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1216623A (en) * 1983-05-09 1987-01-13 John J. Croat Bonded rare earth-iron magnets
JPH0669003B2 (en) * 1984-05-31 1994-08-31 大同特殊鋼株式会社 Powder for permanent magnet and method for manufacturing permanent magnet
JPS63262802A (en) * 1987-04-21 1988-10-31 Nippon Steel Chem Co Ltd Fe-Nd-B plastic magnet

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
センサー技術 1988年11月号(Vol.8,No.12)P.44

Also Published As

Publication number Publication date
JPH01103806A (en) 1989-04-20

Similar Documents

Publication Publication Date Title
EP0898778B1 (en) Bonded magnet with low losses and easy saturation
JP3121824B2 (en) Sintered permanent magnet
EP0680054B1 (en) RE-Fe-B magnets and manufacturing method for the same
JP2741508B2 (en) Magnetic anisotropic sintered magnet and method of manufacturing the same
JPH04184901A (en) Rare earth iron based permanent magnet and its manufacture
EP0414645B2 (en) Permanent magnet alloy having improved resistance to oxidation and process for production thereof
JP2731150B2 (en) Magnetic anisotropic bonded magnet, magnetic anisotropic magnetic powder used therefor, method for producing the same, and magnetic anisotropic powder magnet
JP2619653B2 (en) Rare earth magnet
JP3391704B2 (en) Rare earth magnet
JPS61195954A (en) Permanent magnet alloy
JP2610798B2 (en) Permanent magnet material
KR900006533B1 (en) Anisotropic magnetic powder, its magnet and manufacturing method thereof
JPS63178505A (en) Anisotropic r-fe-b-m system permanent magnet
JPH07176418A (en) High performance hot pressed magnets
JPH044386B2 (en)
JP3023881B2 (en) R-Fe-BC bonded magnet with excellent oxidation resistance
JPH10135020A (en) Radial anisotropic bond magnet
JP2893705B2 (en) Manufacturing method of permanent magnet
JP2573865B2 (en) Manufacturing method of permanent magnet
JPH044383B2 (en)
JP3023880B2 (en) R-Fe-Co-BC-based bonded magnet with excellent oxidation resistance
JPH044384B2 (en)
JPH04268704A (en) R-fe-co-b-c bonded magnet with excellent oxidation resistant property
JPH04268703A (en) R-fe-b-c bonded magnet with excellent oxidation-resistant property
JPH03115501A (en) Alloy powder composition for permanent magnet

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080311

Year of fee payment: 11