[go: up one dir, main page]

JP2002305202A - Silicon epitaxial wafer, and its manufacturing method - Google Patents

Silicon epitaxial wafer, and its manufacturing method

Info

Publication number
JP2002305202A
JP2002305202A JP2001109172A JP2001109172A JP2002305202A JP 2002305202 A JP2002305202 A JP 2002305202A JP 2001109172 A JP2001109172 A JP 2001109172A JP 2001109172 A JP2001109172 A JP 2001109172A JP 2002305202 A JP2002305202 A JP 2002305202A
Authority
JP
Japan
Prior art keywords
wafer
silicon
heat treatment
epitaxial
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001109172A
Other languages
Japanese (ja)
Other versions
JP3965931B2 (en
Inventor
Akihiro Kimura
明浩 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2001109172A priority Critical patent/JP3965931B2/en
Publication of JP2002305202A publication Critical patent/JP2002305202A/en
Application granted granted Critical
Publication of JP3965931B2 publication Critical patent/JP3965931B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a silicon epitaxial layer where the haze of an epitaxial layer and the defect level of LPD, etc., are reduced and also oxygen precipitation is controlled under the condition that it be put into a temperature-lowered and time-shortened device process, and to provide its manufacturing method. SOLUTION: The manufacturing method for the silicon epitaxial wafer and the epitaxial wafer manufactured by this method are provided in the manufacturing method for the silicon epitaxial wafer where an epitaxial layer is made on the surface of the silicon wafer, obtained by slicing a silicon single crystal, epitaxial growth is performed, after removal of at least a layer distorted in processing which has arisen in slicing of a silicon single-crystal ingot, and next heat treatment for oxygen precipitation is performed, and then the surface of the epitaxial layer is polished into a mirror-surface face.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はシリコンエピタキシ
ャルウエーハおよびその製造方法に関する。
The present invention relates to a silicon epitaxial wafer and a method for manufacturing the same.

【0002】[0002]

【従来の技術】近年の半導体素子の高集積化に伴い、デ
バイスプロセスが低温・短時間化している。さらに、近
い将来の直径300mmシリコンウエーハ時代において
は、ウエーハ自重によるスリップ転位の発生を抑制する
ためにも、低温・短時間化されたデバイスプロセスが必
須となりつつある。そうなると、これまでのようなデバ
イスプロセス中での熱処理によるBMD(Bulk M
icro Defect、酸素析出物による内部微小欠
陥)の形成や成長によるゲッタリング効果は期待できな
い。従って、低温・短時間化されたデバイスプロセスに
投入する前に、酸素析出熱処理を予めウエーハに施して
BMD密度を増加させておくことによりゲッタリング効
果を付与することが重要である。この処理をウエーハメ
ーカーが行えば、デバイスメーカーの受けるメリットは
極めて大きい。
2. Description of the Related Art With the recent increase in the degree of integration of semiconductor elements, the device process has been reduced in temperature and time. Furthermore, in the near future silicon wafer era of 300 mm in diameter, a low-temperature and short-time device process is indispensable in order to suppress the occurrence of slip dislocation due to the weight of the wafer. Then, the BMD (Bulk M
The gettering effect by the formation and growth of micro defects (internal minute defects due to oxygen precipitates) cannot be expected. Therefore, it is important to provide a gettering effect by increasing the BMD density by subjecting the wafer to an oxygen precipitation heat treatment in advance to feed the wafer to a low-temperature, short-time device process. If this processing is performed by a wafer maker, the merits of the device maker are extremely large.

【0003】また、近年の半導体素子の高集積化に伴
い、半導体ウエーハ中の結晶欠陥、特に表面および表面
近傍の結晶欠陥の低減が重要になってきている。このた
め、結晶欠陥の少ないエピタキシャルウエーハ(以下、
エピウエーハと略記する場合がある)の需要は年々高ま
っている。そこで酸素析出を促進する熱処理を施したエ
ピウエーハの需要が高まることが予想されるが、従来は
例えば図2に示したようなフローで製造されていた。
In addition, with the recent increase in the degree of integration of semiconductor elements, it has become important to reduce crystal defects in semiconductor wafers, particularly crystal defects at and near the surface. Therefore, epitaxial wafers with few crystal defects (hereinafter, referred to as
Demand (sometimes abbreviated as epi wafer) is increasing year by year. Therefore, it is expected that the demand for the epi-wafer which has been subjected to the heat treatment for accelerating the oxygen precipitation is expected to increase. However, conventionally, the epi-wafer has been manufactured, for example, according to the flow shown in FIG.

【0004】すなわち、例えばCZ法で引上げられたシ
リコン単結晶インゴットをスライス(a)し、次いで化
学エッチング(b)工程にかけて化学エッチドウエーハ
(Chemical Eched Wafer、以下、
CWと略記することがある)とし、鏡面研磨(f)を施
して鏡面研磨ウエーハ(Mirror Polishe
d Wafer、以下、PWと略記することがある)を
得た後、酸素析出熱処理(d)(以下、HTと略記する
ことがある)を行い、最後にエピタキシャル成長(c)
(Epitaxial Growth、以下EPと略記
することがある)工程を行い、シリコンエピタキシャル
ウエーハを作製していた。
That is, for example, a silicon single crystal ingot pulled up by the CZ method is sliced (a) and then subjected to a chemical etching (b) step to perform a chemical etched wafer (hereinafter referred to as “Chemical Etched Wafer”).
CW), and mirror-polished (f) to give a mirror-polished wafer (Mirror Polishe).
d Wafer (hereinafter sometimes abbreviated as PW), an oxygen precipitation heat treatment (d) (hereinafter sometimes abbreviated as HT) is performed, and finally, epitaxial growth (c) is performed.
(Epitaxial Growth, hereinafter sometimes abbreviated as EP), to produce a silicon epitaxial wafer.

【0005】しかしながらこの工程順に従ってエピタキ
シャルウエーハを作製すると、酸素析出熱処理工程にお
いて、ウエーハ中に欠陥が誘起され、この上に成長させ
るエピタキシャル層(以下、エピ層ということがある)
に伝播し、エピ層欠陥となってしまうことがあった。特
に、結晶に窒素をドープすると微小酸素析出物が高密度
に形成されるため(例えば、1999年春季第46回応
用物理学関係連合講演会 予稿集No.1,p.46
9,29a−ZB−5,相原他 参照)、BMDの形
成、成長によるゲッタリングには有利であるが、このエ
ピ層欠陥の問題が大きくなってきた。
However, when an epitaxial wafer is manufactured in accordance with this process sequence, defects are induced in the wafer in the oxygen precipitation heat treatment process, and an epitaxial layer (hereinafter, sometimes referred to as an epi layer) grown thereon.
, Causing an epi-layer defect. In particular, when nitrogen is doped into a crystal, minute oxygen precipitates are formed at a high density (for example, Spring 1999, The 46th Joint Lecture Meeting on Applied Physics, Proceedings No. 1, p. 46).
9, 29a-ZB-5, Aihara et al.), Which is advantageous for gettering by the formation and growth of BMD, but the problem of this epi layer defect has been increasing.

【0006】このエピ層欠陥を回避するために、CW→
PW→EP→HTという工程順も考えられるが、EP工
程後に熱処理を行うことにより、表面のヘイズ(集光ラ
ンプでウエーハ表面を照射した時に白っぽく見える表面
状態)やLPD(LightPoint Defec
t、光散乱法による欠陥の総称)レベルが悪化すること
があるため、積極的にこの工程を採用するには至らなか
った。
In order to avoid this epi-layer defect, CW →
A process order of PW → EP → HT can be considered, but by performing a heat treatment after the EP process, surface haze (a surface state that looks whitish when the wafer surface is irradiated with a condensing lamp) or LPD (Light Point Defec) is obtained.
(t, collective term for defects by light scattering method) In some cases, this step has not been positively adopted because the level may be deteriorated.

【0007】[0007]

【発明が解決しようとする課題】本発明はこのような問
題点に鑑みてなされたもので、低温・短時間化されたデ
バイスプロセスに投入する前の状態で、エピ層のヘイ
ズ、LPD等の欠陥レベルが低減され、かつ酸素析出が
制御されたシリコンエピタキシャルウエーハを提供する
ことを主たる目的としている。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and has been made in consideration of such problems as haze of an epi layer, LPD, etc. before being put into a low-temperature and short-time device process. It is a primary object of the present invention to provide a silicon epitaxial wafer having a reduced defect level and controlled oxygen precipitation.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するた
め、本発明に係るシリコンエピタキシャルウエーハの製
造方法は、シリコン単結晶をスライスして得られるシリ
コンウエーハ表面にエピタキシャル層を形成するシリコ
ンエピタキシャルウエーハの製造方法において、少なく
ともシリコン単結晶インゴットをスライスする際に生じ
た加工歪層を除去した後にエピタキシャル成長を行い、
次に酸素析出熱処理を施し、その後にエピタキシャル層
の表面を鏡面研磨することを特徴とするものである(請
求項1)。
In order to solve the above-mentioned problems, a method of manufacturing a silicon epitaxial wafer according to the present invention is directed to a method of forming an epitaxial layer on a surface of a silicon wafer obtained by slicing a silicon single crystal. In the manufacturing method, epitaxial growth is performed after removing a processing strain layer generated at least when slicing a silicon single crystal ingot,
Next, an oxygen precipitation heat treatment is performed, and thereafter, the surface of the epitaxial layer is mirror-polished (claim 1).

【0009】このような工程順に従ってエピタキシャル
ウエーハを製造すれば、ウエーハ表面にエピ層を成長し
た後に酸素析出熱処理を行うので、熱処理により誘起さ
れる基板の欠陥がエピ層に発生することはない。すなわ
ち、熱処理により基板であるシリコンウエーハ中に欠陥
が発生したとしても、これがデバイス活性層やエピ層表
面まで伝搬することはない。従って、エピ層欠陥の少な
いエピウエーハが得られる。また、主に高抵抗基板を用
いる場合に、設計通りの基板抵抗率を達成するには、基
板に酸素ドナーキラー熱処理を施す必要があるが、これ
は前記酸素析出熱処理に含ませることが出来るため、生
産性の向上、コストダウンを図ることができる。勿論E
P工程前にドナーキラー熱処理を行っても良いことは言
うまでもない。さらに、最終工程としてエピ層表面にP
W工程を行うため、酸素析出熱処理で悪化したヘイズ、
LPDレベルが鏡面研磨ウエーハと同等レベルに改善さ
れるため、酸素析出熱処理後のヘイズ、LPDの悪化を
心配する必要がない。従って、エピ層のヘイズ、LPD
等の欠陥を低減し、かつ酸素析出が制御された高品質の
シリコンエピタキシャルウエーハを製造することができ
る。
If an epitaxial wafer is manufactured in accordance with such a process sequence, oxygen epitaxy heat treatment is performed after an epitaxial layer is grown on the wafer surface, so that defects in the substrate induced by the heat treatment do not occur in the epi layer. That is, even if a defect occurs in the silicon wafer as the substrate due to the heat treatment, the defect does not propagate to the device active layer or the epilayer surface. Therefore, an epi wafer having few epi layer defects can be obtained. In addition, when a high-resistance substrate is mainly used, it is necessary to perform an oxygen donor killer heat treatment on the substrate in order to achieve a substrate resistivity as designed, but this can be included in the oxygen precipitation heat treatment. Thus, productivity can be improved and costs can be reduced. Of course E
Needless to say, a donor killer heat treatment may be performed before the P step. Further, as a final step, P
Haze deteriorated by oxygen precipitation heat treatment to perform W process,
Since the LPD level is improved to the same level as the mirror-polished wafer, there is no need to worry about haze after heat treatment for oxygen precipitation and deterioration of LPD. Therefore, the haze of the epi layer, LPD
And other defects can be reduced, and a high-quality silicon epitaxial wafer with controlled oxygen precipitation can be manufactured.

【0010】この場合、加工歪層の除去を化学エッチン
グで行うことが好ましい(請求項2)。最終工程として
PW工程を行うので、EP工程を行う基板は加工歪層さ
え除去されていればよいので、化学エッチングウエーハ
で十分対応することができる。
In this case, it is preferable to remove the work strain layer by chemical etching. Since the PW process is performed as the final process, the substrate on which the EP process is performed only needs to remove the work-strained layer.

【0011】さらにこの場合、スライスするシリコン単
結晶を窒素ドープしたシリコン単結晶とすることができ
る(請求項3)。このように特に窒素ドープしたシリコ
ン単結晶を基板に用いて、前記工程順に従ってEP工程
後に酸素析出熱処理を行えば、既に表面はエピ層なので
エピ層に欠陥は発生しない。すなわち、基板中に欠陥が
発生したとしても、これがデバイス活性層やエピ層表面
まで伝搬することはなく、結果として、エピ層欠陥が極
めて少なく、かつ十分なBMD密度を有するエピウエー
ハを得ることができる。
Further, in this case, the silicon single crystal to be sliced can be a nitrogen-doped silicon single crystal. If the oxygen precipitation heat treatment is performed after the EP process according to the above-described process sequence using the silicon single crystal doped with nitrogen as the substrate, no defect occurs in the epi layer because the surface is already an epi layer. That is, even if a defect occurs in the substrate, this does not propagate to the device active layer or the epi layer surface, and as a result, an epi wafer having extremely few epi layer defects and a sufficient BMD density can be obtained. .

【0012】そして本発明によれば、前記製造方法によ
って作製されたエピ層のヘイズ、LPD等の欠陥を低減
し、かつ酸素析出が制御された高品質のシリコンエピタ
キシャルウエーハが提供される(請求項4)。
According to the present invention, there is provided a high-quality silicon epitaxial wafer in which defects such as haze and LPD of an epitaxial layer manufactured by the above-described manufacturing method are reduced and oxygen deposition is controlled. 4).

【0013】[0013]

【発明の実施の形態】以下、本発明について実施の形態
を図面を参照しながら説明するが、本発明はこれらに限
定されるものではない。図1は、本発明に係るシリコン
エピタキシャルウエーハの製造方法の一実施形態の概要
を示すフロー図である。図1において、先ず引上げたシ
リコン単結晶インゴットをスライス(a)し、少なくと
もスライスする際に生じた加工歪層を化学エッチング
(b)で除去した後に、エピタキシャル成長(c)を行
い、次に酸素析出熱処理(d)を施し、その後にエピタ
キシャル層の表面を鏡面研磨(e)するという工程を行
うものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited thereto. FIG. 1 is a flowchart showing an outline of one embodiment of a method for manufacturing a silicon epitaxial wafer according to the present invention. In FIG. 1, first, a pulled silicon single crystal ingot is sliced (a), and at least a processing strain layer generated at the time of slicing is removed by chemical etching (b), and then epitaxial growth (c) is performed. In this step, a heat treatment (d) is performed, and then the surface of the epitaxial layer is mirror-polished (e).

【0014】以下、上記工程順にさらに詳細に説明す
る。まずシリコン単結晶を引上げ、単結晶インゴットを
スライスし、この時に生じた加工歪を除去するためにラ
ッピング、ウエーハ周辺の面取りおよびエッチング等を
行う。これらの方法はいずれも従来技術によれば良く、
例えば単結晶引上げは、CZ法、MCZ法、ECZ法、
EMCZ法、FZ法等いずれの方法を用いても良い。
Hereinafter, the above steps will be described in more detail. First, a silicon single crystal is pulled up, a single crystal ingot is sliced, and lapping, chamfering around a wafer, etching, and the like are performed to remove processing strain generated at this time. Any of these methods may be according to the prior art,
For example, for pulling a single crystal, CZ method, MCZ method, ECZ method,
Any method such as the EMCZ method and the FZ method may be used.

【0015】また、単結晶へのリン、ホウ素、ヒ素、窒
素、炭素等の不純物の添加についても特に限定されな
い。これらのドーパントを添加する場合、ドープする濃
度はユーザー仕様通りにすれば良いが、前述のように高
抵抗基板を用いる場合には、必須のドナーキラー熱処理
を、酸素析出熱処理と兼ねて行うことができるため、ド
ナーキラー熱処理工程の省略による生産性の向上とコス
トダウンを図ることができる。このため、本発明を高抵
抗基板を用いたエピウエーハの製造に適用すればより一
層効果的である。
The addition of impurities such as phosphorus, boron, arsenic, nitrogen and carbon to the single crystal is not particularly limited. When adding these dopants, the doping concentration may be set according to the user's specifications.However, when using a high-resistance substrate as described above, the essential donor killer heat treatment may be performed together with the oxygen precipitation heat treatment. Accordingly, productivity can be improved and cost can be reduced by omitting the donor killer heat treatment step. For this reason, it is even more effective if the present invention is applied to the manufacture of an epi-wafer using a high-resistance substrate.

【0016】用いる基板の直径も任意であるが、300
mm(12インチ)以上の大口径ウエーハを用いる場
合、半導体素子の高集積化やウエーハ自重によるスリッ
プ転位の発生を抑制するために、デバイスプロセスが低
温・短時間化している。このため、従来のようなデバイ
スプロセス中でのBMDの形成や成長によるゲッタリン
グ効果は期待できないため、本発明の効果が顕著に得ら
れる。
Although the diameter of the substrate to be used is also arbitrary,
In the case of using a wafer having a large diameter of 12 mm (12 mm) or more, the device process is performed at a low temperature and in a short time in order to increase the degree of integration of semiconductor elements and to suppress the occurrence of slip dislocation due to the weight of the wafer. For this reason, the gettering effect due to the formation and growth of the BMD during the conventional device process cannot be expected, so that the effect of the present invention is remarkably obtained.

【0017】シリコン単結晶インゴットのスライス
(a)も既知の内周刃、外周刃を用いる方法、ワイヤー
ソー等いずれの方法でスライスしても良い。面取りも従
来のダイヤモンド砥石による面取り加工でも良いし、面
取り部からの発塵低減に適した鏡面面取り加工を施して
も良い。ラッピングも平行定盤間にラップ液を流して研
削する従来技術が適用されるし、平面研削盤を用いても
よい。
The slice (a) of the silicon single crystal ingot may be sliced by any known method using an inner peripheral blade, an outer peripheral blade, a wire saw, or the like. The chamfering may be a conventional chamfering process using a diamond grindstone, or may be a mirror chamfering process suitable for reducing dust generation from the chamfered portion. For lapping, a conventional technique of grinding by flowing a lap liquid between parallel platens is applied, or a surface grinder may be used.

【0018】エッチング(b)は、スライス、ラッピン
グ、面取り等の機械加工プロセスを行った際に生じた加
工歪層を除去することを目的としており、化学エッチン
グで完全に除去することができる。このエッチング液に
はフッ酸、硝酸、酢酸から成る混酸を水で希釈した酸エ
ッチング液が用いられる。また、NaOHやKOH等を
用いたアルカリエッチングで行ってもよいし、酸エッチ
ングと組み合せて使用することもできる。
The purpose of the etching (b) is to remove a work-strained layer generated when a machining process such as slicing, lapping, or chamfering is performed, and can be completely removed by chemical etching. As this etching solution, an acid etching solution obtained by diluting a mixed acid composed of hydrofluoric acid, nitric acid, and acetic acid with water is used. Further, the etching may be performed by alkali etching using NaOH, KOH, or the like, or may be used in combination with acid etching.

【0019】次いでエピタキシャル層を堆積、成長
(c)させる。EP工程も従来の方法で行えばよく、エ
ピタキシャル成長前に行う水素ベークやHClエッチン
グの有無等に限定されない。また、エピタキシャル成長
も常圧、減圧成長等にも限定されず、エピリアクターも
バッチ式、枚葉式等に限定されるものではない。原料ガ
スもSiCl4 、SiHCl3 、SiH2 Cl2 、Si
4 等、一般的に用いられるものの全てを用いることが
できる。なお、エピ層の厚さは「ユーザー仕様+PW工
程で研磨される厚さ」とすることが必要である。
Next, an epitaxial layer is deposited and grown (c). The EP process may be performed by a conventional method, and is not limited to the presence or absence of hydrogen baking or HCl etching performed before epitaxial growth. Further, the epitaxial growth is not limited to normal pressure, reduced pressure growth, or the like, and the epi reactor is not limited to a batch type, a single wafer type, or the like. The source gas is also SiCl 4 , SiHCl 3 , SiH 2 Cl 2 , Si
All commonly used materials such as H 4 can be used. Note that the thickness of the epi layer needs to be “user specification + thickness polished in the PW process”.

【0020】その後、酸素析出熱処理(d)を行う。こ
の酸素析出熱処理は酸素析出を制御する熱処理であり、
例えば、450〜800℃での酸素析出核を形成する熱
処理と、800℃以上での酸素析出物を成長させる熱処
理のような2段熱処理を用いることが一般的であるが、
これに限定されるものではない。また、この酸素析出熱
処理にドナーキラー熱処理を含めることができる。そう
すれば、高抵抗基板の場合にEP工程前にドナーキラー
熱処理を行う必要はない。また、この酸素析出熱処理条
件は、ユーザーから求められるBMDサイズ、密度等を
考慮してそれらに適したものにすれば良い。熱処理装置
もまた従来の装置を使用すればよく、抵抗加熱を用いた
バッチ式の炉や、枚葉式の急速加熱・急速冷却装置:R
TA(Rapid Thermal Anneale
r)等が一般的であるが、これらに限定されるものでは
ない。
Thereafter, an oxygen precipitation heat treatment (d) is performed. This oxygen precipitation heat treatment is a heat treatment for controlling oxygen precipitation,
For example, it is common to use a two-step heat treatment such as a heat treatment for forming oxygen precipitate nuclei at 450 to 800 ° C. and a heat treatment for growing oxygen precipitates at 800 ° C. or higher.
It is not limited to this. The oxygen precipitation heat treatment may include a donor killer heat treatment. Then, in the case of a high resistance substrate, it is not necessary to perform the donor killer heat treatment before the EP process. Further, the oxygen precipitation heat treatment conditions may be set to be suitable for them in consideration of the BMD size and density required by the user. As the heat treatment apparatus, a conventional apparatus may be used. A batch type furnace using resistance heating, a single-wafer type rapid heating / rapid cooling apparatus: R
TA (Rapid Thermal Anneale)
r) and the like are common, but not limited to these.

【0021】このようにEP工程後に酸素析出熱処理を
行えば、前述のように、窒素ドープの有無に関わらず、
既に表面はエピ層になっているのでエピ層に欠陥が発生
することはない。すなわち、仮に基板に欠陥が発生した
としても、これがデバイス活性層やエピ層表面に伝播す
ることはない。HT工程後、エピタキシャル層表面の鏡
面研磨(e)を行う。これも従来の方法によれば良く、
このようにEP工程後にエピ層表面の鏡面研磨工程を行
うため、フラットネス、マイクロラフネス、ヘイズに代
表されるような表面品質は鏡面ウエーハと同等になり、
エピウエーハの表面品質がより一層改善される。また、
LPDレベルやクラウン(EP工程でウエーハ周辺部に
シリコンが異常成長したもの)もエピ層表面を研磨する
ことにより同時に改善されるという効果もある。
If the oxygen precipitation heat treatment is performed after the EP process, as described above, regardless of the presence or absence of nitrogen doping,
Since the surface is already an epi layer, no defect occurs in the epi layer. That is, even if a defect occurs in the substrate, it does not propagate to the device active layer or the epi layer surface. After the HT process, mirror polishing (e) of the epitaxial layer surface is performed. This can also be done according to the conventional method,
As described above, since the mirror polishing process of the epi layer surface is performed after the EP process, the surface quality such as flatness, microroughness, and haze is equal to that of the mirror wafer,
The surface quality of the epi wafer is further improved. Also,
There is also an effect that the LPD level and the crown (those in which silicon has abnormally grown around the wafer in the EP process) can be simultaneously improved by polishing the epilayer surface.

【0022】[0022]

【実施例】以下、本発明の実施例と比較例を挙げて本発
明を具体的に説明するが、本発明はこれらに限定される
ものではない。 (実施例1)直径200mm(8インチ)、ボロン添
加、抵抗率0.01Ω・cm、初期酸素濃度16ppm
a[JEIDA(Japan Electronic
Industry Development and
Association:日本電子工業振興協会)の換
算係数を使用]の結晶をCZ法により引上げ、ワイヤー
ソーによりスライスし、ラッピング、鏡面面取りを行
い、フッ酸、硝酸、酢酸の混酸液による化学エッチング
を行った。その後、化学エッチング面上に1130℃で
エピ層(ボロン添加、抵抗率10Ω・cm)を22μm
堆積した。次いで、800℃/4Hr+1000℃/1
6Hrの酸素析出熱処理行った後、エピ層表面の鏡面研
磨工程を行った。
EXAMPLES Hereinafter, the present invention will be described specifically with reference to Examples and Comparative Examples of the present invention, but the present invention is not limited to these. (Example 1) Diameter 200 mm (8 inches), boron added, resistivity 0.01 Ω · cm, initial oxygen concentration 16 ppm
a [JEIDA (Japan Electronicic
Industry Development and
Association: using the conversion factor of the Japan Electronics Industry Promotion Association)], the crystal was pulled up by the CZ method, sliced with a wire saw, wrapped, mirror-polished, and chemically etched with a mixed acid solution of hydrofluoric acid, nitric acid and acetic acid. . Thereafter, an epilayer (boron addition, resistivity 10 Ω · cm) is formed on the chemically etched surface at 1130 ° C. to a thickness of 22 μm.
Deposited. Then, 800 ° C./4Hr+1000° C./1
After an oxygen precipitation heat treatment of 6 hr, a mirror polishing step of the epi layer surface was performed.

【0023】この時の研磨代を求めるために、ボロン添
加、抵抗率10Ω・cmのダミーウエーハを用意して、
上記と同様の研磨を行った。静電容量式非接触厚さ計C
L−250(小野測器社製)により測定した研磨前後で
のウエーハ厚さの差から、今回の研磨代を12μmと見
積もった。また、FT−IR法(フーリエ変換赤外分光
法)によるエピ層厚さ測定(測定器:OS−300、ア
クセント オプティカル テクノロジーズ社製)によ
り、抵抗率0.01Ω・cmのウエーハ上のエピ層厚さ
は10μmであり、エピ層が十分残っていることを確認
した。
In order to determine the polishing allowance at this time, a dummy wafer with boron addition and a resistivity of 10 Ω · cm was prepared.
The same polishing as above was performed. Capacitance type non-contact thickness gauge C
From the difference in wafer thickness before and after polishing measured by L-250 (manufactured by Ono Sokki Co., Ltd.), the polishing allowance this time was estimated to be 12 μm. Also, the epi-layer thickness on a wafer having a resistivity of 0.01 Ω · cm was determined by measuring the epi-layer thickness by FT-IR (Fourier transform infrared spectroscopy) (measuring device: OS-300, manufactured by Accent Optical Technologies). The thickness was 10 μm, and it was confirmed that the epi layer was sufficiently left.

【0024】光散乱式のパーティクルカウンタ:SP−
1(KLAテンコール社製)によるエピ層表面の測定で
は、LPD(サイズ0.09μm以上)は0個/ウエー
ハであった。SP−1によるヘイズは平均値で0.07
6ppm(Narrowモード)であり、これは通常の
鏡面ウエーハと同レベルである。また、静電容量式のフ
ラットネス測定器:ウルトラスキャン9650(ADE
社製)でフラットネスを測定し、ウエーハ内最大値を1
0枚のウエーハで平均したところ、SFQR(Site
Front least sQares<site>
Range)で0.20μm(20mmx20mmサイ
ト)であり、通常の鏡面研磨ウエーハ並であった。
Light scattering type particle counter: SP-
In the measurement of the surface of the epilayer using No. 1 (manufactured by KLA Tencor), the number of LPDs (size 0.09 μm or more) was 0 / wafer. The haze due to SP-1 was 0.07 on average.
6 ppm (Narrow mode), which is the same level as a normal mirror-surface wafer. In addition, a capacitance type flatness measuring device: Ultrascan 9650 (ADE)
The flatness is measured with the
When the average of 0 wafers, SFQR (Site
Front least sQares <site>
(Range) was 0.20 μm (20 mm × 20 mm site), which was equivalent to that of a normal mirror-polished wafer.

【0025】(実施例2)直径300mm(12イン
チ)、ボロン添加、抵抗率10Ω・cm、初期酸素濃度
16ppma−JEIDA、窒素濃度4×1013/cm
3 の結晶をMCZ法により引上げ、ワイヤーソーにより
スライスし、ラッピングし、面取りを行い、水酸化ナト
リウム水溶液による化学エッチングを行った。その後、
化学エッチング面上に1130℃でエピ層(ボロン添
加、抵抗率10Ω・cm)を22μm堆積した。次い
で、800℃/4Hr+1000℃/16Hrの熱処理
(急速降温によるドナーキラー熱処理を兼ねる)を行っ
た後、両面研磨・平坦化研磨および鏡面面取りを行っ
た。両面研磨および平坦化研磨それぞれでの研磨代か
ら、今回の表面側の研磨代を12μmと見積もった。ま
た、非接触厚さ計CL−250により測定したEP工程
前のウエーハ厚さとエピ層鏡面研磨工程後のウエーハ厚
さの差から、基板上に堆積しているエピ層厚さは10μ
mと見積もられたため、エピ層が残っていることが確認
できた。
(Example 2) 300 mm (12 inches) in diameter, boron added, resistivity 10 Ω · cm, initial oxygen concentration 16 ppma-JEIDA, nitrogen concentration 4 × 10 13 / cm
Crystal 3 was pulled up by the MCZ method, sliced with a wire saw, wrapped, chamfered, and chemically etched with an aqueous sodium hydroxide solution. afterwards,
On the chemically etched surface, an epilayer (boron addition, resistivity: 10 Ω · cm) was deposited at 22 ° C. at 1130 ° C. Next, after performing a heat treatment of 800 ° C./4Hr+1000° C./16Hr (also serving as a donor killer heat treatment by rapid cooling), double-side polishing / flattening polishing and mirror-surface chamfering were performed. From the polishing allowance in each of the double-side polishing and the flattening polishing, the polishing allowance on the front side was estimated to be 12 μm. From the difference between the wafer thickness before the EP step measured by the non-contact thickness gauge CL-250 and the wafer thickness after the epi layer mirror polishing step, the thickness of the epi layer deposited on the substrate was 10 μm.
Since it was estimated to be m, it was confirmed that the epi layer remained.

【0026】パーティクルカウンタ:SP−1による測
定では、LPD(サイズ0.09μm以上)は0個/ウ
エーハであった。SP−1によるヘイズは平均値で0.
049ppm(Narrowモード)であり、これは通
常の鏡面研磨ウエーハと同レベルである。また、静電容
量式のフラットネス測定器:AFS(Advanted
Flatness System) −3220(AD
E社製)でフラットネスを測定したところ、SFQD
(Site Front least sQares<
site>Deviation)のウエーハ面内の平均
値で0.036μm(26mmx32mmサイト)であ
り、通常の鏡面研磨ウエーハ並であった。
In the measurement with the particle counter: SP-1, the number of LPDs (size 0.09 μm or more) was 0 / wafer. The haze due to SP-1 was 0.1 on average.
049 ppm (Narrow mode), which is the same level as a normal mirror-polished wafer. In addition, a capacitance type flatness measuring device: AFS (Advanced)
Flatness System) -3220 (AD
E), the flatness was measured.
(Site Front least sQares <
The average value within the wafer plane (site> Division) was 0.036 μm (26 mm × 32 mm site), which was equivalent to that of a normal mirror-polished wafer.

【0027】(比較例1)直径200mm(8イン
チ)、ボロン添加、抵抗率0.01Ω・cm、初期酸素
濃度16ppma−JEIDAの結晶をCZ法により引
上げ、ワイヤーソーによりスライスし、ラッピング、鏡
面面取りを行い、混酸液による化学エッチングを行っ
た。その後800℃/4Hr+1000℃/16Hrの
熱処理行い、鏡面研磨を施し、その鏡面上に1130℃
でエピ層(ボロン添加、抵抗率10Ω・cm)を10μ
m堆積して、エピタキシャルウエーハを得た。
(Comparative Example 1) A crystal having a diameter of 200 mm (8 inches), boron added, a resistivity of 0.01 Ω · cm, an initial oxygen concentration of 16 ppma-JEIDA was pulled up by the CZ method, sliced with a wire saw, wrapped, and mirror-polished. Was performed, and chemical etching was performed using a mixed acid solution. Thereafter, a heat treatment of 800 ° C./4Hr+1000° C./16Hr is performed, mirror polishing is performed, and 1130 ° C.
To make the epi layer (boron addition, resistivity 10Ω · cm) 10μ
Thus, an epitaxial wafer was obtained.

【0028】このエピウエーハをパーティクルカウン
タ:SPー1により測定したところ、62個/ウエーハ
のLPD(サイズ0.09μm以上)が検出され、ヘイ
ズは平均値で0.324ppm(Narrowモード)
であった。ウルトラスキャン9650によるフラットネ
スはSFQRで0.24μmであった。これら全ての品
質特性が、実施例1に比べて明らかに劣化していた。
When this epi-wafer was measured with a particle counter: SP-1, 62 LPDs / wafer (size 0.09 μm or more) were detected, and the haze was 0.324 ppm on average (Narrow mode).
Met. The flatness by Ultrascan 9650 was 0.24 μm in SFQR. All of these quality characteristics were clearly deteriorated as compared with Example 1.

【0029】(比較例2)直径200mm(8イン
チ)、ボロン添加、抵抗率0.01Ω・cm、初期酸素
濃度16ppm−JEIDAの結晶をCZ法により引上
げ、ワイヤーソーによりスライスし、ラッピング、鏡面
面取りを行い、混酸液による化学エッチングを行った
後、鏡面加工を行った。その後、1130℃でエピ層
(ボロン添加、抵抗率10Ω・cm)を10μm堆積し
た。次いで、800℃/4Hr+1000℃/16Hr
の酸素析出熱処理行った。
(Comparative Example 2) A crystal having a diameter of 200 mm (8 inches), boron added, resistivity of 0.01 Ω · cm, initial oxygen concentration of 16 ppm-JEIDA was pulled up by the CZ method, sliced with a wire saw, wrapped, and mirror-polished. After performing chemical etching with a mixed acid solution, mirror finishing was performed. Thereafter, an epilayer (boron addition, resistivity 10 Ω · cm) of 10 μm was deposited at 1130 ° C. Then, 800 ° C./4Hr+1000° C./16Hr
Was subjected to an oxygen precipitation heat treatment.

【0030】このエピウエーハをパーティクルカウン
タ:SPー1により測定したところ、124個/ウエー
ハのLPD(サイズ0.09μm以上)が検出され、ヘ
イズは平均値で0.238ppm(Narrowモー
ド)であった。ウルトラスキャン9650によるフラッ
トネスはSFQRで0.22μmであった。これら全て
の品質特性が、実施例1に比べて明らかに劣化してい
た。
When this epiwafer was measured with a particle counter: SP-1, 124 LPDs / wafer (size 0.09 μm or more) were detected, and the haze was 0.238 ppm (Narrow mode) on average. The flatness by Ultrascan 9650 was 0.22 μm in SFQR. All of these quality characteristics were clearly deteriorated as compared with Example 1.

【0031】(比較例3)直径300mm(12イン
チ)、ボロン添加、抵抗率10Ω・cm、初期酸素濃度
16ppm−JEIDA、窒素濃度4×1013/cm3
の結晶をMCZ法により引上げ、ワイヤーソーによりス
ライスし、ラッピング、面取りを行い、水酸化ナトリウ
ム水溶液によるアルカリエッチングを行った。その後、
800℃/4Hr+1000℃/16Hrの熱処理(急
速降温によるドナーキラー熱処理を兼ねる)を施した
後、両面研磨・平坦化研磨および鏡面面取りを行った。
次いで、1130℃でエピ層(ボロン添加、抵抗率10
Ω・cm)を10μm堆積した。
Comparative Example 3 Diameter: 300 mm (12 inches), boron added, resistivity: 10 Ω · cm, initial oxygen concentration: 16 ppm-JEIDA, nitrogen concentration: 4 × 10 13 / cm 3
Was pulled up by the MCZ method, sliced with a wire saw, wrapped and chamfered, and alkali-etched with an aqueous sodium hydroxide solution. afterwards,
After a heat treatment of 800 ° C./4Hr+1000° C./16Hr (also serving as a donor killer heat treatment by rapid cooling), double-side polishing, flattening polishing, and mirror chamfering were performed.
Then, at 1130 ° C., an epi layer (boron added, resistivity 10
Ω · cm) was deposited at 10 μm.

【0032】このエピウエーハのパーティクルカウン
タ:SPー1による測定では、141個/ウエーハのL
PD(サイズ0.09μm以上)が検出され、ヘイズは
平均値で0.303ppm(Narrowモード)であ
った。また、フラットネス測定器ASF−3220でフ
ラットネスを測定したところ、SFQDで0.045μ
mであった。これら全ての品質特性が、実施例2に比べ
明らかに劣化していた。
In the measurement using the particle counter SP-1 of the epi-wafer, 141 particles / L of the wafer were measured.
PD (size 0.09 μm or more) was detected, and the haze was 0.303 ppm (Narrow mode) on average. When the flatness was measured with a flatness measuring device ASF-3220, the SFQD was 0.045 μm.
m. All of these quality characteristics were clearly deteriorated as compared with Example 2.

【0033】(比較例4)直径300mm(12イン
チ)、ボロン添加、抵抗率10Ω・cm、初期酸素濃度
16ppm−JEIDA、窒素濃度4×1013/cm3
の結晶をMCZ法により引上げ、ワイヤーソーによりス
ライスし、ラッピング、面取りを行い、水酸化ナトリウ
ム水溶液によるアルカリエッチングを行った。その後、
両面研磨・平坦化研磨および鏡面面取りを行った後、1
130℃でエピ層(ボロン添加、抵抗率10Ω・cm)
を10μm堆積した。次いで、800℃/4Hr+10
00℃/16Hrの熱処理(急速降温によるドナーキラ
ー熱処理を兼ねる)を施した。
(Comparative Example 4) Diameter 300 mm (12 inches), boron added, resistivity 10 Ω · cm, initial oxygen concentration 16 ppm-JEIDA, nitrogen concentration 4 × 10 13 / cm 3
Was pulled up by the MCZ method, sliced with a wire saw, wrapped and chamfered, and alkali-etched with an aqueous sodium hydroxide solution. afterwards,
After performing double-side polishing, flattening polishing and mirror chamfering,
Epilayer at 130 ° C (boron added, resistivity 10Ω · cm)
Was deposited in a thickness of 10 μm. Then, at 800 ° C./4Hr+10
A heat treatment of 00 ° C./16 hr (also serving as a donor killer heat treatment by rapid cooling) was performed.

【0034】このエピウエーハのパーティクルカウン
タ:SPー1による測定では、337個/ウエーハのL
PD(サイズ0.09μm以上)が検出され、ヘイズは
平均値で0.183ppm(Narrowモード)であ
った。また、フラットネス測定器:ASF−3220で
フラットネスを測定したところ、SFQDで0.042
μmであった。これら全ての品質特性が、実施例2に比
べ明らかに劣化していた。
In the measurement using the particle counter SP-1 of the epi-wafer, 337 particles / L of the wafer were measured.
PD (size 0.09 μm or more) was detected, and the haze was 0.183 ppm (Narrow mode) on average. When the flatness was measured with a flatness measuring device: ASF-3220, the SFQD was 0.042.
μm. All of these quality characteristics were clearly deteriorated as compared with Example 2.

【0035】なお、本発明は、上記実施形態に限定され
るものではない。上記実施形態は、例示であり、本発明
の特許請求の範囲に記載された技術的思想と実質的に同
一な構成を有し、同様な作用効果を奏するものは、いか
なるものであっても本発明の技術的範囲に包含される。
The present invention is not limited to the above embodiment. The above embodiment is an exemplification, and has substantially the same configuration as the technical idea described in the scope of the claims of the present invention. It is included in the technical scope of the invention.

【0036】例えば、上記実施形態においては、直径2
00mm(8インチ)および300mm(12インチ)
のシリコン単結晶ウエーハからエピタキシャルウエーハ
を作製する場合につき例を挙げて説明したが、本発明は
これには限定されず、直径100〜400mm(4〜1
6インチ)あるいはそれ以上のシリコン単結晶にも適用
できる。
For example, in the above embodiment, the diameter 2
00mm (8 inches) and 300mm (12 inches)
The case where an epitaxial wafer is produced from a silicon single crystal wafer described above has been described by way of example, but the present invention is not limited to this, and the diameter is 100 to 400 mm (4 to 1 mm).
6 inch) or larger silicon single crystals.

【0037】[0037]

【発明の効果】以上詳細に説明した通り、本発明によれ
ば、低温・短時間化されたデバイスプロセスに投入する
前の状態で、エピ層にヘイズ、LPD等の欠陥レベルが
低減され、かつ酸素析出が制御されたシリコンエピタキ
シャルウエーハを提供することができる。
As described above in detail, according to the present invention, the defect level such as haze and LPD is reduced in the epi layer before the device is put into a low-temperature, short-time device process. A silicon epitaxial wafer with controlled oxygen deposition can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のエピタキシャルウエーハの製造工程の
一例を示すフロー図である。
FIG. 1 is a flowchart showing an example of a manufacturing process of an epitaxial wafer of the present invention.

【図2】従来のエピタキシャルウエーハの製造工程の一
例を示すフロー図である。
FIG. 2 is a flowchart showing an example of a conventional epitaxial wafer manufacturing process.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 シリコン単結晶をスライスして得られる
シリコンウエーハ表面にエピタキシャル層を形成するシ
リコンエピタキシャルウエーハの製造方法において、少
なくともシリコン単結晶インゴットをスライスする際に
生じた加工歪層を除去した後にエピタキシャル成長を行
い、次に酸素析出熱処理を施し、その後にエピタキシャ
ル層の表面を鏡面研磨することを特徴とするシリコンエ
ピタキシャルウエーハの製造方法。
1. A method for manufacturing a silicon epitaxial wafer in which an epitaxial layer is formed on the surface of a silicon wafer obtained by slicing a silicon single crystal, wherein at least a processing strain layer generated when slicing the silicon single crystal ingot is removed. A method for manufacturing a silicon epitaxial wafer, comprising performing epitaxial growth, then performing an oxygen precipitation heat treatment, and then mirror-polishing the surface of the epitaxial layer.
【請求項2】 前記加工歪層の除去を化学エッチングで
行うことを特徴とする請求項1に記載のシリコンエピタ
キシャルウエーハの製造方法。
2. The method for manufacturing a silicon epitaxial wafer according to claim 1, wherein the removal of the processing strain layer is performed by chemical etching.
【請求項3】 前記スライスするシリコン単結晶は、窒
素ドープしたシリコン単結晶とすることを特徴とする請
求項1または請求項2に記載のシリコンエピタキシャル
ウエーハの製造方法。
3. The method for producing a silicon epitaxial wafer according to claim 1, wherein the silicon single crystal to be sliced is a nitrogen-doped silicon single crystal.
【請求項4】 請求項1ないし請求項3のいずれか1項
に記載の製造方法によって製造されたことを特徴とする
シリコンエピタキシャルウエーハ。
4. A silicon epitaxial wafer manufactured by the manufacturing method according to claim 1.
JP2001109172A 2001-04-06 2001-04-06 Manufacturing method of silicon epitaxial wafer Expired - Fee Related JP3965931B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001109172A JP3965931B2 (en) 2001-04-06 2001-04-06 Manufacturing method of silicon epitaxial wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001109172A JP3965931B2 (en) 2001-04-06 2001-04-06 Manufacturing method of silicon epitaxial wafer

Publications (2)

Publication Number Publication Date
JP2002305202A true JP2002305202A (en) 2002-10-18
JP3965931B2 JP3965931B2 (en) 2007-08-29

Family

ID=18961166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001109172A Expired - Fee Related JP3965931B2 (en) 2001-04-06 2001-04-06 Manufacturing method of silicon epitaxial wafer

Country Status (1)

Country Link
JP (1) JP3965931B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010016510A1 (en) * 2008-08-06 2010-02-11 株式会社Sumco Method for manufacturing a semiconductor wafer
JP2016213320A (en) * 2015-05-08 2016-12-15 信越半導体株式会社 Epitaxial wafer manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0878326A (en) * 1994-09-07 1996-03-22 Mitsubishi Materials Shilicon Corp Manufacture of epitaxial wafer
JPH11204534A (en) * 1998-01-14 1999-07-30 Sumitomo Metal Ind Ltd Method for manufacturing silicon epitaxial wafer
JP2000044389A (en) * 1998-05-22 2000-02-15 Shin Etsu Handotai Co Ltd Production of epitaxial silicon single crystal wafer and epitaxial silicon single crystal wafer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0878326A (en) * 1994-09-07 1996-03-22 Mitsubishi Materials Shilicon Corp Manufacture of epitaxial wafer
JPH11204534A (en) * 1998-01-14 1999-07-30 Sumitomo Metal Ind Ltd Method for manufacturing silicon epitaxial wafer
JP2000044389A (en) * 1998-05-22 2000-02-15 Shin Etsu Handotai Co Ltd Production of epitaxial silicon single crystal wafer and epitaxial silicon single crystal wafer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010016510A1 (en) * 2008-08-06 2010-02-11 株式会社Sumco Method for manufacturing a semiconductor wafer
JP2016213320A (en) * 2015-05-08 2016-12-15 信越半導体株式会社 Epitaxial wafer manufacturing method

Also Published As

Publication number Publication date
JP3965931B2 (en) 2007-08-29

Similar Documents

Publication Publication Date Title
US6478883B1 (en) Silicon single crystal wafer, epitaxial silicon wafer, and methods for producing them
JP5018066B2 (en) Method for manufacturing strained Si substrate
JP5682471B2 (en) Silicon wafer manufacturing method
WO2012120785A1 (en) Process for producing silicon wafer
JP4854936B2 (en) Silicon wafer manufacturing method and silicon wafer
JP2008088051A (en) Epitaxial wafer and method for manufacturing the same
JP2003059933A (en) Silicon epitaxial wafer and production method therefor
JP3888416B2 (en) Method for manufacturing silicon epitaxial wafer and silicon epitaxial wafer
CN113544817B (en) Method for producing silicon epitaxial wafer and silicon epitaxial wafer
US6211088B1 (en) Manufacturing method for semiconductor gas-phase epitaxial wafer
JP3482982B2 (en) Manufacturing method of epitaxial wafer with EG layer
JP3965931B2 (en) Manufacturing method of silicon epitaxial wafer
TW201820474A (en) 矽 wafer polishing method, 矽 wafer manufacturing method, and 矽 wafer
JP2012204369A (en) Manufacturing method for epitaxial wafer
JPH05326467A (en) Semiconductor substrate and its manufacturing method
JP3412531B2 (en) Phosphorus-doped silicon single crystal wafer, epitaxial silicon wafer, and methods for producing them
US12119375B2 (en) Silicon epitaxial wafer production method and silicon epitaxial wafer
JP5999949B2 (en) Silicon wafer manufacturing method
WO2011007494A1 (en) Method for manufacturing semiconductor epitaxial wafer, and semiconductor epitaxial wafer
JP2013201314A (en) Method for manufacturing silicon wafer
JP2012114138A (en) Epitaxial growth method of silicon wafer
JP4078822B2 (en) Silicon wafer manufacturing method
JP2004099415A (en) Single crystal, single crystal wafer and epitaxial wafer, and method of growing single crystal
JP3932756B2 (en) Manufacturing method of silicon epitaxial wafer
JP2007073594A (en) Method of manufacturing epitaxial silicon wafer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070521

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3965931

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130608

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees