[go: up one dir, main page]

JP2003035832A - Polarization-independent directional coupler and optical circuit using the same - Google Patents

Polarization-independent directional coupler and optical circuit using the same

Info

Publication number
JP2003035832A
JP2003035832A JP2001221694A JP2001221694A JP2003035832A JP 2003035832 A JP2003035832 A JP 2003035832A JP 2001221694 A JP2001221694 A JP 2001221694A JP 2001221694 A JP2001221694 A JP 2001221694A JP 2003035832 A JP2003035832 A JP 2003035832A
Authority
JP
Japan
Prior art keywords
optical
directional coupler
waveguide
optical waveguide
polarization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001221694A
Other languages
Japanese (ja)
Other versions
JP4086485B2 (en
Inventor
Shunichi Soma
俊一 相馬
Takashi Go
隆司 郷
Masayuki Okuno
将之 奥野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2001221694A priority Critical patent/JP4086485B2/en
Publication of JP2003035832A publication Critical patent/JP2003035832A/en
Application granted granted Critical
Publication of JP4086485B2 publication Critical patent/JP4086485B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a directional coupler with which a problem of the polarization-dependability of the directional coupler is solved, thus integrality and a scale expansion are excellently preceded. SOLUTION: In the directional coupler having a substrate and two optical waveguides arranged close to each other on the substrate, the section of the core part of the optical waveguide is rectangular, the length of the rectangular side which is parallel to the main plane of the substrate is shorter than the rest of the sides.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、光通信分野で用い
られる光導波路の方向性結合器に関し、より詳細には、
信号光の偏光状態に依存しない光結合率を有する方向性
結合器に関する。
TECHNICAL FIELD The present invention relates to a directional coupler for an optical waveguide used in the field of optical communication, and more specifically,
The present invention relates to a directional coupler having an optical coupling rate that does not depend on the polarization state of signal light.

【0002】[0002]

【従来の技術】インターネットを利用した動画像配信に
みられるような大量のデータ送信を必要とするマルチメ
ディア通信の発達は、通信トラフィックの増大を生むと
同時に通信網に対する更なる大容量化、高速化、及び高
機能化の要求を日増しに高めている。
2. Description of the Related Art The development of multimedia communication, which requires a large amount of data transmission as seen in moving image distribution using the Internet, causes an increase in communication traffic, and at the same time further increases the capacity and speed of communication networks. The demand for higher performance and higher functionality is increasing day by day.

【0003】現在の光通信網では、光−電気変換と電気
−光変換によって信号のスイッチング(経路切替)及び
ルーティング(経路設定)を行うための電子部品が使用
されているが、今後は、光信号を電気信号に変換するこ
となく、アクセス網を含む全ての通信網が結ばれる構造
の光通信網へと発展させることが求められている。
In the current optical communication network, electronic parts are used for signal switching (path switching) and routing (path setting) by optical-electrical conversion and electric-optical conversion. It is required to develop an optical communication network having a structure in which all communication networks including an access network are connected without converting signals into electric signals.

【0004】かかる光通信網を用いた通信システムを構
築するために必要とされる光部品として、光合分波器、
光分岐結合器、光スイッチ、光フィルタ等がある。
As an optical component required for constructing a communication system using such an optical communication network, an optical multiplexer / demultiplexer,
There are optical branching couplers, optical switches, optical filters, and the like.

【0005】これらの光部品の中にあって、導波路型光
部品は、量産性や大規模化等の要求に答え得る光部品と
して期待されている。特に、シリコン基板上に形成され
る石英系ガラスで作製される光導波路は、低光損失であ
り、安定性が高く、更には光ファイバとの整合性にも優
れるといった特長を有しており、実用的な光回路を構成
するための最有力実現手段として注目されている。
Among these optical components, the waveguide type optical component is expected as an optical component which can meet the demands of mass productivity and large scale. In particular, an optical waveguide made of silica glass formed on a silicon substrate has features such as low optical loss, high stability, and excellent matching with an optical fiber. It is attracting attention as the most promising means for constructing a practical optical circuit.

【0006】導波路型光部品を実用レベルで実現するた
めには、光導波路中を伝搬する信号光の偏光特性に依存
することなく導波路型光素子として動作すること(偏光
無依存性)が必要不可欠である。特に、光スイッチ、光
フィルタのような光部品を実現するための基本素子であ
る方向性結合器においては、上記偏光無依存性は、光部
品としての損失偏光依存性(PDL)の低減及び消光比
向上を達成するための重要な要素特性である。
In order to realize a waveguide type optical component on a practical level, it is necessary to operate as a waveguide type optical element without depending on the polarization characteristic of the signal light propagating in the optical waveguide (polarization independence). It is essential. In particular, in a directional coupler, which is a basic element for realizing optical components such as optical switches and optical filters, the polarization independence reduces loss polarization dependency (PDL) as an optical component and extinguishes light. It is an important element characteristic for achieving the ratio improvement.

【0007】図10乃至図12は、従来型の方向性結合
器を備えた光回路の構成例を示す模式図である。従来型
の光回路は、例えば図10に示すように、互いに平行
で、かつ近接して配置された2本の直線光導波路115
及び116を有する光結合部121と、この光結合部1
21に結合された入力ポート111及び112と出力ポ
ート113及び114とによって構成される。図11
は、図10に示したA−A′線に沿う断面図であり、図
12は、図10に示したB−B′線に沿う断面図であ
る。
10 to 12 are schematic views showing an example of the configuration of an optical circuit including a conventional directional coupler. In the conventional optical circuit, for example, as shown in FIG. 10, two linear optical waveguides 115 arranged in parallel and close to each other are provided.
And the optical coupling section 121 having 116 and the optical coupling section 1
It is composed of input ports 111 and 112 and output ports 113 and 114, which are coupled to 21. Figure 11
10 is a sectional view taken along the line AA 'shown in FIG. 10, and FIG. 12 is a sectional view taken along the line BB' shown in FIG.

【0008】光導波路115及び116は、シリコン基
板101の表面に設けられた石英系ガラスのクラッド層
102と、該クラッド層102の内部に設けられた石英
系ガラスのコア部103とを有する。
The optical waveguides 115 and 116 have a silica-based glass cladding layer 102 provided on the surface of the silicon substrate 101, and a silica-based glass core portion 103 provided inside the cladding layer 102.

【0009】光結合部121では、互いに近接した2本
の光導波路115及び116の中を信号光が伝搬するの
に伴って信号光の導波モードが相互に結合され、一方の
光導波路の光パワーが他方の光導波路へと徐々に移動
し、再び元の導波路へと徐々に戻る。かかる光パワーの
光導波路間での移動を方向性結合器の光結合といい、こ
の現象を利用した光回路を用いることで光信号の合波又
は分波を行う。
In the optical coupling part 121, the guided modes of the signal light are coupled to each other as the signal light propagates in the two optical waveguides 115 and 116 which are close to each other, and the light of one optical waveguide is coupled. The power gradually moves to the other optical waveguide and then gradually returns to the original waveguide again. The movement of such optical power between the optical waveguides is called optical coupling of a directional coupler, and an optical circuit utilizing this phenomenon is used to combine or demultiplex optical signals.

【0010】光結合の割合は光結合率と呼ばれ、一方の
光導波路から他方の光導波路へと移動する光パワーの割
合を意味する。光結合率は、光結合部121の光導波路
における導波路幅、導波路間隔、及び光結合部の長さ
(結合長)によって決定される。具体的には、導波路幅
及び導波路間隔が狭いほど光結合は強くなり、短い結合
長の光結合部121でも高い光結合率が得られる。
The rate of optical coupling is called the optical coupling rate, and means the rate of optical power that moves from one optical waveguide to the other optical waveguide. The optical coupling rate is determined by the waveguide width in the optical waveguide of the optical coupling section 121, the waveguide spacing, and the length of the optical coupling section (coupling length). Specifically, the narrower the width of the waveguide and the narrower the distance between the waveguides, the stronger the optical coupling, and a high optical coupling rate can be obtained even in the optical coupling section 121 having a short coupling length.

【0011】コア部103の断面形状は、シングルモー
ド条件を満たす正規化周波数(V値)を基に伝搬損失を
考慮して決定され、通常その縦横比を1.0:1.0〜
1.0:1.5とする正方形或いは横長の長方形とされ
る。
The cross-sectional shape of the core portion 103 is determined in consideration of the propagation loss based on the normalized frequency (V value) satisfying the single mode, and the aspect ratio is usually 1.0: 1.0 to.
It is a square or a horizontally long rectangle with a ratio of 1.0: 1.5.

【0012】孤立光導波路の場合には、導波路の幅を変
えることで複屈折の制御が可能である。例えば、アレイ
導波路格子やマッハツェンダー干渉計を構成するアレイ
導波路や干渉アーム導波路等では、導波路幅を変えて干
渉特性における偏光依存性を制御した例が報告されてい
る(Y. Inoue et al., OFC 2001 Technical Digest WB4
-2) 。
In the case of an isolated optical waveguide, birefringence can be controlled by changing the width of the waveguide. For example, it has been reported that array waveguides and interference arm waveguides that compose an arrayed waveguide grating and a Mach-Zehnder interferometer control the polarization dependence of interference characteristics by changing the waveguide width (Y. Inoue et al., OFC 2001 Technical Digest WB4
-2).

【0013】しかしながら、方向性結合器のように、2
本の光導波路が互いに近接して配置された光回路の場合
には、導波路のコア部における応力分布等が極めて複雑
となるが、これらの影響を考慮した光回路の設計例は見
当たらない。また、方向性結合器の光導波路の幅を変化
させて干渉特性における波長依存性を制御した報告例は
あるものの(A. Takagi et al., IEEE J. Quantum Elec
tron, vol.28. no.4,pp.848-855)、偏光依存性の観点
から光回路の設計検討がなされた報告例はない。
However, like a directional coupler, two
In the case of an optical circuit in which the optical waveguides of the book are arranged close to each other, the stress distribution and the like in the core portion of the waveguide become extremely complicated, but no design example of the optical circuit considering these influences is found. In addition, although there is a report that the wavelength dependence of the interference characteristics is controlled by changing the width of the optical waveguide of the directional coupler (A. Takagi et al., IEEE J. Quantum Elec
tron, vol.28. no.4, pp.848-855), and there are no reports of design studies of optical circuits from the viewpoint of polarization dependence.

【0014】一般的に、正方形若しくは横長長方形の断
面形状を有する光導波路(方形光導波路)で構成した方
向性結合器では、光結合特性が信号光の偏光状態に依存
する結果となる。光結合の偏光依存性についての詳細は
後述するが、主に2つの要因によって生じるものと解釈
される。
Generally, in a directional coupler formed of an optical waveguide (square optical waveguide) having a square or horizontally long rectangular cross-sectional shape, the optical coupling characteristic results in dependence on the polarization state of the signal light. The details of the polarization dependence of the optical coupling will be described later, but it is understood that it is mainly caused by two factors.

【0015】図6に示した一般的な方形光導波路の断面
模式図において、光導波路31の中心を原点にとり、導
波路幅を2a、導波路厚を2d、光導波路31と32の
中心間距離をD、コアの屈折率をn、クラッドの屈折
率をnとしたとき、2本の光導波路31と32との間
のモード結合定数xは次式で表すことができる(「光導
波路の基礎」、岡本勝就著、コロナ社)。
In the schematic sectional view of the general rectangular optical waveguide shown in FIG. 6, the center of the optical waveguide 31 is taken as the origin, the waveguide width is 2a, the waveguide thickness is 2d, and the center-to-center distance between the optical waveguides 31 and 32. Is D, the refractive index of the core is n 1 and the refractive index of the clad is n 0 , the mode coupling constant x between the two optical waveguides 31 and 32 can be expressed by the following equation (“optical waveguide Basics ", Katsuyuki Okamoto, Corona Publishing Co., Ltd.).

【0016】[0016]

【数1】 [Equation 1]

【0017】モード結合定数xは、TEモード、TMモ
ードのいずれの場合にも上式で与えられるが、式中の定
数r、kはTEモードとTMモードの場合で異なる
値をもち、それぞれ次の関係式で表される。
The mode coupling constant x is given by the above equation in both the TE mode and the TM mode. The constants r x and k x in the equation have different values in the TE mode and the TM mode, respectively. Each is expressed by the following relational expressions.

【0018】TEモードの場合、In the TE mode,

【0019】[0019]

【数2】 [Equation 2]

【0020】TMモードの場合、In the TM mode,

【0021】[0021]

【数3】 [Equation 3]

【0022】である。つまり、モード結合定数xが、T
EモードとTMモードとで異なることに起因して、偏光
依存性が生じる。
It is That is, the mode coupling constant x is T
Polarization dependence occurs due to the difference between the E mode and the TM mode.

【0023】更に、このような方形光導波路において
は、クラッドとコアの熱膨張率の違いにより応力が生
じ、TEモード及びTMモードのそれぞれの信号光が感
じる実効的なn及びnが異なり、その結果、複屈折
性を有することとなる。実際には光結合率の偏光依存性
が生じる主要因はこの複屈折性によるものであり、光結
合率が偏光に依存しないようにするためには、上記複屈
折性を解消するか、若しくはその作用を打ち消すための
方策が必要となる。しかしながら、複屈折性発現のメカ
ニズムを詳細に解明するためには複雑な計算を必要とす
るため、光結合率の偏光無依存化を解析的手段により実
行することは困難であった。
Further, in such a rectangular optical waveguide, stress is generated due to the difference in the coefficient of thermal expansion between the clad and the core, and the effective n 1 and n 0 sensed by the TE-mode and TM-mode signal lights are different. As a result, it has birefringence. In reality, the main factor that causes the polarization dependence of the optical coupling rate is due to this birefringence, and in order to prevent the optical coupling rate from depending on the polarization, the birefringence is canceled or the Measures are needed to counteract the effect. However, in order to elucidate the mechanism of birefringence development in detail, it is difficult to carry out polarization-independent polarization of the optical coupling rate by analytical means, because complicated calculations are required.

【0024】[0024]

【発明が解決しようとする課題】光結合率が偏光依存性
を持つ方向性結合器により構成される光回路では、以下
のような問題が生じる。
The following problems occur in an optical circuit composed of a directional coupler whose optical coupling rate has polarization dependency.

【0025】例えば、2つの方向性結合器からなるマッ
ハツェンダー干渉計を多段に接続して構成されるラティ
スフィルターの応用例である利得等化器では、動作波長
全域にわたって0.1dB以下の偏光依存損失が要求さ
れている。例えば、5段接続の利得等化器の場合には、
方向性結合器における光結合率の偏光依存性を0.2%
以下に抑制する必要がある。ラティスフィルターの段数
が増加するとともにこの許容範囲は狭くなるため、光結
合率を偏光無依存化することが課題となる。
For example, in a gain equalizer which is an application example of a lattice filter constituted by connecting Mach-Zehnder interferometers composed of two directional couplers in multiple stages, a polarization dependence of 0.1 dB or less over the entire operating wavelength range. Loss is required. For example, in the case of a gain equalizer with five stages connected,
The polarization dependence of the optical coupling rate in a directional coupler is 0.2%.
The following must be suppressed. Since the allowable range becomes narrower as the number of stages of the lattice filter increases, it becomes a problem to make the optical coupling rate polarization independent.

【0026】本発明は、上述した従来技術の問題点に鑑
みてなされたものであり、光結合率の偏光依存性が無い
方向性結合器を提供することを目的とするものである。
The present invention has been made in view of the above-mentioned problems of the prior art, and an object of the present invention is to provide a directional coupler having no polarization dependence of the optical coupling rate.

【0027】[0027]

【課題を解決するための手段】かかる課題を解決するた
めに、本発明の方向性結合器は、基板と、該基板上に互
いに近接して配置された2本の光導波路とを有する方向
性結合器であって、上記光導波路のコア部の断面形状を
方形とし、該方形のうち上記基板の主面と平行な辺の長
さが残余の辺の長さより短いことを特徴とする。好まし
くは、上記光導波路のコア断面形状の縦横比は1.0:
0.4〜1.0:0.8である。
In order to solve the above problems, a directional coupler according to the present invention has a directional coupler having a substrate and two optical waveguides arranged on the substrate in close proximity to each other. The coupler is characterized in that the core portion of the optical waveguide has a rectangular cross-sectional shape, and the length of a side of the square parallel to the main surface of the substrate is shorter than the length of the remaining side. Preferably, the aspect ratio of the core cross-sectional shape of the optical waveguide is 1.0:
It is 0.4-1.0: 0.8.

【0028】かかる構成とすることにより、基板上に配
置された光導波路で構成した方向性結合器において、導
波路コアにおける複屈折性が解消され、光結合率の無偏
光依存化を達成することができる。
With such a structure, in the directional coupler formed of the optical waveguides arranged on the substrate, the birefringence in the waveguide core is eliminated, and the non-polarization dependence of the optical coupling rate is achieved. You can

【0029】また、本発明の方向性結合器の光導波路
は、SiOを主成分とする石英系ガラスで構成するこ
とができる。
The optical waveguide of the directional coupler of the present invention can be made of silica glass containing SiO 2 as a main component.

【0030】好ましくは、かかる光導波路を、シリコン
基板上に配置し、より好ましくは、かかる光導波路を火
炎堆積法と反応性エッチング法の組み合わせで形成す
る。
Preferably, the optical waveguide is arranged on a silicon substrate, and more preferably, the optical waveguide is formed by a combination of a flame deposition method and a reactive etching method.

【0031】本発明の光回路は、上述した光導波路を備
えることを特徴とし、好ましくは方向性結合器を構成す
る光導波路以外の光導波路のコア部の断面形状を方形と
し、該方形のうち、基板の主面と平行な辺の長さが残余
の辺の長さと等しいか、又は長いことを特徴とする。
An optical circuit of the present invention is characterized by including the above-mentioned optical waveguide, and preferably, the cross-sectional shape of the core portion of the optical waveguide other than the optical waveguide forming the directional coupler is a square. The length of the side parallel to the main surface of the substrate is equal to or longer than the length of the remaining side.

【0032】かかる構成とすることにより、偏光依存性
のない光結合率を有する光回路を提供することが可能と
なる。
With such a structure, it is possible to provide an optical circuit having an optical coupling rate without polarization dependence.

【0033】[0033]

【発明の実施の形態】以下、本発明の実施の形態を図面
を参照しながら詳述する。図1〜図3は、本発明の一実
施形態である方向性結合器を備えた光回路の概略を示す
模式図であり、図2及び図3は、図1中に示したA−
A′線及びB−B′での断面図である。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. 1 to 3 are schematic views showing an outline of an optical circuit provided with a directional coupler according to an embodiment of the present invention, and FIGS. 2 and 3 are A- shown in FIG.
It is sectional drawing in an A'line and BB '.

【0034】ここで、光導波路11〜16は、シリコン
基板1と、その一方の主面1A上に配置された石英系ガ
ラスによるクラッド層2とコア部3とを有する。厚さ1
mm、直径4インチのシリコン基板1上に、火炎中でS
iClやGeClなどの原料ガスと燃料のCH
及び酸素ガスとを反応させる、いわゆる火炎加水分
解反応によって石英系ガラス膜を堆積させてから、この
ガラス膜に反応性イオンエッチングを施して光導波路1
1〜16を形成した。
Here, each of the optical waveguides 11 to 16 has a silicon substrate 1, a cladding layer 2 made of silica glass and a core portion 3 arranged on one main surface 1A thereof. Thickness 1
mm on a silicon substrate 1 with a diameter of 4 inches, S in a flame
A silica-based glass film is deposited by a so-called flame hydrolysis reaction in which a raw material gas such as iCl 4 or GeCl 4 is reacted with CH 4 or H 2 and oxygen gas of a fuel, and then reactive ion etching is performed on the glass film. Optical waveguide 1
1-16 were formed.

【0035】光回路を、方向性結合器21と、入力導波
路11及び12と、出力導波路13及び14とから構成
する。方向性結合器21は、その光導波路幅に対応して
無偏光の信号光に対する光結合率が3dBとなるように
結合長を設定しておく。本実施形態では、光回路全体に
わたって光導波路幅を4〜7μmとした。かかる方向性
結合器を備えた光回路が配置されたチップを、ダイシン
グによって切り出し、入出力導波路11、12及び1
3、14にシングルモード光ファイバーを結合した。
The optical circuit comprises a directional coupler 21, input waveguides 11 and 12, and output waveguides 13 and 14. The directional coupler 21 is set to have a coupling length corresponding to the width of the optical waveguide so that the optical coupling rate for unpolarized signal light is 3 dB. In this embodiment, the optical waveguide width is set to 4 to 7 μm over the entire optical circuit. A chip on which an optical circuit having such a directional coupler is arranged is cut out by dicing, and the input / output waveguides 11, 12 and 1 are cut out.
A single mode optical fiber was coupled to 3 and 14.

【0036】図4〜図7は、上述の石英系光導波路を用
いた方向性結合器の作製プロセスを説明する図である。
すなわち、シリコン基板1を用意し(図4)、シリコン
基板1の一方の主面1A上に、石英系ガラスからなる下
部クラッド層2Aとコア層3Aとを火炎堆積法により形
成した後(図5)、後に導波路コア部3となる部分のみ
を残し、コア層3Aのうち残余の部分を反応性イオンエ
ッチングにより選択的に除去する(図6)。最後に、石
英系ガラスからなる上部クラッド層2Bを火炎堆積法に
よって下部クラッド層2Aの上に堆積させて、コア部3
を上部クラッド層2Bで覆う(図7)。このように、本
発明の石英系光導波路はSiClやGeClなどの
原料ガスの火炎加水分解反応を利用した石英系ガラス膜
の堆積技術と反応性イオンエッチングとの組み合わせに
より作製される。この実施形態では、コア部3の厚さを
4.5μmと定め、コア部3とクラッド層2に用いられ
る石英系ガラスの比屈折率の差を1.5%となるように
設定した。
4 to 7 are views for explaining the manufacturing process of the directional coupler using the above silica optical waveguide.
That is, after the silicon substrate 1 is prepared (FIG. 4), the lower clad layer 2A made of silica glass and the core layer 3A are formed on the one main surface 1A of the silicon substrate 1 by the flame deposition method (FIG. 5). ), Only the portion that will later become the waveguide core portion 3 is left, and the remaining portion of the core layer 3A is selectively removed by reactive ion etching (FIG. 6). Finally, the upper clad layer 2B made of quartz glass is deposited on the lower clad layer 2A by the flame deposition method to form the core portion 3
Is covered with the upper clad layer 2B (FIG. 7). As described above, the silica-based optical waveguide of the present invention is manufactured by the combination of the technology for depositing the silica-based glass film utilizing the flame hydrolysis reaction of the raw material gas such as SiCl 4 or GeCl 4 and the reactive ion etching. In this embodiment, the thickness of the core portion 3 was set to 4.5 μm, and the difference in relative refractive index between the silica glass used for the core portion 3 and the cladding layer 2 was set to 1.5%.

【0037】図8は、光導波路幅、すなわちシリコン基
板1の主面1Aと平行な方向の幅(コア幅)を変化させ
て構成した方向性結合器について、TEモード及びTM
モードの光結合率を測定し、両光結合率の差を3dB結
合付近での偏光依存性と定義して、偏光依存性の光導波
路幅依存性を求めた結果である。
FIG. 8 shows a TE mode and TM for a directional coupler configured by changing the optical waveguide width, that is, the width (core width) in the direction parallel to the main surface 1A of the silicon substrate 1.
This is the result of measuring the optical coupling rate of modes and defining the difference between both optical coupling rates as the polarization dependency in the vicinity of 3 dB coupling, and determining the optical waveguide width dependency of the polarization dependency.

【0038】光導波路幅が狭くなり、コア断面形状が縦
長となるに従って偏光依存性は低下し、本実施例の場合
には、光導波路幅が約3.5μmの場合に信号光の偏光
状態に依存しない光結合率を有する方向性結合器が得ら
れた。即ち、本発明方向性結合器においては、コアの厚
さ4.5μmに対し、1.0:0.7のアスペクト比
(縦横比)の光導波路において、光結合率が信号光の偏
光状態に依存しない方向性結合器が実現できた。コア部
の機械的強度を確保する等の実用的な観点から、コア部
の断面形状のアスペクト比(縦横比)を1.0:0.4
〜1.0:0.8に定めることが好ましい。ここで、横
方向とは、シリコン基板1の主面1Aと平行な方向を意
味し、縦方向とは、この主面1Aと直交する、シリコン
基板1の厚さ方向を意味する。
The polarization dependence decreases as the width of the optical waveguide becomes narrower and the cross-sectional shape of the core becomes longer. In the case of the present embodiment, the polarization state of the signal light is changed when the width of the optical waveguide is about 3.5 μm. A directional coupler having an independent optical coupling rate was obtained. That is, in the directional coupler of the present invention, in the optical waveguide having the aspect ratio (aspect ratio) of 1.0: 0.7 with respect to the core thickness of 4.5 μm, the optical coupling rate becomes the polarization state of the signal light. An independent directional coupler can be realized. From the practical viewpoint of ensuring the mechanical strength of the core part, the aspect ratio (aspect ratio) of the cross-sectional shape of the core part is 1.0: 0.4.
It is preferable to set to 1.0: 0.8. Here, the horizontal direction means a direction parallel to the main surface 1A of the silicon substrate 1, and the vertical direction means a thickness direction of the silicon substrate 1 orthogonal to the main surface 1A.

【0039】図9は、偏光依存性の光導波路幅依存性を
理論的に解析した結果である。ここで、コア3の厚さを
一定にし、コア幅を変化させて3dB結合付近での結合
率偏光依存性を求めた。具体的には、近接して構成され
た2つの導波路コア3と3、及びこれら2つのコア3と
3との間のギャップにおける応力分布を有限要素法によ
って求め、それを元に屈折率分布を単純化して構成した
方向性結合器モデルを作成し、ビーム伝搬法によって結
合率の偏光依存性を計算した。
FIG. 9 is a result of theoretical analysis of the optical waveguide width dependence of the polarization dependence. Here, the thickness of the core 3 was kept constant and the core width was changed to obtain the polarization rate dependence of the coupling rate in the vicinity of 3 dB coupling. Specifically, the stress distribution in the two waveguide cores 3 and 3 arranged close to each other and the gap between the two cores 3 and 3 is obtained by the finite element method, and the refractive index distribution is calculated based on the stress distribution. A directional coupler model was constructed by simplifying the above, and the polarization dependence of the coupling rate was calculated by the beam propagation method.

【0040】図9によれば、導波路幅、すなわちコア幅
を狭くし、コア断面形状が縦長になるに従って、TM偏
光優勢からTE偏光優勢へと変化し光結合率の偏光依存
性が減少していることが確認された。
According to FIG. 9, as the waveguide width, that is, the core width is narrowed and the cross-sectional shape of the core becomes longer, the TM polarization dominance changes to the TE polarization dominance and the polarization dependence of the optical coupling rate decreases. Was confirmed.

【0041】図8に示した実験結果と図9に示した理論
計算結果とを比較すると、共に、偏光依存性は導波路幅
が狭くなるにつれて減少するという傾向が認められた。
図9に示した計算結果は、本発明方向性結合器の偏光依
存性に対する導波路幅の効果についての定性的な裏付け
となっている。なお、計算結果と測定結果との間には偏
光依存性の値に差異が認められるが、これは計算に用い
たモデルが非常に単純化されたものであることが原因で
ある。
Comparing the experimental results shown in FIG. 8 with the theoretical calculation results shown in FIG. 9, it was found that the polarization dependence tends to decrease as the waveguide width becomes narrower.
The calculation results shown in FIG. 9 qualitatively support the effect of the waveguide width on the polarization dependence of the directional coupler of the present invention. It should be noted that there is a difference in the polarization dependence value between the calculation result and the measurement result, but this is because the model used for the calculation is extremely simplified.

【0042】上述した実施形態においては、コアの厚さ
4.5μm、比屈折率差1.5%の光導波路を用いた方
向性結合器の例を示したが、本発明はこの例に限られる
ものではなく、これ以外のコアの厚さ及び比屈折率差の
光導波路においても、コア断面形状を縦長にすることに
よって同様の効果が得られることは確認済みである。
In the above embodiment, an example of a directional coupler using an optical waveguide having a core thickness of 4.5 μm and a relative refractive index difference of 1.5% is shown, but the present invention is not limited to this example. However, it has been confirmed that the same effect can be obtained by making the cross-sectional shape of the core vertically long even in optical waveguides having other core thicknesses and relative refractive index differences.

【0043】また、上述の実施形態では、光回路全体を
一定幅の光導波路により構成した光回路の例について説
明したが、光回路素子によっては光結合部21以外の光
導波路におけるコア部のアスペクト比が他の比、例えば
正方形或いは横長の構造としてもよいことは勿論であ
る。かかる場合には、本発明方向性結合器の部分の光導
波路の断面形状のみを縦長にし、光回路の残余の光導波
路の部分のコア部のアスペクト比を所望の値としてもよ
い。またその際には、光損失低減の観点からコア形状の
変換部分にテーパー形状の構造を有する光導波路を用い
るのが好ましい。
Further, in the above-mentioned embodiment, an example of the optical circuit in which the entire optical circuit is constituted by the optical waveguide having a constant width has been described. However, depending on the optical circuit element, the aspect of the core portion in the optical waveguide other than the optical coupling portion 21 is described. It goes without saying that the ratio may be another ratio, for example, a square structure or a horizontally long structure. In such a case, only the cross-sectional shape of the optical waveguide of the directional coupler of the present invention may be vertically elongated, and the aspect ratio of the core portion of the remaining optical waveguide of the optical circuit may be set to a desired value. In that case, from the viewpoint of reducing the optical loss, it is preferable to use an optical waveguide having a tapered structure in the core-shaped conversion portion.

【0044】以上では、平面光導波路を用い、かつ光導
波路としてシリコン基板上に形成した石英系ガラスの単
一モード光導波路によって実現した光回路について本発
明を説明してきたが、これは平面光導波路が集積性に優
れ、大規模回路化や作製費用の低コスト化に優れるため
であり、更には低損失で安定であり、かつ石英系光ファ
イバーとの整合性に優れているためである。しかしなが
ら、本発明はこれらの組み合わせにのみ限定されるもの
ではない。この場合には光結合率の偏光依存性が、クラ
ッドとコアの熱膨張率差に起因する複屈折性により生じ
る。本発明は、クラッドとコアの熱膨張率差に起因して
複屈折性を発現する他の材料の組み合わせの場合におい
ても、同様の効果を得ることができる。
The present invention has been described above with respect to an optical circuit that uses a planar optical waveguide and is realized by a single mode optical waveguide made of silica glass formed on a silicon substrate as an optical waveguide. Is excellent in integration property, is excellent in large-scale circuitization and cost reduction of manufacturing cost, is low in loss and stable, and is excellent in compatibility with the silica-based optical fiber. However, the invention is not limited to only these combinations. In this case, the polarization dependence of the optical coupling rate is caused by the birefringence resulting from the difference in the coefficient of thermal expansion between the cladding and the core. The present invention can obtain the same effect even in the case of a combination of other materials that exhibit birefringence due to the difference in thermal expansion coefficient between the clad and the core.

【0045】[0045]

【発明の効果】本発明によれば、2本の光導波路が互い
に近接して配置された方向性結合器において、これらの
光導波路のコア断面形状を縦長にすることにより、コア
における複屈折性を解消し、以って、光結合率の無偏光
依存化を実現できる。
According to the present invention, in a directional coupler in which two optical waveguides are arranged close to each other, by making the cross-sectional shape of the cores of these optical waveguides longitudinal, the birefringence of the cores can be improved. Therefore, the non-polarization dependence of the optical coupling rate can be realized.

【0046】本発明は、方向性結合器における光結合率
の偏光無依存化を要求する光回路を実用化する上できわ
めて有効である。
The present invention is extremely effective in putting into practical use an optical circuit which requires polarization independence of the optical coupling rate in a directional coupler.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施形態である方向性結合器を備えた
光回路の概略を説明する模式図である。
FIG. 1 is a schematic diagram illustrating an outline of an optical circuit including a directional coupler according to an embodiment of the present invention.

【図2】図1のA−A′線に沿う断面図である。FIG. 2 is a cross-sectional view taken along the line AA ′ of FIG.

【図3】図1のB−B′線に沿う断面図である。3 is a cross-sectional view taken along the line BB ′ of FIG.

【図4】本発明の光導波路の作製工程を示す模式的断面
図である。
FIG. 4 is a schematic cross-sectional view showing a manufacturing process of the optical waveguide of the present invention.

【図5】本発明の光導波路の作製工程を示す模式的断面
図である。
FIG. 5 is a schematic cross-sectional view showing a manufacturing process of the optical waveguide of the present invention.

【図6】本発明の光導波路の作製工程を示す模式的断面
図である。
FIG. 6 is a schematic cross-sectional view showing a manufacturing process of the optical waveguide of the present invention.

【図7】本発明の光導波路の作製工程を示す模式的断面
図である。
FIG. 7 is a schematic cross-sectional view showing a manufacturing process of the optical waveguide of the present invention.

【図8】本発明の光回路が備える方向性結合器の光結合
率の偏光依存性を説明するグラフである。
FIG. 8 is a graph illustrating the polarization dependence of the optical coupling rate of the directional coupler provided in the optical circuit of the present invention.

【図9】本発明の光回路が備える方向性結合器の光結合
率の偏光依存性を、単純化したモデルに基づいて解析し
た結果である。
FIG. 9 is a result of analyzing the polarization dependence of the optical coupling rate of the directional coupler included in the optical circuit of the present invention based on a simplified model.

【図10】従来の方向性結合器を備えた光回路の概略を
説明する模式図である。
FIG. 10 is a schematic diagram illustrating an outline of an optical circuit including a conventional directional coupler.

【図11】図10のA−A′線に沿う断面図である。11 is a cross-sectional view taken along the line AA ′ of FIG.

【図12】図10のB−B′線に沿う断面図である。12 is a cross-sectional view taken along the line BB ′ of FIG.

【図13】一般的な方形光導波路を有する方向性結合器
のモード結合定数を算出するための計算モデルの模式図
である。
FIG. 13 is a schematic diagram of a calculation model for calculating a mode coupling constant of a directional coupler having a general rectangular optical waveguide.

【符号の説明】[Explanation of symbols]

1 シリコン基板 1A シリコン基板の主面 2 クラッド層 2A 下部クラッド層 2B 上部クラッド層 3 コア部 3A 導波路コア層 11 入力導波路 12 入力導波路 13 出力導波路 14 出力導波路 15 方向性結合器部導波路 16 方向性結合器部導波路 21 方向性結合器 31 導波路 32 導波路 101 シリコン基板 102 クラッド層 103 コア部 111 入力導波路 112 入力導波路 113 出力導波路 114 出力導波路 115 方向性結合器部導波路 116 方向性結合器部導波路 121 方向性結合器 1 Silicon substrate 1A Silicon substrate main surface 2 Cladding layer 2A Lower clad layer 2B Upper clad layer 3 core part 3A Waveguide core layer 11 Input waveguide 12 Input waveguide 13 Output waveguide 14 Output waveguide 15 Directional coupler waveguide 16 Directional coupler waveguide 21 Directional coupler 31 Waveguide 32 Waveguide 101 Silicon substrate 102 clad layer 103 core 111 Input waveguide 112 Input waveguide 113 Output waveguide 114 output waveguide 115 Directional coupler waveguide 116 Directional coupler waveguide 121 Directional coupler

───────────────────────────────────────────────────── フロントページの続き (72)発明者 奥野 将之 東京都千代田区大手町二丁目3番1号 日 本電信電話株式会社内 Fターム(参考) 2H047 KA04 KA12 KB04 LA11 RA08 TA21    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Masayuki Okuno             2-3-1, Otemachi, Chiyoda-ku, Tokyo             Inside Telegraph and Telephone Corporation F term (reference) 2H047 KA04 KA12 KB04 LA11 RA08                       TA21

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 基板と、該基板上に互いに近接して配置
された2本の光導波路とを有する方向性結合器であっ
て、前記光導波路のコア部の断面形状を方形とし、該方
形のうち前記基板の主面と平行な辺の長さが残余の辺の
長さより短いことを特徴とする方向性結合器。
1. A directional coupler having a substrate and two optical waveguides arranged close to each other on the substrate, wherein the core portion of the optical waveguide has a rectangular cross-sectional shape. A directional coupler, wherein a length of a side parallel to the main surface of the substrate is shorter than a length of the remaining side.
【請求項2】 前記方形の縦横比が1.0:0.4〜
1.0:0.8であることを特徴とする請求項1に記載
の方向性結合器。
2. The aspect ratio of the square is 1.0: 0.4.
The directional coupler according to claim 1, wherein the directional coupler is 1.0: 0.8.
【請求項3】 前記光導波路がSiOを主成分とする
石英系ガラスであることを特徴とする請求項1又は2に
記載の方向性結合器。
3. The directional coupler according to claim 1, wherein the optical waveguide is a silica-based glass containing SiO 2 as a main component.
【請求項4】 前記基板がシリコン基板であることを特
徴とする請求項1〜3のいずれかに記載の方向性結合
器。
4. The directional coupler according to claim 1, wherein the substrate is a silicon substrate.
【請求項5】 前記光導波路は火炎堆積法と反応性エッ
チング法の組み合わせにより形成されたことを特徴とす
る請求項1〜4のいずれかに記載の方向性結合器。
5. The directional coupler according to claim 1, wherein the optical waveguide is formed by a combination of a flame deposition method and a reactive etching method.
【請求項6】 請求項1〜5のいずれかに記載の方向性
結合器を備えたことを特徴とする光回路。
6. An optical circuit comprising the directional coupler according to claim 1.
【請求項7】 前記方向性結合器を構成する光導波路以
外の光導波路のコア部の断面形状を方形とし、該方形の
うち前記基板の主面と平行な辺の長さが残余の辺の長さ
と等しいか、又は長いことを特徴とする請求項6に記載
の光回路。
7. A cross-sectional shape of a core portion of an optical waveguide other than the optical waveguide forming the directional coupler is a square, and a length of a side of the square parallel to the main surface of the substrate is a remaining side. The optical circuit according to claim 6, wherein the optical circuit is equal to or longer than the length.
JP2001221694A 2001-07-23 2001-07-23 Polarization-independent directional coupler and optical circuit using the same Expired - Fee Related JP4086485B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001221694A JP4086485B2 (en) 2001-07-23 2001-07-23 Polarization-independent directional coupler and optical circuit using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001221694A JP4086485B2 (en) 2001-07-23 2001-07-23 Polarization-independent directional coupler and optical circuit using the same

Publications (2)

Publication Number Publication Date
JP2003035832A true JP2003035832A (en) 2003-02-07
JP4086485B2 JP4086485B2 (en) 2008-05-14

Family

ID=19055327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001221694A Expired - Fee Related JP4086485B2 (en) 2001-07-23 2001-07-23 Polarization-independent directional coupler and optical circuit using the same

Country Status (1)

Country Link
JP (1) JP4086485B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007148290A (en) * 2005-11-30 2007-06-14 Hitachi Chem Co Ltd Directional optical coupler
JP2009211032A (en) * 2008-02-08 2009-09-17 Oki Electric Ind Co Ltd Optical multiplexing/demultiplexing device
JP2010134065A (en) * 2008-12-03 2010-06-17 Oki Electric Ind Co Ltd Optical element and mach-zehnder interferometer
JP2014066905A (en) * 2012-09-26 2014-04-17 Oki Electric Ind Co Ltd Optical waveguide element
JP2016024375A (en) * 2014-07-22 2016-02-08 沖電気工業株式会社 Directional coupler and design method of the same, optical waveguide element, and wavelength filter

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007148290A (en) * 2005-11-30 2007-06-14 Hitachi Chem Co Ltd Directional optical coupler
JP4636439B2 (en) * 2005-11-30 2011-02-23 日立化成工業株式会社 Calculation method of core width and distance between cores of two linear optical waveguides of directional optical coupler
JP2009211032A (en) * 2008-02-08 2009-09-17 Oki Electric Ind Co Ltd Optical multiplexing/demultiplexing device
JP2010134065A (en) * 2008-12-03 2010-06-17 Oki Electric Ind Co Ltd Optical element and mach-zehnder interferometer
JP2014066905A (en) * 2012-09-26 2014-04-17 Oki Electric Ind Co Ltd Optical waveguide element
JP2016024375A (en) * 2014-07-22 2016-02-08 沖電気工業株式会社 Directional coupler and design method of the same, optical waveguide element, and wavelength filter

Also Published As

Publication number Publication date
JP4086485B2 (en) 2008-05-14

Similar Documents

Publication Publication Date Title
Kawachi Silica waveguides on silicon and their application to integrated-optic components
Dai et al. Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction
EP1226461B1 (en) Phasar with flattened pass-band
JP3784720B2 (en) Waveguide type optical interferometer
US6580862B2 (en) Optical waveguide circuit
JP5263045B2 (en) Polarization-independent optical device
JP6032346B2 (en) Polarization separator and optical device
EP0304709A2 (en) Waveguide type optical device
Fang et al. Folded silicon-photonics arrayed waveguide grating integrated with loop-mirror reflectors
US6731828B2 (en) Waveguide-type optical signal processing circuit
WO2000011508A1 (en) Array waveguide diffraction grating optical multiplexer/demultiplexer
JPWO2006075702A1 (en) Waveguide-type variable optical attenuator
US7292752B2 (en) Tuneable grating assisted directional optical coupler
CN102253448A (en) Method for realizing uniform polarization compensation of array waveguide grating
JP2000171661A (en) Array waveguide diffraction grating type optical multiplexer/demultiplexer
WO2016051698A1 (en) Rib type optical waveguide and optical multiplexer/demultiplexer using same
JP4086485B2 (en) Polarization-independent directional coupler and optical circuit using the same
JP4405976B2 (en) Optical signal processor
JP3679036B2 (en) Waveguide type optical circuit
JP2003207665A (en) Optical waveguide
Sakamaki et al. Low-loss Y-branch waveguides designed by wavefront matching method
JPH07230014A (en) Optical integrated device for proximity junction between two waveguides
Murakami et al. Optical directional coupler using deposited silica waveguides (DS guides)
WO2002052315A1 (en) Coupled waveguide systems
JP3423297B2 (en) Optical waveguide, method of manufacturing the same, and optical waveguide circuit

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060207

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060524

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060605

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20060630

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060731

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080219

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4086485

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees