JP2002289419A - Sot magnetic alloy thick film, magnetic device, and method for manufacturing them - Google Patents
Sot magnetic alloy thick film, magnetic device, and method for manufacturing themInfo
- Publication number
- JP2002289419A JP2002289419A JP2001190912A JP2001190912A JP2002289419A JP 2002289419 A JP2002289419 A JP 2002289419A JP 2001190912 A JP2001190912 A JP 2001190912A JP 2001190912 A JP2001190912 A JP 2001190912A JP 2002289419 A JP2002289419 A JP 2002289419A
- Authority
- JP
- Japan
- Prior art keywords
- soft magnetic
- magnetic alloy
- layer
- thickness
- sintered
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/14—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
- H01F41/16—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates the magnetic material being applied in the form of particles, e.g. by serigraphy, to form thick magnetic films or precursors therefor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F17/00—Fixed inductances of the signal type
- H01F17/0006—Printed inductances
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F17/00—Fixed inductances of the signal type
- H01F17/0006—Printed inductances
- H01F17/0033—Printed inductances with the coil helically wound around a magnetic core
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F17/00—Fixed inductances of the signal type
- H01F17/04—Fixed inductances of the signal type with magnetic core
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F17/00—Fixed inductances of the signal type
- H01F17/0006—Printed inductances
- H01F17/0013—Printed inductances with stacked layers
- H01F2017/002—Details of via holes for interconnecting the layers
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Powder Metallurgy (AREA)
- Soft Magnetic Materials (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、高周波、とくに1
00MHz〜400MHzでのノイズ対策用(例えばノ
イズフィルタ用磁心等)に好適に使用できる軟磁性合金
厚膜及びこれを磁心とする磁気素子、並びにそれらの製
造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention
The present invention relates to a soft magnetic alloy thick film which can be suitably used for noise suppression at 00 MHz to 400 MHz (for example, a magnetic core for a noise filter, etc.), a magnetic element using the same as a magnetic core, and a method of manufacturing them.
【0002】[0002]
【従来の技術】デジタル電子機器の高周波化、高性能化
に伴い200MHz付近のEMC規格に対するEMI対
策が重要課題となっている。このEMI対策部品とし
て、フェライト製の磁心材料やチップ部品が広く利用さ
れている。しかしながら最近では、高周波化と高容量化
により更なる特性の向上が必要とされてきているため、
スヌークの限界曲線を持つフェライトでは所望のノイズ
減衰特性を得るのは困難である。2. Description of the Related Art With the increase in the frequency and performance of digital electronic equipment, EMI countermeasures against EMC standards around 200 MHz have become important issues. Ferrite core materials and chip components are widely used as EMI suppression components. However, recently, further improvement in characteristics has been required due to higher frequency and higher capacity,
It is difficult to obtain desired noise attenuation characteristics with a ferrite having a Snook limit curve.
【0003】公知技術として、まず特開昭56−819
17号公報では、高透磁率合金粉末層と非導電性セラミ
ック粉末層とを交互に積層した成型体をリング状に打ち
抜き焼結させているが、厚さについて言及しておらず、
またリング形状に限定されていてコアの周りに巻線を行
わねばならず、小型化には不向きである。As a known technique, first, Japanese Patent Application Laid-Open No. 56-819
In the publication No. 17, a molded body obtained by alternately laminating a high magnetic permeability alloy powder layer and a non-conductive ceramic powder layer is punched and sintered in a ring shape, but the thickness is not mentioned.
In addition, the shape is limited to a ring shape, and winding must be performed around the core, which is not suitable for miniaturization.
【0004】一方、特開平5−62851号公報には、
高透磁率合金粉末層と非導電性セラミック粉末層とを交
互に積層した成型体を焼結し、渦電流損失を低減させて
高周波での透磁率を改善した高透磁率磁心が開示されて
いる。該公報では、1MHz程度の高周波で使用される
トランス用磁心の渦電流損失を小さくするためにプラス
チックフィルム成膜加工法を用いて厚さ20μm以下の
高透磁率合金薄板を製造し、さらに板厚を薄くするため
に伸延法を併用して板厚10μm以下の板厚も可能とし
ているが、EMI対策で問題となる周波数帯域である1
00MHz〜400MHzでは、軟磁性合金薄板をもう
一桁薄い厚膜にする必要がある。20μmの薄板を2μ
m程度に薄くするには、伸延法であっても圧延と熱処理
を複数繰り返し実施する必要があるため、極めて高価で
あり実用的でない。On the other hand, JP-A-5-62851 discloses that
A high-permeability magnetic core is disclosed in which a molded body in which high-permeability alloy powder layers and non-conductive ceramic powder layers are alternately laminated is sintered to reduce eddy current loss and improve high-frequency permeability. . In this publication, in order to reduce eddy current loss of a transformer core used at a high frequency of about 1 MHz, a high-permeability alloy thin plate having a thickness of 20 μm or less is manufactured using a plastic film film forming method, In order to reduce the thickness, it is possible to use a sheet thickness of 10 μm or less by using the distraction method.
In the range of 00 MHz to 400 MHz, it is necessary to make the soft magnetic alloy thin plate another thicker film. 20μm thin plate 2μ
In order to reduce the thickness to about m, even if the elongation method is used, it is necessary to perform rolling and heat treatment a plurality of times, which is extremely expensive and impractical.
【0005】また、特開平11−16733号公報では
箔による積層を行っているが、薄くするには該公報でも
述べている通り不便であり、積層一体焼結の方がより簡
便に薄膜化を行うことができる。なぜなら、高周波で使
用する磁気素子では、軟磁性膜と絶縁膜が多層に堆積さ
れた構造が理想的であるためである。In Japanese Patent Application Laid-Open No. H11-16733, lamination using foil is performed. However, it is inconvenient to reduce the thickness as described in the publication. It can be carried out. This is because a magnetic element used at a high frequency ideally has a structure in which a soft magnetic film and an insulating film are deposited in multiple layers.
【0006】このような薄膜積層の手法としては真空成
膜法による成膜も検討されている。特開平3−2835
14号公報では、反応性ガスを用いたスパッタ法により
非晶質金属磁性体/絶縁体からなる多層膜を成膜する方
法が開示されている。この方法は、シリカ、アルミナ、
窒化珪素等の酸化物、窒化物を多層膜の絶縁体として利
用でき、軟磁性層も電気抵抗の大きなアモルファスを利
用することから、100MHzの高周波においても透磁
率5000以上の優れた特性が得られているが、真空成
膜を短時間で行うことが困難であるために数μmの膜厚
を有する磁気素子を現実的な価格で製造するのは極めて
困難である。As a method of laminating such thin films, film formation by a vacuum film formation method is also being studied. JP-A-3-2835
No. 14 discloses a method of forming a multilayer film composed of an amorphous metal magnetic material / insulator by a sputtering method using a reactive gas. This method uses silica, alumina,
Since oxides and nitrides such as silicon nitride can be used as the insulator of the multilayer film, and the soft magnetic layer also uses an amorphous material having a large electric resistance, excellent characteristics with a magnetic permeability of 5000 or more even at a high frequency of 100 MHz can be obtained. However, it is extremely difficult to manufacture a magnetic element having a thickness of several μm at a realistic price because it is difficult to perform vacuum film formation in a short time.
【0007】[0007]
【発明が解決しようとする課題】本発明の第1の目的
は、上記問題点を克服し、EMC規格を満たす上で問題
となる100MHz〜400MHzのノイズ減衰効果の
優れた軟磁性合金厚膜及び磁気素子を提供することにあ
る。SUMMARY OF THE INVENTION It is a first object of the present invention to overcome the above-mentioned problems and to provide a soft magnetic alloy thick film having an excellent noise attenuation effect of 100 MHz to 400 MHz which is a problem in satisfying the EMC standard. It is to provide a magnetic element.
【0008】本発明の第2の目的は、EMC規格を満た
す上で問題となる100MHz〜400MHzのノイズ
減衰効果の優れた軟磁性合金厚膜及び磁気素子を安価に
製造可能な軟磁性合金厚膜及び磁気素子の製造方法を提
供することにある。A second object of the present invention is to provide a soft magnetic alloy thick film having an excellent noise attenuation effect of 100 MHz to 400 MHz and a soft magnetic alloy thick film capable of manufacturing a magnetic element at low cost, which are problems in meeting the EMC standard. And a method for manufacturing a magnetic element.
【0009】本発明のその他の目的や新規な特徴は後述
の実施の形態において明らかにする。Other objects and novel features of the present invention will be clarified in embodiments described later.
【0010】[0010]
【課題を解決するための手段】上記目的を達成するため
に、本願請求項1の発明に係る軟磁性合金厚膜は、厚さ
5μm以下の焼結軟磁性合金層と絶縁層とを交互にかつ
多層に積層したことを特徴としている。In order to achieve the above object, a soft magnetic alloy thick film according to the first aspect of the present invention comprises a sintered soft magnetic alloy layer having a thickness of 5 μm or less and an insulating layer alternately. It is characterized by being laminated in multiple layers.
【0011】本願請求項2の発明に係る軟磁性合金厚膜
は、請求項1において、前記焼結軟磁性合金層の厚さが
0.5μm〜5μmであることを特徴としている。A soft magnetic alloy thick film according to a second aspect of the present invention is characterized in that, in the first aspect, the thickness of the sintered soft magnetic alloy layer is 0.5 μm to 5 μm.
【0012】本願請求項3の発明に係る軟磁性合金厚膜
は、請求項1又は2において、前記焼結軟磁性合金層内
部に1〜50体積%の空間部分を有していることを特徴
としている。A soft magnetic alloy thick film according to a third aspect of the present invention is characterized in that, in the first or second aspect, the sintered soft magnetic alloy layer has a space portion of 1 to 50% by volume inside. And
【0013】本願請求項4の発明に係る軟磁性合金厚膜
は、請求項1,2又は3において、前記絶縁層が5μm
以下の酸化物層、窒化物層あるいは有機物層であること
を特徴としている。According to a fourth aspect of the present invention, there is provided a soft magnetic alloy thick film according to the first, second or third aspect, wherein the insulating layer has a thickness of 5 μm.
The following oxide layer, nitride layer or organic layer is characterized.
【0014】本願請求項5の発明に係る軟磁性合金厚膜
は、請求項1,2,3又は4において、前記焼結軟磁性
合金層の炭素含有量が0.05重量%以下であることを
特徴としている。According to a fifth aspect of the present invention, in the soft magnetic alloy thick film according to the first, second, third or fourth aspect, the sintered soft magnetic alloy layer has a carbon content of 0.05% by weight or less. It is characterized by.
【0015】本願請求項6の発明に係る軟磁性合金厚膜
の製造方法は、平均厚さが0.1〜0.8μmの偏平状軟
磁性合金粉末をバインダー、溶媒と混合し、分散させて
スラリー状とし、これを塗布して塗布膜を作製した後、
脱バインダー、焼結して焼結軟磁性合金層を作製し、該
焼結軟磁性合金層間に厚さ5μm以下の絶縁層を挟んで
多層としたことを特徴としている。According to a sixth aspect of the present invention, there is provided a method for manufacturing a soft magnetic alloy thick film, comprising mixing and dispersing a flat soft magnetic alloy powder having an average thickness of 0.1 to 0.8 μm with a binder and a solvent. After making it into a slurry and applying it to form a coating film,
The present invention is characterized in that a sintered soft magnetic alloy layer is produced by debinding and sintering, and a multilayer is formed by sandwiching an insulating layer having a thickness of 5 μm or less between the sintered soft magnetic alloy layers.
【0016】本願請求項7の発明に係る軟磁性合金厚膜
の製造方法は、直径が0.1〜0.8μmの軟磁性超微粉
をバインダー、溶媒と混合し、分散させてスラリー状と
し、これを塗布して塗布膜を作製した後、脱バインダ
ー、焼結して焼結軟磁性合金層を作製し、該焼結軟磁性
合金層間に厚さ5μm以下の絶縁層を挟んで多層とした
ことを特徴としている。The method of manufacturing a soft magnetic alloy thick film according to the invention of claim 7 of the present application is as follows: a soft magnetic ultrafine powder having a diameter of 0.1 to 0.8 μm is mixed with a binder and a solvent and dispersed to form a slurry; After applying this to form a coating film, binder removal and sintering were performed to produce a sintered soft magnetic alloy layer, and a multilayer was formed with an insulating layer having a thickness of 5 μm or less interposed between the sintered soft magnetic alloy layers. It is characterized by:
【0017】本願請求項8の発明に係る軟磁性合金厚膜
の製造方法は、請求項6又は7において、前記焼結温度
が600℃〜1400℃であることを特徴としている。The method of manufacturing a soft magnetic alloy thick film according to the invention of claim 8 of the present application is characterized in that, in claim 6 or 7, the sintering temperature is from 600 ° C. to 1400 ° C.
【0018】本願請求項9の発明に係る磁気素子は、厚
さ5μm以下の焼結軟磁性合金層と絶縁層とを交互にか
つ多層に積層して軟磁性合金厚膜となし、かつ前記絶縁
層が前記焼結軟磁性合金層のパターン面積よりも大きな
パターン面積を有するようにし、前記絶縁層で形成され
たスルーホールに導体を設けたことを特徴としている。According to a ninth aspect of the present invention, there is provided a magnetic element, wherein a sintered soft magnetic alloy layer having a thickness of 5 μm or less and insulating layers are alternately and multi-layered to form a soft magnetic alloy thick film. The layer has a pattern area larger than the pattern area of the sintered soft magnetic alloy layer, and a conductor is provided in a through hole formed by the insulating layer.
【0019】本願請求項10の発明に係る磁気素子は、
請求項9において、前記スルーホールを相互に近接して
配列したスルーホール群が設けられており、該スルーホ
ール群全体を囲む所定領域には前記焼結軟磁性合金層の
パターンが存在しないようにしたことを特徴としてい
る。According to the tenth aspect of the present invention, there is provided a magnetic element comprising:
In Claim 9, a through-hole group in which the through-holes are arranged close to each other is provided, and a pattern of the sintered soft magnetic alloy layer does not exist in a predetermined region surrounding the entire through-hole group. It is characterized by doing.
【0020】本願請求項11の発明に係る磁気素子は、
請求項9又は10において、前記焼結軟磁性合金層の厚
さが0.5μm〜5μmであり、前記絶縁層が5μm以
下の酸化物層、窒化物層あるいは有機物層であることを
特徴としている。The magnetic element according to the invention of claim 11 of the present application is:
11. The method according to claim 9, wherein the thickness of the sintered soft magnetic alloy layer is 0.5 μm to 5 μm, and the insulating layer is an oxide layer, a nitride layer, or an organic layer of 5 μm or less. .
【0021】本願請求項12の発明に係る磁気素子の製
造方法は、非磁性酸化物粉をバインダー、溶媒と混合
し、分散させてスラリー状とし、これを基材上に所定パ
ターンで印刷する絶縁層印刷工程と、平均厚さが0.1
〜0.8μmの偏平状軟磁性合金粉末あるいは直径が0.
1〜0.8μmの軟磁性超微粉をバインダー、溶媒と混
合し、分散させてスラリー状とし、これを前記基材上に
前記絶縁層印刷工程での絶縁層のパターン面積よりも小
さくなるよう重ねて印刷する磁性層印刷工程と、前記絶
縁層印刷工程及び磁性層印刷工程で前記基材上に形成さ
れた積層体から前記基材を剥離し、脱バインダー後に高
温で焼結させる焼結工程と、前記絶縁層印刷工程でのパ
ターンで形成されるスルーホールに導体ペーストを設け
る導体形成工程とを備えることを特徴としている。According to the method of manufacturing a magnetic element of the present invention, a nonmagnetic oxide powder is mixed with a binder and a solvent and dispersed to form a slurry, which is printed on a substrate in a predetermined pattern. Layer printing process, average thickness 0.1
軟 0.8 μm flat soft magnetic alloy powder or 0.8 μm in diameter.
A soft magnetic ultrafine powder of 1 to 0.8 μm is mixed with a binder and a solvent and dispersed to form a slurry, and the slurry is overlaid on the base material so as to be smaller than the pattern area of the insulating layer in the insulating layer printing step. A magnetic layer printing step of printing, and a sintering step of separating the base material from the laminate formed on the base material in the insulating layer printing step and the magnetic layer printing step, and sintering at a high temperature after debinding. A conductor forming step of providing a conductive paste in a through hole formed by the pattern in the insulating layer printing step.
【0022】[0022]
【発明の実施の形態】以下、本発明に係る軟磁性合金厚
膜及び磁気素子並びにそれらの製造方法の実施の形態を
説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of a soft magnetic alloy thick film and a magnetic element according to the present invention and a method for manufacturing the same will be described below.
【0023】本発明に係る第1の実施の形態として軟磁
性合金厚膜について説明する。本実施の形態において、
軟磁性合金厚膜は、パーマロイ(Fe−Ni合金)、セ
ンダスト(Fe−Si−Al合金)、Fe−Si合金、
Fe−Co−Ni合金等の偏平状軟磁性粉あるいは軟磁
性超微粉を焼結させてなる厚さ0.5〜5μmの焼結軟
磁性合金層を、厚さ5μm以下の絶縁層を介して積層し
てなる多層厚膜で構成される。A thick film of a soft magnetic alloy will be described as a first embodiment according to the present invention. In the present embodiment,
The soft magnetic alloy thick film is made of permalloy (Fe-Ni alloy), sendust (Fe-Si-Al alloy), Fe-Si alloy,
A sintered soft magnetic alloy layer having a thickness of 0.5 to 5 μm obtained by sintering a flat soft magnetic powder or a soft magnetic ultrafine powder such as an Fe—Co—Ni alloy through an insulating layer having a thickness of 5 μm or less. It is composed of a multi-layer thick film that is laminated.
【0024】前記焼結軟磁性合金層は、厚さあるいは直
径が0.1〜0.8μmの偏平状軟磁性合金粉末又は軟磁
性超微粉をバインダー、溶媒と混合し、分散させてスラ
リー状とする工程と、該スラリー状物をドクターブレー
ド法あるいはバーコータにより基材上に塗布して塗布膜
を作製する工程と、基材剥離に続く脱バインダーの後に
高温(600〜1400℃)で焼結する工程とにより製
造することができる。そして、上記の焼結軟磁性合金層
製造工程に続き、前記焼結軟磁性合金層間に無機絶縁材
(酸化物層又は窒化物層)あるいは有機絶縁材(各種樹
脂層)を挟み込んだ構造に積層して所望の厚さの軟磁性
合金厚膜を製造することができる。The sintered soft magnetic alloy layer is formed by mixing and dispersing a flat soft magnetic alloy powder or a soft magnetic ultrafine powder having a thickness or a diameter of 0.1 to 0.8 μm with a binder and a solvent to form a slurry. And a step of applying the slurry on a substrate by a doctor blade method or a bar coater to form a coating film, and sintering at a high temperature (600 to 1400 ° C.) after debinding after the substrate is stripped. It can be manufactured by the steps. Then, following the above-described sintered soft magnetic alloy layer manufacturing process, the laminated structure is formed by sandwiching an inorganic insulating material (oxide layer or nitride layer) or an organic insulating material (various resin layers) between the sintered soft magnetic alloy layers. Thus, a soft magnetic alloy thick film having a desired thickness can be manufactured.
【0025】前記焼結軟磁性合金層の厚さ0.5μm以
上に限定したのは、これよりも薄い膜厚では、当該磁性
合金層がアイランド状(島状に不連続)になり、透磁率
が著しく低下するからである。また、前記焼結軟磁性合
金層を厚さ5μm以下に限定したのは、これより厚い
と、渦電流が増大し、高周波における透磁率を大きくで
きないからである。The reason why the thickness of the sintered soft magnetic alloy layer is limited to 0.5 μm or more is that if the thickness is smaller than this, the magnetic alloy layer becomes island-like (island-like discontinuous) and the magnetic permeability Is significantly reduced. The reason for limiting the thickness of the sintered soft magnetic alloy layer to 5 μm or less is that if the thickness is larger than this, the eddy current increases and the magnetic permeability at high frequencies cannot be increased.
【0026】また、前記焼結軟磁性合金層の炭素含有率
は0.05重量%以下であることが望ましい。以下の表
1のように炭素含有率は0.05重量%を超えると磁気
特性が劣化する。It is desirable that the sintered soft magnetic alloy layer has a carbon content of 0.05% by weight or less. As shown in Table 1 below, when the carbon content exceeds 0.05% by weight, the magnetic properties deteriorate.
【0027】[0027]
【表1】 [Table 1]
【0028】前記焼結軟磁性合金層の形成に用いる偏平
状軟磁性粉は、ほぼ球状のアトマイズ粉を湿式媒体撹拌
ミルで加工して製造できる。該偏平状軟磁性粉のアスペ
クト比は5〜100程度が好ましくアスペクト比が大き
すぎると焼結後の表面が粗くなる原因となり好ましくな
い。薄く塗布するには、該偏平状軟磁性粉の厚さあるい
は軟磁性超微粉の直径が重要であり、これが0.8μm
よりも大きいと焼結後の膜厚のバラツキが大きくなり透
磁率の劣化をもたらす。また、0.1μm未満とするこ
とは磁性粉の製造が困難で取り扱いも難しくなる。The flat soft magnetic powder used for forming the sintered soft magnetic alloy layer can be produced by processing a substantially spherical atomized powder with a wet medium stirring mill. The aspect ratio of the flat soft magnetic powder is preferably about 5 to 100, and if the aspect ratio is too large, the surface after sintering becomes rough, which is not preferable. For thin coating, the thickness of the flat soft magnetic powder or the diameter of the soft magnetic ultrafine powder is important.
If it is larger than the above range, the variation of the film thickness after sintering becomes large and the magnetic permeability is deteriorated. On the other hand, when the thickness is less than 0.1 μm, the production of the magnetic powder is difficult and the handling becomes difficult.
【0029】また、前記偏平状軟磁性合金粉末又は軟磁
性超微粉を含むスラリー状物のコーティング方法は、偏
平粉の場合はドクターブレード法が適しており、超微粉
の場合はバーコータを利用するのが好ましい。脱バイン
ダー後の焼結では、焼結後の磁性層内に空間(通常1〜
50体積%の範囲内)が生成するが、この空間を無くす
為の加圧を不要とする実用上充分大きな透磁率が得られ
る。As a method for coating the slurry containing the flat soft magnetic alloy powder or the soft magnetic ultrafine powder, a doctor blade method is suitable for flat powder, and a bar coater is used for ultrafine powder. Is preferred. In sintering after debinding, a space (usually 1 to
(Within a range of 50% by volume), but a sufficiently large magnetic permeability for practical use is obtained, which does not require pressurization for eliminating this space.
【0030】前記脱バインダー後の焼結温度は600〜
1400℃の範囲が好ましく、600℃未満ではバイン
ダーが残るおそれがあり、1400℃を超えると磁性合
金の蒸発等の問題があり好ましくない。The sintering temperature after the binder removal is 600 to
A temperature range of 1400 ° C. is preferable. If the temperature is lower than 600 ° C., the binder may remain. If the temperature exceeds 1400 ° C., problems such as evaporation of the magnetic alloy occur, which is not preferable.
【0031】加圧後歪み取り熱処理を施してもよく、こ
うするとさらに磁性層を薄くでき、同時に空間部分を減
少させ得る為、やや高価となるが、高周波における磁気
特性を改善することが可能である。After the pressurization, a heat treatment for removing strain may be performed. This makes it possible to further reduce the thickness of the magnetic layer and at the same time reduce the space portion, so that it is somewhat expensive, but it is possible to improve the magnetic characteristics at high frequencies. is there.
【0032】前記焼結軟磁性合金層間に挟み込む無機あ
るいは有機の絶縁層の厚みは5μm以下で可能な限り薄
いことが望ましい。5μmより厚いと、前記焼結軟磁性
合金層と当該絶縁層とを積層して構成される軟磁性合金
厚膜に占める磁性層の比率が大きく低下してしまうため
好ましくない。It is desirable that the thickness of the inorganic or organic insulating layer sandwiched between the sintered soft magnetic alloy layers is 5 μm or less and as thin as possible. If the thickness is larger than 5 μm, the ratio of the magnetic layer to the soft magnetic alloy thick film formed by laminating the sintered soft magnetic alloy layer and the insulating layer is unpreferably reduced.
【0033】この第1の実施の形態によれば、EMC規
格を満たす上で問題となる100MHz〜400MHz
の周波数帯域でフェライトコアの2倍以上の複素透磁率
を得ることができ、EMI対策素子を現実的な価格で小
型化できる。According to the first embodiment, 100 MHz to 400 MHz which is a problem in satisfying the EMC standard
In this frequency band, a complex magnetic permeability twice or more that of the ferrite core can be obtained, and the EMI suppression element can be reduced in size at a realistic price.
【0034】本発明に係る第2の実施の形態として前記
軟磁性合金厚膜を磁心に用いた磁気素子の1例について
説明する。図1及び図2において、1は所定厚みの磁心
(コア)であり、第1の実施の形態で述べた軟磁性合金
厚膜で構成されるものである。但し、非磁性層である絶
縁層と焼結軟磁性合金層のパターン面積が異なってお
り、図2(A)のように絶縁層2のパターン面積は同図
(B)の焼結軟磁性合金層5のパターン面積よりも大き
く、絶縁層2のパターンには複数個のスルーホール3を
相互に近接して一直線上に配列したスルーホール群が2
箇所形成されている。図2(B)のように焼結軟磁性合
金層5には2箇所のスルーホール群を避けるために当該
焼結軟磁性合金層の存在しない長方形状の領域(窓)6
が2箇所形成されている。そして、図2(C)のように
絶縁層2と焼結軟磁性合金層5とを交互に形成し、製法
のところで後述するように焼結して多層の軟磁性合金厚
膜としての磁心1を得る。ここで、磁心1の上下面は絶
縁層が配置されるようにする。As a second embodiment according to the present invention, an example of a magnetic element using the soft magnetic alloy thick film as a magnetic core will be described. 1 and 2, reference numeral 1 denotes a magnetic core (core) having a predetermined thickness, which is formed of the soft magnetic alloy thick film described in the first embodiment. However, the pattern area of the insulating layer, which is a nonmagnetic layer, and that of the sintered soft magnetic alloy layer are different, and the pattern area of the insulating layer 2 is, as shown in FIG. The pattern area of the insulating layer 2 is larger than the pattern area of the layer 5, and the pattern of the insulating layer 2 includes two through-hole groups in which a plurality of through-holes 3 are arranged in a straight line close to each other.
It is formed in places. As shown in FIG. 2B, in the sintered soft magnetic alloy layer 5, a rectangular region (window) 6 where the sintered soft magnetic alloy layer does not exist in order to avoid two through-hole groups.
Are formed at two places. Then, as shown in FIG. 2 (C), the insulating layer 2 and the sintered soft magnetic alloy layer 5 are alternately formed and sintered as will be described later in the description of the manufacturing method. Get. Here, the insulating layer is arranged on the upper and lower surfaces of the magnetic core 1.
【0035】図2(C)からわかるように、各スルーホ
ール3は絶縁層2で形成され、スルーホール3に焼結軟
磁性合金層5のパターンが接触しないようにするととも
に、各スルーホール3が個別に焼結軟磁性合金層で囲ま
れないようにしている(各スルーホール群全体で焼結軟
磁性合金層で囲まれるようにしている)。これは、スル
ーホール1個毎に焼結軟磁性合金層の存在しない領域
(窓)を形成して、1個毎にスルーホールの全周を焼結
軟磁性合金層が囲むような場合、かえって損失の増大を
招くからである。As can be seen from FIG. 2C, each through-hole 3 is formed of the insulating layer 2 so that the pattern of the sintered soft magnetic alloy layer 5 does not contact the through-hole 3 and each through-hole 3 is formed. Are not individually surrounded by the sintered soft magnetic alloy layer (the entire through hole group is entirely surrounded by the sintered soft magnetic alloy layer). This is because when a region (window) where a sintered soft magnetic alloy layer does not exist is formed for each through hole and the sintered soft magnetic alloy layer surrounds the entire periphery of the through hole for each hole. This is because loss increases.
【0036】こうして、図1のようにスルーホール3を
一直線上に配列したスルーホール群を2箇所有する軟磁
性合金厚膜の磁心1が得られ、各スルーホール3に導体
ペースト7を満たして貫通導体部8とし、磁心1の上下
面にて貫通導体部8同士を導体ペーストによる接続導体
部9で接続することで数ターンの螺旋状に周回したコイ
ル導体10が構成される。すなわち、第1のスルーホー
ル群に属するスルーホールを3a,3b,3c、第2の
スルーホール群に属するスルーホールを3a’,3
b’,3c’としたとき、スルーホール3a上端−3
a’上端、3a’下端−3b下端、3b上端−3b’上
端、3b’下端−3c下端、3c上端−3c’上端の順
に貫通導体部8を接続導体部9で接続すればよい。ま
た、磁心1の両端部に端子電極4を形成する場合、さら
にスルーホール3a下端を接続導体部9で一方の端子電
極4に接続し、スルーホール3c’下端を接続導体部9
で他方の端子電極4に接続すればよい。In this manner, a soft magnetic alloy thick film core 1 having two through-hole groups in which the through-holes 3 are arranged in a straight line as shown in FIG. 1 is obtained. A coil conductor 10 helically wrapped around several turns is formed by connecting the through conductors 8 on the upper and lower surfaces of the magnetic core 1 with connection conductors 9 made of conductive paste. That is, the through holes belonging to the first through hole group are 3a, 3b, 3c, and the through holes belonging to the second through hole group are 3a ', 3a.
b ', 3c', the upper end of the through hole 3a-3
The through conductor portions 8 may be connected by the connection conductor portions 9 in the order of a 'upper end, 3a' lower end-3b lower end, 3b upper end-3b 'upper end, 3b' lower end-3c lower end, 3c upper end-3c 'upper end. When the terminal electrodes 4 are formed at both ends of the magnetic core 1, the lower end of the through hole 3 a is further connected to one terminal electrode 4 by the connection conductor 9, and the lower end of the through hole 3 c ′ is connected to the connection conductor 9.
Then, it is sufficient to connect to the other terminal electrode 4.
【0037】図1に示した磁気素子についての製造方法
を具体的に述べると、該磁気素子は、非磁性酸化物粉を
バインダー、溶媒と混合し分散させてスラリー状とする
非磁性スラリー作製工程、該スラリー状物をドクターブ
レード法あるいはバーコータにより基材上にスクリーン
印刷法によりパターン印刷する絶縁層(非磁性層)印刷
工程(例えば図2(A)のパターン)、厚さあるいは直
径が0.1〜0.8μmの扁平状軟磁性合金粉末又は軟磁
性超微粉をバインダー、溶媒と混合し分散させてスラリ
ー状とする磁性スラリー作製工程、該スラリー状物を用
い、前記基材上に磁性層のパターン面積が前記絶縁層の
パターン面積よりも小さくなるよう重ねてスクリーン印
刷する磁性層印刷工程(例えば図2(B)のパター
ン)、前記絶縁層印刷工程及び磁性層印刷工程で前記基
材上に形成された積層体から前記基材を剥離し、脱バイ
ンダー後に高温で焼結させる焼結工程、前記絶縁層印刷
工程でのパターンで形成されるスルーホール内に導体ペ
ーストを設ける(満たす)導体形成工程、及びスルーホ
ール間を導体ペーストのスクリーン印刷、めっき等で結
線する結線工程により製造することができる。スルーホ
ール相互の結線により、1ターン導線或いは複数回の巻
数を有する螺旋状巻線を形成することが可能である。前
記結線には、上記したようにスクリーン印刷あるいはめ
っき等の各種成膜法が利用される。The method of manufacturing the magnetic element shown in FIG. 1 will be described in detail. The magnetic element is prepared by mixing a non-magnetic oxide powder with a binder and a solvent and dispersing the same into a slurry. An insulating layer (nonmagnetic layer) printing step (for example, the pattern in FIG. 2A) in which the slurry is pattern-printed on a substrate by a doctor blade method or a bar coater by a screen printing method (for example, the pattern of FIG. A step of preparing a magnetic slurry by mixing and dispersing a flat soft magnetic alloy powder or a soft magnetic ultrafine powder having a thickness of 1 to 0.8 μm with a binder and a solvent to form a slurry, and using the slurry to form a magnetic layer on the base material; A magnetic layer printing step (for example, the pattern shown in FIG. 2B) in which the pattern area is overlapped and screen printed so that the pattern area is smaller than the pattern area of the insulating layer; The base material is separated from the laminate formed on the base material in the magnetic layer printing step, the sintering step of sintering at a high temperature after debinding, and the through-hole formed by the pattern in the insulating layer printing step It can be manufactured by a conductor forming step of providing (filling) a conductive paste in the holes, and a connecting step of connecting between the through holes by screen printing, plating or the like of the conductive paste. By connecting the through holes to each other, it is possible to form a one-turn conductive wire or a spiral winding having a plurality of turns. For the connection, various film forming methods such as screen printing and plating are used as described above.
【0038】本発明に係る第3の実施の形態として軟磁
性合金厚膜を磁心に用いた磁気素子の他の例であって、
1対の巻線を有するコモンモードチョークを作製する場
合について説明する。図3(A),(B)に示すよう
に、第1の実施の形態で述べた軟磁性合金厚膜で構成さ
れた磁心11(上下面は絶縁層とする)に、複数個のス
ルーホール13を相互に近接して一直線上に配列したス
ルーホール群を2箇所形成する。そして、各スルーホー
ル13に導体ペーストを設けて貫通導体部18とする。
そして、図3(A)で左半分の貫通導体部18を磁心表
裏面の接続導体部19Aで接続して第1の巻線20Aを
形成し、右半分の貫通導体部18を磁心表裏面の接続導
体部19Bで接続して第2の巻線20Bを形成する。さ
らに、各巻線20A,20Bを磁心11の側面の端子電
極14にそれぞれ接続導体部を介して導出し、これによ
り1対の巻線を持つコモンモードチョークが得られる。A third embodiment according to the present invention is another example of a magnetic element using a soft magnetic alloy thick film as a magnetic core,
A case of manufacturing a common mode choke having a pair of windings will be described. As shown in FIGS. 3A and 3B, a plurality of through holes are provided in a magnetic core 11 (upper and lower surfaces are insulating layers) made of a soft magnetic alloy thick film described in the first embodiment. Two through-hole groups are formed in which 13 are arranged in a straight line close to each other. Then, a conductor paste is provided in each through hole 13 to form a through conductor portion 18.
In FIG. 3A, the first half 20A is formed by connecting the left half of the through conductor 18 with the connection conductor 19A on the front and back of the magnetic core, and the right half of the through conductor 18 is formed on the front and back of the core. The second winding 20B is formed by being connected by the connection conductor 19B. Further, each of the windings 20A and 20B is led out to the terminal electrode 14 on the side surface of the magnetic core 11 via a connection conductor, whereby a common mode choke having a pair of windings is obtained.
【0039】なお、この場合の製法は第2実施の形態の
磁気素子と同様である。The manufacturing method in this case is the same as that of the magnetic element of the second embodiment.
【0040】以下、本発明を実施例において詳述する。Hereinafter, the present invention will be described in detail with reference to examples.
【0041】(実施例1)水アトマイズ法で製造した平
均粒経10μmの4重量%Moパーマロイ粉をトルエン
と混合し、横型媒体撹拌ミルで粉砕し、平均粒径12μ
mの偏平粉を製造した。走査型電子顕微鏡(SEM)観
察の結果より、この偏平粉の厚さが0.1〜0.8μmで
あることが確認された。この粉末とバインダーとしての
ウレタン樹脂、ポリビニルブチラール、溶媒としてのメ
チルエチルケトンとを媒体攪拌ミルで混合、分散し、ス
ラリー状として厚さ188μmの基材としてのPETフ
ィルムに塗布し、乾燥させた。乾燥させた塗布膜をPE
Tフィルムから剥がして、管状炉内で約600℃に保持
して脱バインダーを行い、1200℃で焼結させ、厚さ
約3〜20μmの焼結軟磁性合金層を得た。断面観察及
び嵩密度の測定から、この焼結合金層内に17〜32%
の空間があることが分かった。この焼結軟磁性合金層に
厚さ約2μmの絶縁層としてのポリイミドフィルムを貼
り付けた(必要に応じ接着材併用)ものを、30層重ね
て厚さ約0.18mmの多層膜とした(但し、比較例では
同じ厚さとするために積層数を減らした)。Example 1 A 4% by weight Mo permalloy powder having an average particle diameter of 10 μm manufactured by a water atomizing method was mixed with toluene and pulverized with a horizontal medium stirring mill to obtain an average particle diameter of 12 μm.
m of flat powder was produced. As a result of observation by a scanning electron microscope (SEM), it was confirmed that the thickness of the flat powder was 0.1 to 0.8 μm. This powder, a urethane resin as a binder, polyvinyl butyral, and methyl ethyl ketone as a solvent were mixed and dispersed by a medium stirring mill, applied to a PET film as a base material having a thickness of 188 μm as a slurry, and dried. Apply the dried coating film to PE
The film was peeled off from the T film, debindered at about 600 ° C. in a tubular furnace, and sintered at 1200 ° C. to obtain a sintered soft magnetic alloy layer having a thickness of about 3 to 20 μm. From the cross-section observation and the measurement of the bulk density, 17-32%
It turns out that there is space. A multilayer film having a thickness of about 0.18 mm was formed by laminating 30 layers of a polyimide film as an insulating layer having a thickness of about 2 μm (adhesive material was used as necessary) on this sintered soft magnetic alloy layer (about 0.18 mm thick). However, in the comparative example, the number of laminations was reduced in order to have the same thickness.)
【0042】この多層膜をトロイダル形状に打ち抜いて
試料を作製し、1ターン法を用いて測定した複素透磁率
(実数部μ'、虚数部μ")の周波数依存性を図4に示
す。この図から、100MHz〜400MHzの周波数
帯域では焼結軟磁性合金層の厚さが4.0μmのとき
が、複素透磁率の実数部μ'及び虚数部μ"の値が大き
く、EMI対策素子の磁性材として好ましいことが判
る。A sample was prepared by punching the multilayer film into a toroidal shape, and the frequency dependence of the complex magnetic permeability (real part μ ′, imaginary part μ ″) measured by the one-turn method is shown in FIG. From the figure, in the frequency band of 100 MHz to 400 MHz, when the thickness of the sintered soft magnetic alloy layer is 4.0 μm, the values of the real part μ ′ and the imaginary part μ ″ of the complex permeability are large, It turns out that it is preferable as a material.
【0043】また、測定した各試料の100MHzの複
素透磁率(実数部μ'、虚数部μ")は、以下の表2の通
りである。Table 2 shows the measured complex magnetic permeability (real part μ ′, imaginary part μ ″) of each sample measured at 100 MHz.
【0044】[0044]
【表2】 この表2から、本発明に係る焼結軟磁性合金層の膜厚範
囲(3〜5μm)の試料の方が、膜厚7μm、20μm
の比較例や従来のフェライトコアに比べて著しく優れて
いることがわかる。[Table 2] From Table 2, it can be seen that the samples having the thickness range (3 to 5 μm) of the sintered soft magnetic alloy layer according to the present invention have thicknesses of 7 μm and 20 μm.
It can be seen that they are remarkably superior to the comparative example of No. and the conventional ferrite core.
【0045】(実施例2)平均粒径約0.4μmのFe
−Ni合金超微粉とバインダーとしてのアクリル樹脂、
ジブチルフタレート、溶媒としてのアセトン、酢酸エチ
ルを混合、分散させてスラリー状とし、バーコータで厚
さ188μmの基材としてのPETフィルムに塗布し、
乾燥させた。乾燥させた塗布膜をPETフィルムから剥
がして、管状炉内で約600℃に保持して脱バインダー
を行い、1200℃で焼結させ、厚さが、0.4μm、
0.8μm、2μm、4μm、5μm、7μm及び20
μmの焼結軟磁性合金層を作製した。この焼結軟磁性合
金層に厚さ約2μmの絶縁層としてのポリイミドフィル
ムを貼り付けた(必要に応じ接着材併用)ものを、30
層重ねて厚さ約0.18mmの多層膜とした(但し、比較
例では同じ厚さとするために積層数を減らした)。Example 2 Fe having an average particle size of about 0.4 μm
-Ni alloy ultrafine powder and acrylic resin as a binder,
Dibutyl phthalate, acetone as a solvent, and ethyl acetate are mixed and dispersed to form a slurry, which is applied to a PET film as a base material having a thickness of 188 μm with a bar coater,
Let dry. The dried coating film was peeled off from the PET film, debindered at about 600 ° C. in a tubular furnace, sintered at 1200 ° C., and had a thickness of 0.4 μm.
0.8 μm, 2 μm, 4 μm, 5 μm, 7 μm and 20
A μm sintered soft magnetic alloy layer was produced. A polyimide film as an insulating layer having a thickness of about 2 μm was affixed to this sintered soft magnetic alloy layer (adhesive material was used if necessary).
The layers were stacked to form a multilayer film having a thickness of about 0.18 mm (however, in the comparative example, the number of layers was reduced in order to have the same thickness).
【0046】この多層膜をトロイダル形状に打ち抜いて
試料を作製し、100MHzで測定した複素透磁率(実
数部μ'、虚数部μ")は以下の表3の通りである。A sample was prepared by punching the multilayer film into a toroidal shape, and the complex magnetic permeability (real part μ ′, imaginary part μ ″) measured at 100 MHz is as shown in Table 3 below.
【0047】[0047]
【表3】 この表3から、本発明に係る焼結軟磁性合金層の膜厚範
囲(0.8μm、2μm、4μm、5μm)の試料の方
が、膜厚7μm、20μmの比較例に比べて、実用上重
要となる周波数で優れた特性を示すことが確認された。[Table 3] From Table 3, it can be seen that the samples in the thickness range of the sintered soft magnetic alloy layer according to the present invention (0.8 μm, 2 μm, 4 μm, 5 μm) are more practical than the comparative examples having the thicknesses of 7 μm and 20 μm. It was confirmed that excellent characteristics were exhibited at important frequencies.
【0048】(実施例3)実施例1で作製した偏平粉及
び平均粒径約0.4μmのFe−Ni合金超微粉とアク
リル樹脂、ジブチルフタレート、アセトン、酢酸エチル
を混合、分散させて作製したスラリーをバーコータで塗
布した層と、非磁性酸化物としてのアルミナ超微粉とア
クリル樹脂、ジブチルフタレート、アセトン、酢酸エチ
ルを混合、分散させて作製したスラリーをバーコータで
塗布した層とを交互に重ね合わせて積層して行く。これ
をトロイダル形状に打ち抜いて脱バインダー、焼結させ
て総数20層の厚さが約100μmの焼結多層厚膜トロ
イダルを作製した(断面を図5に示す)。これをワンタ
ーン法で測定した焼結軟磁性厚膜の100MHzにおけ
る複素透磁率は、以下の表4のようになった。(Example 3) A mixture was prepared by mixing and dispersing the flat powder prepared in Example 1, the Fe-Ni alloy ultrafine powder having an average particle diameter of about 0.4 µm, acrylic resin, dibutyl phthalate, acetone and ethyl acetate. A layer coated with a slurry by a bar coater and a layer coated with a slurry prepared by mixing and dispersing ultrafine alumina powder as a nonmagnetic oxide, acrylic resin, dibutyl phthalate, acetone, and ethyl acetate with a bar coater are alternately overlapped. And stack them. This was punched into a toroidal shape, debindered, and sintered to produce a sintered multilayer thick film toroid having a total thickness of 20 layers and a thickness of about 100 μm (a cross section is shown in FIG. 5). The complex magnetic permeability at 100 MHz of the sintered soft magnetic thick film measured by the one-turn method was as shown in Table 4 below.
【0049】[0049]
【表4】 この表4から、同体積のフェライトコアに較べて、焼結
軟磁性合金層が所定膜厚となっている本発明(実施例
3)の焼結軟磁性厚膜が、実用上重要となる周波数で優
れた特性を示すことが確認された。[Table 4] From Table 4, it can be seen that the sintered soft magnetic thick film of the present invention (Example 3), in which the sintered soft magnetic alloy layer has a predetermined film thickness, is more important for practical use than the ferrite core of the same volume. It was confirmed that excellent characteristics were exhibited.
【0050】(実施例4)非磁性酸化物としてのアルミ
ナ微粉を、ウレタン樹脂、ポリビニルブチラール、メチ
ルエチルケトンとをレッドデビルミルで混合、分散し、
スラリー状として厚さ188μmのPETフィルムにパ
ターン印刷(例えば図2(A)のスルーホールを有する
パターン)を行い乾燥させ、アルミナグリーンシートを
作製した。また、水アトマイズ法で製造した平均粒径1
0μmの4%Moパーマロイ粉をトルエンと混合し、横
型媒体撹拌ミルで粉砕し、平均粒径12μmの扁平粉を
製造した。SEM観察の結果より、この扁平粉の厚さが
0.1〜0.8μmであることが確認された。この扁平粉
とウレタン樹脂、ポリビニルブチラール、メチルエチル
ケトンとをレッドデビルミルで混合、分散し、スラリー
状として上記パターンに重ねてパターン印刷(例えば図
2(B)の窓を有するパターン)を行った。この時の扁
平粉印刷パターンは外部及び前記アルミナグリーンシー
トのスルーホールに接触しないように前記アルミナグリ
ーンシートのパターンよりも内側になるようにパターン
化した。乾燥させたそれらの膜をPETフィルムから剥
がして、何層にも重ねていき、最終的には何層にも積層
されるが、最上面と最下面は絶縁層になるように積層す
る。これをプレスで圧着化後、管状炉内で約600℃に
保持して脱バインダーを行い、その後1200℃で焼結
させ、厚さ約100μmの焼結軟磁性合金厚膜コアを得
た。前記コア表面の一方にスルーホールに入り込むよう
にNi系ペーストを使用して導体を印刷し、反対側にも
同様に印刷を行う。このときの導体印刷はスルーホール
を介して導体全体が螺旋状になるように印刷しコイルを
得た。もちろん導体ペーストは焼成前に印刷しても問題
ない。これを測定した焼結軟磁性厚膜コイルの100M
Hzにおける複素透磁率は以下の表5のようになった。Example 4 Alumina fine powder as a nonmagnetic oxide was mixed and dispersed with a urethane resin, polyvinyl butyral, and methyl ethyl ketone in a Red Devil mill.
A slurry was formed on a PET film having a thickness of 188 μm by pattern printing (for example, a pattern having through holes in FIG. 2A) and dried to produce an alumina green sheet. In addition, the average particle diameter of 1 produced by the water atomizing method was used.
0 μm of 4% Mo permalloy powder was mixed with toluene and pulverized with a horizontal medium stirring mill to produce a flat powder having an average particle diameter of 12 μm. From the result of SEM observation, it was confirmed that the thickness of the flat powder was 0.1 to 0.8 μm. This flat powder, urethane resin, polyvinyl butyral, and methyl ethyl ketone were mixed and dispersed by a red devil mill, and the slurry was overlaid on the above pattern to perform pattern printing (for example, a pattern having a window shown in FIG. 2B). The flat powder printing pattern at this time was patterned so as to be inside the pattern of the alumina green sheet so as not to contact the outside and the through holes of the alumina green sheet. The dried films are peeled off from the PET film, and are stacked in layers. Finally, the layers are stacked in layers, but the uppermost surface and the lowermost surface are stacked so as to be insulating layers. This was press-bonded by a press, debinding was performed at about 600 ° C. in a tubular furnace, and then sintered at 1200 ° C. to obtain a sintered soft magnetic alloy thick film core having a thickness of about 100 μm. A conductor is printed using a Ni-based paste on one of the core surfaces so as to enter the through-hole, and the other side is similarly printed. At this time, the conductor was printed so that the entire conductor was spirally formed through the through hole to obtain a coil. Of course, there is no problem if the conductor paste is printed before firing. 100M of the sintered soft magnetic thick film coil
The complex magnetic permeability at Hz is as shown in Table 5 below.
【0051】[0051]
【表5】 この表5から同体積のフェライトコアに較べて、焼結軟
磁性合金層が所定膜厚となっている本発明(実施例4)
の焼結軟磁性厚膜が、実用上重要となる周波数で優れた
特性を示すことが確認された。[Table 5] According to Table 5, the present invention (Example 4) in which the sintered soft magnetic alloy layer has a predetermined thickness as compared with the ferrite core having the same volume.
It was confirmed that the sintered soft magnetic thick film exhibited excellent characteristics at practically important frequencies.
【0052】(実施例5)アルミナ微粉をウレタン樹
脂、ポリビニルブチラール、メチルエチルケトンとをレ
ッドデビルミルで混合、分散し、スラリー状として厚さ
188μmのPETフィルムにパターン印刷(例えば図
2(A)のスルーホールを有するパターン)を行い乾燥
させ、アルミナグリーンシートを作製した。また平均粒
径0.3μmのパーマロイ超微粉とウレタン樹脂、ポリ
ビニルブチラール、メチルエチルケトンとをレッドデビ
ルミルで混合、分散し、スラリー状として上記パターン
に重ねてパターン印刷(例えば図2(B)の窓を有する
パターン)を行った。この時のパーマロイ超微粉印刷パ
ターンは外部及び前記アルミナグリーンシートのスルー
ホールに接触しないように前記アルミナグリーンシート
のパターンよりも内側になるようにパターン化した。乾
燥させたそれらの膜をPETフィルムから剥がして、何
層にも重ねていき、最終的には何層にも積層されるが、
最上面と最下面は絶縁膜になるようにアルミナ層にす
る。これをプレスで圧着化後、管状炉内で約600℃に
保持して脱バインダーを行い、その後1200℃で焼結
させ、0.8mm×0.8mm×l.6mm形状の焼結軟磁性合
金厚膜コアを得た。コア表面の一方にスルーホールに入
り込むようにNi系ペーストを使用して導体を印刷し、
反対側にも同様に印刷を行う。このときの導体印刷はス
ルーホールを介して導体全体が螺旋状になるように印刷
しコイルを得た。もちろん導体ペーストは焼成前に印刷
しても問題ない。これを測定した焼結軟磁性厚膜コイル
の100MHzにおける抵抗R及びリアクタンスXの特
性は、以下の表6のようになり、抵抗R及びリアクタン
スXの周波数特性は図6のようになった。但し、比較例
としてフェライトコアを使用したコイルの特性も示し
た。Example 5 Alumina fine powder was mixed and dispersed with a urethane resin, polyvinyl butyral, and methyl ethyl ketone using a red devil mill, and was printed as a slurry on a 188 μm-thick PET film by pattern printing (for example, as shown in FIG. 2A). (A pattern having holes) and dried to produce an alumina green sheet. Further, ultra-fine permalloy having an average particle diameter of 0.3 μm, urethane resin, polyvinyl butyral, and methyl ethyl ketone are mixed and dispersed in a red devil mill, and the slurry is superimposed on the above pattern to perform pattern printing (for example, a window shown in FIG. 2B). Pattern). The permalloy ultrafine powder printing pattern at this time was patterned so as to be inside the pattern of the alumina green sheet so as not to contact the outside and the through holes of the alumina green sheet. The dried films are peeled off from the PET film and stacked in multiple layers, and finally stacked in multiple layers,
The uppermost surface and the lowermost surface are formed of an alumina layer so as to form an insulating film. This is press-bonded with a press, debinding is performed at about 600 ° C. in a tubular furnace, and then sintered at 1200 ° C. to form a sintered soft magnetic alloy having a shape of 0.8 mm × 0.8 mm × 1.6 mm. A thick core was obtained. Print a conductor using a Ni-based paste so as to enter the through hole on one side of the core surface,
Printing is similarly performed on the opposite side. At this time, the conductor was printed so that the entire conductor was spirally formed through the through hole to obtain a coil. Of course, there is no problem if the conductor paste is printed before firing. Table 6 below shows the characteristics of the resistance R and the reactance X at 100 MHz of the sintered soft magnetic thick film coil obtained by measuring this, and the frequency characteristics of the resistance R and the reactance X are as shown in FIG. However, the characteristics of a coil using a ferrite core are also shown as comparative examples.
【0053】[0053]
【表6】 この表6並びに図6から同形状、同巻数のフェライトコ
アを使用した比較例のコイルに較べて、焼結軟磁性合金
層が所定膜厚となっている本発明(実施例5)の焼結軟
磁性厚膜を磁心とする焼結厚膜コイルが、実用上重要と
なる周波数で優れた特性を示すことが確認された。[Table 6] According to Table 6 and FIG. 6, the sintered soft magnetic alloy layer of the present invention (Example 5) in which the sintered soft magnetic alloy layer has a predetermined film thickness as compared with the coil of the comparative example using the ferrite core having the same shape and the same number of turns. It was confirmed that the sintered thick-film coil having the soft magnetic thick film as a magnetic core exhibited excellent characteristics at frequencies that were important in practical use.
【0054】なお、実施例4,5において、基材として
のPETフィルム上に絶縁層と磁性層とを交互にスクリ
ーン印刷する動作を複数回繰り返して多層の積層体を作
製してからPETフィルムを剥離し、多層の積層体同士
を複数個重ねてプレス、一体化してもよい。In Examples 4 and 5, the operation of screen-printing an insulating layer and a magnetic layer alternately on a PET film as a substrate was repeated a plurality of times to produce a multilayer laminate. After peeling, a plurality of multi-layered laminates may be stacked and pressed and integrated.
【0055】以上本発明の実施の形態及び実施例につい
て説明してきたが、本発明はこれに限定されることなく
請求項の記載の範囲内において各種の変形、変更が可能
なことは当業者には自明であろう。Although the embodiments and examples of the present invention have been described above, it is to be understood by those skilled in the art that various modifications and changes can be made within the scope of the claims without limiting the present invention. Would be self-evident.
【0056】[0056]
【発明の効果】以上説明したように、本発明に係る軟磁
性合金厚膜は、厚さ5μm以下の焼結軟磁性合金層と絶
縁層とを交互にかつ多層に積層したものであり、高周波
でのノイズ減衰効果、とくにEMC規格を満たす上で問
題となる100MHz〜400MHzの周波数帯域でフ
ェライトコアの2倍以上の複素透磁率を得ることができ
る。また、前記軟磁性合金厚膜を磁心として磁気素子を
構成することで、ノイズ減衰効果の優れたEMI対策素
子を現実的な価格で製造でき、かつ小型化できる。As described above, the soft magnetic alloy thick film according to the present invention comprises a sintered soft magnetic alloy layer having a thickness of 5 μm or less and an insulating layer alternately and multilayered. , A complex permeability of at least twice that of a ferrite core can be obtained in a frequency band of 100 MHz to 400 MHz, which is a problem in satisfying the EMC standard. In addition, by forming a magnetic element using the soft magnetic alloy thick film as a magnetic core, an EMI countermeasure element having an excellent noise attenuation effect can be manufactured at a realistic price and can be downsized.
【図1】本発明に係る第2の実施の形態であって、軟磁
性合金厚膜を磁心に用いた磁気素子の1例を示す斜視図
である。FIG. 1 is a perspective view showing an example of a magnetic element using a soft magnetic alloy thick film for a magnetic core according to a second embodiment of the present invention.
【図2】第2の実施の形態の磁気素子の絶縁層及び軟磁
性合金層のパターン、並びに両者を積層した状態を示す
説明図である。FIG. 2 is an explanatory diagram showing patterns of an insulating layer and a soft magnetic alloy layer of a magnetic element according to a second embodiment, and a state in which both are laminated.
【図3】本発明に係る第3の実施の形態であって、軟磁
性合金厚膜を磁心に用いた磁気素子の他の例を示す平面
図及び側面図である。FIG. 3 is a plan view and a side view showing another example of a magnetic element using a soft magnetic alloy thick film as a magnetic core according to a third embodiment of the present invention.
【図4】本発明の実施例1に係る軟磁性合金厚膜の複素
比透磁率の周波数特性を、比較例及びフェライトの場合
と対比して示す特性図である。FIG. 4 is a characteristic diagram illustrating frequency characteristics of a complex relative magnetic permeability of the soft magnetic alloy thick film according to the first embodiment of the present invention, in comparison with those of a comparative example and ferrite.
【図5】本発明の実施例3の多層焼結厚膜断面図であ
る。FIG. 5 is a sectional view of a multilayer sintered thick film according to a third embodiment of the present invention.
【図6】本発明の実施例5に係る磁気素子としての焼結
軟磁性膜厚膜コイルの抵抗R及びリアクタンスXの周波
数特性を、フェライトコアを用いたコイルの場合と対比
して示す特性図である。FIG. 6 is a characteristic diagram showing frequency characteristics of resistance R and reactance X of a sintered soft magnetic film coil as a magnetic element according to a fifth embodiment of the present invention, in comparison with the case of a coil using a ferrite core. It is.
【符号の説明】 1,11 磁心 2 絶縁層 3,13 スルーホール 4,14 端子電極 5 焼結軟磁性合金層 6 領域 7 導体ペースト 8,18 貫通導体部 9,19A,19B 接続導体部 10 コイル導体 20A,20B 巻線[Description of Signs] 1,11 Magnetic core 2 Insulating layer 3,13 Through hole 4,14 Terminal electrode 5 Sintered soft magnetic alloy layer 6 Area 7 Conductor paste 8,18 Through conductor 9,9A, 19B Connection conductor 10 Coil Conductor 20A, 20B winding
───────────────────────────────────────────────────── フロントページの続き (72)発明者 山下 信一 東京都中央区日本橋一丁目13番1号ティー ディーケイ株式会社内 Fターム(参考) 4K018 AA08 AA26 AA30 BA15 BA16 BA20 BB01 BB05 BD01 CA07 CA33 CA44 DA03 DA11 JA40 KA32 KA43 5E041 AA00 BC08 BD01 HB14 NN05 NN18 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Shinichi Yamashita 1-13-1 Nihonbashi, Chuo-ku, Tokyo TDC Corporation F-term (reference) 4K018 AA08 AA26 AA30 BA15 BA16 BA20 BB01 BB05 BD01 CA07 CA33 CA44 DA03 DA11 JA40 KA32 KA43 5E041 AA00 BC08 BD01 HB14 NN05 NN18
Claims (12)
縁層とを交互にかつ多層に積層したことを特徴とする軟
磁性合金厚膜。1. A soft magnetic alloy thick film characterized in that sintered soft magnetic alloy layers having a thickness of 5 μm or less and insulating layers are alternately and multi-layered.
m〜5μmである請求項1記載の軟磁性合金厚膜。2. The sintered soft magnetic alloy layer has a thickness of 0.5 μm.
The soft magnetic alloy thick film according to claim 1, having a thickness of from 5 to 5 m.
積%の空間部分を有している請求項1又は2記載の軟磁
性合金厚膜。3. The soft magnetic alloy thick film according to claim 1, wherein the sintered soft magnetic alloy layer has a space portion of 1 to 50% by volume inside.
化物層あるいは有機物層である請求項1,2又は3記載
の軟磁性合金厚膜。4. The soft magnetic alloy thick film according to claim 1, wherein said insulating layer is an oxide layer, a nitride layer or an organic layer having a thickness of 5 μm or less.
0.05重量%以下である請求項1,2,3又は4記載
の軟磁性合金厚膜。5. The soft magnetic alloy thick film according to claim 1, wherein the sintered soft magnetic alloy layer has a carbon content of 0.05% by weight or less.
磁性合金粉末をバインダー、溶媒と混合し、分散させて
スラリー状とし、これを塗布して塗布膜を作製した後、
脱バインダー、焼結して焼結軟磁性合金層を作製し、該
焼結軟磁性合金層間に厚さ5μm以下の絶縁層を挟んで
多層としたことを特徴とする軟磁性合金厚膜の製造方
法。6. A flat soft magnetic alloy powder having an average thickness of 0.1 to 0.8 μm is mixed with a binder and a solvent and dispersed to form a slurry, which is coated to form a coating film.
Debindering and sintering to produce a sintered soft magnetic alloy layer, and a multilayered soft magnetic alloy film comprising an insulating layer having a thickness of 5 μm or less interposed between the sintered soft magnetic alloy layers. Method.
をバインダー、溶媒と混合し、分散させてスラリー状と
し、これを塗布して塗布膜を作製した後、脱バインダ
ー、焼結して焼結軟磁性合金層を作製し、該焼結軟磁性
合金層間に厚さ5μm以下の絶縁層を挟んで多層とした
ことを特徴とする軟磁性合金厚膜の製造方法。7. A soft magnetic ultrafine powder having a diameter of 0.1 to 0.8 μm is mixed with a binder and a solvent and dispersed to form a slurry. The slurry is applied to form a coating film, and then a binder is removed. A method for producing a soft magnetic alloy thick film, characterized in that a sintered soft magnetic alloy layer is formed by sintering, and an insulating layer having a thickness of 5 μm or less is sandwiched between the sintered soft magnetic alloy layers.
ある請求項6又は7記載の軟磁性合金厚膜の製造方法。8. The method for producing a soft magnetic alloy thick film according to claim 6, wherein the sintering temperature is from 600 ° C. to 1400 ° C.
縁層とを交互にかつ多層に積層して軟磁性合金厚膜とな
し、かつ前記絶縁層が前記焼結軟磁性合金層のパターン
面積よりも大きなパターン面積を有するようにし、前記
絶縁層で形成されたスルーホールに導体を設けたことを
特徴とする磁気素子。9. A sintered soft magnetic alloy layer having a thickness of 5 μm or less and insulating layers alternately and multilayered to form a soft magnetic alloy thick film, and the insulating layer is formed of the sintered soft magnetic alloy layer. A magnetic element having a pattern area larger than a pattern area, wherein a conductor is provided in a through hole formed by the insulating layer.
列したスルーホール群が設けられており、該スルーホー
ル群全体を囲む所定領域には前記焼結軟磁性合金層のパ
ターンが存在しないようにした請求項9記載の磁気素
子。10. A through-hole group in which the through-holes are arranged close to each other is provided, and a pattern of the sintered soft magnetic alloy layer does not exist in a predetermined region surrounding the entire through-hole group. The magnetic element according to claim 9.
μm〜5μmであり、前記絶縁層が5μm以下の酸化物
層、窒化物層あるいは有機物層である請求項9又は10
記載の磁気素子。11. The sintered soft magnetic alloy layer has a thickness of 0.5.
11 μm to 5 μm, and the insulating layer is an oxide layer, a nitride layer or an organic layer having a thickness of 5 μm or less.
The magnetic element according to any one of the preceding claims.
混合し、分散させてスラリー状とし、これを基材上に所
定パターンで印刷する絶縁層印刷工程と、 平均厚さが0.1〜0.8μmの偏平状軟磁性合金粉末あ
るいは直径が0.1〜0.8μmの軟磁性超微粉をバイン
ダー、溶媒と混合し、分散させてスラリー状とし、これ
を前記基材上に前記絶縁層印刷工程での絶縁層のパター
ン面積よりも小さくなるよう重ねて印刷する磁性層印刷
工程と、 前記絶縁層印刷工程及び磁性層印刷工程で前記基材上に
形成された積層体から前記基材を剥離し、脱バインダー
後に高温で焼結させる焼結工程と、 前記絶縁層印刷工程でのパターンで形成されるスルーホ
ールに導体ペーストを設ける導体形成工程とを備えるこ
とを特徴とする磁気素子の製造方法。12. An insulating layer printing step of mixing a nonmagnetic oxide powder with a binder and a solvent and dispersing the slurry to form a slurry, and printing the slurry in a predetermined pattern on a base material; A flat soft magnetic alloy powder having a diameter of 0.8 μm or a soft magnetic ultrafine powder having a diameter of 0.1 to 0.8 μm is mixed with a binder and a solvent and dispersed to form a slurry. A magnetic layer printing step of overlapping and printing so as to be smaller than a pattern area of the insulating layer in the printing step, and the base material from the laminate formed on the base material in the insulating layer printing step and the magnetic layer printing step. Manufacturing a magnetic element, comprising: a sintering step of exfoliating and sintering at a high temperature after removing a binder; and a conductor forming step of providing a conductor paste in a through hole formed by a pattern in the insulating layer printing step. Method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001190912A JP2002289419A (en) | 2001-01-19 | 2001-06-25 | Sot magnetic alloy thick film, magnetic device, and method for manufacturing them |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001012218 | 2001-01-19 | ||
JP2001-12218 | 2001-01-19 | ||
JP2001190912A JP2002289419A (en) | 2001-01-19 | 2001-06-25 | Sot magnetic alloy thick film, magnetic device, and method for manufacturing them |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002289419A true JP2002289419A (en) | 2002-10-04 |
Family
ID=26608008
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001190912A Withdrawn JP2002289419A (en) | 2001-01-19 | 2001-06-25 | Sot magnetic alloy thick film, magnetic device, and method for manufacturing them |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002289419A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013187540A (en) * | 2012-03-06 | 2013-09-19 | Samsung Electro-Mechanics Co Ltd | Thin film type common mode filter |
CN103971892A (en) * | 2013-02-04 | 2014-08-06 | Nec东金株式会社 | Magnetic core, inductor and module including inductor |
JP2016039222A (en) * | 2014-08-07 | 2016-03-22 | Necトーキン株式会社 | Inductor and method for manufacturing the same |
WO2017130462A1 (en) * | 2016-01-27 | 2017-08-03 | 株式会社村田製作所 | Inductor component and manufacturing method therefor |
WO2020079002A1 (en) * | 2018-10-15 | 2020-04-23 | University College Cork - National University Of Ireland, Cork | A vertical magnetic structure for integrated power conversion |
US10943725B2 (en) | 2012-09-10 | 2021-03-09 | Tokin Corporation | Sheet-shaped inductor, inductor within laminated substrate, and method for manufacturing said inductors |
CN114334333A (en) * | 2021-12-21 | 2022-04-12 | 深圳顺络电子股份有限公司 | An electromagnetic component and electronic equipment |
EP4521425A1 (en) * | 2023-09-08 | 2025-03-12 | ARM Limited | Embedded inductor structure |
-
2001
- 2001-06-25 JP JP2001190912A patent/JP2002289419A/en not_active Withdrawn
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013187540A (en) * | 2012-03-06 | 2013-09-19 | Samsung Electro-Mechanics Co Ltd | Thin film type common mode filter |
US10943725B2 (en) | 2012-09-10 | 2021-03-09 | Tokin Corporation | Sheet-shaped inductor, inductor within laminated substrate, and method for manufacturing said inductors |
US20200111593A1 (en) * | 2013-02-04 | 2020-04-09 | Tokin Corporation | Magnetic core, inductor and module including inductor |
CN103971892A (en) * | 2013-02-04 | 2014-08-06 | Nec东金株式会社 | Magnetic core, inductor and module including inductor |
US20140218147A1 (en) * | 2013-02-04 | 2014-08-07 | Nec Tokin Corporation | Magnetic core, inductor and module including inductor |
CN103971892B (en) * | 2013-02-04 | 2018-01-16 | 株式会社东金 | Magnetic core, inductor and the module including inductor |
US11610710B2 (en) * | 2013-02-04 | 2023-03-21 | Tokin Corporation | Magnetic core, inductor and module including inductor |
US10546678B2 (en) | 2013-02-04 | 2020-01-28 | Tokin Corporation | Magnetic core, inductor and module including inductor |
JP2016039222A (en) * | 2014-08-07 | 2016-03-22 | Necトーキン株式会社 | Inductor and method for manufacturing the same |
WO2017130462A1 (en) * | 2016-01-27 | 2017-08-03 | 株式会社村田製作所 | Inductor component and manufacturing method therefor |
US10506717B2 (en) | 2016-01-27 | 2019-12-10 | Murata Manufacturing Co., Ltd. | Inductor component and method of manufacturing inductor component |
JPWO2017130462A1 (en) * | 2016-01-27 | 2018-11-22 | 株式会社村田製作所 | Inductor component and manufacturing method thereof |
WO2020079002A1 (en) * | 2018-10-15 | 2020-04-23 | University College Cork - National University Of Ireland, Cork | A vertical magnetic structure for integrated power conversion |
US12217891B2 (en) | 2018-10-15 | 2025-02-04 | University College Cork—National University of Ireland | Vertical magnetic structure for integrated power conversion |
CN114334333A (en) * | 2021-12-21 | 2022-04-12 | 深圳顺络电子股份有限公司 | An electromagnetic component and electronic equipment |
EP4521425A1 (en) * | 2023-09-08 | 2025-03-12 | ARM Limited | Embedded inductor structure |
WO2025052090A1 (en) * | 2023-09-08 | 2025-03-13 | Arm Limited | Embedded inductor structure |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3197022B2 (en) | Multilayer ceramic parts for noise suppressor | |
CN110828108B (en) | Magnetic matrix containing metal magnetic particles and electronic component containing the magnetic matrix | |
US20130214889A1 (en) | Multilayer type inductor and method of manufacturing the same | |
CN102543407A (en) | Laminated inductor and method of manufacturing the same | |
JP2002289419A (en) | Sot magnetic alloy thick film, magnetic device, and method for manufacturing them | |
JP2000182834A (en) | Laminate inductance element and manufacture thereof | |
JP2014236112A (en) | Manufacturing method of multilayer coil | |
JPWO2009072423A1 (en) | Multilayer electronic components | |
JPH08124746A (en) | Laminated inductor | |
JP2000091152A (en) | Stacked electronic part, and its manufacture | |
JPH08236354A (en) | Laminated inductor | |
JP7489515B2 (en) | Ceramic-inorganic material composite and multilayer inductor | |
JP2023125912A (en) | Magnetic composite, coil component including the same, and manufacturing method for magnetic composite | |
US20240331902A1 (en) | Magnetic base body, coil component including the magnetic base body, circuit board including the coil component, and electronic device including the circuit board | |
CN111383818A (en) | LC composite component | |
TWI869785B (en) | Multilayer inductor structure | |
JPH10294218A (en) | Common-mode chock coil element and manufacture thereof | |
JPH08330137A (en) | Multilayer inductor | |
JP7605656B2 (en) | Coil component, circuit board, electronic device, and method for manufacturing coil component | |
JP7354000B2 (en) | Coil parts and electronic equipment | |
JP2024048126A (en) | Coil component, circuit board, electronic apparatus, and manufacturing method of coil component | |
JPH09180938A (en) | Laminated inductor and manufacture thereof | |
JPH08167523A (en) | Laminated inductor and manufacture thereof | |
JPH0729815U (en) | Laminated LC filter and composite laminated LC filter using the same | |
JPH09186017A (en) | Multilayered inductor and its manufacture |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070404 |
|
A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20090507 |