[go: up one dir, main page]

JP2002340701A - Method for manufacturing magnetostrictive torque sensor shaft - Google Patents

Method for manufacturing magnetostrictive torque sensor shaft

Info

Publication number
JP2002340701A
JP2002340701A JP2001149158A JP2001149158A JP2002340701A JP 2002340701 A JP2002340701 A JP 2002340701A JP 2001149158 A JP2001149158 A JP 2001149158A JP 2001149158 A JP2001149158 A JP 2001149158A JP 2002340701 A JP2002340701 A JP 2002340701A
Authority
JP
Japan
Prior art keywords
shaft
torque sensor
manufacturing
magnetostrictive torque
hysteresis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001149158A
Other languages
Japanese (ja)
Inventor
Shinichiro Yokoyama
紳一郎 横山
Kazu Sasaki
計 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2001149158A priority Critical patent/JP2002340701A/en
Publication of JP2002340701A publication Critical patent/JP2002340701A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)
  • Power Steering Mechanism (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a magnetostrictive torque sensor shaft which has hysteresis characteristics greatly improved by an inexpensive method. SOLUTION: By the method for manufacturing the magnetostrictive torque sensor shaft, a torque which is larger than a maximum torque that the shaft is loaded with is applied as prestrain to the shaft material of the magnetostrictive sensor in the same direction as the twisting direction of the shaft when the torque sensor is used.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、被測定軸に加えら
れる弾性トルクを磁気的に検出するために利用される磁
歪式トルクセンサ軸の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a magnetostrictive torque sensor shaft used for magnetically detecting an elastic torque applied to a shaft to be measured.

【0002】[0002]

【従来の技術】従来、磁歪式トルクセンサの分野では、
磁性鋼を被測定軸として使用し、磁性鋼が有する磁歪効
果を利用して、軸にかかる弾性トルクを磁気的に検出す
る手法が用いられている。図1はトルクセンサの出力特
性図を示す。トルクセンサの特性は、弾性トルク(入力
信号)に対する出力電圧の傾きS(以下、感度と記す)と、
弾性トルクを除去した後の出力電圧の初期値からのずれ
h(以下、ヒステリシスと記す)によって評価され、感度
(図1のS)が大きく、かつヒステリシス(図1のh)が小さ
い程、トルクセンサ特性は優れたものとなる。この様な
磁歪式トルクセンサの軸には、磁性と共に構造的な硬さ
が要求されるので、従来はJISSK材、SCM材、SNCM材等の
構造用鋼が使用されており、これらの構造用鋼は、Feが
有する磁歪効果を持ち、且つ安価なので好んで使用され
る。ところが従来から用いられてきた構造用鋼では、比
透磁率と磁歪が小さいために感度が小さく、且つヒステ
リシスも大きいので、正確なトルク検出を行えないとい
う問題があった。
2. Description of the Related Art Conventionally, in the field of a magnetostrictive torque sensor,
A method has been used in which a magnetic steel is used as a shaft to be measured, and an elastic torque applied to the shaft is magnetically detected by utilizing a magnetostrictive effect of the magnetic steel. FIG. 1 shows an output characteristic diagram of the torque sensor. The characteristics of the torque sensor include the slope S (hereinafter, referred to as sensitivity) of the output voltage with respect to the elastic torque (input signal),
Deviation of output voltage from initial value after removing elastic torque
h (hereinafter referred to as hysteresis)
The larger the (S in FIG. 1) and the smaller the hysteresis (h in FIG. 1), the better the torque sensor characteristics. Since the shaft of such a magnetostrictive torque sensor requires structural hardness as well as magnetism, structural steel such as JISSK material, SCM material and SNCM material is conventionally used. Steel is preferably used because it has the magnetostrictive effect of Fe and is inexpensive. However, structural steels that have been used in the past have a problem in that accurate torque detection cannot be performed because the relative permeability and magnetostriction are small, so that sensitivity is small and hysteresis is large.

【0003】上述の問題を解決するため、軸用の材質や
軸の製造方法に関し、多くの検討が行われている。例え
ば、特許2132909号には、質量%でC:0.1〜0.5%、Si:1.0
%以下、Mn:2.0%以下と、Ni:5.0%以下、Cr:5.0%以下の何
れか一方または両方、残部がFeと不可避不純物の組成で
なる材料をトルクセンサ軸として使用する技術が開示さ
れている。また特許2697846号には、特許2132909号の材
料を更に改良した組成として、C:0.1〜1.5%、Si:0.5〜
4.0%、Mn:0を超え3.0%以下、Al:0を超え3.0%以下と、N
i:5.0%以下、Cr:5.0%以下の何れか一方または両方、残
部がFeと不可避不純物の組成で成る材料をトルクセンサ
軸として使用する技術が開示されている。これらの技術
は、合金元素の添加によって材料の強度、硬さを確保す
るとともに、各添加元素の特徴を生かし、JIS SK材、S
CM材、SNCM材等よりも感度が大きく、かつヒステリシス
が小さくなるように合金組成を調整しているという点で
優れた材料技術である。
[0003] In order to solve the above-mentioned problems, many studies have been made on shaft materials and shaft manufacturing methods. For example, Japanese Patent No. 2132909 discloses that in mass% C: 0.1 to 0.5%, Si: 1.0%.
% Or less, Mn: 2.0% or less, Ni: 5.0% or less, one or both of Cr: 5.0% or less, and a technique using a material having a composition of Fe and inevitable impurities as a balance as a torque sensor shaft is disclosed. ing. Patent 2697846 also has a composition obtained by further improving the material of Patent 2132909, C: 0.1 to 1.5%, Si: 0.5 to
4.0%, Mn: 0 and 3.0% or less, Al: 0 and 3.0% or less, N
A technique is disclosed in which one or both of i: 5.0% or less and Cr: 5.0% or less, and the balance is made of a material having a composition of Fe and inevitable impurities as a torque sensor shaft. These technologies ensure the strength and hardness of the material by the addition of alloying elements, and take advantage of the characteristics of each added element to make JIS SK, S
This is an excellent material technology in that the alloy composition is adjusted so that the sensitivity is higher than the CM material, SNCM material, etc. and the hysteresis is small.

【0004】また製造方法を検討した従来技術として
は、特許2781071号には、トルクセンサ軸に所定の熱処
理を行った後、ショットピーニングを行うことによって
ヒステリシスを低減する技術が開示されている。この提
案は被測定軸の材質だけでなく、表面処理を利用してヒ
ステリシスを低減するという点で優れた製造技術であ
る。
[0004] As a conventional technique for examining a manufacturing method, Japanese Patent No. 2781071 discloses a technique for reducing hysteresis by performing a predetermined heat treatment on a torque sensor shaft and then performing shot peening. This proposal is an excellent manufacturing technique in that not only the material of the shaft to be measured but also the surface treatment is used to reduce the hysteresis.

【0005】[0005]

【発明が解決しようとする課題】上述のように、従来か
ら行われてきたヒステリシスを低減させる方法として
は、軸に用いる材料の化学組成を調整するものや、単に
材料表面近傍に歪を付加させるものであり、ヒステリシ
スを低減することは出来るが、ゼロ近傍まで完全に除去
するには不十分である。本発明の目的は、ヒステリシス
特性を安価な方法で、飛躍的に改善した磁歪式トルクセ
ンサ軸の製造方法を提供することである。
As described above, as a method of reducing the hysteresis conventionally performed, a method of adjusting a chemical composition of a material used for a shaft or a method of simply adding a strain near a material surface is used. Although it is possible to reduce the hysteresis, it is not enough to completely remove it to near zero. An object of the present invention is to provide a method for manufacturing a magnetostrictive torque sensor shaft in which the hysteresis characteristics are dramatically improved by an inexpensive method.

【0006】[0006]

【課題を解決するための手段】本発明者は、磁歪式トル
クセンサ軸のヒステリシスをゼロ近傍まで除去する方法
を検討した結果、軸全体に予め歪を与えた後は(予め歪
を与えることを予歪と記す)、その予歪と同一の方向
で、かつ与えた予歪よりも小さい歪に対しては、新たな
ヒステリシスが生じないことを見出し、軸全体に予歪を
導入することでヒステリシス特性を大きく改善できると
いう知見を得た。そして、そのための最適化学組成を検
討し、軸の材質としては、感度が高く、かつ硬い材質を
選定できることを見出し、本発明に到達した。
The present inventor has studied a method of removing the hysteresis of the magnetostrictive torque sensor shaft to near zero, and as a result, after applying a distortion to the entire shaft in advance, it is necessary to apply a pre-distortion method. Predistortion), found that no new hysteresis occurs for strains in the same direction as the predistortion and smaller than the given predistortion. It has been found that the characteristics can be greatly improved. Then, the optimum chemical composition for the purpose was examined, and it was found that a hard material having high sensitivity could be selected as the material of the shaft, and the present invention was reached.

【0007】即ち本発明は、磁歪式トルクセンサの軸材
に対して、トルクセンサ使用時の軸のねじり方向と同一
の方向に、軸に負荷される最大トルク以上の大きさのト
ルクを予歪として与えることを特徴とする磁歪式トルク
センサ軸の製造方法である。好ましくは、磁歪式トルク
センサの軸材は、質量%でC:0.1%未満の析出硬化型Fe基
マルテンサイト系鋼でなる磁歪式トルクセンサ軸の製造
方法であり、更に好ましくは磁歪式トルクセンサの軸材
は、質量%でC:0.1%未満、Si:2.0%以下、Mn:2.0%以下、
Ni:2.0〜10.0%、Cr:10.0〜20.0%と、選択元素として(C
u:0.5〜5.0%、Al:0.1〜2.0%、Ti:0.1〜2.0%、Nb+Ta:0.0
5〜2.0%)のうち一種または二種以上を含有し、残部が実
質的にFeからなる磁歪式トルクセンサ軸の製造方法であ
る。
That is, according to the present invention, a torque larger than the maximum torque applied to the shaft is applied to the shaft member of the magnetostrictive torque sensor in the same direction as the torsion direction of the shaft when the torque sensor is used. A method for manufacturing a magnetostrictive torque sensor shaft, characterized in that: Preferably, the shaft material of the magnetostrictive torque sensor is a method of manufacturing a magnetostrictive torque sensor shaft made of precipitation-hardened Fe-based martensitic steel having a mass% of less than C: less than 0.1%, and more preferably a magnetostrictive torque sensor. The shaft material is C: less than 0.1% by mass%, Si: 2.0% or less, Mn: 2.0% or less,
Ni: 2.0 to 10.0%, Cr: 10.0 to 20.0%, (C
u: 0.5-5.0%, Al: 0.1-2.0%, Ti: 0.1-2.0%, Nb + Ta: 0.0
(5% to 2.0%), and a magnetostrictive torque sensor shaft including at least one of Fe and the balance substantially made of Fe.

【0008】[0008]

【発明の実施の形態】上述したように、本発明の重要な
特徴は磁歪式トルクセンサ軸のヒステリシスを除去する
方法として、軸全体に予歪を導入する製造方法を採用し
たことにある。以下、本発明における規定理由を説明す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS As described above, an important feature of the present invention is that a manufacturing method for introducing prestrain to the entire shaft is employed as a method for removing hysteresis of a magnetostrictive torque sensor shaft. Hereinafter, the reasons for the definition in the present invention will be described.

【0009】本発明者は、ヒステリシスは弾性限内での
転位の動きによって生じると推察した。逆にトルクセン
サ軸の内部の転位が動き難い状態を作れば、ヒステリシ
スは除去できると推察した。本発明で軸全体に予歪を導
入する製造方法を採用した理由は、軸全体に予歪を導入
すると、軸内の転位は予歪を導入した方向に固着され
て、動き難い状態となるからである。
The present inventors have speculated that hysteresis is caused by dislocation movement within the elastic limit. Conversely, it was speculated that hysteresis could be eliminated if dislocations inside the torque sensor shaft were difficult to move. The reason for adopting the manufacturing method of introducing the prestrain to the entire shaft in the present invention is that, when the prestrain is introduced to the entire shaft, the dislocation in the shaft is fixed in the direction in which the prestrain was introduced, and it becomes difficult to move. It is.

【0010】ここで軸に導入する予歪の方向をトルクセ
ンサ使用時の軸のねじり方向と同一方向に規定したの
は、予歪方向に固着される転位の効果を利用するためで
ある。例えば予歪方向と反対方向に軸をねじった場合、
予歪によって固着された転位は、反対方向の歪に対して
は固着せず動き易いため、新たなヒステリシスが生じる
こととなり、予歪の効果が得られ難い。以上の理由か
ら、予歪を導入する方向はトルクセンサ使用時の軸のね
じり方向と同一の方向とした。なお、本発明の予歪を付
与する製造方法により作製したトルクセンサ軸が用いら
れる用途としては、一定の方向にのみ歪が付加される、
例えば電動アシスト自転車や工作機械等への適用が望ま
しい。
Here, the direction of the pre-strain introduced into the shaft is defined to be the same as the torsional direction of the shaft when the torque sensor is used, in order to utilize the effect of the dislocation fixed in the pre-strain direction. For example, if you twist the shaft in the direction opposite to the prestrain direction,
The dislocation fixed by the pre-strain is not fixed to the strain in the opposite direction and is easily moved, so that a new hysteresis occurs, and it is difficult to obtain the effect of the pre-strain. For the above reasons, the direction in which the prestrain is introduced is the same as the direction of the torsion of the shaft when the torque sensor is used. In addition, as an application in which the torque sensor shaft manufactured by the manufacturing method of providing a pre-strain of the present invention is used, strain is added only in a certain direction,
For example, application to electric assist bicycles, machine tools, and the like is desirable.

【0011】予歪の大きさをトルクセンサ使用時に軸に
負荷される最大トルク以上のトルクとしたのは、上述の
場合と同様に予歪によって固着される転位の効果を利用
するためである。例えば予歪よりも更に大きい量の歪が
かかった場合、予歪によって固着された転位は、更に大
きい歪に対しては固着の効果がないため、軸内の転位が
動き、新たなヒステリシスが生じることとなる。以上の
理由から、導入する予歪の大きさはトルクセンサ使用時
に軸に負荷される最大トルク以上のトルクとした。な
お、本発明においては、必要に応じて予歪を複数回、導
入しても良い。
The reason why the magnitude of the prestrain is set to be equal to or more than the maximum torque applied to the shaft when the torque sensor is used is to utilize the effect of the dislocation fixed by the prestrain as in the case described above. For example, when a larger amount of strain is applied than the pre-strain, the dislocation fixed by the pre-strain has no effect on the larger strain, so that the dislocation in the axis moves and new hysteresis occurs. It will be. For the above reasons, the magnitude of the pre-strain to be introduced is set to be equal to or greater than the maximum torque applied to the shaft when the torque sensor is used. In the present invention, the pre-strain may be introduced a plurality of times as needed.

【0012】次に上述の方法で製造される軸の好ましい
材質として、質量%でC含有量が0.1%未満の析出硬化型F
e基マルテンサイト系鋼に規定した理由を述べる。本発
明の製造方法では、軸のヒステリシスは軸材質ではな
く、予歪によって除去するので、軸材としては高感度と
高硬度を有する材質を選定することができる。ここで磁
性があって、かつ硬い材質としてはFe基マルテンサイト
系鋼が考えられるが、Cを多量に含有し、炭化物の分散
によって転位を固着し、高硬度を得るタイプのマルテン
サイト系鋼では、軸材の比透磁率を十分に高めることが
できないため、軸材の感度を画期的に上げることは難し
い。
Next, as a preferable material of the shaft manufactured by the above-mentioned method, a precipitation hardening type F having a C content of less than 0.1% by mass is used.
The reason specified for e-base martensitic steel is described. In the manufacturing method of the present invention, the hysteresis of the shaft is removed not by the shaft material but by pre-strain, so that a material having high sensitivity and high hardness can be selected as the shaft material. Here, as a magnetic and hard material, a Fe-based martensitic steel can be considered, but a martensitic steel of a type that contains a large amount of C, fixes dislocations by dispersing carbides, and obtains a high hardness is obtained. Since the relative permeability of the shaft cannot be sufficiently increased, it is difficult to remarkably increase the sensitivity of the shaft.

【0013】そこで本発明では軸材のC含有量を低く
し、軸材の硬さは炭化物の分散ではなく、適当な元素や
化合物を析出、分散させて析出硬化によって得ることに
着目した。そのために必要なC量は質量%で0.1%未満で
あり、Cが0.1%以上となると、軸材の比透磁率の低下が
顕著となる。従って、本発明でのCは0.1%未満である。
Therefore, in the present invention, attention was paid to the fact that the C content of the shaft material was reduced and the hardness of the shaft material was obtained by precipitation hardening by precipitating and dispersing an appropriate element or compound instead of dispersing carbide. The amount of C required for that purpose is less than 0.1% by mass%, and when C is 0.1% or more, the relative permeability of the shaft material is significantly reduced. Therefore, C in the present invention is less than 0.1%.

【0014】次に、軸材の好ましい組成としてC以外の
元素の含有量を規定した理由を以下に説明する。 Si:2.0%以下、Mn:2.0%以下 Si、Mnはともに製鋼プロセスでの脱酸元素としての作用
がある元素である。軸材の感度とヒステリシスの特性に
特に影響しない範囲として、上述の範囲を含有して良
い。なお、好ましいSi、Mnの上限はそれぞれ1.5%以下、
1.0%以下の範囲とすると良い。
Next, the reason why the content of elements other than C is specified as a preferable composition of the shaft member will be described below. Si: 2.0% or less, Mn: 2.0% or less Both Si and Mn are elements that act as deoxidizing elements in the steelmaking process. The above range may be included as a range that does not particularly affect the sensitivity and hysteresis characteristics of the shaft. In addition, the preferred upper limits of Si and Mn are each 1.5% or less,
It is better to be in the range of 1.0% or less.

【0015】Ni:2.0〜10.0% NiはFe基マルテンサイト系鋼中で磁歪を高め、軸材の感
度を上げる効果があるとともに、軸材の焼入れ性を高
め、組織をマルテンサイトにする上で有効な本発明の重
要元素である。また適当な熱処理温度を選択すれば、Al
やTiと化合物を形成し、析出硬化により硬さを上げる効
果もある。但し、2.0%未満ではその効果が小さく、逆
に10.0%を超える範囲では軸材の組織はオーステナイト
となって、本発明の好ましい軸材の金属組織の規定を外
れるので、上述の範囲に規定した。望ましくは3.0〜8.0
%の範囲である。
Ni: 2.0 to 10.0% Ni has the effect of increasing the magnetostriction and the sensitivity of the shaft material in the Fe-based martensitic steel, as well as enhancing the hardenability of the shaft material and changing the structure to martensite. It is an important element of the present invention which is effective. If an appropriate heat treatment temperature is selected, Al
It also has the effect of forming a compound with Ti and Ti and increasing the hardness by precipitation hardening. However, when the content is less than 2.0%, the effect is small. On the contrary, when the content is more than 10.0%, the structure of the shaft becomes austenite, which deviates from the preferable metal structure of the shaft of the present invention. . Desirably 3.0 to 8.0
% Range.

【0016】Cr:10.0〜25.0% Crは軸材の耐食性を確保するとともに、Niと同様に焼入
れ性を良くして軸材の組織をマルテンサイトとするため
に重要な元素である。但し、10.0%未満では耐食性を確
保する効果が小さく、逆に25.0%を超える範囲では軸材
の加工性が著しく悪くなるので、上述の範囲に規定し
た。好ましいCr含有量は12.0〜20.0%の範囲である。
Cr: 10.0 to 25.0% Cr is an important element for securing the corrosion resistance of the shaft material and improving the hardenability similarly to Ni to make the structure of the shaft material martensite. However, if it is less than 10.0%, the effect of securing corrosion resistance is small, and if it exceeds 25.0%, the workability of the shaft material is significantly deteriorated. The preferred Cr content is in the range of 12.0-20.0%.

【0017】次に選択元素としてCu、Al、Ti、Nb+Taを
選択し、これらの一種または二種以上を含有することと
したのは、これらの元素は析出硬化によって軸材の硬さ
を上げる効果があるからである。これらの元素の各一種
を添加しても、また二種以上の元素を複合添加しても析
出硬化の目的は達せられる。以下、各元素の効果と含有
量の範囲を規定した理由を述べる。 Cu:0.5〜5.0% Cuはマルテンサイト中の固溶度が低い上、マルテンサイ
トに過飽和に固溶し易いので、時効処理によってCuを析
出させると、マルテンサイトの硬化に寄与する。但し、
0.5%未満では効果が小さく、逆に5.0%を超える範囲で
は軸材の加工性が悪くなるので、上述の範囲に規定し
た。
Next, Cu, Al, Ti, and Nb + Ta were selected as the selected elements, and one or more of these elements were selected because these elements reduced the hardness of the shaft material by precipitation hardening. This is because it has the effect of raising. The purpose of precipitation hardening can be achieved by adding one of these elements or by adding two or more of these elements in combination. Hereinafter, the reason for defining the effect and the range of the content of each element will be described. Cu: 0.5 to 5.0% Cu has a low solid solubility in martensite and easily forms a supersaturated solid solution in martensite. Therefore, precipitation of Cu by aging contributes to hardening of martensite. However,
If it is less than 0.5%, the effect is small, and if it exceeds 5.0%, the workability of the shaft material is deteriorated.

【0018】Al:0.1〜2.0% Alは時効処理によってNiと金属間化合物を形成し、析出
硬化によってマルテンサイトの硬化に寄与する。但し0.
1%未満では効果が小さく、逆に2.0%を超える範囲では
軸材の加工性が悪くなるので、上述の範囲に規定した。 Ti:0.1〜2.0% TiもAl同様、時効処理によってNiと金属間化合物を形成
し、析出硬化によってマルテンサイトの硬化に寄与す
る。また微量のCを固定するので、軸材の比透磁率ひい
ては感度を高める上でも効果がある。但し0.1%未満で
は効果が小さく、逆に2.0%を超える範囲では軸材の加
工性が悪くなるので、上述の範囲に規定した。
Al: 0.1 to 2.0% Al forms an intermetallic compound with Ni by aging treatment, and contributes to the hardening of martensite by precipitation hardening. However, 0.
If it is less than 1%, the effect is small. On the contrary, if it exceeds 2.0%, the workability of the shaft material is deteriorated. Ti: 0.1 to 2.0% Ti, like Al, forms an intermetallic compound with Ni by aging treatment and contributes to the hardening of martensite by precipitation hardening. Also, since a small amount of C is fixed, it is also effective in increasing the relative magnetic permeability of the shaft material and thus the sensitivity. However, if the content is less than 0.1%, the effect is small, and if it exceeds 2.0%, the workability of the shaft material deteriorates.

【0019】Nb+Ta:0.05〜2.0% NbやTaもTi同様、微量のCを固定するので、軸材の比透
磁率ひいては感度を高める上で効果がある。但し0.05%
未満では効果が小さく、逆に2.0%を超える範囲では軸
材の加工性が悪くなるので、上述の範囲に規定した。な
お、本発明では上述した元素以外、特に規定するもので
はなく残部は実質的にFeであれば良いとするが、当然の
ことながら不可避的に含有される不純物は少量ながら含
有される。但し、過度に含有されるとトルクセンサ軸材
の特性を劣化させるので、不可避不純物としてP、S、
N、Oを感度、ヒステリシス特性を特に劣化させない範囲
として、それぞれ0.1%以下の範囲で含有しても良い。
Nb + Ta: 0.05-2.0% Since Nb and Ta fix a small amount of C, similarly to Ti, they are effective in increasing the relative magnetic permeability of the shaft material and, consequently, the sensitivity. However, 0.05%
If the content is less than 2.0%, the effect is small, and if the content is more than 2.0%, the workability of the shaft material is deteriorated. In the present invention, the elements other than the above-mentioned elements are not particularly specified, and the remainder may be substantially Fe. However, naturally, impurities inevitably contained are contained in a small amount. However, if excessively contained, the characteristics of the torque sensor shaft material are degraded. Therefore, P, S,
N and O may each be contained in a range of 0.1% or less as a range that does not particularly deteriorate the sensitivity and the hysteresis characteristics.

【0020】また本発明のトルクセンサ軸材の望ましい
製造手順としては、まず本発明の好ましい組成の材料を
溶製した後、1050〜1200℃に加熱して熱間加工し、目的
とする寸法に仕上げると良い。次に、この熱間加工した
トルクセンサ軸材の素材を600〜800℃で熱処理して軟化
した後、磁歪式トルクセンサ軸の形状に加工し、次いで
1000〜1100℃の温度範囲から急冷を行い、軸材料の金属
組織をマルテンサイト系組織とする。更に400〜600℃の
範囲で時効処理を行い、析出硬化によりトルクセンサ材
の硬さを上げる。次に、上述の磁歪式トルクセンサ材
に、予歪としてトルクセンサ軸に用いた時に負荷される
最大トルク以上の大きさのトルクを、使用時と同一のね
じり方向に与えて、本発明の磁歪式トルクセンサ軸とす
れば良い。
As a desirable manufacturing procedure of the torque sensor shaft of the present invention, a material having a preferable composition of the present invention is first melted, and then heated to 1050 to 1200 ° C. to perform hot working to obtain a target dimension. Good to finish. Next, after the heat-processed torque sensor shaft material is heat-treated at 600 to 800 ° C. and softened, it is processed into a magnetostrictive torque sensor shaft shape, and then
Rapid cooling is performed from a temperature range of 1000 to 1100 ° C, and the metal structure of the shaft material is changed to a martensitic structure. Further, aging treatment is performed in the range of 400 to 600 ° C. to increase the hardness of the torque sensor material by precipitation hardening. Next, the above-described magnetostrictive torque sensor material is provided with a torque having a magnitude equal to or greater than the maximum torque applied when the torque sensor shaft is used as a pre-strain in the same torsion direction as in use, and the magnetostrictive torque of the present invention is obtained. What is necessary is just to make it a type torque sensor shaft.

【0021】本発明の方法で製造する磁歪式トルクセン
サ軸は、予歪によってヒステリシスがゼロ近傍まで除去
されている。予歪を与えることは、ショットピーニング
等の工程を入れるよりも安価であり、しかも、軸全体に
歪を与えることができるので、より確実にヒステリシス
をゼロ近傍まで低減させることが可能である。更に本発
明で規定する低C組成のマルテンサイト系鋼を用いて、
本発明の製造方法と組み合わせて使用すれば、高感度か
つ低ヒステリシスで、構造的な硬さも備えたトルクセン
サ軸として極めて有効である。すなわち本発明のトルク
センサ軸を使用したトルクセンサは、高精度のトルク検
出を行うことができる。
The hysteresis of the magnetostrictive torque sensor shaft manufactured by the method of the present invention is reduced to near zero by prestrain. Giving a pre-distortion is less expensive than providing a step such as shot peening, and also gives a distortion to the entire axis, so that the hysteresis can be more reliably reduced to near zero. Further, using a martensitic steel having a low C composition defined in the present invention,
When used in combination with the manufacturing method of the present invention, it is extremely effective as a torque sensor shaft having high sensitivity, low hysteresis, and structural rigidity. That is, the torque sensor using the torque sensor shaft of the present invention can perform highly accurate torque detection.

【0022】[0022]

【実施例】本発明では、まずトルクセンサ軸に予歪を与
えた場合と与えない場合でのヒステリシス特性を評価す
ることが重要となる。また予歪を与える方法で製造する
トルクセンサ軸の材質が重要となる。10kgの材料を真空
溶解により溶製した。表1に各供試材の化学組成を示
す。表1に示す各材料の内訳は、下記の通りである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, it is important to first evaluate the hysteresis characteristics when a prestrain is applied to a torque sensor shaft and when no prestrain is applied. Also, the material of the torque sensor shaft manufactured by the method of giving a pre-strain becomes important. 10 kg of material was melted by vacuum melting. Table 1 shows the chemical composition of each test material. The breakdown of each material shown in Table 1 is as follows.

【0023】No.1、2の組成は、質量%でC含有量が0.1%
未満であり、熱処理によって析出硬化型Fe基マルテンサ
イト系鋼となる磁歪式トルクセンサ用材料である。この
内、No.1は本発明の好ましい組成範囲に相当する材料で
ある。No.3、4の組成は、質量%でC含有量が0.1%以上で
あり、熱処理によってFe基マルテンサイト系鋼となる磁
歪式トルクセンサ用材料である。この内、No.3は従来、
磁歪式トルクセンサ用材料として好んで用いられてきた
JIS SK5材に相当する。またNo.4は特許2132909号で開
示される材料に相当する。
The compositions of Nos. 1 and 2 have a C content of 0.1% by mass.
And is a material for a magnetostrictive torque sensor that becomes a precipitation hardening type Fe-based martensitic steel by heat treatment. Among them, No. 1 is a material corresponding to the preferred composition range of the present invention. The compositions of Nos. 3 and 4 are magnetostrictive torque sensor materials which have a C content of 0.1% or more by mass% and become Fe-based martensitic steel by heat treatment. Of these, No. 3
Has been favorably used as a material for magnetostrictive torque sensors
Equivalent to JIS SK5 material. No. 4 corresponds to the material disclosed in Japanese Patent No. 2132909.

【0024】[0024]

【表1】 [Table 1]

【0025】溶製した鋼塊を1100℃に加熱して熱間加工
を行い、直径20mmの丸棒を得た。この丸棒に対し、C含
有量が0.1%未満の材料No.1〜2は大気中700℃×3h炉冷
の条件で、またC含有量が0.1%以上の材料No.3〜4は大
気中750℃-4h→20℃/h→650℃炉冷の条件で軟化処理を
行った。
The melted steel ingot was heated to 1100 ° C. and hot worked to obtain a round bar having a diameter of 20 mm. For this round bar, material Nos. 1 and 2 with a C content of less than 0.1% are furnace-cooled at 700 ° C for 3 hours in the atmosphere, and material Nos. 3 and 4 with a C content of 0.1% or more are in the air. The softening treatment was performed under the conditions of medium 750 ° C-4h → 20 ° C / h → 650 ° C furnace cooling.

【0026】上述の材料が磁歪式トルクセンサ軸として
実際に使用される際には、上述の軟化処理を施した材料
を、磁歪式トルクセンサの軸形状に機械加工した後、軸
材料を硬化する熱処理を行い、更にトルクセンサ使用時
のねじり方向と同一の方向に、軸に負荷される最大トル
ク以上の大きさのトルクを予歪として与える工程を経て
磁歪式トルクセンサ軸となる。
When the above-mentioned material is actually used as a magnetostrictive torque sensor shaft, the softened material is machined into the shaft shape of the magnetostrictive torque sensor, and then the shaft material is hardened. Heat treatment is performed, and a magnetostrictive torque sensor shaft is obtained through a process in which a torque larger than the maximum torque applied to the shaft is applied as pre-strain in the same direction as the torsion direction when the torque sensor is used.

【0027】磁歪式トルクセンサ軸には外部トルク(ね
じり)が加わるが、比透磁率(インダクタンス)の変化が
検出される軸の表層部には、軸の長手方向から45度の角
度に引張と圧縮の応力がかかる。すなわち磁歪式トルク
センサ軸の感度、ヒステリシス特性は、簡易的には外部
から印加される引張または圧縮応力に対する磁歪式トル
クセンサ軸のインダクタンス変化を測定することによっ
て評価できる。トルクセンサ軸を評価する場合の応力の
方向は引張、圧縮何れの方向でも良い。
An external torque (torsion) is applied to the magnetostrictive torque sensor shaft, but the surface layer of the shaft where a change in relative permeability (inductance) is detected is pulled at an angle of 45 degrees from the longitudinal direction of the shaft. Compressive stress is applied. That is, the sensitivity and hysteresis characteristics of the magnetostrictive torque sensor shaft can be simply evaluated by measuring the change in inductance of the magnetostrictive torque sensor shaft with respect to an externally applied tensile or compressive stress. The direction of the stress when evaluating the torque sensor axis may be either the tension or the compression direction.

【0028】ここで直径Dの丸棒に捻りを加えた場合の
トルクTと丸棒の表面に生じる引張応力σの関係は、概
ね下記の関係式(1)で表される。 σ=16T/(πD)3 …(1) 仮にトルクセンサ軸においてD=10(mm)とすれば、100(N
m)のトルクがかかった場合の軸表面の引張応力は、(1)
式より約50(MPa)と見積もることができる。実際の磁歪
式トルクセンサとして使用される場合に軸にかかる最大
トルクは、約500(Nm)以下であることが多く、引張応力
のレベルは、約250(MPa)までの応力範囲で評価すれば十
分である。上述の理由から250(MPa)の引張応力を負荷し
てトルクセンサ軸の特性を評価する場合、上述の軟化処
理を施した後、硬化熱処理を行った軸材に対して250(MP
a)以上の引張予歪を与えることによって、この軸材は本
発明の製造方法で作製するトルクセンサ軸となる。
Here, the relationship between the torque T when a round bar having a diameter D is twisted and the tensile stress σ generated on the surface of the round bar is generally expressed by the following relational expression (1). σ = 16T / (πD) 3 … (1) If D = 10 (mm) on the torque sensor axis, 100 (N
m), the tensile stress on the shaft surface is (1)
It can be estimated from the formula to be about 50 (MPa). When used as an actual magnetostrictive torque sensor, the maximum torque applied to the shaft is often about 500 (Nm) or less, and the tensile stress level can be evaluated in a stress range up to about 250 (MPa). It is enough. When the characteristics of the torque sensor shaft are evaluated by applying a tensile stress of 250 (MPa) for the above-described reason, the shaft material subjected to the above-described softening treatment and then subjected to the hardening heat treatment is subjected to 250 (MPa).
a) By giving the above-described tensile prestrain, this shaft becomes a torque sensor shaft manufactured by the manufacturing method of the present invention.

【0029】本実施例では、上述の軟化処理を施した材
料から、直径10mm×長さ80mmの丸棒試験片を機械加工に
より採取し、両端にM10ネジ加工を行った後、各材料を
硬化させる条件で熱処理を行い、材料の金属組織をマル
テンサイト系組織とした。この熱処理により、本実施例
の材料はFe基マルテンサイト系鋼で成る磁歪式トルクセ
ンサ材とした。この内、No.1〜2は本発明で好ましい軸
材の組成とした質量%でC含有量が0.1%未満の析出硬化型
Fe基マルテンサイト系鋼であり、No.3〜4はC含有量が0.
1%以上のFe基マルテンサイト系鋼である。各材質の熱処
理条件と熱処理後の硬さを表2に示す。
In this embodiment, a round bar test piece having a diameter of 10 mm and a length of 80 mm was sampled from the material subjected to the above-mentioned softening treatment by machining, and M10 screw processing was performed on both ends. Heat treatment was performed under the conditions to make the metal structure of the material a martensitic structure. By this heat treatment, the material of this example was a magnetostrictive torque sensor made of Fe-based martensite steel. Among them, No. 1-2 are precipitation hardening type having a C content of less than 0.1% by mass% as a preferred composition of the shaft material in the present invention.
Fe-based martensitic steel, No. 3-4 have a C content of 0.
Fe-based martensitic steel of 1% or more. Table 2 shows the heat treatment conditions of each material and the hardness after the heat treatment.

【0030】[0030]

【表2】 [Table 2]

【0031】表2から、何れの材料も40HRC以上の硬さ
となっており、構造的な硬さは維持されていることが分
かる。次に本実施例では、各軸材で成るトルクセンサ軸
の感度、ヒステリシス特性は、引張試験機とLCRメータ
を用いて以下の方法で評価した。上述の丸棒試験片にコ
イル長さ25mm、巻数100のサーチコイルをかぶせた後、
試験片は引張試験機に、サーチコイルはLCRメータにそ
れぞれ接続する。LCRメータの設定は、周波数f=80[kH
z]、最大印加磁場Hm=40[Am-1]とし、まず引張応力を掛
けない状態でコイルのインダクタンスの初期値L0[μH]
を測定する。この状態から引張応力の負荷と除荷を繰り
返し、引張応力の大きさを徐々に上げて行く。
From Table 2, it can be seen that each material has a hardness of 40 HRC or more, and the structural hardness is maintained. Next, in this example, the sensitivity and hysteresis characteristics of the torque sensor shaft composed of each shaft member were evaluated by the following method using a tensile tester and an LCR meter. After covering the above round bar test piece with a search coil with a coil length of 25 mm and 100 turns,
The test piece is connected to the tensile tester, and the search coil is connected to the LCR meter. The setting of the LCR meter is as follows: frequency f = 80 [kHz
z], the maximum applied magnetic field Hm = 40 [Am -1 ], and the initial value of the coil inductance L 0 [μH] without applying a tensile stress.
Is measured. From this state, the loading and unloading of the tensile stress are repeated to gradually increase the magnitude of the tensile stress.

【0032】引張応力は50[MPa]ごとに増加して行き、
最大負荷応力250[MPa]まで試験した。最大負荷応力を25
0[MPa]とした理由は、上述した様に実際のトルクセンサ
として使用される場合の最大トルクを考慮したからであ
る。なお、LCRメータにより測定されるインダクタンス
は、材料の比透磁率μrに相当する値である。上述のイ
ンダクタンス−応力特性から、各材料の感度S0とヒステ
リシスh0は下記の式で定義した。 感度:S0[nH/MPa]=(L負荷時−L0)/負荷応力…(2) ヒステリシス:h0[%]=100×(L除荷時−L0)/L0…(3)
The tensile stress increases every 50 [MPa],
The test was performed up to a maximum load stress of 250 [MPa]. Maximum load stress is 25
The reason for setting it to 0 [MPa] is to take into account the maximum torque when used as an actual torque sensor as described above. Note that the inductance measured by the LCR meter is a value corresponding to the relative magnetic permeability μr of the material. From the inductance-stress characteristics described above, the sensitivity S 0 and the hysteresis h 0 of each material were defined by the following equations. Sensitivity: S 0 [nH / MPa] = (L load -L 0 ) / Load stress… (2) Hysteresis: h 0 [%] = 100 × (L unload -L 0 ) / L 0 … (3 )

【0033】本実施例では、本発明の製造方法として25
0[MPa]の引張予歪を与えた後のインダクタンス−引張応
力特性を測定した。この250[MPa]の引張予歪を与えるこ
とにより、No.1〜4の各軸材は本発明の製造方法で作製
した磁歪式トルクセンサ軸となる。なお、No.1〜4の各
軸材の硬さは、予歪導入後も表2と同じ値を示した。本
発明の製造方法で作製した磁歪式トルクセンサ軸のイン
ダクタンス−引張応力特性の測定例として、軸材No.1で
成る磁歪式トルクセンサ軸の特性を図2に示す。
In the present embodiment, 25
The inductance-tensile stress characteristics after applying a tensile prestrain of 0 [MPa] were measured. By giving the tensile prestrain of 250 [MPa], the shaft members of Nos. 1 to 4 become the magnetostrictive torque sensor shafts manufactured by the manufacturing method of the present invention. In addition, the hardness of each shaft member of Nos. 1 to 4 showed the same value as in Table 2 even after the introduction of prestrain. FIG. 2 shows the characteristics of a magnetostrictive torque sensor shaft made of shaft material No. 1 as an example of measuring the inductance-tensile stress characteristics of the magnetostrictive torque sensor shaft manufactured by the manufacturing method of the present invention.

【0034】次に比較例の製造方法として、軸材は硬化
熱処理状態のままで引張予歪を与えない場合のインダク
タンス−引張応力特性を測定した。比較例の製造方法で
作製した磁歪式トルクセンサ軸のインダクタンス−引張
応力特性の測定例として、軸材No.1で成る磁歪式トルク
センサ軸の特性を図3に示す。また、本発明の製造方法
で作製した磁歪式トルクセンサ軸、及び比較例の製造方
法で作製した磁歪式トルクセンサ軸に対し、250[MPa]の
引張応力を負荷、除荷した際の各軸材で成るトルクセン
サ軸の感度、ヒステリシス特性を表3に示す。
Next, as a manufacturing method of a comparative example, the inductance-tensile stress characteristics in a case where the shaft material was not subjected to a tensile prestrain while being in a hardening heat treatment state were measured. As an example of measuring the inductance-tensile stress characteristics of the magnetostrictive torque sensor shaft manufactured by the manufacturing method of the comparative example, FIG. 3 shows the characteristics of the magnetostrictive torque sensor shaft made of shaft material No. 1. Further, with respect to the magnetostrictive torque sensor shaft manufactured by the manufacturing method of the present invention and the magnetostrictive torque sensor shaft manufactured by the manufacturing method of the comparative example, each axis when a tensile stress of 250 [MPa] is applied and unloaded. Table 3 shows the sensitivity and hysteresis characteristics of the torque sensor shaft made of a material.

【0035】[0035]

【表3】 [Table 3]

【0036】表3から、本発明の製造方法で作製した磁
歪式トルクセンサ軸は、予歪の効果により、低ヒステリ
シス特性が得られているが、比較例の製造方法で作製し
た磁歪式トルクセンサ軸のヒステリシスは大きいことが
分かる。また、本発明の製造方法で作製した磁歪式トル
クセンサ軸では、ヒステリシスは軸の材質にかかわらず
ゼロ近傍の0.1%以下まで低減することが分かる。トルク
センサ軸のヒステリシスの絶対値が0.1%以下であれば、
磁歪式トルクセンサとして、ヒステリシスによるトルク
測定精度の低下は無視することができる。また質量%で
Cが0.1%未満の軸材No.1〜2で成るトルクセンサ軸の感
度は、Cが0.1%以上の軸材No.3〜4で成るトルクセンサ
軸と比較して高く、その中でも本発明の好ましい組成範
囲である軸材No.1で成るトルクセンサ軸では、特に高い
感度が得られていることが分かる。
From Table 3, it can be seen that the magnetostrictive torque sensor shaft manufactured by the manufacturing method of the present invention has low hysteresis characteristics due to the effect of prestrain, but the magnetostrictive torque sensor shaft manufactured by the manufacturing method of the comparative example. It can be seen that the hysteresis of the axis is large. Further, it can be seen that in the magnetostrictive torque sensor shaft manufactured by the manufacturing method of the present invention, the hysteresis is reduced to around 0.1% or less near zero regardless of the material of the shaft. If the absolute value of the hysteresis of the torque sensor axis is 0.1% or less,
As a magnetostrictive torque sensor, a decrease in torque measurement accuracy due to hysteresis can be ignored. Also in mass%
The sensitivity of the torque sensor shaft composed of shaft materials No. 1 and 2 having C of less than 0.1% is higher than that of the torque sensor shaft composed of shaft materials No. 3 and 4 having C of 0.1% or more. It can be seen that a particularly high sensitivity is obtained with the torque sensor shaft made of the shaft material No. 1, which is a preferable composition range.

【0037】次に本発明では、導入する予歪の大きさと
方向、更に予歪導入の方法が重要となる。表3の結果か
ら、予歪導入後の感度が最も高い軸材No.1でなるトル
クセンサ軸に対して、予歪の大きさと方向、予歪導入の
方法を種々に変えて予歪を導入した後、250[MPa]の引張
応力を負荷した時の感度Sとヒステリシスhを測定し
た。予歪方向、予歪量、感度、ヒステリシスの特性値を
表4に纏めて示す。
Next, in the present invention, the magnitude and direction of the prestrain to be introduced and the method of introducing the prestrain are important. From the results in Table 3, the pre-strain was introduced by changing the pre-strain magnitude and direction and the method of pre-strain introduction for the torque sensor shaft made of the shaft material No. 1 with the highest sensitivity after the pre-strain introduction. After that, the sensitivity S and the hysteresis h when a tensile stress of 250 [MPa] was applied were measured. Table 4 summarizes the characteristic values of the predistortion direction, predistortion amount, sensitivity, and hysteresis.

【0038】[0038]

【表4】 [Table 4]

【0039】表4の各々の予歪導入方法a〜fについて
説明する。a〜cは本発明の製造方法であり、250[MPa]以
上の引張応力を予歪として与えた後、250[MPa]の引張応
力を負荷して感度、ヒステリシスの特性を評価した。d
〜fは比較例である。方法dでは250[MPa]より低い150[MP
a]の引張応力を予歪として与えた。また、方法eでは250
[MPa]の圧縮応力を予歪として与えた後、予歪と反対方
向に250[MPa]の引張応力を負荷して感度、ヒステリシス
の特性を評価した。方法fではショットピーニングによ
り予歪を導入した。このショットピーニングによる予歪
導入の方法は、特許2781071号に開示される技術に相当
する。
The prestrain introducing methods a to f in Table 4 will be described. a to c are production methods of the present invention, in which after applying a tensile stress of 250 [MPa] or more as a pre-strain, a tensile stress of 250 [MPa] is applied to evaluate the sensitivity and hysteresis characteristics. d
To f are comparative examples. In method d, 150 [MPa] lower than 250 [MPa]
a) tensile stress was given as prestrain. In method e, 250
After applying a compressive stress of [MPa] as pre-strain, a tensile stress of 250 [MPa] was applied in the opposite direction to the pre-strain to evaluate the sensitivity and hysteresis characteristics. In method f, predistortion was introduced by shot peening. This method of introducing predistortion by shot peening corresponds to the technique disclosed in Japanese Patent No. 2780771.

【0040】表4から、250[MPa]以上の引張応力を予歪
として与えた本発明の方法a〜cの場合には、ヒステリシ
スの絶対値はゼロ近傍の0.1%以下となっている。一方、
比較例d〜fの結果を見ると、導入した予歪と反対方向の
歪に対しては、ヒステリシスを除去する効果は無く、ま
た導入した予歪より大きい歪に対しても、ヒステリシス
を除去する効果が無いことが分かる。また表3の予歪な
しの場合と比較すると、ショットピーニングによっても
ヒステリシスは低減するが、本発明の製造方法で予歪を
導入した場合と比較すると、ヒステリシス低減の効果は
小さいことが分かる。
As shown in Table 4, in the methods a to c of the present invention in which a tensile stress of 250 [MPa] or more was applied as a pre-strain, the absolute value of the hysteresis was 0.1% or less near zero. on the other hand,
According to the results of Comparative Examples d to f, there is no effect of removing the hysteresis for the strain in the direction opposite to the introduced pre-strain, and the hysteresis is also removed for the strain larger than the introduced pre-strain. It turns out that there is no effect. Further, although the hysteresis is reduced by shot peening as compared with the case without predistortion in Table 3, it can be seen that the effect of reducing the hysteresis is smaller than when prestrain is introduced by the manufacturing method of the present invention.

【0041】以上の実験結果から、本発明の製造方法で
作製した磁歪式トルクセンサ軸は低ヒステリシス特性に
優れ、また本発明で好ましい組成とした軸材と組み合わ
せて製造すると、高感度、高硬度の特性が得られるの
で、磁歪式トルクセンサ軸として特に使い易いことが分
かる。更に、この製造方法で作製した軸を用いて成る磁
歪式トルクセンサは、精度良くトルク検出を行うことが
できるので、特に電動アシスト自転車や工作機械、更に
ロボット分野での用途に適したものとなる。
From the above experimental results, the magnetostrictive torque sensor shaft manufactured by the manufacturing method of the present invention has excellent low hysteresis characteristics, and when manufactured in combination with the shaft material having the preferred composition of the present invention, high sensitivity and high hardness can be obtained. It can be understood that the characteristics described above are particularly easy to use as a magnetostrictive torque sensor shaft. Furthermore, a magnetostrictive torque sensor using a shaft manufactured by this manufacturing method can accurately detect torque, and is particularly suitable for use in electric assist bicycles and machine tools, and further in the field of robots. .

【0042】[0042]

【発明の効果】本発明の製造方法によれば磁歪式トルク
センサ軸のヒステリシス特性を飛躍的に改善することが
でき、更に感度、硬さの高い軸材と組み合わせた製造方
法を適用することによって、高感度、低ヒステリシス、
高硬度の磁歪式トルクセンサ軸を実現することができ
る。本発明の製造方法で作製した磁歪式トルクセンサ軸
は、トルクセンサの検出精度を高めることができる。本
発明は磁歪式トルクセンサの実用化にとって欠くことの
できない技術となる。
According to the manufacturing method of the present invention, the hysteresis characteristics of the magnetostrictive torque sensor shaft can be remarkably improved, and the manufacturing method combined with a shaft material having high sensitivity and hardness can be applied. , High sensitivity, low hysteresis,
A high-hardness magnetostrictive torque sensor shaft can be realized. The detection accuracy of the torque sensor can be enhanced by the magnetostrictive torque sensor shaft manufactured by the manufacturing method of the present invention. The present invention is an indispensable technique for practical use of a magnetostrictive torque sensor.

【図面の簡単な説明】[Brief description of the drawings]

【図1】トルクセンサの出力特性を示す模式図である。FIG. 1 is a schematic diagram showing output characteristics of a torque sensor.

【図2】本発明の製造方法で作製したトルクセンサ軸の
インダクタンス−引張応力特性を示す一例である。
FIG. 2 is an example showing inductance-tensile stress characteristics of a torque sensor shaft manufactured by the manufacturing method of the present invention.

【図3】比較例の製造方法で作製したトルクセンサ軸の
インダクタンス−引張応力特性を示す一例である。
FIG. 3 is an example showing inductance-tensile stress characteristics of a torque sensor shaft manufactured by a manufacturing method of a comparative example.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 磁歪式トルクセンサの軸材に対して、ト
ルクセンサ使用時の軸のねじり方向と同一の方向に、軸
に負荷される最大トルク以上の大きさのトルクを予歪と
して与えることを特徴とする磁歪式トルクセンサ軸の製
造方法。
1. A torque greater than a maximum torque applied to a shaft is applied to a shaft of a magnetostrictive torque sensor in the same direction as the torsion direction of the shaft when the torque sensor is used, as a pre-distortion. A method for manufacturing a magnetostrictive torque sensor shaft, characterized in that:
【請求項2】 磁歪式トルクセンサの軸材は、質量%で
C:0.1%未満の析出硬化型Fe基マルテンサイト系鋼でなる
ことを特徴とする請求項1に記載の磁歪式トルクセンサ
軸の製造方法。
2. The shaft material of the magnetostrictive torque sensor is expressed in mass%.
2. The method for manufacturing a magnetostrictive torque sensor shaft according to claim 1, wherein the magnetostrictive torque sensor shaft is made of Fe: less than 0.1% precipitation hardening type Fe-based martensitic steel.
【請求項3】 磁歪式トルクセンサの軸材は、質量%で
C:0.1%未満、Si:2.0%以下、Mn:2.0%以下、Ni:2.0〜10.0
%、Cr:10.0〜25.0%と、選択元素として(Cu:0.5〜5.0%、
Al:0.1〜2.0%、Ti:0.1〜2.0%、Nb+Ta:0.05〜2.0%)のう
ち一種または二種以上を含有し、残部が実質的にFeから
なることを特徴とする請求項1または2に記載の磁歪式
トルクセンサ軸の製造方法。
3. The shaft material of the magnetostrictive torque sensor is expressed in mass%.
C: less than 0.1%, Si: 2.0% or less, Mn: 2.0% or less, Ni: 2.0 to 10.0
%, Cr: 10.0 to 25.0%, and as a selected element (Cu: 0.5 to 5.0%,
Al: 0.1 to 2.0%, Ti: 0.1 to 2.0%, Nb + Ta: 0.05 to 2.0%), and the balance substantially consists of Fe. Or a method for manufacturing a magnetostrictive torque sensor shaft according to item 2.
JP2001149158A 2001-05-18 2001-05-18 Method for manufacturing magnetostrictive torque sensor shaft Pending JP2002340701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001149158A JP2002340701A (en) 2001-05-18 2001-05-18 Method for manufacturing magnetostrictive torque sensor shaft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001149158A JP2002340701A (en) 2001-05-18 2001-05-18 Method for manufacturing magnetostrictive torque sensor shaft

Publications (1)

Publication Number Publication Date
JP2002340701A true JP2002340701A (en) 2002-11-27

Family

ID=18994360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001149158A Pending JP2002340701A (en) 2001-05-18 2001-05-18 Method for manufacturing magnetostrictive torque sensor shaft

Country Status (1)

Country Link
JP (1) JP2002340701A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017131360A1 (en) 2017-01-11 2018-07-12 Hitachi Metals, Ltd. METHOD FOR PRODUCING A MAGNETOSTRICTIVE TORQUE SENSOR
US10983019B2 (en) 2019-01-10 2021-04-20 Ka Group Ag Magnetoelastic type torque sensor with temperature dependent error compensation
US11486776B2 (en) 2016-12-12 2022-11-01 Kongsberg Inc. Dual-band magnetoelastic torque sensor
US11821763B2 (en) 2016-05-17 2023-11-21 Kongsberg Inc. System, method and object for high accuracy magnetic position sensing
US12025521B2 (en) 2020-02-11 2024-07-02 Brp Megatech Industries Inc. Magnetoelastic torque sensor with local measurement of ambient magnetic field
US12152949B2 (en) * 2018-12-20 2024-11-26 Nsk Ltd. Method of manufacturing magnetostrictive torque sensor shaft
US12292350B2 (en) 2019-09-13 2025-05-06 Brp Megatech Industries Inc. Magnetoelastic torque sensor assembly for reducing magnetic error due to harmonics

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11821763B2 (en) 2016-05-17 2023-11-21 Kongsberg Inc. System, method and object for high accuracy magnetic position sensing
US11486776B2 (en) 2016-12-12 2022-11-01 Kongsberg Inc. Dual-band magnetoelastic torque sensor
DE102017131360A1 (en) 2017-01-11 2018-07-12 Hitachi Metals, Ltd. METHOD FOR PRODUCING A MAGNETOSTRICTIVE TORQUE SENSOR
US11866798B2 (en) 2017-01-11 2024-01-09 Proterial, Ltd. Method for manufacturing magnetostrictive torque sensor shaft
US12152949B2 (en) * 2018-12-20 2024-11-26 Nsk Ltd. Method of manufacturing magnetostrictive torque sensor shaft
US10983019B2 (en) 2019-01-10 2021-04-20 Ka Group Ag Magnetoelastic type torque sensor with temperature dependent error compensation
US12292350B2 (en) 2019-09-13 2025-05-06 Brp Megatech Industries Inc. Magnetoelastic torque sensor assembly for reducing magnetic error due to harmonics
US12025521B2 (en) 2020-02-11 2024-07-02 Brp Megatech Industries Inc. Magnetoelastic torque sensor with local measurement of ambient magnetic field
US12281951B2 (en) 2020-02-11 2025-04-22 Brp Megatech Industries Inc. Magnetoelastic torque sensor with local measurement of ambient magnetic field

Similar Documents

Publication Publication Date Title
KR101048946B1 (en) Spring steel, method for producing spring using same and spring produced therefrom
EP1801253B1 (en) High strength spring and method for manufacture thereof
KR101617985B1 (en) Case hardening steel material with little heat-treatment strain
US8900511B2 (en) High-strength nonmagnetic stainless steel, and high-strength nonmagnetic stainless steel part and process for producing the same
EP1491647B1 (en) Steel wire for hard drawn spring excellent in fatigue strength and resistance to settling, and hard drawn spring
EP1091006B1 (en) Process of producing steel strip or sheet comprising strain-induced martensite
KR20050105281A (en) Steel wire for high strength spring excellent in workability and high strength spring
EP2357262A1 (en) Crankshaft and production method therefor
AU2003200351A1 (en) Duplex stainless steel for urea manufacturing plants
CA3075882A1 (en) Austenitic stainless steel and production method thereof
JP4267234B2 (en) Hot rolled steel for machine structure with excellent forgeability and machinability
JPH05320827A (en) Steel for spring excellent in fatigue property and steel wire for spring as well as spring
JP4185997B2 (en) Manufacturing method of bearing parts
JP2002340701A (en) Method for manufacturing magnetostrictive torque sensor shaft
US20240150861A1 (en) Cold-workable mechanical structural steel, and method for manufacturing same
US5985044A (en) Forged, non-heat treated, nitrided steel parts and process of making
JP2002333375A (en) Magnetostrictive torque sensor material, magnetostrictive torque sensor shaft using the same and magnetostrictive torque sensor using the shaft
KR101446135B1 (en) Steel for suspension spring with high strength and excellent fatigue and method producing the same
JP2015199971A (en) High strength nonmagnetic stainless steel and stainless steel component
EP3214189B1 (en) Method for manufacturing a quenched and tempered seamless pipe for a high-strength hollow spring
JP4302480B2 (en) High hardness steel with excellent cold workability
JP3819529B2 (en) Case-hardened steel with excellent cold workability
JP3693577B2 (en) Torque sensor shaft and torque sensor using the shaft
JPH08246106A (en) High strength and high yield strength austenitic stainless steel wire excellent in stress corrosion cracking resistance and manufacturing method thereof
JP2000129400A (en) Annealed martensitic stainless steel excellent in strength, toughness, and spring characteristic