[go: up one dir, main page]

JP2002512626A - Method for producing carbamates - Google Patents

Method for producing carbamates

Info

Publication number
JP2002512626A
JP2002512626A JP50138299A JP50138299A JP2002512626A JP 2002512626 A JP2002512626 A JP 2002512626A JP 50138299 A JP50138299 A JP 50138299A JP 50138299 A JP50138299 A JP 50138299A JP 2002512626 A JP2002512626 A JP 2002512626A
Authority
JP
Japan
Prior art keywords
catalyst
reaction
zinc
carbonate
tio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP50138299A
Other languages
Japanese (ja)
Inventor
スミス,リチャード・コリン
Original Assignee
ハンツマン・アイシーアイ・ケミカルズ・エルエルシー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ハンツマン・アイシーアイ・ケミカルズ・エルエルシー filed Critical ハンツマン・アイシーアイ・ケミカルズ・エルエルシー
Publication of JP2002512626A publication Critical patent/JP2002512626A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C269/00Preparation of derivatives of carbamic acid, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C269/04Preparation of derivatives of carbamic acid, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups from amines with formation of carbamate groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/04Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing carboxylic acids or their salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

(57)【要約】 不活性担体上の金属ベース触媒の存在下、芳香族アミン類と有機カーボネートとの反応によるカルバメート類の製造方法。   (57) [Summary] A method for producing carbamates by reacting an aromatic amine with an organic carbonate in the presence of a metal-based catalyst on an inert support.

Description

【発明の詳細な説明】 カルバメート類の製造方法 本発明は、不活性担体上の触媒を使用して芳香族アミン類と有機カーボネート 類との反応によりカルバメート類を製造する方法に関する。 カルバメート類を得るためにアミン類と有機カーボネート類とを反応させるこ とは公知である。 米国特許出願第5.347.034号は、形成したポリ(o-アルキルウレタン類)が冷却 時に非常に高い純度形で晶出するような、触媒の存在下で対応するアミン類とジ アルキルカーボネート類とを反応させることによる、ジフェニルメタン系のポリ (o-アルキルウレタン類)の製造方法を開示する。 欧州特許出願第391.473号は、カルバメートとウレアとの混合物を製造するた めにカルバメート化触媒の存在下でアミンと(シクロ)アルキルカーボネートとを 最初に反応させ、対応するカルバメートを製造するためにウレアとカーボネート とをさらに反応させ、最終的に反応混合物からカルバメートを回収することによ る、少量の触媒を使用してカルバメートを製造する方法について記載する。 DE-A第3.202.690号には、アルカリ金属またはアルカリ土類金属のアルコラー トの存在下で芳香族アミン類とアルキルカーボネート類とを反応させることによ る、芳香族ウレタン類の製造法が記載されている。 米国特許出願第4.268.684号は、少なくとも200℃の温度でしか活性でない特定 の亜鉛、錫またはコバルト塩の存在下で有機カーボネートと芳香族アミンとを反 応させることによるカルバメート類の製造法を開示するが、米国特許出願第4.26 8.683号では、室温条件で反応混合物に溶解性の亜鉛または錫塩を使用している 。 欧州特許出願第48.371号は、中性または塩基性の無機または有機鉛、チタン、 亜鉛またはジルコニウム化合物の存在下、第1級アミン類とジアルキルカーボネ ート類とを反応させることによる、N,O-二置換ウレタン類の製造について開示す る。 日本特許出願第07.328.435号では、液相中でジエステルカーボネートと脂肪族 アミンからカルバメート類を製造するためにZr及びSiを含有するオキシド組成物 を含む触媒を使用する。 芳香族アミン類と有機カーボネート類との反応によりカルバメート類を製造す る改良法を知見した。 かくして、本発明は、不活性担体(carrier support)上の金属ベースの触媒の 存在下、芳香族アミン類と有機カーボネート類との反応によるカルバメート類の 製造方法に関する。 本方法によって触媒を容易に回収することができるため、本工程を経済的にも 環境的にも改善することができる。 さらに別の態様では、本発明は、不活性担体上の有機金属塩を含む触媒に関す る。 かかる触媒により、有機カーボネートとの反応により芳香族アミン類をカルバ メート類に転換させる加工性が改善された。 本方法で使用することができる芳香族アミン化合物としては、モノ−、ジ−ま たはポリアミン類が挙げられる。 本発明の方法で好適なアミン類としては、例えば、フェニルアミン、4-クロロ フェニルアミン、2-フルオロフェニルアミン、3,4-ジクロロフェニルアミン、ア ニリン、トリルアミン、ジイソプロピルフェニルアミン、2,4'-ジアミノジフェ ニルメタン、4,4'-ジアミノジフェニルメタン、2,2'-ジアミノジフェニルメタン 及び高級同族体(ポリアミノポリフェニルメタン類)、2,4-トルエンジアミン、2, 6-トルエンジアミン、m-フェニレンジアミン、1,5-ナフチレンジアミン及びその 混合物が挙げられる。 トルエンジアミン類、ジアミノジフェニルメタン類若しくはポリアミノポリフ ェニルメタン類またはその任意の混合物などの芳香族ジ-またはポリアミン類が 好ましい。 好適な有機カーボネート類としては、環式または非環式カーボネート類、例え ば、エチレンカーボネート、プロピレンカーボネート、スチレンカーボネート、 ジフェニルカーボネート、メチルフェニルカーボネート、ジメチルカーボネート 、ジエチルカーボネート、ジプロピルカーボネート、ジブチルカーボネート、ジ ヘキシルカーボネート、メチルエチルカーボネート、メチルブチルカーボネート な どが挙げられる。 使用し得る有機または無機塩としては、例えば、酢酸塩、塩化物、硝酸塩、ス ルホン酸塩、プロピオン酸塩、イソプロパン酸塩(isopropanoate)、ブタン酸塩( butanoate)、2-エチルヘキサン酸塩、n-オクタン酸塩、イソノナン酸塩(isonona noate)、安息香酸塩、クロロ安息香酸塩、ナフテン酸塩、ステアリン酸塩、イタ コン酸塩、ピバリン酸塩、フェノラート、アセチルアセトナト、アルコキシド、 C16/C18-アルケニルスクシノエート(ASA)、C12-アルケニルスクシノエート(DSA) などが挙げられる。 炭素原子1〜15個を有するアルカノエート類が好ましい。 好適な触媒としては、例えば、亜鉛触媒、例えば、塩化亜鉛、酢酸亜鉛、プロ ピオン酸亜鉛、オクタン酸亜鉛、安息香酸亜鉛、p-クロロ安息香酸亜鉛、ナフテ ン酸亜鉛、ステアリン酸亜鉛、イタコン酸亜鉛、ピバリン酸亜鉛、亜鉛フェノラ ート、亜鉛アセチルアセトナト、亜鉛メトキシド、酢酸鉛及びオクタン酸鉛など の鉛触媒、及び塩化第1錫、オクタン酸錫などの錫触媒並びにその混合物が挙げ られる。 触媒中の金属は、Ti、Zr、Zn、Sn及びPbからなる群から選択されるのが好まし い。 担体上の不均質金属ベースの触媒は、担体に触媒を含浸させることにより、ま たは担体上に触媒を沈澱させることにより製造することができる。 好適な不活性担体としては、例えば、金属の酸化物、例えば、アルミナ、シリ カ、TiO2、MgOなど、クレー、ゼオライト、ポリマー担体、樹脂、グラファイト 及びカーボンが挙げられる。担体がTiO2、アルミナまたはシリカを含むのが好ま しい。 担持触媒は通常、使用するアミン量をベースとして10-3〜20mol%の量で使用 する。 ポリアミン類及び有機カーボネート類は、化学量論量で反応させることができ る。しかしながら、過剰量の有機カーボネート類を使用するのが好ましい。 反応条件は、使用する反応体のタイプに大きく依存する。 本方法は、大気圧または過圧で実施することができる。圧力は、20bar以下が 好ましい。 反応時間は、温度並びにカルバメート化合物のタイプ及び量に依存するが、通 常0.5〜6時間である。3時間未満の反応時間が一般的であるが、2.5時間未満の 反応時間で何の問題もなく実施できた。 一般的に、反応温度は50〜300℃である。本発明の方法は100〜250℃の温度で 実施するのが好ましい。 溶媒は必要ではないが、反応に悪影響を与えなければ添加することもできる。 反応条件下で反応体に対して不活性である任意の溶媒または溶媒の混合物を使 用することができる。 使用し得る好適な溶媒としては、芳香族炭化水素類、例えば、ベンゼン;ハロ ゲン化芳香族炭化水素類、例えば、モノクロロベンゼン、オルト-ジクロロベン ゼン、トリクロロベンゼン若しくは1-クロロナフタレン;アルキル化芳香族炭化 水素類、例えば、トルエン、キシレン、エチルベンゼン、クメン若しくはテトラ ヒドロナフタレン;他の官能基化芳香族炭化水素類、例えば、アニソール、ジフ ェニルエーテル、エトキシベンゼン、ベンゾニトリル、2-フルオロアニソール、 2,3-ジメチルアニソール若しくはトリフルオロトルエン;アルカン類、例えば、 n-ペンタン、n-ヘキサン、n-ヘプタンまたは高級若しくは分岐アルカン類;環式 アルカン類、例えば、シクロペンタン、シクロヘキサン若しくはその誘導体;ハ ロゲン化アルカン類、例えば、クロロホルム、ジクロロメタン、四塩化炭素;及 び他の官能基を持つアルカン類、例えば、ジエチルエーテル、アセトニトリル、 ジオキサン;またはその混合物などが挙げられる。これらのうち、不活性芳香族 溶媒が好ましい。 本方法は、必要により、撹拌手段及び所望の範囲の温度に保持するための加熱 及び/または冷却手段を備えることができる任意の装置で実施することができる 。 本発明の方法はバッチ式または半-連続法若しくは連続法で実施することがで きる。 連続操作の一つの型は、1種以上の反応体中のスラリーとして反応器内に触媒 を導入する流動床反応器で行う。連続的に実施する別の方法は、触媒床及び反応 体が互いに並流または向流的に通過する移動床反応器で実施する。しかしながら 、好ましい型の連続法は、反応体が触媒床上を通過する固定床反応器におけるも の である。 反応中、アルコール類が副生成物として形成する。例えば、蒸留などにより反 応中に連続的にまたは反応完了後に反応混合物からこれらを除去することができ る。 本発明の以下の実施例により説明するが、本発明を限定するものではない。 実施例実施例1 アセトン100ml中のTiO2 2gの懸濁液に、オクタン酸亜鉛0.308g(鉱物テレビン 油(terpentine oil)中、Zn 6wt%)を添加し、混合物をArガスで5分間パージし た。水の入った超音波浴(周波数:20MHz)中にフラスコを室温で1時間入れた。 超音波にかけた後、溶媒を減圧下で除去し、最終的に固体を70℃で1時間減圧下 で乾燥した。このようにして得た固体をカルバメート類の製造にそのまま使用し た。単離収量:2.2g。 100mlスチールオートクレーブに、4,4'-ジアミノジフェニルメタン2.0g(10mmo l)、ジメチルカーボネート42.7g(0.47mol)及びTiO2担持オクタン酸亜鉛0.18g(Ti O2上に担持した2-エチルヘキサン酸の亜鉛塩20重量%)を添加した。混合物を窒 素パージした。次いで反応混合物を180℃で2時間加熱した。 反応完了後、オートクレーブを室温に冷却し、粗な生成物を蒸発乾涸し、ジク ロロメタン中に再溶解し、最終的に濾過して触媒を分離した。このようにして得 られた濾液を減圧下で蒸発乾涸させると結晶質固体が得られた。アミン転換率は 出発物質をベースとして100%であった。ウレタン選択性は定量HPLCをベースと して96.3%であった。実施例2 100mlスチールオートクレーブに、4,4'-ジアミノジフェニルメタン2.0g(10mmo l)、ジメチルカーボネート25.5g(0.28mol)、トルエン16ml及びTiO2担持オクタン 酸亜鉛0.18g(TiO2上に担持した2-エチルヘキサン酸の亜鉛塩20重量%)を添加し た。混合物を窒素パージした。次いで反応混合物を180℃で2時間加熱した。 反応完了後、オートクレーブを室温に冷却し、粗な生成物を蒸発乾涸し、ジク ロロメタン中に再溶解し、最終的に濾過して触媒を分離した。このようにして得 られた濾液を減圧下で蒸発乾涸させると結晶質固体が得られた。アミン転換率は 出発物質をベースとして100%であった。ウレタン選択性は定量HPLCをベースと して98%であった。実施例3 100mlスチールオートクレーブに、ポリメリックジアミノジフェニルメタン2.0 g(8mmol)、ジメチルカーボネート42.7g(0.47mol)及びTiO2担持オクタン酸亜鉛0. 18g(0.1mmol活性触媒)(TiO2上に担持した2-エチルヘキサン酸の亜鉛塩20重量%) を添加した。混合物を窒素パージした。次いで反応混合物を180℃で2時間加熱 した。 反応完了後、オートクレーブを室温に冷却し、触媒を濾別した。このようにし て得られた濾液を減圧下で蒸発乾涸させると固体が生成した。アミン転換率は出 発物質をベースとして>98%であった。ウレタン選択性はIR及び13C NMRをベー スとして89〜92%であった。実施例4 2,4-ジアミノトルエン1.22g(10mmol)、ジメチルカーボネート42.7g(0.47mol) 及びTiO2担持オクタン酸亜鉛0.18g(0.1mmol活性触媒)(TiO2上に担持した2-エチ ルヘキサン酸の亜鉛塩20重量%)を100mlオートクレーブに装填し、窒素パージし た。次いで反応混合物を180℃で2時間加熱した。 反応完了後、オートクレーブを室温に冷却し、等量のジクロロメタンを添加し て一部沈澱した2,4-ビス(メトキシカルボニルアミノ)トルエンを溶解させた。次 いで混合物を濾別して触媒を分離した。このようにして得られた濾液を減圧下で 蒸発乾涸させると結晶質の黄色固体の2,4-ビス(メトキシカルボニルアミノ)トル エンが得られた。アミン転換率及びウレタン選択性は、定量HPLC法によりそれぞ れ、100%及び92%であった。実施例5 Al2O3 2gのアセトン40ml中の懸濁液に、オクタン酸亜鉛1.2g(鉱物テレビン油 中、Zn 6重量%)を添加し、混合物をArガスで5分間パージした。フラスコを 水の入った超音波浴(周波数:20MHz)に室温で1時間入れた。超音波をかけた後 、溶媒を減圧下で除去し、最終的に70℃で1時間、減圧下で固体を乾燥した。こ のようにして得られた固体をカルバメート類の製造にそのまま使用した。単離収 量:2.8g。 100mlスチールオートクレーブに、ポリメリックジアミノジフェニルメタン20g (10mol)、ジメチルカーボネート42.7g(0.47mol)及びAl2O3担持オクタン酸亜鉛0. 212g(0.12mmol活性触媒)(Al2O3上に担持した2-エチルヘキサン酸の亜鉛塩20重量 %)を添加した。混合物を窒素パージした。次いで反応混合物を180℃で2時間加 熱した。 反応完了後、オートクレーブを室温に冷却し、粗な生成物を蒸発乾涸し、ジク ロロメタン中に再溶解し、最終的に濾過して触媒を分離した。このようにして得 られた濾液を減圧下で蒸発乾涸させると結晶質固体が得られた。アミン転換率は 出発物質をベースとして100%であった。ウレタン選択性はHPLCをベースとして9 1%であった。実施例6 100mlスチールオートクレーブに、ポリメリックジアミノジフェニルメタン2.0 g(8mmol)、ジメチルカーボネート42.7g(0.47mol)及びAl2O3担持オクタン酸亜鉛0 .212g(0.12mmol活性触媒)(Al2O3上に担持した2-エチルヘキサン酸の亜鉛塩20重 量%)を添加した。混合物を窒素パージした。次いで反応混合物を180℃で2時間 加熱した。 反応完了後、オートクレーブを室温に冷却し、粗な生成物を濾過して触媒を分 離した。このようにして得られた濾液を減圧下で蒸発乾涸させると結晶質固体が 得られた。アミン転換率は出発物質をベースとして98%であった。ウレタン選択 性はIR及び13C NMRをベースとして84〜92%であった。実施例7 シリカ2g(カラムクロマトグラフィー用のシリカゲル、200-300メッシュ)のア セトン40ml中の懸濁液に、オクタン酸亜鉛1.2g(鉱物テレビン油中、Zn 6重量 %)を添加し、混合物をArガスで5分間パージした。水を入れた超音波浴(周波数 :20MHz)にフラスコを室温で1時間入れた。超音波にかけた後、溶媒を減圧下で 除去し、固体を最終的に70℃で1時間減圧下で乾燥した。このようにして得られ た固体をカルバメート類の製造にそのまま使用した。単離収量:2.4g。 100mlスチールオートクレーブに、4,4'-ジアミノジフェニルメタン2.0g(10mmo l)、ジメチルカーボネート42.8g(0.47mol)及びシリカ担持オクタン酸亜鉛0.216g (シリカゲル上に担持した2-エチルヘキサン酸の亜鉛塩20重量%)を添加した。混 合物を5〜10分、窒素パージした。次いで反応混合物を180℃で2時間加熱した 。 反応完了後、オートクレーブを室温に冷却し、粗な生成物を蒸発乾涸し、ジク ロロメタン中に再溶解し、最終的に濾過して触媒を分離した。このようにして得 られた濾液を減圧下で蒸発乾涸させると結晶質固体が得られた。アミン転換率は 出発物質をベースとして100%であった。ウレタン選択性は定量HPLCをベースと して81.8%であった。実施例8 100mlスチールオートクレーブに、ポリメリックジアミノジフェニルメタン2.0 g(8mmol)、ジメチルカーボネート42.7g(0.47mol)及び酸性シリカ担持オクタン酸 亜鉛0.216g(0.12mmol活性触媒)(シリカゲル上に担持した2-エチルヘキサン酸の 亜鉛塩20重量%)を添加した。混合物を窒素パージした。次いで反応混合物を180 ℃で2時間加熱した。 反応完了後、オートクレーブを室温に冷却し、粗な生成物を濾過して触媒を分 離した。このようにして得られた濾液を減圧下で蒸発乾涸させると結晶質固体が 得られた。アミン転換率は出発物質をベースとして97%であった。ウレタン選択 性はIR及び13C NMRをベースとして81〜83%であった。The present invention relates to a method for producing carbamates by reacting aromatic amines with organic carbonates using a catalyst on an inert carrier. It is known to react amines with organic carbonates to obtain carbamates. U.S. Patent Application No.5.347.034 discloses the reaction of the corresponding amines and dialkyl carbonates in the presence of a catalyst such that the formed poly (o-alkyl urethanes) crystallize in a very high purity form upon cooling. A method for producing a diphenylmethane-based poly (o-alkyl urethane) by reacting the same is disclosed. EP 391.473 discloses that an amine is first reacted with a (cyclo) alkyl carbonate in the presence of a carbamate catalyst to produce a mixture of carbamate and urea, and urea is produced to produce the corresponding carbamate. A method for producing carbamate using a small amount of catalyst by further reacting with carbonate and finally recovering the carbamate from the reaction mixture is described. DE-A 3.202.690 describes a process for producing aromatic urethanes by reacting aromatic amines and alkyl carbonates in the presence of an alkali metal or alkaline earth metal alcoholate. I have. U.S. Patent Application No. 4.268.684 discloses a process for preparing carbamates by reacting an organic carbonate with an aromatic amine in the presence of certain zinc, tin or cobalt salts that are only active at a temperature of at least 200 ° C. However, U.S. Patent Application No. 4.26 8.683 uses a zinc or tin salt that is soluble in the reaction mixture at room temperature conditions. European Patent Application No. 48.371 describes an N, O-diamine by reacting primary amines with dialkyl carbonates in the presence of neutral or basic inorganic or organic lead, titanium, zinc or zirconium compounds. The production of substituted urethanes is disclosed. Japanese Patent Application No. 07.328.435 uses a catalyst containing an oxide composition containing Zr and Si to produce carbamates from diester carbonates and aliphatic amines in a liquid phase. An improved method for producing carbamates by reacting aromatic amines with organic carbonates was discovered. Thus, the present invention relates to a process for producing carbamates by reacting aromatic amines with organic carbonates in the presence of a metal-based catalyst on an inert carrier support. Since the catalyst can be easily recovered by the present method, this step can be economically and environmentally improved. In yet another aspect, the invention relates to a catalyst comprising an organometallic salt on an inert support. Such catalysts have improved processability of converting aromatic amines to carbamates by reaction with organic carbonates. Aromatic amine compounds that can be used in the present method include mono-, di- or polyamines. Suitable amines in the method of the present invention include, for example, phenylamine, 4-chlorophenylamine, 2-fluorophenylamine, 3,4-dichlorophenylamine, aniline, tolylamine, diisopropylphenylamine, 2,4′-diaminodiphenylmethane 4,4'-diaminodiphenylmethane, 2,2'-diaminodiphenylmethane and higher homologs (polyaminopolyphenylmethanes), 2,4-toluenediamine, 2,6-toluenediamine, m-phenylenediamine, 1,5 -Naphthylenediamine and mixtures thereof. Aromatic di- or polyamines such as toluenediamines, diaminodiphenylmethanes or polyaminopolyphenylmethanes or any mixtures thereof are preferred. Suitable organic carbonates include cyclic or acyclic carbonates such as ethylene carbonate, propylene carbonate, styrene carbonate, diphenyl carbonate, methylphenyl carbonate, dimethyl carbonate, diethyl carbonate, dipropyl carbonate, dibutyl carbonate, dihexyl carbonate. , Methyl ethyl carbonate, methyl butyl carbonate and the like. Organic or inorganic salts that can be used include, for example, acetate, chloride, nitrate, sulfonate, propionate, isopropanoate, butanoate, butanoate, 2-ethylhexanoate, n- octoate, isononanoic acid salt (isonona noate), benzoate, chlorobenzoate, naphthenate, stearate, itaconate, pivalate, phenolates, acetylacetonate, alkoxide, C 16 / C 18 -alkenyl succinoate (ASA), C 12 -alkenyl succinoate (DSA) and the like. Alkanoates having 1 to 15 carbon atoms are preferred. Suitable catalysts include, for example, zinc catalysts such as zinc chloride, zinc acetate, zinc propionate, zinc octoate, zinc benzoate, zinc p-chlorobenzoate, zinc naphthenate, zinc stearate, zinc itaconate, Examples include lead catalysts such as zinc pivalate, zinc phenolate, zinc acetylacetonate, zinc methoxide, lead acetate and lead octoate, and tin catalysts such as stannous chloride, tin octoate and mixtures thereof. The metal in the catalyst is preferably selected from the group consisting of Ti, Zr, Zn, Sn and Pb. Heterogeneous metal-based catalysts on supports can be prepared by impregnating the support with the catalyst or by precipitating the catalyst on the support. Suitable inert carrier such as oxides, e.g., alumina, silica, etc. TiO 2, MgO, clay, zeolite, polymeric support, resins, graphite and carbon. Carrier preferably comprises TiO 2, alumina or silica. The supported catalyst is usually used in an amount of 10 -3 to 20 mol% based on the amount of amine used. The polyamines and organic carbonates can be reacted in stoichiometric amounts. However, it is preferred to use an excess of organic carbonates. Reaction conditions are highly dependent on the type of reactants used. The method can be performed at atmospheric pressure or overpressure. The pressure is preferably at most 20 bar. The reaction time depends on the temperature and the type and amount of the carbamate compound, but is usually 0.5 to 6 hours. Reaction times of less than 3 hours are common, but reaction times of less than 2.5 hours performed without any problems. Generally, the reaction temperature is between 50 and 300C. The process according to the invention is preferably carried out at a temperature between 100 and 250 ° C. A solvent is not required, but can be added if it does not adversely affect the reaction. Any solvent or mixture of solvents that is inert to the reactants under the reaction conditions can be used. Suitable solvents that can be used include aromatic hydrocarbons, such as benzene; halogenated aromatic hydrocarbons, such as monochlorobenzene, ortho-dichlorobenzene, trichlorobenzene or 1-chloronaphthalene; alkylated aromatic hydrocarbons Hydrogens such as toluene, xylene, ethylbenzene, cumene or tetrahydronaphthalene; other functionalized aromatic hydrocarbons such as anisole, diphenylether, ethoxybenzene, benzonitrile, 2-fluoroanisole, 2,3-dimethylanisole Or trifluorotoluene; alkanes such as n-pentane, n-hexane, n-heptane or higher or branched alkanes; cyclic alkanes such as cyclopentane, cyclohexane or derivatives thereof; halogenated alkanes such as , Chloroform, dichloromethane, carbon tetrachloride; alkanes having and other functional groups, for example, diethyl ether, acetonitrile, dioxane or the like mixtures thereof. Of these, inert aromatic solvents are preferred. The method can be carried out, if necessary, on any device which can be equipped with stirring means and heating and / or cooling means for maintaining the temperature in the desired range. The process according to the invention can be carried out batchwise or in a semi-continuous or continuous manner. One type of continuous operation is performed in a fluidized bed reactor in which the catalyst is introduced into the reactor as a slurry in one or more reactants. Another method which is carried out continuously is carried out in a moving bed reactor in which the catalyst bed and the reactants pass cocurrently or countercurrently to one another. However, a preferred type of continuous process is in a fixed bed reactor where the reactants pass over a catalyst bed. During the reaction, alcohols are formed as by-products. For example, they can be removed from the reaction mixture continuously during the reaction or after completion of the reaction, such as by distillation. The present invention will be described by the following examples, which do not limit the present invention. EXAMPLES Example 1 To a suspension of 2 g of TiO 2 in 100 ml of acetone was added 0.308 g of zinc octoate (6 wt% of Zn in mineral terpentine oil) and the mixture was purged with Ar gas for 5 minutes. The flask was placed in an ultrasonic bath (frequency: 20 MHz) containing water at room temperature for 1 hour. After sonication, the solvent was removed under reduced pressure and the solid was finally dried under reduced pressure at 70 ° C. for 1 hour. The solid thus obtained was used as such for the production of carbamates. Isolated yield: 2.2 g. To 100ml steel autoclave, 4,4'-diaminodiphenylmethane 2.0 g (10 mmol l), dimethyl carbonate 42.7 g (0.47 mol) and the TiO 2 supported zinc octoate 0.18 g (Ti O 2 was supported on 2-ethylhexanoic acid Zinc salt (20% by weight) was added. The mixture was purged with nitrogen. The reaction mixture was then heated at 180 C for 2 hours. After the reaction was completed, the autoclave was cooled to room temperature, the crude product was evaporated to dryness, redissolved in dichloromethane and finally filtered to separate the catalyst. The filtrate thus obtained was evaporated to dryness under reduced pressure to give a crystalline solid. The amine conversion was 100% based on the starting material. Urethane selectivity was 96.3% based on quantitative HPLC. Example 2 100 ml steel autoclave, 4,4'-diaminodiphenylmethane 2.0 g (10 mmol l), dimethyl carbonate 25.5 g (0.28 mol), was carried on toluene 16ml and TiO 2 supported zinc octoate 0.18 g (TiO 2 2 -Zinc salt of ethylhexanoic acid (20% by weight). The mixture was purged with nitrogen. The reaction mixture was then heated at 180 C for 2 hours. After the reaction was completed, the autoclave was cooled to room temperature, the crude product was evaporated to dryness, redissolved in dichloromethane and finally filtered to separate the catalyst. The filtrate thus obtained was evaporated to dryness under reduced pressure to give a crystalline solid. The amine conversion was 100% based on the starting material. Urethane selectivity was 98% based on quantitative HPLC. Example 3 100 ml steel autoclave, polymeric diaminodiphenylmethane 2.0 g (8 mmol), dimethyl carbonate 42.7 g (0.47 mol) and TiO 2 supported zinc octoate 0. 18 g (0.1 mmol active catalyst) (was supported on TiO 2 2- (A zinc salt of ethylhexanoic acid 20% by weight) was added. The mixture was purged with nitrogen. The reaction mixture was then heated at 180 C for 2 hours. After completion of the reaction, the autoclave was cooled to room temperature, and the catalyst was separated by filtration. The filtrate thus obtained was evaporated to dryness under reduced pressure to produce a solid. Amine conversion was> 98% based on starting material. Urethane selectivity was 89-92% based on IR and 13 C NMR. Example 4 1.22 g (10 mmol) of 2,4-diaminotoluene, 42.7 g (0.47 mol) of dimethyl carbonate and 0.18 g of zinc octoate supported on TiO 2 (0.1 mmol active catalyst) (2-ethylhexanoic acid supported on TiO 2 Was charged to a 100 ml autoclave and purged with nitrogen. The reaction mixture was then heated at 180 C for 2 hours. After completion of the reaction, the autoclave was cooled to room temperature, and an equal volume of dichloromethane was added to dissolve 2,4-bis (methoxycarbonylamino) toluene partially precipitated. Then the mixture was filtered off to separate the catalyst. The filtrate thus obtained was evaporated to dryness under reduced pressure to give crystalline yellow solid 2,4-bis (methoxycarbonylamino) toluene. Amine conversion and urethane selectivity were 100% and 92%, respectively, by quantitative HPLC. Example 5 To a suspension of 2 g of Al 2 O 3 in 40 ml of acetone was added 1.2 g of zinc octoate (6% by weight of Zn in mineral turpentine oil) and the mixture was purged with Ar gas for 5 minutes. The flask was placed in an ultrasonic bath (frequency: 20 MHz) containing water at room temperature for 1 hour. After sonication, the solvent was removed under reduced pressure and the solid was finally dried under reduced pressure at 70 ° C. for 1 hour. The solid thus obtained was used as such for the production of carbamates. Isolated yield: 2.8g. To 100ml steel autoclave, polymeric diaminodiphenylmethane 20 g (10 mol), dimethyl carbonate 42.7 g (0.47 mol) and Al 2 O 3 supported zinc octoate 0. 212g (0.12 mmol active catalyst) (was supported on Al 2 O 3 2- Ethylhexanoic acid zinc salt (20% by weight) was added. The mixture was purged with nitrogen. The reaction mixture was then heated at 180 C for 2 hours. After the reaction was completed, the autoclave was cooled to room temperature, the crude product was evaporated to dryness, redissolved in dichloromethane and finally filtered to separate the catalyst. The filtrate thus obtained was evaporated to dryness under reduced pressure to give a crystalline solid. The amine conversion was 100% based on the starting material. Urethane selectivity was 91% based on HPLC. Example 6 In a 100 ml steel autoclave, 2.0 g (8 mmol) of polymeric diaminodiphenylmethane, 42.7 g (0.47 mol) of dimethyl carbonate and 0.212 g of zinc octoate on Al 2 O 3 (0.12 mmol active catalyst) (on Al 2 O 3 ) The supported zinc salt of 2-ethylhexanoic acid (20% by weight) was added. The mixture was purged with nitrogen. The reaction mixture was then heated at 180 C for 2 hours. After the reaction was completed, the autoclave was cooled to room temperature, and the crude product was filtered to separate the catalyst. The filtrate thus obtained was evaporated to dryness under reduced pressure to give a crystalline solid. The amine conversion was 98% based on the starting material. Urethane selectivity was 84-92% based on IR and 13 C NMR. Example 7 To a suspension of 2 g of silica (silica gel for column chromatography, 200-300 mesh) in 40 ml of acetone, 1.2 g of zinc octoate (6% by weight of Zn in mineral turpentine oil) were added and the mixture was treated with Ar. Purge with gas for 5 minutes. The flask was placed in an ultrasonic bath (frequency: 20 MHz) containing water at room temperature for 1 hour. After sonication, the solvent was removed under reduced pressure and the solid was finally dried under reduced pressure at 70 ° C. for 1 hour. The solid thus obtained was used as such for the production of carbamates. Isolated yield: 2.4g. In a 100 ml steel autoclave, 4,4′-diaminodiphenylmethane 2.0 g (10 mmol), dimethyl carbonate 42.8 g (0.47 mol) and silica-supported zinc octanoate 0.216 g (2-ethylhexanoic acid zinc salt supported on silica gel 20 Wt%) was added. The mixture was purged with nitrogen for 5-10 minutes. The reaction mixture was then heated at 180 C for 2 hours. After the reaction was completed, the autoclave was cooled to room temperature, the crude product was evaporated to dryness, redissolved in dichloromethane and finally filtered to separate the catalyst. The filtrate thus obtained was evaporated to dryness under reduced pressure to give a crystalline solid. The amine conversion was 100% based on the starting material. Urethane selectivity was 81.8% based on quantitative HPLC. Example 8 In a 100 ml steel autoclave, 2.0 g (8 mmol) of polymeric diaminodiphenylmethane, 42.7 g (0.47 mol) of dimethyl carbonate and 0.216 g of zinc octoate supported on acidic silica (0.12 mmol active catalyst) (2-ethylhexane supported on silica gel) Acid zinc salt (20% by weight) was added. The mixture was purged with nitrogen. The reaction mixture was then heated at 180 ° C. for 2 hours. After the reaction was completed, the autoclave was cooled to room temperature, and the crude product was filtered to separate the catalyst. The filtrate thus obtained was evaporated to dryness under reduced pressure to give a crystalline solid. The amine conversion was 97% based on the starting material. Urethane selectivity was 81-83% based on IR and 13 C NMR.

───────────────────────────────────────────────────── フロントページの続き (81)指定国 EP(AT,BE,CH,CY, DE,DK,ES,FI,FR,GB,GR,IE,I T,LU,MC,NL,PT,SE),OA(BF,BJ ,CF,CG,CI,CM,GA,GN,ML,MR, NE,SN,TD,TG),AP(GH,GM,KE,L S,MW,SD,SZ,UG,ZW),EA(AM,AZ ,BY,KG,KZ,MD,RU,TJ,TM),AL ,AM,AT,AU,AZ,BA,BB,BG,BR, BY,CA,CH,CN,CU,CZ,DE,DK,E E,ES,FI,GB,GE,GH,GM,GW,HU ,ID,IL,IS,JP,KE,KG,KP,KR, KZ,LC,LK,LR,LS,LT,LU,LV,M D,MG,MK,MN,MW,MX,NO,NZ,PL ,PT,RO,RU,SD,SE,SG,SI,SK, SL,TJ,TM,TR,TT,UA,UG,UZ,V N,YU,ZW────────────────────────────────────────────────── ─── Continuation of front page    (81) Designated country EP (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, I T, LU, MC, NL, PT, SE), OA (BF, BJ , CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG), AP (GH, GM, KE, L S, MW, SD, SZ, UG, ZW), EA (AM, AZ , BY, KG, KZ, MD, RU, TJ, TM), AL , AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, E E, ES, FI, GB, GE, GH, GM, GW, HU , ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, M D, MG, MK, MN, MW, MX, NO, NZ, PL , PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, V N, YU, ZW

Claims (1)

【特許請求の範囲】 1.不活性担体上の金属ベース触媒の存在下、芳香族アミン類と有機カーボネ ート類との反応によりカルバメート類を製造する方法。 2.前記触媒が、Ti、Zr、Zn、Sn及びPbからなる群から選択される金属を含む 、請求項1に記載の方法。 3.前記触媒が、炭素原子1〜15個を有するアルカノエートを含む、請求項1 または2に記載の方法。 4.前記担体が、TiO2、アルミナまたはシリカを含む、請求項1〜3のいずれ か1項に記載の方法。 5.前記反応を100〜250℃の温度で実施する、請求項1〜4のいずれか1項に 記載の方法。 6.前記芳香族アミンが、トルエンジアミン類、ジアミノジフェニルメタン類 若しくはポリアミノポリフェニルメタン類またはその混合物からなる群から選択 される、請求項1〜5のいずれか1項に記載の方法。 7.前記反応を20bar以下の圧力で実施する、請求項1〜6のいずれか1項に 記載の方法。 8.不活性芳香族溶媒の存在下で実施する、請求項1〜7のいずれか1項に記 載の方法。 9.2.5時間未満の反応時間で実施する、請求項1〜8のいずれか1項に記載 の方法。 10.不活性担体上の有機金属塩を含む触媒。 11.前記金属が、Ti、Zr、Zn、Sn及びPbからなる群から選択される、請求項 10に記載の触媒。 12.前記有機塩が炭素原子1〜15個を有するアルカノエートである、請求項 10または11に記載の触媒。 13.前記担体がTiO2、アルミナまたはシリカを含む、請求項10〜12のい ずれか1項に記載の触媒。[Claims] 1. A method for producing carbamates by reacting an aromatic amine with an organic carbonate in the presence of a metal-based catalyst on an inert support. 2. The method of claim 1, wherein the catalyst comprises a metal selected from the group consisting of Ti, Zr, Zn, Sn and Pb. 3. The method of claim 1 or 2, wherein the catalyst comprises an alkanoate having 1 to 15 carbon atoms. 4. Wherein said carrier, TiO 2, containing alumina or silica, the method according to any one of claims 1 to 3. 5. The method according to any one of claims 1 to 4, wherein the reaction is performed at a temperature of 100 to 250C. 6. The method according to any one of claims 1 to 5, wherein the aromatic amine is selected from the group consisting of toluenediamines, diaminodiphenylmethanes or polyaminopolyphenylmethanes or mixtures thereof. 7. The method according to any one of claims 1 to 6, wherein the reaction is performed at a pressure of 20 bar or less. 8. The method according to any one of claims 1 to 7, wherein the method is performed in the presence of an inert aromatic solvent. 9. The process according to any one of the preceding claims, wherein the process is performed with a reaction time of less than 2.5 hours. 10. A catalyst comprising an organometallic salt on an inert support. 11. The catalyst according to claim 10, wherein the metal is selected from the group consisting of Ti, Zr, Zn, Sn and Pb. 12. The catalyst according to claim 10 or 11, wherein the organic salt is an alkanoate having 1 to 15 carbon atoms. 13. Wherein said carrier TiO 2, containing alumina or silica, the catalyst according to any one of claims 10 to 12.
JP50138299A 1997-06-05 1998-05-15 Method for producing carbamates Pending JP2002512626A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP97109081.6 1997-06-05
EP97109081 1997-06-05
PCT/EP1998/002888 WO1998055450A1 (en) 1997-06-05 1998-05-15 Method for the preparation of carbamates

Publications (1)

Publication Number Publication Date
JP2002512626A true JP2002512626A (en) 2002-04-23

Family

ID=8226879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50138299A Pending JP2002512626A (en) 1997-06-05 1998-05-15 Method for producing carbamates

Country Status (9)

Country Link
EP (1) EP0988281A1 (en)
JP (1) JP2002512626A (en)
KR (1) KR20010013407A (en)
CN (1) CN1258274A (en)
AU (1) AU8018298A (en)
CA (1) CA2289658A1 (en)
HU (1) HUP0003114A3 (en)
WO (1) WO1998055450A1 (en)
ZA (1) ZA984538B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008001613A (en) * 2006-06-20 2008-01-10 Mitsui Chemicals Polyurethanes Inc Method for producing silicon-containing isocyanate compound
JP2011526606A (en) * 2008-07-04 2011-10-13 コンセホ・スペリオール・デ・インベスティガシオネス・シエンティフィカス Formation of carbamate using solid catalyst
JP2013508336A (en) * 2009-10-21 2013-03-07 ビーエーエスエフ ソシエタス・ヨーロピア Urethane production method

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998037919A1 (en) 1997-02-28 1998-09-03 University Of Iowa Research Foundation USE OF NUCLEIC ACIDS CONTAINING UNMETHYLATED CpG DINUCLEOTIDE IN THE TREATMENT OF LPS-ASSOCIATED DISORDERS
US7022871B2 (en) * 1999-12-27 2006-04-04 Huntsman International Llc Process for the synthesis of polycarbamates
US20080227999A1 (en) * 2005-07-20 2008-09-18 Molzahn David C Heterogeneous Supported Catalytic Carbamate Process
CN100358977C (en) * 2005-09-08 2008-01-02 中国石油大学(华东) A kind of preparation method of catalyst
EP2036884A1 (en) 2007-09-14 2009-03-18 Repsol Ypf S.A. Process for producing fluorinated isocyanates and carbamates
CN100566834C (en) * 2008-05-19 2009-12-09 中国科学院山西煤炭化学研究所 Catalyst, preparation method and application for synthesizing aromatic carbamate
US8058469B2 (en) 2008-11-03 2011-11-15 Sabic Innovative Plastics Ip B.V. Method for making carbamates, ureas and isocyanates
PT2199278E (en) * 2008-12-19 2011-11-10 Dow Global Technologies Llc Process for the production of aromatic urethanes
FR2960875B1 (en) 2010-06-04 2012-12-28 Sanofi Aventis HEXAFLUOROISOPROPYL CARBAMATE DERIVATIVES, THEIR PREPARATION AND THEIR THERAPEUTIC APPLICATION
CN103052623B (en) * 2010-10-13 2015-03-11 日本合成化学工业株式会社 Method for producing urethane compound, and urethane compound obtained thereby
CN103012210B (en) * 2012-12-13 2014-09-17 黄河三角洲京博化工研究院有限公司 Preparation method of isophorone diamidoformate
KR102016527B1 (en) * 2013-06-20 2019-09-02 한국생산기술연구원 Process for preparing aliphatic hydroxyalkyl carbamates from aromatic amines
CN110650944B (en) * 2017-05-15 2022-07-19 科思创德国股份有限公司 Silica-based zinc catalysts, their preparation and use in the alkoxycarbonylation of amines
US10703714B2 (en) 2017-05-26 2020-07-07 Council Of Scientific And Industrial Research Process for the synthesis of aromatic carbamates

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2525506C2 (en) * 1975-06-07 1983-09-15 Basf Ag, 6700 Ludwigshafen Process for the preparation of a catalyst containing nickel and / or cobalt and zinc oxide
US4101446A (en) * 1976-12-22 1978-07-18 Stauffer Chemical Company Lead acetate impregnated magnesium silicate for the production of perchloromethyl mercaptan
US4268683A (en) * 1980-02-21 1981-05-19 The Dow Chemical Company Preparation of carbamates from aromatic amines and organic carbonates
US4268684A (en) * 1980-02-25 1981-05-19 The Dow Chemical Company Preparation of carbamates from aromatic amines and organic carbonates
JPH07328435A (en) * 1994-06-15 1995-12-19 Nippon Shokubai Co Ltd Catalyst for production of carbamate and production of carbamate using that catalyst

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008001613A (en) * 2006-06-20 2008-01-10 Mitsui Chemicals Polyurethanes Inc Method for producing silicon-containing isocyanate compound
JP2011526606A (en) * 2008-07-04 2011-10-13 コンセホ・スペリオール・デ・インベスティガシオネス・シエンティフィカス Formation of carbamate using solid catalyst
JP2013508336A (en) * 2009-10-21 2013-03-07 ビーエーエスエフ ソシエタス・ヨーロピア Urethane production method

Also Published As

Publication number Publication date
AU8018298A (en) 1998-12-21
HUP0003114A3 (en) 2001-03-28
ZA984538B (en) 1998-12-07
CA2289658A1 (en) 1998-12-10
EP0988281A1 (en) 2000-03-29
HUP0003114A2 (en) 2001-02-28
CN1258274A (en) 2000-06-28
WO1998055450A1 (en) 1998-12-10
KR20010013407A (en) 2001-02-26

Similar Documents

Publication Publication Date Title
JP2002512626A (en) Method for producing carbamates
CA2051484C (en) Decarboxylation processes using mixed metal oxide catalysts
CA1335499C (en) Zinc-containing solid catalyst, process of preparing same and process for preparing polyalkylene carbonate
JP3195787B2 (en) Isocyanate trimerization or urethanization catalyst
EP1093452A1 (en) Method for the preparation of organic carbamates
JP4159630B2 (en) Process for the preparation of N-substituted cyclic amines
EP0581131B1 (en) A process for producing alkylene carbonates
JPH0672982A (en) Preparation of alkyl-mono- and -di-isocyanates
WO1998056758A1 (en) Process for the production of organic isocyanates
WO1998055451A1 (en) Method for the preparation of carbamates
JP4988118B2 (en) Continuous synthesis of aromatic urethane
JP2918012B2 (en) Method for producing urethane compound
AU2009356897A1 (en) Process for the preparation of O-desmethyl-venlafaxine and salts thereof
JP3363517B2 (en) Method for simultaneous production of dialkyl carbonate and glycol
JPH0648993A (en) Production of dialkyl carbonate
CA1080725A (en) Process for producing phthalide
JPH0417947B2 (en)
JP3278925B2 (en) Process for producing octadienols and palladium complex
JPH0873411A (en) Method for producing dialkyl carbonate
HK1028764A (en) Method for the preparation of carbamates
KR950006900B1 (en) Process for the preparation by rearrangement of methylene-(n-phenyl alkyl carbamate)
JP3340189B2 (en) Method for simultaneous production of dialkyl carbonate and glycol
JP3164666B2 (en) Process for producing N-substituted carbamate aryl esters
JPH04235954A (en) Production of urethane compound
JP3530925B2 (en) Method for producing oxoester compound