JPH05320827A - Steel for spring excellent in fatigue property and steel wire for spring as well as spring - Google Patents
Steel for spring excellent in fatigue property and steel wire for spring as well as springInfo
- Publication number
- JPH05320827A JPH05320827A JP4160225A JP16022592A JPH05320827A JP H05320827 A JPH05320827 A JP H05320827A JP 4160225 A JP4160225 A JP 4160225A JP 16022592 A JP16022592 A JP 16022592A JP H05320827 A JPH05320827 A JP H05320827A
- Authority
- JP
- Japan
- Prior art keywords
- spring
- steel
- fatigue
- strength
- inclusions
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 62
- 239000010959 steel Substances 0.000 title claims abstract description 62
- 239000002244 precipitate Substances 0.000 claims abstract description 33
- 230000000717 retained effect Effects 0.000 claims abstract description 26
- 238000005496 tempering Methods 0.000 claims abstract description 26
- 150000004767 nitrides Chemical class 0.000 claims abstract description 19
- 238000000137 annealing Methods 0.000 claims abstract description 14
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 6
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 6
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 6
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 5
- 239000012535 impurity Substances 0.000 claims abstract description 4
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 3
- 229910001566 austenite Inorganic materials 0.000 claims description 30
- 229910000639 Spring steel Inorganic materials 0.000 claims description 28
- 238000010791 quenching Methods 0.000 claims description 20
- 230000000171 quenching effect Effects 0.000 claims description 20
- 238000002844 melting Methods 0.000 claims description 18
- 230000008018 melting Effects 0.000 claims description 18
- 239000002344 surface layer Substances 0.000 claims description 14
- 229910052799 carbon Inorganic materials 0.000 abstract description 11
- 229910052758 niobium Inorganic materials 0.000 abstract description 3
- 230000001105 regulatory effect Effects 0.000 abstract description 3
- 229910052750 molybdenum Inorganic materials 0.000 abstract description 2
- 229910052742 iron Inorganic materials 0.000 abstract 1
- 230000001965 increasing effect Effects 0.000 description 14
- 235000019589 hardness Nutrition 0.000 description 12
- 238000012360 testing method Methods 0.000 description 11
- 239000000463 material Substances 0.000 description 10
- 239000000203 mixture Substances 0.000 description 10
- 238000005480 shot peening Methods 0.000 description 10
- 230000000694 effects Effects 0.000 description 9
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 8
- 238000005452 bending Methods 0.000 description 8
- 238000009661 fatigue test Methods 0.000 description 8
- 238000009826 distribution Methods 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 238000005096 rolling process Methods 0.000 description 6
- 238000005482 strain hardening Methods 0.000 description 5
- 238000005728 strengthening Methods 0.000 description 5
- 238000005266 casting Methods 0.000 description 4
- 239000003610 charcoal Substances 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 230000002829 reductive effect Effects 0.000 description 4
- 238000007670 refining Methods 0.000 description 4
- 238000005491 wire drawing Methods 0.000 description 4
- 230000006378 damage Effects 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 239000012467 final product Substances 0.000 description 3
- 229910000734 martensite Inorganic materials 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 150000001247 metal acetylides Chemical class 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000004804 winding Methods 0.000 description 3
- 238000005275 alloying Methods 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000009628 steelmaking Methods 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910001563 bainite Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005261 decarburization Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000004453 electron probe microanalysis Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000003631 expected effect Effects 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000005087 graphitization Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000005121 nitriding Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000004881 precipitation hardening Methods 0.000 description 1
- 230000001603 reducing effect Effects 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Landscapes
- Heat Treatment Of Articles (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、疲労特性の優れたばね
用鋼および同鋼を用いて製造した高強度のばね用鋼線並
びにばねに関し、このばねは、極めて高い疲労強度が要
求される自動車用エンジンの弁ばねやクラッチばね、ブ
レーキばね等として有用である。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a spring steel having excellent fatigue characteristics, a high-strength steel wire for springs manufactured by using the steel, and a spring. The spring is required for automobiles requiring extremely high fatigue strength. It is useful as a valve spring, a clutch spring, a brake spring, etc. of a commercial engine.
【0002】[0002]
【従来の技術】最近、自動車の軽量化や高出力化の要請
が高まってくるにつれてエンジンやサスペンション等に
使用される弁ばねや懸架ばね等のばねにおいても高応力
設計が指向されている。そのためこれらのばねには、負
荷応力の増大に対応するため、耐疲労性や耐へたり性に
優れたものが強く望まれている。とりわけ弁ばねについ
ての疲労強度増大の要請は非常に強く、従来鋼の中でも
疲労強度の優れたものとされているSWOSC−V(J
IS G 3566)でも対応が困難になってきてい
る。2. Description of the Related Art Recently, as the demand for weight reduction and higher output of automobiles has increased, high stress design has been directed to springs such as valve springs and suspension springs used in engines and suspensions. Therefore, it is strongly desired that these springs have excellent fatigue resistance and sag resistance in order to cope with an increase in load stress. Especially, the demand for increasing the fatigue strength of the valve spring is very strong, and SWOSC-V (J
Even IS G 3566) has become difficult to deal with.
【0003】疲労強度の向上に、素材の高強度化、非金
属介在物の微細化およびばね表層部の強化等が有効であ
ることは良く知られており、例えば合金元素の添加によ
り高強度化を図った鋼(例えば特開昭63−21695
1号公報)や、高強度化に加えて介在物の微細化を図っ
た鋼(例えば特開昭62−107044号公報)等が提
案されている。またばねについては、例えば表面近傍の
最大残留応力等を規定した高強度ばね(例えば特開昭6
4−83644号公報)等が開示されている。It is well known that increasing the strength of the material, refining the non-metallic inclusions, and strengthening the surface layer of the spring are effective in improving the fatigue strength. For example, the addition of an alloy element increases the strength. Steel (for example, JP-A-63-21695)
No. 1), steel having higher strength and finer inclusions (for example, Japanese Patent Laid-Open No. 62-107044) and the like have been proposed. Regarding the spring, for example, a high-strength spring that defines the maximum residual stress in the vicinity of the surface (for example, Japanese Patent Laid-Open No.
No. 4-83644) is disclosed.
【0004】[0004]
【発明が解決しようとする課題】一般にばねの疲労破壊
は、表面を起点とする場合と介在物等の内部欠陥を起点
とする場合に大別される。ばね素材を高強度化すること
は表面からの疲労破壊を抑制し、疲労強度を高めるうえ
で有効であるが、反面強度を上げると介在物等の欠陥に
対する感受性が増大し、この欠陥を起点とした破壊が生
じ易くなる。従って鋼を高強度化するだけでは疲労強度
の向上に限界がある。Generally, the fatigue fracture of springs is roughly classified into the case of starting from the surface and the case of starting from internal defects such as inclusions. Strengthening the spring material is effective in suppressing fatigue fracture from the surface and increasing fatigue strength, but increasing strength, on the other hand, increases the susceptibility to defects such as inclusions. It is easy for the damage to occur. Therefore, there is a limit to the improvement of fatigue strength only by increasing the strength of steel.
【0005】そこで高強度で且つ優れた疲労強度を得る
ための手段として、介在物の微細化が要求される様にな
り、様々の研究が進められている。例えば酸化物系介在
物を低融点で延性のある組成に制御し、線材圧延等の熱
間加工により延伸することによって介在物を微細化する
ことが試みられており、適正な酸化物系介在物の組成と
しては、例えば先に示した特開昭62−107044号
公報では、Al2 O3:20%以下,MnO:10〜8
0%,SiO2 :20〜60%,MgO:15%以下,
CaO:50%以下の要件を満たすものが開示されてい
る。Therefore, as a means for obtaining high strength and excellent fatigue strength, miniaturization of inclusions is required, and various studies are being conducted. For example, it has been attempted to control the oxide inclusions to have a low melting point and a ductile composition, and to make the inclusions fine by stretching by hot working such as wire rolling. the composition of, in JP 62-107044 discloses shown example above, Al 2 O 3: 20% or less, MnO: 10 to 8
0%, SiO 2: 20~60% , MgO: 15% or less,
CaO: A substance satisfying the requirement of 50% or less is disclosed.
【0006】しかしこれらの組成の酸化物系介在物の中
には、非常に高融点で硬質のものも含まれており、この
様な高融点で硬質の酸化物系介在物は、圧延等の加工に
よって十分に微細化することができず、期待されるほど
の疲労特性改善効果は得られない。However, the oxide-based inclusions having these compositions include hard ones having a very high melting point, and such hard oxide-based inclusions having a high melting point are hard to be rolled. It cannot be sufficiently miniaturized by working, and the expected effect of improving fatigue properties cannot be obtained.
【0007】また、本発明者らが確認したところによる
と、酸化物系介在物がある程度微細化されてくるにつれ
て、これまで殆ど問題とされなかった炭化物系析出物や
窒化物系析出物(以下、炭・窒化物系析出物ということ
がある)を起点とする疲労破壊が生じる様になり、上記
の様な酸化物系介在物を対象とする介在物の微細化だけ
では疲労強度の向上に限界が見られることが明らかとな
ってきた。Further, according to the confirmation by the present inventors, as the oxide inclusions become finer to some extent, carbide precipitates and nitride precipitates (hereinafter , Which is sometimes referred to as carbon / nitride-based precipitates) causes fatigue fracture. Improving the fatigue strength by simply refining the inclusions targeting oxide-based inclusions as described above. It has become clear that there are limits.
【0008】一方、たとえ使用鋼材が同じ組成のもので
あったとしても、最終製品であるばねの疲労特性に差が
生じることもしばしば経験される。これは、従来から行
なわれている疲労特性の改善手段が、鋼の成分組成や酸
化物系介在物等についての製鋼段階での検討が主体であ
り、ばね素線である鋼線や最終製品であるばねに加工す
るまでの加工条件や熱処理条件等を加味した上で鋼材の
持つ性能を最大限有効に生かすための検討が十分に行な
われていないためと考えられる。On the other hand, even if the steel materials used have the same composition, it often happens that the fatigue properties of the final product springs differ. This is because the conventional means for improving fatigue properties is to study the chemical composition of steel and oxide inclusions at the steelmaking stage. It is considered that this is because sufficient consideration has not been given to making the best use of the performance of steel materials, taking into consideration the processing conditions until processing into a certain spring and the heat treatment conditions.
【0009】本発明は上記の様な事情に着目してなされ
たものであって、その目的は、従来材に較べて疲労特性
の一段と改善されたばね用鋼及びばね用鋼線並びにばね
を提供しようとするものである。The present invention has been made in view of the above circumstances, and an object thereof is to provide a spring steel, a spring steel wire, and a spring for which fatigue characteristics are further improved as compared with conventional materials. It is what
【0010】[0010]
【課題を解決するための手段】上記の目的を達成するこ
とのできた本発明に係るばね用鋼の構成は、重量比で
C:0.5 〜0.8 %,Si:0.8 〜2.5 %,Mn:0.4 〜
1.3 %,Cr: 0.4〜2%を含有し、且つV:0.05〜0.5
%及び/又はNb:0.05〜0.5 %を含み、残部がFe
および不可避不純物からなる鋼からなり、或はこれらに
加えて更にNi:0.1〜2 %及び/又はMo: 0.1〜0.5
%を含み、該鋼中に含まれる酸化物系介在物の融点が
1500℃以下であり、且つ炭化物系析出物および窒化
物系析出物の大きさが15μm以下であるところに特徴
を有するものである。The composition of the spring steel according to the present invention, which has been able to achieve the above object, is C: 0.5-0.8%, Si: 0.8-2.5%, Mn: 0.4- by weight ratio.
1.3%, Cr: 0.4-2%, and V: 0.05-0.5
% And / or Nb: 0.05 to 0.5% with the balance Fe
And steel inevitable impurities, or in addition to these, Ni: 0.1 to 2% and / or Mo: 0.1 to 0.5
%, The melting point of oxide inclusions contained in the steel is 1500 ° C. or less, and the size of carbide precipitates and nitride precipitates is 15 μm or less. is there.
【0011】そしてこうした要件を満たすばね用鋼を焼
入れ・焼戻し処理し、結晶粒度を11番以上、残留オー
ステナイト量を3〜20%、引張強さを205kgf/mm2
以上、400℃以上での低温焼鈍後の耐力比を0.95以下
としたものは、ばね用鋼線として非常に優れたものであ
る。またこのばね用鋼線を素材として残留応力が下記
[I]式の要件を満たし、且つ表層部の最高硬さ(ビッ
カース硬さ)が700以上を有するばねは殊に疲労特性
において非常に優れたものである。Then, the spring steel satisfying these requirements is quenched and tempered to obtain a grain size of 11 or more, a retained austenite amount of 3 to 20%, and a tensile strength of 205 kgf / mm 2.
As described above, the steel having a yield strength ratio of 0.95 or less after low temperature annealing at 400 ° C. or higher is very excellent as a spring steel wire. Further, the spring having the residual stress satisfying the requirements of the following formula [I] and having the maximum hardness (Vickers hardness) of 700 or more in the surface layer using this spring steel wire as a material is particularly excellent in fatigue characteristics. It is a thing.
【0012】[0012]
【数2】 [Equation 2]
【0013】[0013]
【作用】本発明の構成は上記の通りであるが、その要点
を示すと、まずばね用鋼については、 焼入れ・焼戻し後に高強度、高靭性を得るため合金元
素の種類および含有量を特定し、 酸化物系介在物の融点を、熱間もしくは冷間加工時の
延伸工程で十分に微細化できる様低めに設定すると共
に、 酸化物系介在物を微細化することによって新たにクロ
ーズアップされてくる炭・窒化物系析出物による疲労特
性への悪影響を抑えるため、炭・窒化物系析出物の大き
さを特定したところに特徴があり、 またばね用鋼線においては、 焼入れ・焼戻し後に高強度で且つばね成形に耐える靭
性や延性を得るために、残留オーステナイト量及び結晶
粒度を特定すると共に、 疲労特性を高めるため残留オーステナイト量及び耐力
比を特定したところに特徴があり、 更に最終製品であるばねにおいては、 疲労特性を高めるために残留応力分布を特定し、殊に
表層部の残留圧縮応力を増加して表面からの破壊を抑制
すると共に、内部の引張残留応力を減少して介在物を起
点とする破壊を抑制し、且つ、 表面からの破壊を抑制して疲労強度を高めるため、表
層部の硬さを特定したところに特徴を有するものであ
る。The structure of the present invention is as described above. The main points are as follows. First, for spring steel, the type and content of alloying elements are specified to obtain high strength and high toughness after quenching and tempering. , The melting point of oxide inclusions is set to a low level so that it can be sufficiently refined in the drawing step during hot or cold working, and by making the oxide inclusions finer, a new close-up is achieved. The feature is that the size of the charcoal / nitride-based precipitates is specified in order to suppress the adverse effect on the fatigue properties of the charcoal / nitride-based precipitates.The steel wire for springs has a high temperature after quenching / tempering. In order to obtain strength and toughness and ductility that can withstand spring forming, the amount of retained austenite and the grain size are specified, and the amount of retained austenite and the yield strength ratio are specified to improve fatigue properties. Furthermore, in the final product, the spring, the residual stress distribution is specified to improve the fatigue characteristics, and in particular, the residual compressive stress in the surface layer is increased to suppress fracture from the surface and the internal tensile residual stress. In order to suppress the fracture caused by inclusions as a starting point and to suppress the fracture from the surface to enhance the fatigue strength, the characteristic is that the hardness of the surface layer portion is specified.
【0014】以下、本発明の構成および作用効果を詳細
に説明していく。まず本発明に係るばね用鋼の成分組成
を定めた理由について述べる。Hereinafter, the structure, operation and effect of the present invention will be described in detail. First, the reason for defining the composition of the spring steel according to the present invention will be described.
【0015】C:0.5 〜0.8 % Cは高応力が負荷されるばね鋼として十分な強度を確保
するために欠くことのできない元素であるが、多過ぎる
と靭・延性が極端に悪くなるので、C含有量は0.5 〜0.
8 %でなければならない。 Si:0.8 〜2.5 % Siは製鋼時の脱酸剤として必要な成分であり、またフ
ェライト中に固溶して素地の強度を高める効果も有して
おり、こうした効果は0.8 %以上含有させることによっ
て有効に発揮される。しかし多過ぎると靭・延性が悪く
なるばかりでなく、表面の脱炭や疵等が増加して耐疲労
性が悪くなるので2.5 %以下に抑えなければならない。C: 0.5-0.8% C is an element that is indispensable for securing sufficient strength as a spring steel to which high stress is applied, but if it is too much, the toughness and ductility will be extremely deteriorated. C content is 0.5 to 0.
Must be 8%. Si: 0.8 to 2.5% Si is a necessary component as a deoxidizing agent during steel making, and also has the effect of forming a solid solution in ferrite to enhance the strength of the base material, and such an effect should be included by 0.8% or more. Is effectively demonstrated by. However, if the amount is too large, not only the toughness and ductility deteriorate, but also the surface decarburization and flaws increase and the fatigue resistance deteriorates. Therefore, it must be kept to 2.5% or less.
【0016】Mn: 0.4〜1.3 % Mnも鋼の脱酸に有効な元素であり、また焼入れ性を高
めて強度向上に寄与するが、多過ぎると靭・延性が悪く
なるので、0.4 〜1.3 %の範囲に定めた。 Cr:0.4 〜2 % CrはCの活量を低下させて圧延時や熱処理時の脱酸を
防止すると共に炭化物の黒鉛化抑制に有効な元素である
が、多過ぎると靭・延性が悪くなるので0.4 〜2 %の範
囲と定めた。Mn: 0.4 to 1.3% Mn is also an element effective in deoxidizing steel and contributes to the improvement of hardenability by strengthening strength, but if too much, toughness and ductility deteriorate, so 0.4 to 1.3% Stipulated in the range of. Cr: 0.4 to 2% Cr is an element that reduces the activity of C to prevent deoxidation during rolling and heat treatment and is effective in suppressing graphitization of carbides, but if too much, toughness and ductility deteriorate. Therefore, the range is set to 0.4 to 2%.
【0017】V及び/又はNb:夫々0.05〜0.5 % V,Nbは、焼入れ・焼戻し等の熱処理時において結晶
粒を微細化する作用があり、靭・延性を向上させる効果
がある。しかも焼入れ・焼戻し処理およびばね成形後の
歪取り焼鈍時に2次析出硬化を起こして高強度化にも寄
与する。しかし多過ぎると、後述する如く造塊段階で巨
大な炭化物あるいは窒化物を析出し易くなるので、夫々
0.05〜0.5 %の範囲にしなければならない。V and / or Nb: 0.05% to 0.5%, respectively V and Nb have the effect of refining crystal grains during heat treatment such as quenching and tempering, and have the effect of improving toughness and ductility. In addition, secondary precipitation hardening occurs during quenching / tempering and strain relief annealing after spring forming, which also contributes to higher strength. However, if the amount is too large, it becomes easy to deposit huge carbides or nitrides in the ingot-making step, as described below.
It should be in the range of 0.05 to 0.5%.
【0018】Ni: 0.1〜2.0 %及び/又はMo: 0.1
〜0.5 % NiおよびMoも焼入れ・焼戻し後の靭・延性を高める
のに有効な元素であり、しかも焼入れ性を高めて高強度
化にも寄与する。しかし多過ぎると圧延においてベイナ
イトあるいはマルテンサイト組織が発生し、靭延性の低
下を招くため、Niは 0.1〜2 %、Moは 0.1〜0.5 %
と定めた。Ni: 0.1 to 2.0% and / or Mo: 0.1
.About.0.5% Ni and Mo are also effective elements for enhancing the toughness and ductility after quenching and tempering, and also contribute to the strengthening by enhancing the quenchability. However, if the amount is too large, bainite or martensite structure is generated in rolling, which leads to deterioration in toughness and ductility.
I decided.
【0019】次に、本発明に係るばね用鋼の特徴である
酸化物系介在物の融点および炭・窒化物系析出物の大き
さを定めた理由について説明する。ここでいう酸化物系
介在物の融点は、加工方向に平行な面または疲労起点に
おける介在物の組成をEPMAによって定量分析し、文
献「酸化物の相平衡」(1971.1.10技報堂)等
に記載された状態図から判定したものである。また炭・
窒化物系析出物とは、焼入れ・焼戻し処理の過程で析出
する様な微細なものではなく、造塊または連続鋳造工程
で鋼塊または鋳片の冷却時等に析出する数十μm程度の
比較的大きなもののことであり、その代表的なものとし
てはV系やNb系等の炭化物、窒化物または炭・窒化物
が挙げられる。Next, the reason for determining the melting point of oxide inclusions and the size of carbon / nitride precipitates, which are features of the steel for springs according to the present invention, will be described. The melting point of the oxide-based inclusions referred to here is obtained by quantitatively analyzing the composition of the inclusions on a plane parallel to the working direction or at the fatigue starting point by EPMA, and refer to the document "Phase Equilibrium of Oxides" (1971.1.10 Gihodo) etc. It was determined from the state diagram described in 1. Also charcoal
Nitride-based precipitates are not such fine particles that precipitate during quenching and tempering processes, but a few tens of μm that precipitate during cooling of steel ingots or slabs during ingot casting or continuous casting V-based and Nb-based carbides, nitrides, and charcoal / nitrides are typical examples.
【0020】本発明者等は前述の様な課題に沿って研究
を進める中で、従来よりも高負荷応力を受けた場合の疲
労起点となる酸化物系介在物の融点や介在物の大きさ
(サイズ)と疲労寿命の関係について検討したところ、
以下に示す様な知見を得た。即ち1つは、酸化物系介在
物の組成が融点1500℃以下であれば、造塊あるいは
鋳片からの分塊および圧延等の熱間加工工程および伸線
等の冷間加工工程で、加工方向に対して垂直な方向での
介在物の大きさが著しく小さくなり、疲労強度の向上に
寄与すること、もう1つは、酸化物系介在物の融点を下
げることにより介在物を微細化し、それにより介在物起
点の疲労破壊を抑制したとしても、従来では疲労起点に
は殆ど現われなかった炭・窒化物系析出物を起点とする
疲労破壊の発生が顕著になることであり、この場合、酸
化物系介在物と同程度の大きさの析出物であっても疲労
寿命が短くなること、しかもこれらの介在物の大きさ
は、熱間加工あるいは冷間加工によっても殆ど減少しな
いことも明らかになってきた。The inventors of the present invention, while proceeding with the research along the above-mentioned problems, have a melting point of oxide inclusions and a size of inclusions which become fatigue starting points when subjected to higher load stress than before. After examining the relationship between (size) and fatigue life,
The following findings were obtained. That is, if the composition of the oxide-based inclusions is a melting point of 1500 ° C. or less, one is a hot working step such as ingot casting or slab casting and rolling, and a cold working step such as wire drawing. The size of the inclusions in the direction perpendicular to the direction is significantly reduced, which contributes to the improvement of fatigue strength. Secondly, the melting point of the oxide-based inclusions is lowered to make the inclusions finer, Even if it suppresses the fatigue fracture at the starting point of inclusions, the occurrence of fatigue fracture starting from carbon / nitride-based precipitates, which has hardly appeared in the conventional fatigue starting point, becomes remarkable. It is also clear that the fatigue life is shortened even with precipitates of the same size as oxide-based inclusions, and the size of these inclusions is hardly reduced even by hot or cold working. Has become.
【0021】本発明において酸化物系介在物の融点およ
び炭・窒化物系析出物の大きさを定めた理由はこうした
知見に基づくものであり、酸化物系介在物の融点が15
00℃以下であれば、熱間加工または冷間加工時におけ
る介在物サイズの減少が著しく、疲労強度の向上に効果
的であるところから酸化物系介在物の融点は1500℃
以下に定めた。この場合、通常の加工度で伸線加工した
場合の該介在物の大きさは概20μm以下となる。The reason why the melting point of oxide inclusions and the size of carbon / nitride precipitates are determined in the present invention is based on these findings.
If the temperature is 00 ° C or lower, the size of inclusions during hot working or cold working is significantly reduced, and it is effective in improving fatigue strength. Therefore, the melting point of oxide inclusions is 1500 ° C.
Defined below. In this case, the size of the inclusions when wire drawing is performed with a normal workability is about 20 μm or less.
【0022】一方、炭・窒化物系析出物については、圧
延等の熱間加工や伸線等の冷間加工でもその大きさは殆
ど変わらず、また酸化物系介在物に較べてその性状も異
なり、酸化物系介在物と同程度の大きさでは疲労寿命が
悪くなるため、炭・窒化物系析出物の大きさは15μm
以下とした。On the other hand, the size of the carbon / nitride-based precipitates hardly changes even during hot working such as rolling or cold working such as wire drawing, and the properties thereof are also higher than those of oxide inclusions. In contrast, if the size is the same as that of oxide inclusions, the fatigue life deteriorates, so the size of carbon / nitride precipitates is 15 μm.
Below.
【0023】次に、ばね用鋼線およびばねについての各
限定理由を説明する。まずばね用鋼線についてである
が、化学組成において前述の要件を満たす本発明のばね
用鋼は、焼入れ・焼戻し処理によって従来鋼に比べて格
段に高い強度を示すが、ばね状への成形加工性を考慮す
ると靭・延性も優れたものでなければならない。一般に
鋼線の延性を示す指標となる絞り値は、ばね成形性を表
す評価基準の1つとして用いられているので、絞り値と
種々の特性との関係を調べた結果、鋼線のオーステナイ
ト結晶粒度がJIS G 0551に準拠した測定方法
で11番以上であれば、超高強度域(例えば、引張強さ
230kgf/mm2 以上)でも高い絞り値が得られ、良好な
ばね成形性を確保できると共に、結晶粒の微細化によっ
て引張強さも高められることから、ばね用鋼線としての
結晶粒度は11番以上と定めた。Next, the reasons for limiting each of the steel wire for spring and the spring will be described. First of all, regarding the steel wire for springs, the spring steel of the present invention which satisfies the above-mentioned requirements in the chemical composition shows significantly higher strength than the conventional steel by quenching and tempering treatment, but forming into a spring shape Considering the toughness, it should have excellent toughness and ductility. Generally, the drawing value, which is an index showing the ductility of the steel wire, is used as one of the evaluation criteria showing the spring formability. Therefore, as a result of examining the relationship between the drawing value and various characteristics, the austenite crystal of the steel wire If the particle size is 11 or more according to the measurement method according to JIS G 0551, a high reduction value can be obtained even in the ultra-high strength region (for example, tensile strength of 230 kgf / mm 2 or more), and good spring formability can be secured. At the same time, the tensile strength is increased by refining the crystal grains, so the crystal grain size of the steel wire for spring was determined to be 11 or more.
【0024】また高強度のばね鋼線を得るには、焼戻し
後の残留オーステナイト量を少なくする必要があり、ま
た残留オーステナイト量が少ないほど疲労強度は高くな
ることが確認されている。例えば前出の特開昭63−2
16951号公報には、焼入れ後の残留オーステナイト
を10%以下に規定することにより焼戻し後の疲労強度
の改善を図ったばね用鋼線が開示されている。しかし、
ばねを作製するに当っては、いずれかの工程でショット
ピーニング処理が施されることが多いため、焼戻し後の
残留オーステナイト量とショットピーニング後の疲労強
度の関係を調べたところ、適量の残留オーステナイトを
含む方が疲労圧縮応力は高くなることをつきとめた。こ
れは、ショットピーニングにより残留オーステナイトが
マルテンサイトに変態して残留圧縮応力が増加するた
め、残留オーステナイト量の増大により残留圧縮応力が
高まることによる疲労強度向上効果と、強度低下による
疲労強度低減効果のバランスによって疲労特性が決まる
ことを意味しており、疲労強度を向上させるには適正な
残留オーステナイト量が存在するものと考えられる。Further, in order to obtain a high strength spring steel wire, it is necessary to reduce the amount of retained austenite after tempering, and it has been confirmed that the smaller the amount of retained austenite, the higher the fatigue strength. For example, JP-A-63-2 mentioned above.
Japanese Patent No. 16951 discloses a steel wire for spring in which the retained austenite after quenching is regulated to 10% or less to improve the fatigue strength after tempering. But,
When manufacturing springs, shot peening is often performed in any of the steps, so the relationship between the amount of retained austenite after tempering and the fatigue strength after shot peening was investigated, and an appropriate amount of retained austenite was found. It was found that the fatigue compressive stress increases with the inclusion of. This is because the retained austenite is transformed into martensite by shot peening and the residual compressive stress is increased.Therefore, the fatigue strength improving effect due to the increase in the residual compressive stress due to the increase in the amount of the retained austenite and the fatigue strength reducing effect due to the strength decrease. This means that the fatigue characteristics are determined by the balance, and it is considered that an appropriate amount of retained austenite exists in order to improve the fatigue strength.
【0025】そこで、高強度を確保しつつ高い疲労強度
を得ることのできる残留オーステナイト量を研究した結
果、焼入れ・焼戻し工程の焼戻し後における残留オース
テナイト量が3%未満では、ショットピーニング後の残
留圧縮応力を高める効果が小さく満足な疲労強度が得ら
れ難くなり、一方、20%を超えると高強度が得られに
くくなって表面起点での疲労破壊を起こし易くなる傾向
があるので、残留オーステナイト量は3〜20%の範囲
に定めた。Therefore, as a result of research on the amount of retained austenite capable of obtaining high fatigue strength while ensuring high strength, when the amount of retained austenite after tempering in the quenching / tempering process is less than 3%, residual compression after shot peening is performed. The effect of increasing the stress is small, and it becomes difficult to obtain a satisfactory fatigue strength. On the other hand, when it exceeds 20%, it becomes difficult to obtain a high strength, and the fatigue fracture at the surface starting point tends to occur. It was set in the range of 3 to 20%.
【0026】ここで、残留オーステナイト量を焼戻し後
の量で規定したのは、次の理由によるものである。即ち
焼入れ・焼戻し後の疲労強度に直接影響を及ぼすのは、
焼戻し後の残留オーステナイト量であり、しかも通常の
冷間成形ばね用鋼線は焼入れ・焼戻し処理を連続して行
なうので、焼入れ後の残留オーステナイト量を正確に測
定することは難しい。つまり残留オーステナイト量の測
定自体は焼入れ鋼線を採取して定量することにより行な
うことができるが、測定時の鋼線の温度は焼入れ時より
も相当低下しているのが通常であるから、該温度低下の
間に残留オーステナイトがマルテンサイトに変態する。
従って、特に本発明鋼の様に合金元素を多く含む鋼の残
留オーステナイト量は、測定時点でかなり減少している
可能性が高く、実際の焼入れ後の残留オーステナイト量
を正確に把握することができない。そのため本発明では
焼戻し後の残留オーステナイト量で規定することとし
た。The amount of retained austenite is defined by the amount after tempering for the following reason. That is, what directly affects the fatigue strength after quenching and tempering is
It is the amount of retained austenite after tempering, and since the normal cold forming spring steel wire is subjected to quenching and tempering continuously, it is difficult to accurately measure the amount of retained austenite after quenching. That is, the measurement itself of the amount of retained austenite can be performed by collecting and quantifying the quenched steel wire, but the temperature of the steel wire at the time of measurement is usually considerably lower than that at the time of quenching. The retained austenite transforms to martensite during the temperature decrease.
Therefore, the retained austenite amount of steel containing a large amount of alloying elements, such as the steel of the present invention, is likely to have decreased considerably at the time of measurement, and the retained austenite amount after actual quenching cannot be accurately grasped. .. Therefore, in the present invention, the amount of retained austenite after tempering is defined.
【0027】上記要件を満たすばね用鋼線は、優れた靭
・延性を有して、焼入れ・焼戻し後の引張強さを205
kgf/mm2 以上とすることができ、特に疲労強度の非常に
優れたものとなる。The spring steel wire satisfying the above requirements has excellent toughness and ductility, and has a tensile strength of 205 after quenching and tempering.
It can be set to kgf / mm 2 or more, and the fatigue strength is particularly excellent.
【0028】次に、ばね用鋼線の低温焼鈍後の耐力比を
0.95以下に定めた理由について説明する。尚ここで
いう耐力比とは、鋼線の0.2%耐力を引張強さで除し
た値であり、0.2%耐力はJIS Z 2241で定
められているオフセット法に準拠して求めた。通常の冷
間成形ばねは、コイリングの後で歪取り焼鈍(例えば4
00℃以上の低温焼鈍)を施し、コイリング時に生じた
残留応力の除去が行なわれるが、この低温焼鈍がばねの
疲労特性に影響を与えることは様々の文献にも報告され
ている。例えば、ばね論文集33号、第53頁(198
8年;ばね技術研究会)には、通常のばね用鋼を対象と
する強度レベルと疲労特性が述べられており、低温焼鈍
後の硬さと疲労強度の関係が示されている。Next, the reason why the yield strength ratio of the spring steel wire after low temperature annealing is set to 0.95 or less will be described. The yield strength ratio here is a value obtained by dividing the 0.2% yield strength of the steel wire by the tensile strength, and the 0.2% yield strength was obtained according to the offset method defined in JIS Z 2241. .. Conventional cold-formed springs are usually coiled and then strain relief annealed (eg 4
Although low temperature annealing at a temperature of 00 ° C. or higher) is performed to remove the residual stress generated during coiling, it has been reported in various literatures that the low temperature annealing affects the fatigue characteristics of springs. For example, Spring Papers No. 33, p. 53 (198).
8 years; Spring Technology Study Group) describes the strength level and fatigue properties for ordinary spring steel, and shows the relationship between hardness and fatigue strength after low temperature annealing.
【0029】本発明者らは前述のばね用鋼について、通
常より高強度のレベルで低温焼鈍後の鋼線の特性と疲労
強度の関係を調べた結果、鋼線の耐力比が高過ぎると疲
労強度はかえって低下することを見いだした。即ち、本
発明のばね用鋼を用いて得た鋼線は、焼入れ・焼戻し後
の状態で通常の鋼線よりも極めて高い強度を示し、且つ
低温焼鈍後の強度低下も少ないため、疲労による表面起
点の破壊を抑制し易い。その反面、内部に存在する介在
物等を起点とする破壊が起こり易くなる傾向があり、前
述の様に介在物等を微細化した本発明鋼でも、介在物等
を起点として疲労破壊を起こし易くなる。そこでこうし
た欠点を解消するため更に検討を進めた結果、低温焼鈍
後における耐力比を0.95以下にすれば、介在物等を
起点とする疲労破壊が抑制され、疲労特性を大幅に改善
し得ることが確認された。The inventors of the present invention investigated the relationship between the fatigue strength and the characteristics of the steel wire after low temperature annealing at a higher strength than usual for the above spring steel, and found that the fatigue strength ratio of the steel wire was too high. It has been found that the strength rather decreases. That is, the steel wire obtained by using the spring steel of the present invention shows much higher strength than a normal steel wire in the state after quenching and tempering, and the strength decrease after low temperature annealing is small, so that the surface due to fatigue It is easy to suppress the destruction of the starting point. On the other hand, there is a tendency for fracture to occur starting from inclusions present inside, and even in the steel of the present invention in which inclusions are miniaturized as described above, it is easy to cause fatigue fracture starting from inclusions. Become. Therefore, as a result of further studies to eliminate such defects, if the yield strength ratio after low-temperature annealing is set to 0.95 or less, fatigue fracture originating from inclusions and the like can be suppressed, and fatigue characteristics can be significantly improved. It was confirmed.
【0030】耐力比の下限値は特に規定しないが、耐力
比が低過ぎると内部素地の最弱部(例えば結晶粒界等)
を起点とする疲労破壊が起こり易くなるため、0.8以
上にすることが望まれる。The lower limit value of the yield strength ratio is not particularly specified, but if the yield strength ratio is too low, the weakest part of the internal matrix (eg grain boundaries).
Since fatigue fracture starting from the point of is likely to occur, 0.8 or more is desired.
【0031】次に、最終製品であるばねについての限定
理由を説明する。前述した様に疲労強度の向上に、ばね
表面の強化が大きく寄与することは良く知られており、
表層部の残留圧縮応力硬さを高めるためにショットピー
ニング処理を行なう方法が広く用いられている。例えば
前出の特開昭64−83644号公報には、表層近傍の
最大残留圧縮応力が85〜110kgf/mm2 である高強度
ばねが開示されている。Next, the reasons for limiting the spring, which is the final product, will be described. As mentioned above, it is well known that the reinforcement of the spring surface greatly contributes to the improvement of fatigue strength.
A method of performing shot peening is widely used to increase the residual compressive stress hardness of the surface layer. For example, Japanese Unexamined Patent Publication No. 64-83644 mentioned above discloses a high-strength spring in which the maximum residual compressive stress near the surface layer is 85 to 110 kgf / mm 2 .
【0032】一方、本発明者らが前記要件を満たす本発
明のばね用鋼線について残留応力と疲労強度との関係に
ついて種々検討を重ねた結果、疲労強度を向上させるに
は適正な残留応力分布が存在することを知った。即ち、
疲労における表面起点での破壊を抑えるうえで、表層部
の残留応力が高い方が良いことは周知の通りであるが、
残留圧縮応力を高めると内部の残留引張応力が増大する
ので、本発明鋼の様な高強度鋼線では内部起点の破壊が
起こり易くなり、残留引張応力が大きくなるにつれてこ
うした傾向が顕著に現れてくる。そこで、表面および内
部起点での両方の疲労破壊を抑制することのできる残留
応力分布を明らかにすべく更に研究を進めた結果、表面
から内部にかけての残留応力分布が前記[I]式の要件
を満たすものが最善であることをつきとめた。On the other hand, the inventors of the present invention conducted various studies on the relationship between the residual stress and the fatigue strength of the spring steel wire of the present invention satisfying the above-mentioned requirements, and as a result, found that the residual stress distribution suitable for improving the fatigue strength was appropriate. Knew that there existed. That is,
It is well known that the higher the residual stress in the surface layer is, the better it is to suppress the fracture at the surface origin in fatigue.
When the residual compressive stress is increased, the internal residual tensile stress is increased, so that in a high strength steel wire such as the steel of the present invention, the fracture of the internal origin is likely to occur, and such a tendency becomes remarkable as the residual tensile stress increases. come. Therefore, as a result of further research to clarify the residual stress distribution capable of suppressing both the fatigue fracture at the surface and the internal origin, the residual stress distribution from the surface to the inside satisfies the requirement of the above formula [I]. He found that what he met was the best.
【0033】即ち[I]式において、D>0.05dの
時のσR が30kgf/mm2 を超えると、内部の酸化物系介
在物および炭・窒化物系析出物を起点とした疲労破壊が
起こり易くなり、またD=0〜0.03dのときのσR
が−100kgf/mm2 を超えると、内部の残留引張応力が
大きくなって、上記の内部起点での破壊が発生し易くな
り、逆に−50kgf/mm2 未満になると表面起点での破壊
が起こり易くなり、いずれの場合も疲労特性が悪くな
る。これに対しD=0.03〜0.05dのときの残留
圧縮応力は、大きければ大きいほど表面起点での疲労破
壊抑制には有効であるが、余り大きくなると内部の残留
引張応力が大きくなり過ぎて内部起点の破壊が起こり易
くなる傾向があり、また過度に高い残留応力を与えるこ
とは実際的でないので、工業的規模での実施可能性も考
慮してσR の上限は-125+(2500/d)×D (kgf/mm2) と定
めた。That is, in the formula [I], when σ R when D> 0.05d exceeds 30 kgf / mm 2 , fatigue fracture originating from internal oxide-based inclusions and carbon / nitride-based precipitates Is likely to occur, and σ R when D = 0 to 0.03d
When the value exceeds -100 kgf / mm 2 , the internal residual tensile stress becomes large and the above-mentioned internal starting point is liable to occur. On the contrary, when the value is less than -50 kgf / mm 2 , the surface starting point causes the fracture. It becomes easy, and in any case, the fatigue characteristics deteriorate. On the other hand, the larger the residual compressive stress when D = 0.03 to 0.05d is, the more effective it is in suppressing fatigue fracture at the surface origin, but if it is too large, the internal residual tensile stress becomes too large. Therefore, the upper limit of σ R is -125+ (2500) in consideration of the feasibility on an industrial scale. / d) × D (kgf / mm 2 ).
【0034】また、本発明では表層部の最高硬さを規定
しているが、これは以下の理由に基づくものである。即
ち上記残留応力分布は、おもに内部の介在物等を起点と
する疲労破壊の抑制を目的として定めたものであり、疲
労強度は表面を起点とする破壊が起こるか否かによって
ほぼ決まってくる。従って本発明のばねでは、表層部を
強化することにより疲労強度を更に向上させる為の要件
として、表層部の硬さをビッカース硬さで700以上と
定めた。尚ここでいう表層部とは、表面から0.01d
(mm)以内の範囲を意味し、この部分の硬さはショットピ
ーニングや窒化処理等によって高めることができる。Further, in the present invention, the maximum hardness of the surface layer portion is specified, but this is based on the following reason. That is, the above-mentioned residual stress distribution is determined mainly for the purpose of suppressing fatigue fracture originating from internal inclusions and the like, and the fatigue strength is almost determined by whether or not fracture originating from the surface occurs. Therefore, in the spring of the present invention, the hardness of the surface layer portion is set to 700 or more in Vickers hardness as a requirement for further improving the fatigue strength by strengthening the surface layer portion. The surface layer portion referred to here is 0.01d from the surface.
It means a range within (mm), and the hardness of this portion can be increased by shot peening, nitriding treatment, or the like.
【0035】[0035]
【実施例】次に、実施例を挙げて本発明をより具体的に
説明するが、本発明はもとより下記実施例によって制限
を受けるものではない。実施例1 下記表1は、供試鋼の含有成分と酸化物系介在物の融点
および炭・窒化物系析出物のサイズを示したものであ
る。尚、介在物および析出物のサイズの測定は、鋳造後
圧延比50以上で熱間圧延した線材の縦断面を夫々30
個ずつ観察し、その最大値と平均値を示しており、表1
においてA1〜A5は本発明鋼、B1〜B4は比較鋼で
ある。EXAMPLES Next, the present invention will be described more specifically by way of examples, but the present invention is not limited by the following examples. Example 1 Table 1 below shows the components contained in the sample steel, the melting point of oxide inclusions, and the size of carbon / nitride precipitates. The sizes of inclusions and precipitates were measured by measuring the longitudinal cross section of each wire rod hot-rolled at a rolling ratio of 50 or more after casting for 30 times.
Observed individually, the maximum and average values are shown in Table 1.
In the above, A1 to A5 are steels of the present invention, and B1 to B4 are comparative steels.
【0036】[0036]
【表1】 [Table 1]
【0037】これら各供試材の表面を皮削りした後、パ
テンティング処理および伸線処理を行なって線径4.0
mmとした後、焼入れ・焼戻し処理を施してばね用鋼線と
した。これらの鋼線に低温焼鈍(400℃×20min )
とショットピーニング処理を行ない、中村式回転曲げ疲
労試験を行なった。結果を表2に示す。After scraping the surface of each of these test materials, patenting treatment and wire drawing treatment were carried out to obtain a wire diameter of 4.0.
After being made into mm, the steel wire for spring was subjected to quenching and tempering treatment. Low temperature annealing of these steel wires (400 ℃ × 20min)
Then, shot peening treatment was performed and a Nakamura-type rotary bending fatigue test was performed. The results are shown in Table 2.
【0038】[0038]
【表2】 [Table 2]
【0039】表2からも明らかである様に、高強度で且
つ酸化物系介在物の融点が低く、しかも析出物サイズの
小さい本発明鋼A1〜A5は、1×107 回の回転曲げ
を与えた後でも表面起点の破壊や介在物および析出物起
点の破壊が見られず、高い疲労強度が得られている。こ
れに対し比較鋼では、酸化物系介在物の融点が高いB
1,B3、析出物サイズが大きいB2,B3、強度の低
いB4のいずれにおいても1×107 以下の回転曲げで
破壊しており、疲労強度は本発明鋼に比べて明らかに劣
っている。As is clear from Table 2, the steels A1 to A5 of the present invention having high strength, a low melting point of oxide inclusions, and a small precipitate size were subjected to rotary bending of 1 × 10 7 times. Even after application, no fracture at the surface origin or fracture at the inclusion or precipitate origin was observed, and high fatigue strength was obtained. On the other hand, in the comparative steel, B having a high melting point of oxide inclusions
No. 1, B3, B2 having a large precipitate size, B3, and B4 having a low strength all show fracture at a rotational bending of 1 × 10 7 or less, and the fatigue strength is clearly inferior to the steel of the present invention.
【0040】実施例2 前記表1に示した本発明鋼A3を使用し、実施例1と同
様の方法でばね用鋼線a1〜a10を作製した。ここで
は、焼入れ時の加熱温度、焼入れ後の鋼線の温度、焼戻
し温度等を変えることにより、オーステナイト結晶粒
度、残留オーステナイト量および引張強さ等を調整し、
その性能を調べた。焼戻し後の引張強さ、オーステナイ
ト結晶粒度番号、残留オーステナイト量および疲労強度
の関係を表3に示す。尚、疲労試験は焼戻し後ショット
ピーニング処理を施してから中村式回転曲げにより実施
した。また、オーステナイト結晶粒度番号と絞り値およ
び巻付試験(JIS G 3566)による折損発生率
の関係を図1に示した。 Example 2 Using the steel A3 of the present invention shown in Table 1 above, spring steel wires a1 to a10 were produced in the same manner as in Example 1. Here, by adjusting the heating temperature during quenching, the temperature of the steel wire after quenching, the tempering temperature, etc., the austenite grain size, the amount of retained austenite, the tensile strength, etc. are adjusted,
I investigated its performance. Table 3 shows the relationship among the tensile strength after tempering, the austenite grain size number, the amount of retained austenite, and the fatigue strength. The fatigue test was carried out by Nakamura rotary bending after subjecting to shot peening treatment after tempering. Further, the relationship between the austenite grain size number, the aperture value and the breakage incidence rate according to the winding test (JIS G 3566) is shown in FIG.
【0041】[0041]
【表3】 [Table 3]
【0042】表3からも明らかである様に、本発明の規
定要件をすべて満足する実施例ではいずれも優れた疲労
特性が得られているが、残留オーステナイト量が少ない
ものは疲労強度が低く、また多過ぎると引張強さが低く
なり、いずれの場合も十分な疲労強度が得られない。ま
た、図1からも分かる様に、結晶粒度番号が11番を超
えると絞り値が顕著に増大し、通常のコイリングより過
酷な巻付試験においても破断せず、優れたばね成形性を
有していることを確認できる。As is clear from Table 3, all the examples satisfying all the specified requirements of the present invention have excellent fatigue characteristics, but those having a small amount of retained austenite have low fatigue strength. On the other hand, if the amount is too large, the tensile strength becomes low, and in either case, sufficient fatigue strength cannot be obtained. Further, as can be seen from FIG. 1, when the grain size number exceeds 11, the drawing value remarkably increases, does not break even in a winding test severer than usual coiling, and has excellent spring formability. Can be confirmed.
【0043】実施例3 次に表1の本発明鋼A1,A3と比較鋼B3を使用し、
実施例1と同様にしてばね用鋼線を作製し、更にばねに
加工した。その後400℃以上の低温焼鈍およびショッ
トピーニング処理を行なってa11〜a16およびb1
〜b2の供試ばねを作製し、ばね疲労試験を行なった。
供試ばねの諸元および試験条件を表4に示す。尚、耐力
比は供試ばね毎に焼戻し温度や低温焼鈍温度等を変える
ことにより調整した。結果を表5に示す。 Example 3 Next, steels A1 and A3 of the present invention shown in Table 1 and comparative steel B3 were used.
A spring steel wire was produced in the same manner as in Example 1, and further processed into a spring. After that, low temperature annealing at 400 ° C. or higher and shot peening treatment are performed to obtain a11 to a16 and b1.
The sample springs of to b2 were produced and the spring fatigue test was conducted.
Table 4 shows the specifications and test conditions of the test spring. The proof stress ratio was adjusted by changing the tempering temperature, low temperature annealing temperature, etc. for each test spring. The results are shown in Table 5.
【0044】[0044]
【表4】 [Table 4]
【0045】[0045]
【表5】 [Table 5]
【0046】表5からも明らかである様に、本発明鋼を
用いたものであっても、耐力比の高いばねは介在物起点
で破壊し易いのに対し、耐力比の低いばねは優れた疲労
強度を有している。また、酸化物系介在物の融点が高く
且つ析出物サイズの大きい比較鋼B3では、耐力比の大
小にかかわらず疲労強度が乏しい。尚、耐力比が0.9
6である比較例a15では、実施例と同等の疲労強度を
示しているが、これは介在物や析出物の小さい本発明鋼
においては、ばね10個程度の疲労試験では介在物や析
出物等を起点とする破壊が発生しにくい為であると考え
られる。しかし、介在物や析出物等を起点として疲労破
壊する確率の高い回転曲げ疲労試験では、耐力比が0.
95を超えることにより疲労強度は明らかに低下してい
る。これらの結果からも明らかである様に、耐力比を
0.95以下に定めた本発明のばね用鋼線はばね疲労に
対する信頼性に優れたものである。As is clear from Table 5, even in the case where the steel of the present invention is used, the spring having a high yield ratio is easily broken at the origin of inclusions, while the spring having a low yield ratio is excellent. Has fatigue strength. Further, in Comparative Steel B3 having a high melting point of oxide inclusions and a large precipitate size, the fatigue strength was poor regardless of the strength ratio. The yield strength ratio is 0.9
In Comparative Example a15 which is 6, the fatigue strength equivalent to that of the example is shown, but in the steel of the present invention with small inclusions and precipitates, this is due to inclusions and precipitates in a fatigue test of about 10 springs. It is thought that this is because the destruction starting from is unlikely to occur. However, in the rotating bending fatigue test, which has a high probability of fatigue fracture starting from inclusions or precipitates, the yield strength ratio is 0.
When it exceeds 95, the fatigue strength is obviously reduced. As is clear from these results, the spring steel wire of the present invention having a yield strength ratio of 0.95 or less has excellent reliability against spring fatigue.
【0047】実施例4 表5に示した供試ばねa12を使用し、ショットピーニ
ング条件を変えて残留応力分布および表層硬さを変化さ
せた供試ばねa17〜a23を作製し、ばね疲労試験を
実施した。疲労試験条件は表4に示したのと同様とし
た。また実施例3と同じ理由から、ばねと同等の残留応
力分布および表層硬さを有する鋼線の回転曲げ疲労試験
も実施した。結果は表6に示す通りであり、ばねとして
の疲労特性は、実施例3と同様に試験個数の関係から実
施例と比較例の間で顕著な違いは認められないが、回転
曲げ試験では残留引張応力が30kgf/mm2 を超えると介
在物や析出物等を起点とする破壊が明確に認められる様
になり、疲労強度は明らかに低下している。また表層部
においては、ばね及び回転曲げのいずれの試験でも、残
留圧縮応力が50kgf/mm2 未満で硬さが700未満にな
ると表面起点の疲労破壊が起こり易くなり、疲労強度の
低下が認められる。 Example 4 Using the test spring a12 shown in Table 5, test springs a17 to a23 having different residual stress distributions and surface layer hardnesses were prepared by changing the shot peening conditions, and the spring fatigue test was conducted. Carried out. The fatigue test conditions were the same as those shown in Table 4. For the same reason as in Example 3, a steel wire having a residual stress distribution and surface hardness equivalent to that of a spring was also subjected to a rotary bending fatigue test. The results are shown in Table 6, and the fatigue characteristics of the spring are not significantly different between the example and the comparative example due to the relationship of the number of tests as in the case of the example 3, but the residual in the rotary bending test. If the tensile stress exceeds 30 kgf / mm 2 , fracture originating from inclusions or precipitates will be clearly recognized, and the fatigue strength will obviously decrease. In the surface layer, in both spring and rotary bending tests, if the residual compressive stress is less than 50 kgf / mm 2 and the hardness is less than 700, fatigue fracture from the surface origin is likely to occur, and a decrease in fatigue strength is recognized. ..
【0048】[0048]
【表6】 [Table 6]
【0049】[0049]
【発明の効果】本発明は以上の様に構成されており、ば
ね用鋼、ばね用鋼線およびばねを、表面および内部特性
の両面から改善することによって疲労破壊を抑制する構
成としたので、従来材に比べて疲労強度を著しく高める
ことができ、ばね或はその素材としての信頼性を著しく
高め得ることになった。The present invention is configured as described above. Since the spring steel, the steel wire for spring and the spring are improved in terms of both surface and internal characteristics, fatigue fracture is suppressed. The fatigue strength can be remarkably increased as compared with the conventional material, and the reliability of the spring or its material can be remarkably improved.
【図面の簡単な説明】[Brief description of drawings]
【図1】本発明に係るばね用鋼線のオーステナイト結晶
粒度番号と巻付折損率および絞りの関係を示すグラフで
ある。FIG. 1 is a graph showing a relationship between an austenite grain size number, a winding breakage rate, and a drawing of a spring steel wire according to the present invention.
Claims (4)
〜2.5 %,Mn:0.4 〜1.3 %,Cr:0.4 〜2 %を含
有し、且つV:0.05〜0.5 %及び/又はNb:0.05〜0.
5 %を含み、残部がFeおよび不可避不純物からなる鋼
からなり、該鋼中に含まれる酸化物系介在物の融点が1
500℃以下であり、且つ炭化物系析出物および窒化物
系析出物の大きさが15μm以下であることを特徴とす
る疲労特性の優れたばね用鋼。1. A weight ratio of C: 0.5 to 0.8%, Si: 0.8
-2.5%, Mn: 0.4-1.3%, Cr: 0.4-2%, and V: 0.05-0.5% and / or Nb: 0.05-0.
It consists of steel containing 5% and the balance Fe and inevitable impurities, and the melting point of oxide inclusions contained in the steel is 1
A spring steel having excellent fatigue properties, characterized in that the temperature is 500 ° C. or lower, and the size of carbide-based precipitates and nitride-based precipitates is 15 μm or less.
〜2.5 %,Mn:0.4 〜1.3 %,Cr: 0.4〜2 %を含
有し、且つV:0.05〜0.5 %及び/又はNb:0.05〜0.
5 %と、Ni: 0.1〜2 %及び/又はMo: 0.1〜 0.5
%を含み、残部がFeおよび不可避不純物からなる鋼か
らなり、該鋼中に含まれる酸化物系介在物の融点が15
00℃以下であり、且つ炭化物系析出物および窒化物系
析出物の大きさが15μm以下であることを特徴とする
疲労特性の優れたばね用鋼。2. C: 0.5-0.8% by weight ratio, Si: 0.8
-2.5%, Mn: 0.4-1.3%, Cr: 0.4-2%, and V: 0.05-0.5% and / or Nb: 0.05-0.
5% and Ni: 0.1 to 2% and / or Mo: 0.1 to 0.5
%, With the balance being Fe and unavoidable impurities, and the melting point of oxide inclusions contained in the steel being 15
A spring steel having excellent fatigue properties, characterized in that the temperature is 00 ° C. or less and the size of carbide-based precipitates and nitride-based precipitates is 15 μm or less.
れ・焼戻し処理してなり、結晶粒度が11番以上、残留
オーステナイト量が3〜20%、引張強さが205kgf/
mm2 以上、400℃以上での低温焼鈍後の耐力比が 0.9
5 以下であることを特徴とするばね用鋼線。3. The spring steel according to claim 1 or 2, which is obtained by quenching and tempering, has a grain size of 11 or more, a retained austenite amount of 3 to 20%, and a tensile strength of 205 kgf /
mm 2 or more, yield strength ratio after low temperature annealing at 400 ℃ or more is 0.9
A steel wire for a spring, characterized by being 5 or less.
るばねであって、残留応力が下記[I]式の要件を満た
し、且つ表層部の最高硬さ(ビッカース硬さ)が700
以上であることを特徴とするばね。 【数1】 4. A spring manufactured from the spring steel wire according to claim 3, wherein the residual stress satisfies the requirement of the following formula [I] and the maximum hardness (Vickers hardness) of the surface layer portion is 700.
The spring characterized by the above. [Equation 1]
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4160225A JP2898472B2 (en) | 1992-05-26 | 1992-05-26 | Spring steel, spring steel wire and spring with excellent fatigue properties |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4160225A JP2898472B2 (en) | 1992-05-26 | 1992-05-26 | Spring steel, spring steel wire and spring with excellent fatigue properties |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05320827A true JPH05320827A (en) | 1993-12-07 |
JP2898472B2 JP2898472B2 (en) | 1999-06-02 |
Family
ID=15710420
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4160225A Expired - Lifetime JP2898472B2 (en) | 1992-05-26 | 1992-05-26 | Spring steel, spring steel wire and spring with excellent fatigue properties |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2898472B2 (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10110247A (en) * | 1995-10-27 | 1998-04-28 | Kobe Steel Ltd | Spring steel excellent in hydrogen embrittlement resistance and fatigue characteristic |
WO1999024630A1 (en) * | 1997-11-06 | 1999-05-20 | Sumitomo Electric Industries, Ltd. | High fatigue-strength steel wire and spring, and processes for producing these |
FR2784119A1 (en) * | 1998-10-01 | 2000-04-07 | Nippon Steel Corp | High strength steel wire, especially for helical springs in high performance vehicles and machines, has controlled silicon, manganese and chromium contents and low aluminum, impurity and coarse inclusion contents |
EP1712653A1 (en) * | 2005-04-11 | 2006-10-18 | Kabushiki Kaisha Kobe Seiko Sho | Steel wire for cold-formed spring excellent in corrosion resistance and method for producing the same |
JP2007031747A (en) * | 2005-07-22 | 2007-02-08 | Kobe Steel Ltd | Steel wire rod for spring, and method for judging its fatigue resistance |
WO2007142034A1 (en) | 2006-06-09 | 2007-12-13 | Kabushiki Kaisha Kobe Seiko Sho | Steel for high-cleanliness spring with excellent fatigue characteristics and high-cleanliness spring |
WO2008081673A1 (en) | 2006-12-28 | 2008-07-10 | Kabushiki Kaisha Kobe Seiko Sho | Si KILLED STEEL WIRE MATERIAL HAVING EXCELLENT FATIGUE PROPERTY AND SPRING |
WO2008081674A1 (en) | 2006-12-28 | 2008-07-10 | Kabushiki Kaisha Kobe Seiko Sho | Silicon-killed steel wire material and spring |
WO2008146533A1 (en) | 2007-05-25 | 2008-12-04 | Kabushiki Kaisha Kobe Seiko Sho | Steel for high-cleanliness springs excellent in fatigue characteristics and high-cleanliness springs |
EP2060649A1 (en) | 2007-11-19 | 2009-05-20 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | Spring steel and spring superior in fatigue properties |
US7597768B2 (en) * | 2002-04-02 | 2009-10-06 | Kabushiki Kaisha Kobe Seiko Sho | Steel wire for hard drawn spring excellent in fatigue strength and resistance to settling, and hard drawn spring and method of making thereof |
WO2016158562A1 (en) * | 2015-03-31 | 2016-10-06 | 株式会社神戸製鋼所 | Heat-treated steel wire having excellent fatigue-resistance characteristics |
WO2016158563A1 (en) * | 2015-03-31 | 2016-10-06 | 株式会社神戸製鋼所 | Heat-treated steel wire having excellent bendability |
WO2018074003A1 (en) * | 2016-10-19 | 2018-04-26 | 三菱製鋼株式会社 | High-strength spring, method for producing same, steel for high-strength spring, and method for producing same |
JP6356309B1 (en) * | 2016-10-19 | 2018-07-11 | 三菱製鋼株式会社 | High-strength spring, method for manufacturing the same, steel for high-strength spring, and method for manufacturing the same |
CN114651082A (en) * | 2019-10-16 | 2022-06-21 | 日本制铁株式会社 | Valve spring |
CN115298339A (en) * | 2020-02-21 | 2022-11-04 | 日本制铁株式会社 | Shock absorber spring |
SE545842C2 (en) * | 2020-02-21 | 2024-02-20 | Nippon Steel Corp | Steel wire |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5937973B2 (en) | 2013-01-15 | 2016-06-22 | 株式会社神戸製鋼所 | Si-killed steel wire rod having excellent fatigue characteristics and spring using the same |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62170460A (en) * | 1986-01-21 | 1987-07-27 | Honda Motor Co Ltd | High strength valve spring steel and its manufacture |
JPS6439353A (en) * | 1987-08-03 | 1989-02-09 | Kobe Steel Ltd | High-strength spring steel |
JPH01177318A (en) * | 1987-12-30 | 1989-07-13 | Nippon Steel Corp | Manufacturing method for coil springs with excellent fatigue strength |
JPH03162550A (en) * | 1989-11-22 | 1991-07-12 | Suzuki Kinzoku Kogyo Kk | High strength and high ductility oil tempered steel wire and its manufacture |
JPH04157135A (en) * | 1990-10-22 | 1992-05-29 | Mitsubishi Steel Mfg Co Ltd | Steel for high strength spring |
JPH04247824A (en) * | 1991-01-25 | 1992-09-03 | Nippon Steel Corp | Manufacturing method for high strength springs |
-
1992
- 1992-05-26 JP JP4160225A patent/JP2898472B2/en not_active Expired - Lifetime
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62170460A (en) * | 1986-01-21 | 1987-07-27 | Honda Motor Co Ltd | High strength valve spring steel and its manufacture |
JPS6439353A (en) * | 1987-08-03 | 1989-02-09 | Kobe Steel Ltd | High-strength spring steel |
JPH01177318A (en) * | 1987-12-30 | 1989-07-13 | Nippon Steel Corp | Manufacturing method for coil springs with excellent fatigue strength |
JPH03162550A (en) * | 1989-11-22 | 1991-07-12 | Suzuki Kinzoku Kogyo Kk | High strength and high ductility oil tempered steel wire and its manufacture |
JPH04157135A (en) * | 1990-10-22 | 1992-05-29 | Mitsubishi Steel Mfg Co Ltd | Steel for high strength spring |
JPH04247824A (en) * | 1991-01-25 | 1992-09-03 | Nippon Steel Corp | Manufacturing method for high strength springs |
Cited By (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10110247A (en) * | 1995-10-27 | 1998-04-28 | Kobe Steel Ltd | Spring steel excellent in hydrogen embrittlement resistance and fatigue characteristic |
WO1999024630A1 (en) * | 1997-11-06 | 1999-05-20 | Sumitomo Electric Industries, Ltd. | High fatigue-strength steel wire and spring, and processes for producing these |
US6627005B1 (en) | 1997-11-06 | 2003-09-30 | Sumitomo Electric Industries, Ltd. | High fatigue-strength steel wire and spring, and processes for producing these |
FR2784119A1 (en) * | 1998-10-01 | 2000-04-07 | Nippon Steel Corp | High strength steel wire, especially for helical springs in high performance vehicles and machines, has controlled silicon, manganese and chromium contents and low aluminum, impurity and coarse inclusion contents |
US7597768B2 (en) * | 2002-04-02 | 2009-10-06 | Kabushiki Kaisha Kobe Seiko Sho | Steel wire for hard drawn spring excellent in fatigue strength and resistance to settling, and hard drawn spring and method of making thereof |
US7763123B2 (en) | 2002-04-02 | 2010-07-27 | Kabushiki Kaisha Kobe Seiko Sho | Spring produced by a process comprising coiling a hard drawn steel wire excellent in fatigue strength and resistance to setting |
EP1712653A1 (en) * | 2005-04-11 | 2006-10-18 | Kabushiki Kaisha Kobe Seiko Sho | Steel wire for cold-formed spring excellent in corrosion resistance and method for producing the same |
US8043444B2 (en) | 2005-04-11 | 2011-10-25 | Kobe Steel, Ltd. | Steel wire for cold-formed spring excellent in corrosion resistance and method for producing the same |
JP2007031747A (en) * | 2005-07-22 | 2007-02-08 | Kobe Steel Ltd | Steel wire rod for spring, and method for judging its fatigue resistance |
JP4515347B2 (en) * | 2005-07-22 | 2010-07-28 | 株式会社神戸製鋼所 | Method for determining fatigue resistance of spring steel wires and spring steel wires |
EP2407571A2 (en) | 2006-06-09 | 2012-01-18 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | High cleanliness spring steel and high cleanliness spring excellent in fatigue properties |
WO2007142034A1 (en) | 2006-06-09 | 2007-12-13 | Kabushiki Kaisha Kobe Seiko Sho | Steel for high-cleanliness spring with excellent fatigue characteristics and high-cleanliness spring |
US9441695B2 (en) | 2006-06-09 | 2016-09-13 | Kobe Steel, Ltd. | High cleanliness spring steel and high cleanliness spring excellent in fatigue properties |
US8613809B2 (en) | 2006-06-09 | 2013-12-24 | Kobe Steel, Ltd. | High cleanliness spring steel and high cleanliness spring excellent in fatigue properties |
US9725779B2 (en) | 2006-12-28 | 2017-08-08 | Kobe Steel, Ltd. | Si-killed steel wire rod and spring |
WO2008081674A1 (en) | 2006-12-28 | 2008-07-10 | Kabushiki Kaisha Kobe Seiko Sho | Silicon-killed steel wire material and spring |
WO2008081673A1 (en) | 2006-12-28 | 2008-07-10 | Kabushiki Kaisha Kobe Seiko Sho | Si KILLED STEEL WIRE MATERIAL HAVING EXCELLENT FATIGUE PROPERTY AND SPRING |
US9062361B2 (en) | 2006-12-28 | 2015-06-23 | Kobe Steel, Ltd. | Si-killed steel wire rod and spring excellent in fatigue properties |
EP2410069A1 (en) | 2006-12-28 | 2012-01-25 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | Si-killed steel wire rod and spring excellent in fatigue properties |
EP2527485A1 (en) | 2006-12-28 | 2012-11-28 | Kabushiki Kaisha Kobe Seiko Sho | A silicon killed steel wire rod |
US9290822B2 (en) | 2006-12-28 | 2016-03-22 | Kobe Steel, Ltd. | Si-killed steel wire rod and spring |
WO2008146533A1 (en) | 2007-05-25 | 2008-12-04 | Kabushiki Kaisha Kobe Seiko Sho | Steel for high-cleanliness springs excellent in fatigue characteristics and high-cleanliness springs |
US8187530B2 (en) | 2007-05-25 | 2012-05-29 | Kobe Steel, Ltd. | Steel for high-cleanliness spring with excellent fatigue characteristics and high-cleanliness spring |
US8900381B2 (en) | 2007-11-19 | 2014-12-02 | Kobe Steel, Ltd. | Spring steel and spring superior in fatigue properties |
EP2060649A1 (en) | 2007-11-19 | 2009-05-20 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | Spring steel and spring superior in fatigue properties |
WO2016158562A1 (en) * | 2015-03-31 | 2016-10-06 | 株式会社神戸製鋼所 | Heat-treated steel wire having excellent fatigue-resistance characteristics |
WO2016158563A1 (en) * | 2015-03-31 | 2016-10-06 | 株式会社神戸製鋼所 | Heat-treated steel wire having excellent bendability |
JP2016191100A (en) * | 2015-03-31 | 2016-11-10 | 株式会社神戸製鋼所 | Heat treated steel wire excellent in flexure workability |
JP2016191099A (en) * | 2015-03-31 | 2016-11-10 | 株式会社神戸製鋼所 | Heat treated steel wire excellent in fatigue characteristics |
JP6356309B1 (en) * | 2016-10-19 | 2018-07-11 | 三菱製鋼株式会社 | High-strength spring, method for manufacturing the same, steel for high-strength spring, and method for manufacturing the same |
WO2018074003A1 (en) * | 2016-10-19 | 2018-04-26 | 三菱製鋼株式会社 | High-strength spring, method for producing same, steel for high-strength spring, and method for producing same |
JP2018154914A (en) * | 2016-10-19 | 2018-10-04 | 三菱製鋼株式会社 | High-strength spring, method for manufacturing the same, steel for high-strength spring, and method for manufacturing the same |
US10752971B2 (en) | 2016-10-19 | 2020-08-25 | Mitsubishi Steel Mfg. Co., Ltd. | High strength spring, method of manufacturing the same, steel for high strength spring, and method of manufacturing the same |
CN114651082A (en) * | 2019-10-16 | 2022-06-21 | 日本制铁株式会社 | Valve spring |
CN114651082B (en) * | 2019-10-16 | 2023-02-17 | 日本制铁株式会社 | Valve spring |
CN115298339A (en) * | 2020-02-21 | 2022-11-04 | 日本制铁株式会社 | Shock absorber spring |
CN115298339B (en) * | 2020-02-21 | 2023-10-24 | 日本制铁株式会社 | shock absorber spring |
SE545842C2 (en) * | 2020-02-21 | 2024-02-20 | Nippon Steel Corp | Steel wire |
Also Published As
Publication number | Publication date |
---|---|
JP2898472B2 (en) | 1999-06-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101602088B1 (en) | Heat-resistant cold rolled ferritic stainless steel sheet, hot rolled ferritic stainless steel sheet for cold rolling raw material, and methods for producing same | |
JP2898472B2 (en) | Spring steel, spring steel wire and spring with excellent fatigue properties | |
JP4476846B2 (en) | High strength spring steel with excellent cold workability and quality stability | |
JP5385554B2 (en) | Steel for heat treatment | |
EP2058414B1 (en) | High-strength spring steel wire, high-strength springs and processes for production of both | |
EP3502291B1 (en) | Hot press-formed part | |
EP1801255B1 (en) | Cold formable spring steel wire excellent in cold cutting capability and fatigue properties and manufacturing process thereof | |
KR101988277B1 (en) | Cold rolled martensitic stainless steel sheets | |
KR20070047691A (en) | Spring steels with excellent hydrogen embrittlement resistance and steel wires and springs derived from these steels | |
US20180066344A1 (en) | Wire rod for use in bolts that has excellent acid pickling properties and resistance to delayed fracture after quenching and tempering, and bolt | |
WO1999005333A1 (en) | Case hardened steel excellent in the prevention of coarsening of particles during carburizing thereof, method of manufacturing the same, and raw shaped material for carburized parts | |
KR101603485B1 (en) | Spring steel and spring | |
CN108315637B (en) | High-carbon hot-rolled steel sheet and method for producing the same | |
JPH11335777A (en) | Case hardening steel excellent in cold workability and low carburizing strain characteristics and its manufacturing method | |
US20190002999A1 (en) | Case hardening steel, carburized component, and manufacturing method of case hardening steel | |
JP3255296B2 (en) | High-strength steel for spring and method of manufacturing the same | |
CN109790602B (en) | steel | |
JP2022045505A (en) | Ferritic stainless steel sheet, manufacturing method thereof, and member for gas exhaust system | |
EP3020841B1 (en) | Coil spring, and method for manufacturing same | |
EP1197571A1 (en) | Steel product for oil well having high strength and being excellent in resistance to sulfide stress cracking | |
JP2803522B2 (en) | Ni-Fe-based magnetic alloy excellent in magnetic properties and manufacturability and method for producing the same | |
JP2022069229A (en) | Austenite stainless steel and method for manufacturing the same | |
JPH07157846A (en) | Steel for high strength spring | |
JP4515347B2 (en) | Method for determining fatigue resistance of spring steel wires and spring steel wires | |
JPH11106866A (en) | Case hardening steel excellent in coarse grain prevention property and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 19960611 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080312 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090312 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100312 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100312 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110312 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120312 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130312 Year of fee payment: 14 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130312 Year of fee payment: 14 |