JP2002285261A - Copper alloy having excellent strength stability and heat resistance - Google Patents
Copper alloy having excellent strength stability and heat resistanceInfo
- Publication number
- JP2002285261A JP2002285261A JP2001090921A JP2001090921A JP2002285261A JP 2002285261 A JP2002285261 A JP 2002285261A JP 2001090921 A JP2001090921 A JP 2001090921A JP 2001090921 A JP2001090921 A JP 2001090921A JP 2002285261 A JP2002285261 A JP 2002285261A
- Authority
- JP
- Japan
- Prior art keywords
- copper alloy
- precipitates
- crystals
- less
- heat resistance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000881 Cu alloy Inorganic materials 0.000 title claims abstract description 51
- 239000000126 substance Substances 0.000 claims abstract description 11
- 239000002244 precipitate Substances 0.000 claims description 74
- 239000013078 crystal Substances 0.000 claims description 67
- 239000002245 particle Substances 0.000 claims description 38
- 238000005098 hot rolling Methods 0.000 claims description 13
- 238000001816 cooling Methods 0.000 claims description 10
- 238000004519 manufacturing process Methods 0.000 claims description 9
- 229910052718 tin Inorganic materials 0.000 claims description 8
- 229910052782 aluminium Inorganic materials 0.000 claims description 6
- 238000000034 method Methods 0.000 claims description 6
- 229910052719 titanium Inorganic materials 0.000 claims description 6
- 229910052749 magnesium Inorganic materials 0.000 claims description 5
- 229910052725 zinc Inorganic materials 0.000 claims description 5
- 229910052804 chromium Inorganic materials 0.000 claims description 4
- 238000010438 heat treatment Methods 0.000 abstract description 25
- 238000000137 annealing Methods 0.000 abstract description 24
- 230000007423 decrease Effects 0.000 description 13
- 230000000694 effects Effects 0.000 description 11
- 230000001276 controlling effect Effects 0.000 description 8
- 230000000007 visual effect Effects 0.000 description 7
- 238000001953 recrystallisation Methods 0.000 description 6
- 229910052748 manganese Inorganic materials 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 238000001556 precipitation Methods 0.000 description 5
- 238000011084 recovery Methods 0.000 description 5
- 238000010191 image analysis Methods 0.000 description 4
- 239000000956 alloy Substances 0.000 description 3
- 238000002425 crystallisation Methods 0.000 description 3
- 230000008025 crystallization Effects 0.000 description 3
- 230000005484 gravity Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 229910000679 solder Inorganic materials 0.000 description 3
- 239000006104 solid solution Substances 0.000 description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 102220253765 rs141230910 Human genes 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000002791 soaking Methods 0.000 description 2
- 238000005476 soldering Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229910002593 Fe-Ti Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- 230000008033 biological extinction Effects 0.000 description 1
- 238000009924 canning Methods 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000005097 cold rolling Methods 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001493 electron microscopy Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Conductive Materials (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、電気・電子分野や
機械分野等の産業分野で広く利用される、機械的強度等
の特性のばらつきが小さく、かつ歪み取り焼鈍等の熱処
理を行った場合にも、強度の低下がほとんど生じること
のない耐熱性に優れた銅合金に関するものである。尚、
本発明の銅合金は、上述の通り様々な分野で使用される
ものであるが、以下では、代表的な用途例として、半導
体部品であるリードフレームに使用する場合を中心に説
明を進める。BACKGROUND OF THE INVENTION The present invention relates to a case where the dispersion of characteristics such as mechanical strength, which is widely used in the industrial fields such as electric / electronic and mechanical fields, is small, and heat treatment such as strain relief annealing is performed. In particular, the present invention relates to a copper alloy excellent in heat resistance with almost no decrease in strength. still,
The copper alloy of the present invention is used in various fields as described above. Hereinafter, as a typical application example, description will be made focusing on a case where the copper alloy is used for a lead frame which is a semiconductor component.
【0002】[0002]
【従来の技術】近年、電子機器の軽薄短小化に伴い、前
記電子機器を構成するリードフレーム、端子、コネクタ
等に用いられる銅合金部品も、小型・軽量化が進められ
ている。2. Description of the Related Art In recent years, as electronic devices have become lighter, thinner and smaller, the size and weight of copper alloy parts used for lead frames, terminals, connectors, and the like constituting the electronic devices have been advanced.
【0003】半導体リードフレーム用銅合金としては、
従来よりFeを含有する銅合金が一般に用いられてお
り、特にFe:2.1〜2.6%、P:0.015〜
0.15%、Zn:0.05〜0.20%を含有する銅
合金(CDA194合金)は、銅合金の中でも、強度、
導電性および熱伝導性に優れていることから、国際標準
合金として汎用されている。[0003] Copper alloys for semiconductor lead frames include:
Conventionally, a copper alloy containing Fe has been generally used, in particular, Fe: 2.1 to 2.6%, P: 0.015 to
A copper alloy (CDA194 alloy) containing 0.15% and Zn: 0.05 to 0.20% has strength,
Due to its excellent electrical and thermal conductivity, it is widely used as an international standard alloy.
【0004】リードフレームの加工に際しては、上記の
様な化学成分組成の銅合金板をスタンピングして多ピン
形状とするのが一般的であるが、近年では、上述の様に
電気・電子部品の軽薄短小化に対応すべく、原材料であ
る銅合金板の薄肉化や多ピン化が進んでおり、上記スタ
ンピング後の材料に歪み応力が残留してピンが不揃いに
なりやすい。従って通常は、スタンピングして得られた
多ピン形状の銅合金板に、熱処理(歪み取り焼鈍)を施
して歪みを除去することが行われている。しかしこの様
な熱処理を行うと材料が軟化され易く、熱処理前の機械
的強度を維持することが困難となる。また製造工程にお
いては、生産性向上の観点から、さらに高温・短時間で
前記熱処理を行うことが求められている。従って、高温
での熱処理に耐えて強度を維持することのできる優れた
耐熱性を確保することが強く要求されている。[0004] In processing a lead frame, it is common to stamp a copper alloy plate having the above-mentioned chemical composition into a multi-pin shape. In order to cope with the reduction in size and weight, the copper alloy plate as a raw material has been reduced in thickness and the number of pins has been increased, and the pins after the stamping tend to have irregular stress due to residual stress. Therefore, usually, a multi-pin shaped copper alloy sheet obtained by stamping is subjected to heat treatment (strain relief annealing) to remove the distortion. However, when such a heat treatment is performed, the material is easily softened, and it is difficult to maintain the mechanical strength before the heat treatment. In the manufacturing process, from the viewpoint of improving productivity, it is required to perform the heat treatment at a higher temperature and for a shorter time. Therefore, there is a strong demand for ensuring excellent heat resistance that can withstand heat treatment at high temperatures and maintain strength.
【0005】この様な課題に対し、これまでにFe,
P,Zn等の主成分を規定したり、その他のSn,M
g,Ca等の微量添加元素を制御する技術が提案されて
きた。しかしこの様な成分制御のみでは、上述した様な
銅合金部品の小型・軽量化や強度等の特性確保に十分対
応しきれないことから、近年では、銅合金の内部組織や
析出物の析出状態を制御した技術が提案されつつある。To solve such a problem, Fe,
The main components such as P and Zn are specified, and other Sn, M
Techniques for controlling trace added elements such as g and Ca have been proposed. However, since such component control alone cannot sufficiently cope with the above-mentioned copper alloy parts, such as miniaturization, weight reduction, and securing properties such as strength, in recent years, the internal structure of copper alloys and the precipitation state of precipitates have been developed. Is being proposed.
【0006】例えば特開平10−324935号には、
銅合金中の析出粒子の粒径100Å以上のものの粒子個
数と100Å未満の粒子個数との比を規定することによ
って、強度と導電性を向上させた技術が開示されてお
り、特開平11−80862号には、直径40nm以下
の微細Fe粒子の体積分率を特定して耐熱性の改善を図
る技術が開示されている。For example, Japanese Patent Application Laid-Open No. 10-324935 discloses that
Japanese Patent Application Laid-Open No. H11-80862 discloses a technique in which the ratio between the number of particles having a particle diameter of 100 ° or more and the number of particles having a particle diameter of less than 100 ° is defined to improve the strength and conductivity. Discloses a technique for improving the heat resistance by specifying the volume fraction of fine Fe particles having a diameter of 40 nm or less.
【0007】上記技術は、微細な析出物の粒径を制御す
るものであるが、この様な微細な析出物の粒径は、前記
熱処理により析出物が固溶する場合もあり、敏感に変化
し易いことから制御することが難しく、転位の移動・消
滅およびピン止め効果にばらつきが生じるため、得られ
る銅合金の特性もばらつきやすいといった問題がある。The above technique controls the particle size of fine precipitates, but the particle size of such fine precipitates changes sensitively because the heat treatment may cause the precipitates to form a solid solution. Since it is easy to control the dislocation, the dislocation moves and disappears, and the pinning effect varies. Therefore, there is a problem that the characteristics of the obtained copper alloy are also likely to vary.
【0008】また特開平4−272161号には、機械
的強度等の特性ばらつきの安定化を図った銅合金材の製
造方法について開示されているが、熱間圧延後に更に8
00〜930℃以上に加熱したり、酸化皮膜を除去する
工程が必要であり、コストおよび生産性の観点から更な
る検討を要するものである。Japanese Unexamined Patent Publication (Kokai) No. 4-272161 discloses a method for producing a copper alloy material in which a variation in characteristics such as mechanical strength is stabilized.
A step of heating to 100 to 930 ° C. or higher or removing an oxide film is required, and further study is required from the viewpoint of cost and productivity.
【0009】[0009]
【発明が解決しようとする課題】本発明はこのような事
情に鑑みてなされたものであって、その目的は、安定し
た強度を確保することができ、かつ歪み取り焼鈍等の熱
処理を行った場合にも、強度の低下が生じ難いといった
優れた耐熱性を発揮する銅合金を提供することにある。SUMMARY OF THE INVENTION The present invention has been made in view of such circumstances, and it is an object of the present invention to secure a stable strength and perform a heat treatment such as a strain relief annealing. Even in such a case, an object of the present invention is to provide a copper alloy exhibiting excellent heat resistance such that the strength hardly decreases.
【0010】[0010]
【課題を解決するための手段】本発明に係る強度安定性
および耐熱性に優れた銅合金は、Fe:1.0〜3.0
%(化学成分の場合は質量%を意味する)を満たすと共
に、平均粒径が0.05μm以上で10μm以下の晶・
析出物が、体積分率で0.5%以上、10%以下である
ことを要旨とするものであり、更には、前記平均粒径が
0.05μm以上で10μm以下の晶・析出物の個数
が、1000個/mm2以上となるようにすることを好
ましい形態とする。The copper alloy according to the present invention, which has excellent strength stability and heat resistance, has an Fe content of 1.0 to 3.0.
% (In the case of a chemical component, it means mass%) and a crystal having an average particle size of 0.05 μm or more and 10 μm or less.
The precipitate is intended to have a volume fraction of 0.5% or more and 10% or less, and further, the number of crystals / precipitates having an average particle diameter of 0.05 μm or more and 10 μm or less. Is preferably 1000 / mm 2 or more.
【0011】また、強度安定性や耐熱性等の特性をより
高めるには、P:0.01〜0.1%、Zn:0.01
〜1.0%を満たすようにし、更に、Sn、Al、C
r、Ti、Mg、MnおよびCaよりなる群から選択さ
れる少なくとも1種の元素を各々0.01%以上で且つ
いずれも0.5%以下の範囲内で含有させることが有効
である。In order to further improve the properties such as strength stability and heat resistance, P: 0.01 to 0.1% and Zn: 0.01
~ 1.0%, Sn, Al, C
It is effective to contain at least one element selected from the group consisting of r, Ti, Mg, Mn and Ca in a range of 0.01% or more and 0.5% or less.
【0012】尚、上記「晶・析出物」とは、銅合金中に
晶出あるいは析出する、晶出物または析出物、若しくは
これらの混合物をいうのであって、その化学成分組成は
限定されるものではなく、Fe単体、Fe−P系のもの
の他、Fe−Ti系、Mn−P系、Cr−P系等の多種
多様な化学成分組成の晶・析出物を指すものとする。ま
た、上記「平均粒径」とは、各晶・析出物の重心直径の
平均値をいうものとする。The term "crystal / precipitate" refers to a crystallized or precipitated substance or a mixture thereof which crystallizes or precipitates in a copper alloy, and its chemical component composition is limited. Instead, it refers to crystals / precipitates of various chemical components such as Fe-Ti, Mn-P, Cr-P, etc., in addition to those of Fe alone and Fe-P. The “average particle size” refers to the average value of the diameters of the centers of gravity of the respective crystals and precipitates.
【0013】銅合金中の晶・析出物の形態が上記要件を
満たすよう制御するにあたっては、熱間圧延工程におけ
る入り側の温度を900〜1000℃とし、最終パス出
側温度を600〜850℃とし、入り側から最終パス出
側までの平均降温速度を0.1〜5℃/秒とすることが
大変有効である。In controlling the morphology of crystals and precipitates in the copper alloy so as to satisfy the above requirements, the temperature at the inlet side in the hot rolling step is set to 900 to 1000 ° C., and the temperature at the final pass outlet side is set to 600 to 850 ° C. It is very effective to set the average cooling rate from the entrance side to the exit side of the final pass at 0.1 to 5 ° C./sec.
【0014】[0014]
【発明の実施の形態】本発明者らは、前述した様な状況
の下で、強度安定性に優れ、かつ歪み取り焼鈍等の熱処
理を行ったとしても強度低下のほとんど生じない銅合金
の実現を目指し、様々な角度から検討した。その結果、
銅合金中のFe含有量を規定するとともに、特定サイズ
の晶・析出物の密度を適切に制御すれば、上記目的が見
事に達成されることを見出し、本発明に想到したのであ
る。BEST MODE FOR CARRYING OUT THE INVENTION The present inventors have realized a copper alloy which is excellent in strength stability and hardly causes a decrease in strength even when heat treatment such as strain relief annealing is performed under the above-described circumstances. Aiming at, we examined from various angles. as a result,
The present inventors have found that the above object can be achieved satisfactorily by regulating the Fe content in the copper alloy and appropriately controlling the density of crystals and precipitates of a specific size, and have reached the present invention.
【0015】まず、本発明にて銅合金中の晶・析出物を
制御するにあたって、そのサイズおよび密度を規定した
理由について詳述する。First, the reason why the size and density are specified in controlling the crystals and precipitates in the copper alloy in the present invention will be described in detail.
【0016】本発明では、平均粒径が0.05μm以上
で10μm以下の晶・析出物を対象とするが、この様な
粒径サイズのものを対象とするのは、平均粒径の小さす
ぎる晶・析出物は、歪み取り焼鈍等の熱処理時に再固溶
する場合があり制御が難しく、強度等特性の安定化を図
るのに有効でないからである。また、10μm以下の晶
・析出物を制御するのは、このサイズの晶・析出物が、
歪み取り焼鈍等の熱処理時に結晶の回復や再結晶を抑制
して、硬さの低減、即ち耐熱性の確保に有効に作用する
他、加工性やワイヤボンディング性の確保にも有効だか
らである。In the present invention, crystals / precipitates having an average particle size of 0.05 μm or more and 10 μm or less are targeted, but those having such a particle size are too small in the average particle size. This is because crystals and precipitates may re-dissolve during heat treatment such as strain relief annealing, which is difficult to control, and is not effective for stabilizing properties such as strength. Further, the control of the crystals / precipitates of 10 μm or less is that the crystals / precipitates of this size are
This is because, during heat treatment such as strain relief annealing, the recovery and recrystallization of crystals are suppressed, which effectively reduces the hardness, that is, ensures heat resistance, and is also effective in ensuring workability and wire bonding properties.
【0017】この様な平均粒径が0.05μm以上で1
0μm以下の晶・析出物が銅合金中に占める割合が少な
いと、転位の移動・消滅ならびにピン止め効果が十分に
発揮されないため再結晶の核生成・粒成長が進み、強度
が低下するなど特性の経時劣化を招き易い。また、歪み
取り焼鈍等の熱処理の際に生ずる結晶の回復および再結
晶を有効に抑制することもできないので、耐熱性の確保
が困難となる。従って本発明では、上記平均粒径が0.
05μm以上で10μm以下の晶・析出物を、体積分率
で0.5%以上、好ましくは0.6%以上存在させるこ
ととした。When the average particle size is 0.05 μm or more,
If the proportion of crystals and precipitates of 0 μm or less in the copper alloy is small, the dislocation movement / disappearance and the pinning effect are not sufficiently exhibited, so that nucleation and grain growth of recrystallization progress and the strength decreases. Tends to deteriorate over time. In addition, the recovery and recrystallization of crystals generated during heat treatment such as strain relief annealing cannot be effectively suppressed, so that it is difficult to ensure heat resistance. Therefore, in the present invention, the average particle size is 0.1.
Crystals and precipitates of not less than 05 μm and not more than 10 μm are present in a volume fraction of 0.5% or more, preferably 0.6% or more.
【0018】しかし、銅合金中に占める上記平均粒径が
0.05μm以上で10μm以下の晶・析出物の割合が
大きすぎても、歪み取り焼鈍等の熱処理の際に再結晶の
核となる起点が多数存在することとなり、再結晶を促進
させて、却って熱処理後の硬さを低減させることとな
る。従って、上記平均粒径が0.05μm以上で10μ
m以下の晶・析出物は、体積分率で10%以下、好まし
くは9%以下に抑えるのがよいのである。However, even if the proportion of the crystals and precipitates having an average particle size of 0.05 μm or more and 10 μm or less in the copper alloy is too large, it becomes a nucleus of recrystallization during heat treatment such as strain relief annealing. Since there are many starting points, recrystallization is promoted, and on the contrary, the hardness after the heat treatment is reduced. Therefore, when the average particle size is 0.05 μm or more, 10 μm
Crystals and precipitates of m or less should be suppressed to 10% or less, preferably 9% or less in volume fraction.
【0019】また、銅合金の強度安定性および耐熱性を
より確実に発揮させるには、平均粒径が0.05μm以
上で10μm以下の晶・析出物の粒子密度が、1000
個/mm2以上となるように制御するのがよい。In order to more reliably exhibit the strength stability and heat resistance of the copper alloy, the crystal and precipitate having an average particle diameter of 0.05 μm or more and 10 μm or less have a particle density of 1000 μm or less.
It is preferable to control the number of pieces / mm 2 or more.
【0020】上記平均粒径が0.05μm以上で10μ
m以下の晶・析出物は、化合物中に均一に分散している
状態が好ましいが、均一に分散している状態であって
も、上記サイズ粒子の密度がより密である方が、転位の
移動・消滅およびピン止め効果が十分に発揮されて再結
晶粒の成長を抑制することができ、また、歪み取り焼鈍
等の熱処理を行った場合にも、回復および再結晶を十分
に抑制することができるのである。従って本発明では、
平均粒径が0.05μm以上で10μm以下の晶・析出
物の粒子密度を1000個/mm2以上となるように制
御することが好ましく、より好ましくは1100個/m
m2以上である。When the average particle size is 0.05 μm or more and 10 μm
Crystals and precipitates of m or less are preferably in a state of being uniformly dispersed in the compound, but even in a state of being uniformly dispersed, the higher the density of the size particles is, the more the dislocation is. The movement and extinction and the pinning effect are sufficiently exhibited to suppress the growth of recrystallized grains, and also to sufficiently suppress the recovery and recrystallization even when heat treatment such as strain relief annealing is performed. You can do it. Therefore, in the present invention,
It is preferable to control the particle density of crystals / precipitates having an average particle diameter of 0.05 μm or more and 10 μm or less to be 1000 particles / mm 2 or more, and more preferably 1100 particles / m 2.
m 2 or more.
【0021】晶・析出物の上記晶出・析出状態は、FE
−SEMにて1000〜10000倍の倍率で観察し、
得られた像を画像解析して調べたものである。晶・析出
物の平均粒径は、各晶・析出物の重心直径の平均値を求
めたものであり、平均粒径が0.05μm以上で10μ
m以下の晶・析出物の体積分率は、100μm×100
μmの視野で測定し、また、上記平均粒径が0.05μ
m以上で10μm以下の晶・析出物の1mm2に占める
個数は、100μm×100μmを1視野として10視
野を観察し、そこから得られた個数を10倍して求めた
ものである。The crystallization / precipitation state of the crystals / precipitates is determined by FE
-Observed by SEM at a magnification of 1000 to 10000 times,
The obtained image was examined by image analysis. The average particle size of the crystals / precipitates is obtained by calculating the average value of the diameters of the centers of gravity of the crystals / precipitates.
m, the volume fraction of crystals and precipitates is 100 μm × 100
μm, and the average particle size is 0.05μ.
The number of crystals / precipitates having a size of m or more and 10 μm or less occupying 1 mm 2 is obtained by observing 10 visual fields with 100 μm × 100 μm as one visual field and multiplying the number obtained therefrom by 10 times.
【0022】次に、本発明で銅合金中の化学成分を規定
した理由について詳述する。Next, the reason for defining the chemical components in the copper alloy in the present invention will be described in detail.
【0023】Feは、銅合金中に析出して強度を向上さ
せるのに必要な元素であり、この様な効果を有効に発揮
させるには、1.0%以上、好ましくは1.2%以上の
添加を要する。しかしながら過剰に含有させると、鋳塊
製造時に粗大な晶・析出物を多量に生成して銅合金の延
性を劣化させるとともに、導電性を低下させることにな
る。また、鋳塊から薄板への熱間圧延加工に際して行わ
れる加熱あるいは中間焼鈍において、Feの巨大析出物
が生成して熱間圧延加工性が劣化したり、Feの巨大晶
・析出物が最終製品に残存して、歪み取り焼鈍後の強度
低下、即ち耐熱性の劣化を招くこととなる。従って、F
e量は、3.0%以下、好ましくは2.8%以下に抑え
る必要がある。Fe is an element necessary for precipitating in a copper alloy to improve the strength, and in order to effectively exhibit such an effect, 1.0% or more, preferably 1.2% or more. Need to be added. However, if it is contained excessively, a large amount of coarse crystals and precipitates are generated during the production of the ingot, thereby deteriorating the ductility of the copper alloy and lowering the conductivity. In addition, in heating or intermediate annealing performed during hot rolling from an ingot to a thin plate, giant precipitates of Fe are generated and hot rolling workability is deteriorated, or giant crystals and precipitates of Fe are produced in the final product. , Causing a decrease in strength after strain relief annealing, that is, a deterioration in heat resistance. Therefore, F
The amount of e needs to be suppressed to 3.0% or less, preferably 2.8% or less.
【0024】本発明では、PおよびZnについてもその
含有量を規定することで、銅合金の強度安定性および耐
熱性を更に高め、かつはんだ密着性等の特性を確保する
ことができるのである。In the present invention, by defining the contents of P and Zn, it is possible to further increase the strength stability and heat resistance of the copper alloy and to secure characteristics such as solder adhesion.
【0025】即ちPは、脱酸作用を有する他、Feと晶
・析出物を形成して銅合金の析出強化を図るのに有効な
元素であり、この様な効果を有効に発揮させるには、上
述の如く適量のFeを存在させた上で、更にPを0.0
1%以上、好ましくは0.02%以上含有させるのがよ
いのである。しかしP量が多すぎても、Feの固溶限が
低下して鋳塊製造時に粗大な晶・析出物が多量に生成
し、焼鈍時の結晶回復の核が多数存在して回復が促進さ
れ、その結果、焼鈍後の強度が低下してしまうこととな
る。また導電性の低下を引き起こす原因ともなる。従っ
て、P量は0.1%以下に抑えることが好ましく、より
好ましくは0.09%以下である。That is, P is an element which has a deoxidizing effect and is also effective for forming crystals and precipitates with Fe and strengthening the precipitation of the copper alloy. To effectively exert such an effect, In the presence of an appropriate amount of Fe as described above,
The content should be 1% or more, preferably 0.02% or more. However, even if the P content is too large, the solid solubility limit of Fe is reduced, and a large amount of coarse crystals and precipitates are produced during ingot production, and a large number of crystal recovery nuclei during annealing are present to promote the recovery. As a result, the strength after annealing decreases. It also causes a decrease in conductivity. Therefore, the P content is preferably suppressed to 0.1% or less, more preferably 0.09% or less.
【0026】Znは、電子部品の接合に用いるすずやは
んだの剥離を抑制するのに有効な元素であり、この様な
効果を有効に発揮させるには、0.01%以上添加する
ことが好ましい。より好ましくは0.1%以上である。
しかし過剰に添加しても、その効果は飽和し、却って溶
融すずやはんだの濡れ広がり性を劣化させるので、1.
0%以下に抑えることが好ましく、より好ましくは0.
9%以下である。Zn is an effective element for suppressing the peeling of tin and solder used for joining electronic components, and it is preferable to add 0.01% or more to effectively exhibit such an effect. It is more preferably at least 0.1%.
However, even if it is added excessively, the effect is saturated and the molten tin and the spreadability of the solder are rather deteriorated.
It is preferably controlled to 0% or less, more preferably 0.1%.
9% or less.
【0027】またSn、Al、Cr、Ti、Mg、Mn
およびCaよりなる群から選ばれる少なくとも1種を適
量含有させることによって、次の様な改善効果を得るこ
とも有効である。In addition, Sn, Al, Cr, Ti, Mg, Mn
It is also effective to obtain the following improvement effect by adding at least one kind selected from the group consisting of Ca and Ca.
【0028】即ち、上記Sn、Al、Cr、Ti、M
g、MnおよびCaは、いずれも銅合金中に固溶して耐
熱性に寄与する元素であり、焼鈍等の熱処理を行った場
合にも、強度の低下を最低限に抑える効果を有する。し
かし過剰に添加すると、鋳造時にマクロ偏析が生じて粗
大な晶・析出物が生成し易くなる他、導電率の低下も引
き起こし易くなる。従って、Sn、Al、Cr、Ti、
Mg、MnおよびCaよりなる群から選ばれる少なくと
も1種の元素を各々0.01%以上で且ついずれも0.
5%以下の範囲内で添加することが好ましく、より好ま
しい各々の下限は0.05%で、上限は0.45%であ
る。That is, the above Sn, Al, Cr, Ti, M
g, Mn, and Ca are elements that contribute to heat resistance by forming a solid solution in the copper alloy, and have an effect of minimizing a decrease in strength even when heat treatment such as annealing is performed. However, if it is added excessively, macrosegregation occurs during casting, so that coarse crystals and precipitates are easily generated, and a decrease in conductivity is also easily caused. Therefore, Sn, Al, Cr, Ti,
Each of at least one element selected from the group consisting of Mg, Mn, and Ca is 0.01% or more, and each of the elements is 0.1% or more.
It is preferable to add within the range of 5% or less, and more preferably, the lower limit is 0.05% and the upper limit is 0.45%.
【0029】その他、銅合金中に微量に含まれているP
b、Ni、Si、Be、ZrおよびInを合計で0.1
%未満に抑えることにより、上記の如く化学成分を規定
することで得られる本発明の効果をより有効に発揮させ
ることができるのである。In addition, a small amount of P contained in the copper alloy
b, Ni, Si, Be, Zr and In in total of 0.1
%, The effect of the present invention obtained by defining the chemical components as described above can be more effectively exerted.
【0030】尚、本発明鋼中に含まれる元素について
は、上記説明したものの他、原料、資材、製造設備等の
状況によって持ち込まれる不可避的不純物、更には、本
発明の課題達成に悪影響を与えないS等の許容元素が含
まれる場合も、本発明の技術的範囲に包含される。The elements contained in the steel of the present invention, in addition to those described above, have unavoidable impurities introduced depending on the conditions of raw materials, materials, production facilities and the like, and further adversely affect the achievement of the object of the present invention. The case where an allowable element such as no S is included is also included in the technical scope of the present invention.
【0031】本発明にて晶・析出物が上述のような晶出
・析出形態となるよう制御するには、製造にあたって下
記の条件で熱間圧延を行うことが有効である。In the present invention, in order to control the crystals / precipitates to have the above-mentioned crystallization / precipitation form, it is effective to perform hot rolling under the following conditions in the production.
【0032】即ち、熱間圧延における入り側温度を90
0℃以上、好ましくは910℃以上とすることで、熱間
圧延前の均熱による晶・析出物の再固溶を促進させ、鋳
塊に表れた偏析の影響を消去して晶・析出物を良好に分
散させることができるのである。しかし前記入り側温度
が高すぎても、熱間圧延前の均熱中に粗大なFe−P系
析出物が多量に生成してしまい、強度等の特性が劣化す
る原因となるので、熱間圧延における入り側温度は10
00℃以下、好ましくは990℃以下とする。That is, the entry temperature in hot rolling is set to 90
By setting the temperature to 0 ° C. or higher, preferably 910 ° C. or higher, the re-solid solution of the crystals / precipitates by soaking before hot rolling is promoted, and the influence of segregation appearing in the ingot is eliminated to remove the crystals / precipitates. Can be satisfactorily dispersed. However, even if the entry-side temperature is too high, a large amount of coarse Fe-P-based precipitates are generated during soaking before hot rolling, which causes deterioration of properties such as strength. Entry temperature at 10
The temperature is set to 00 ° C or lower, preferably 990 ° C or lower.
【0033】また、熱間圧延における最終パス出側温度
を600℃以上とすることで、熱間圧延で生成した析出
物が成長して粗大となるのを抑制できるだけでなく、焼
鈍工程で生成する微細なFe系析出物量を維持して強度
や耐熱性を確保することができるのであり、好ましくは
610℃以上である。しかし前記最終パス出側温度が高
すぎても、本発明で規定するサイズの晶・析出物の生成
が不十分となり、強度等の特性の安定化が十分に図れな
いので、熱間圧延における最終パス出側温度は、850
℃以下、好ましくは840℃以下とする。By setting the final pass exit side temperature in hot rolling to 600 ° C. or higher, not only can precipitates formed by hot rolling be prevented from growing and becoming coarse, but also precipitates formed during the annealing step. The strength and heat resistance can be secured by maintaining the amount of fine Fe-based precipitates, and it is preferably 610 ° C. or higher. However, even if the final pass exit side temperature is too high, the formation of crystals and precipitates of the size specified in the present invention becomes insufficient, and properties such as strength cannot be sufficiently stabilized. Pass outlet temperature is 850
° C or lower, preferably 840 ° C or lower.
【0034】また、入り側から最終パス出側までの平均
降温速度を0.1〜5℃/sに制御することによって、
平均粒径が0.05μm以上で10μm以下の晶・析出
物量を適切に制御することができる。Further, by controlling the average cooling rate from the entrance side to the exit side of the final pass to 0.1 to 5 ° C./s,
The amount of crystals and precipitates having an average particle size of 0.05 μm or more and 10 μm or less can be appropriately controlled.
【0035】前記平均降温速度が遅すぎると、晶・析出
物が粗大なサイズにまで成長してしまい、分散度も不均
一となるため好ましくない。よって、入り側から最終パ
ス出側までの平均降温速度は0.1℃/s以上、好まし
くは0.2℃/s以上となるようにする。一方、前記平
均降温速度が速すぎると熱間圧延時間が短くなり、本発
明で規定するサイズの晶・析出物の生成が不十分とな
る。その結果、強度等の特性が安定しなくなるので、入
り側から最終パス出側までの平均降温速度は、5℃/s
以下、好ましくは4℃/s以下となるようにする。If the average cooling rate is too slow, crystals and precipitates grow to a coarse size and the degree of dispersion is not uniform, which is not preferable. Therefore, the average temperature decreasing rate from the entrance side to the exit side of the final pass is set to 0.1 ° C./s or more, preferably 0.2 ° C./s or more. On the other hand, if the average cooling rate is too high, the hot rolling time will be short, and the generation of crystals and precipitates of the size specified in the present invention will be insufficient. As a result, the characteristics such as strength become unstable, so that the average cooling rate from the entrance side to the exit side of the final pass is 5 ° C./s.
Or less, preferably 4 ° C./s or less.
【0036】[0036]
【実施例】以下、実施例を挙げて本発明をより具体的に
説明するが、本発明はもとより下記実施例によって制限
を受けるものではなく、前・後記の趣旨に適合し得る範
囲で適当に変更を加えて実施することも可能であり、そ
れらはいずれも本発明の技術的範囲に含まれる。EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples. Modifications can be made, and all of them are included in the technical scope of the present invention.
【0037】表1に示す化学成分の銅合金をそれぞれコ
アレス炉にて溶製した後、半連続鋳造法で造塊して厚さ
50mm×幅200mm×長さ500mmの鋳塊を得
た。各鋳塊を加熱後、表2に示す条件(入り側温度、出
側温度、入り側から最終パス出側までの平均降温速度)
で熱間圧延を行って厚さ16mmとし、面削後、冷間圧
延および中間焼鈍を繰り返して厚さ約0.15mmの銅
合金板を得た。After the copper alloys having the chemical components shown in Table 1 were melted in a coreless furnace, they were ingot by semi-continuous casting to obtain an ingot having a thickness of 50 mm × width 200 mm × length 500 mm. After heating each ingot, the conditions shown in Table 2 (entrance temperature, exit temperature, average cooling rate from entrance to exit of last pass)
Then, hot rolling was performed to obtain a thickness of 16 mm, and after facing, cold rolling and intermediate annealing were repeated to obtain a copper alloy sheet having a thickness of about 0.15 mm.
【0038】尚、表2における入り側から最終パス出側
までの平均降温速度は、冷却水の水量/噴出速度のコ
ントロール、ロール速度制御、およびパス中におけ
る板厚変更などにより適宜調節したものである。The average cooling rate from the entry side to the exit side of the final pass in Table 2 is appropriately adjusted by controlling the amount of cooling water / injection speed, controlling the roll speed, and changing the plate thickness during the pass. is there.
【0039】[0039]
【表1】 [Table 1]
【0040】[0040]
【表2】 [Table 2]
【0041】上記の様にして得られた銅合金板から任意
に試験片を取り出して、導電率を測定した。導電率は、
ミーリングにより短冊状の試験片を加工し、ダブルブリ
ッジ式抵抗測定装置により測定した。A test piece was arbitrarily taken out of the copper alloy plate obtained as described above, and the conductivity was measured. The conductivity is
A strip-shaped test piece was processed by milling and measured by a double-bridge resistance measuring device.
【0042】また各銅合金板から、1試料につき4枚の
50mm角板材を任意に採取し、硬さ、硬さのばらつ
き、焼鈍後の硬さ、および焼鈍後の硬さ低下量を求め
た。From each copper alloy plate, four 50 mm square plates were arbitrarily sampled for each sample, and the hardness, hardness variation, hardness after annealing, and decrease in hardness after annealing were determined. .
【0043】上記硬さの測定は、前記4枚の50mm角
板材それぞれについて、マイクロビッカース硬度計にて
0.5kgの荷重を加えて行い、硬さのばらつきは、こ
れら4枚の硬さ測定値間の最高値と最低値の差とした。
また、上記4枚の50mm角板材を450℃で3分間加
熱した後、再度、荷重0.5kgでマイクロビッカース
硬さを測定し、前記加熱前の硬さとの差より硬さ低下量
を求めた。The hardness was measured by applying a load of 0.5 kg to each of the four 50 mm square plates using a micro-Vickers hardness tester. The difference between the highest and lowest values was taken.
After heating the four 50 mm square plates at 450 ° C. for 3 minutes, the micro Vickers hardness was measured again with a load of 0.5 kg, and the hardness reduction was determined from the difference from the hardness before heating. .
【0044】平均粒径が0.05μm以上で10μm以
下の晶・析出物の形態は、走査型電子顕微鏡で観察した
像を用い、画像解析を行って評価した。詳細には、走査
型電子顕微鏡として日立製作所製 S4500型FE−
SEM(電界放出型走査電子顕微鏡 Field Emission S
canning Electron Microscopy)を用い、倍率1000
〜20000倍で100μm×100μmの視野を観察し
て行った。The morphology of crystals / precipitates having an average particle size of 0.05 μm or more and 10 μm or less was evaluated by image analysis using an image observed with a scanning electron microscope. In detail, Hitachi S4500 type FE-
SEM (Field Emission Scanning Electron Microscope)
canning Electron Microscopy) at a magnification of 1000
The observation was performed by observing a visual field of 100 μm × 100 μm at a magnification of 2020,000.
【0045】尚、上記電界放出型走査電子顕微鏡では、
反射電子による観察を行えば、本発明で対象とする0.
05μmレベルの晶・析出物の存在状態も明瞭に把握す
ることができるので好ましい。また、観察倍率を高めす
ぎると、微細な晶・析出物を良好に観察できるものの、
銅合金中の晶・析出物の分布が疎である試料については
晶出・析出形態を十分に把握することができず、一方、
観察倍率が低すぎると、サブミクロンレベルの微細な化
合物を検出することができない。従って、1000倍程
度の倍率で数μmレベルの晶・析出物の体積分率を求
め、10000倍程度の倍率でサブミクロンレベルの微
細な晶・析出物の体積分率を求めるなど、異なる倍率で
の観察を併用することが望ましい。In the above field emission scanning electron microscope,
Observation with backscattered electrons is the object of the present invention.
It is preferable because the existence state of crystals and precipitates at the level of 05 μm can be clearly grasped. Also, if the observation magnification is too high, fine crystals and precipitates can be observed well,
For samples where the distribution of crystals / precipitates in the copper alloy is sparse, the crystallization / precipitation morphology cannot be fully understood,
If the observation magnification is too low, a submicron-level fine compound cannot be detected. Therefore, the volume fraction of crystals / precipitates of several μm level is obtained at a magnification of about 1000 times, and the volume fraction of fine crystals / precipitates of a submicron level is obtained at a magnification of about 10,000 times. It is desirable to use the observation in combination.
【0046】本発明の銅合金中に存在する晶・析出物
は、上述の如く化学成分組成も様々で、またそのサイズ
も数nmレベルから数μmレベルと多様であるが、本願
発明では、課題達成に有効な平均粒径が0.05μm以
上で10μm以下のサイズの晶・析出物を対象に画像解
析を行った。The crystals and precipitates present in the copper alloy of the present invention have various chemical composition compositions as described above, and their sizes vary from a few nm level to a few μm level. Image analysis was performed on crystals / precipitates having an average particle size of 0.05 μm or more and 10 μm or less effective for achieving the target.
【0047】上記方法で観察された像の画像解析を行っ
て、平均粒径が0.05μm以上で10μm以下の晶・
析出物のサイズ、体積分率および粒子密度を求めた。画
像解析のソフトウェアには、MEDIA CYBERN
ETICS社製Image−Pro Plusを用い
た。Image analysis of the image observed by the above method was performed, and the crystal having an average particle size of 0.05 μm or more and 10 μm or less was analyzed.
The size, volume fraction and particle density of the precipitate were determined. Media analysis software includes MEDIA CYBERN
Image-Pro Plus manufactured by ETICS was used.
【0048】各晶・析出物のサイズ(平均粒径)は、晶
・析出物の重心直径の平均値を求めたものである。ま
た、平均粒径が0.05μm以上で10μm以下の晶・
析出物の体積分率は、各々の50mm角板材にて1視野
(100μm×100μm)に占める上記サイズの晶・
析出物の面積率を求め、5視野以上の平均値を求めたも
のである。平均粒径が0.05μm以上で10μm以下
の粒子密度は、100μm×100μmを1視野とした場
合の総計10視野にて上記サイズの晶・析出物の個数を
求め、得られた値を10倍にして1mm2に存在する上
記サイズの晶・析出物の個数を求めたものである。これ
らの測定結果を表3〜5に示す。The size (average particle size) of each crystal / precipitate is obtained by calculating the average value of the diameter of the center of gravity of the crystal / precipitate. Further, a crystal having an average particle diameter of 0.05 μm or more and 10 μm or less.
The volume fraction of the precipitate is as follows: the crystal of the above-mentioned size occupying one visual field (100 μm × 100 μm) in each 50 mm square plate material.
The area ratio of the precipitate was determined, and the average value over five visual fields was determined. The average particle diameter is 0.05 μm or more and 10 μm or less. The number of crystals / precipitates of the above size is determined in a total of 10 visual fields when 100 μm × 100 μm is defined as 1 visual field, and the obtained value is multiplied by 10 times. And the number of crystals / precipitates of the above size existing in 1 mm 2 was determined. Tables 3 to 5 show these measurement results.
【0049】[0049]
【表3】 [Table 3]
【0050】[0050]
【表4】 [Table 4]
【0051】[0051]
【表5】 [Table 5]
【0052】表3、表4および表5より、本発明の要件
を満たすNo.1〜15では、硬さのばらつきが小さく
安定した強度を確保することができている。また、歪み
取り焼鈍等の熱処理を加えた場合にも、硬さの低下量が
小さく耐熱性にも優れており、更には導電性も確保する
ことができている。From Tables 3, 4 and 5, it is found that No. 3 satisfying the requirements of the present invention. In Nos. 1 to 15, variations in hardness are small and stable strength can be secured. Further, even when heat treatment such as strain relief annealing is applied, the amount of decrease in hardness is small, the heat resistance is excellent, and the conductivity can be ensured.
【0053】これに対しNo.16〜34では、本発明
で規定するいずれかの要件を満たさないため、得られる
強度にばらつきが生じたり、熱処理後に著しく強度が低
下したり、または導電性の好ましくない結果となってい
る。On the other hand, no. In Nos. 16 to 34, any of the requirements specified in the present invention are not satisfied, so that the obtained strength varies, the strength is significantly reduced after the heat treatment, or the conductivity is unfavorable.
【0054】即ちNo.16〜21は、製造条件が本発
明で規定する要件を満たさないものであり、得られた銅
合金は、硬さのばらつきが大きく、かつ焼鈍後の硬さも
低下する結果となった。この様な結果となった原因とし
て、No.16では、入り側温度が低すぎて過剰に晶・
析出物が生成したこと、No.17では、入り側温度が
高すぎたために、生成する晶・析出物の粒子密度が本発
明範囲に満たなかったこと、No.18では、最終パス
出側温度が低すぎたため、晶・析出物が粗大なサイズに
まで成長して本発明で規定するサイズの晶・析出物の個
数を確保することができなかったこと、No.19で
は、最終パス出側温度が高すぎて、本発明で規定する晶
・析出物の個数を十分確保できなかったことが挙げられ
る。また、No.20では、熱間圧延の入り側から出側
までの平均降温速度が速すぎたために、本発明で規定す
るサイズの晶・析出物の個数を十分確保することができ
なかったこと、No.21では、前記平均降温速度が遅
すぎたために、晶・析出物が粗大なサイズにまで成長し
てしまい体積分率が規定範囲を超えたことが挙げられ
る。That is, No. In Nos. 16 to 21, the production conditions did not satisfy the requirements specified in the present invention, and the obtained copper alloy had a large variation in hardness, and resulted in a decrease in hardness after annealing. The reason for such a result is that In the case of No. 16, the inlet temperature is too low and excessive crystals
The formation of a precipitate, In No. 17, since the entrance temperature was too high, the particle density of the generated crystals / precipitates was below the range of the present invention. In No. 18, since the final pass exit side temperature was too low, the crystal / precipitate grew to a coarse size, and the number of crystals / precipitate of the size specified in the present invention could not be secured. . In No. 19, the exit temperature on the final pass side was too high, and the number of crystals and precipitates specified in the present invention could not be secured sufficiently. In addition, No. In No. 20, the number of crystals / precipitates of the size specified in the present invention could not be sufficiently secured because the average cooling rate from the entry side to the exit side of hot rolling was too high. In the case of No. 21, it can be mentioned that, because the average cooling rate was too slow, the crystals / precipitates grew to a coarse size and the volume fraction exceeded the specified range.
【0055】No.22は、Fe量が規定範囲を下回る
ものであるため、十分な晶・析出物を生成することがで
きず、所望の強度を安定して得ることができなかった。
No.23は、Fe量が多すぎたために過剰の晶・析出
物が生成し、耐熱性および導電性に劣る結果となった。No. In No. 22, since the Fe amount was below the specified range, sufficient crystals and precipitates could not be generated, and the desired strength could not be stably obtained.
No. In No. 23, since the amount of Fe was too large, excessive crystals / precipitates were generated, resulting in poor heat resistance and conductivity.
【0056】No.24は、P量が少なすぎたために十
分な量の晶・析出物が生成されず、所望の強度を安定し
て得ることができなかった。No.25は、P量が多す
ぎたために耐熱性および導電性に劣る結果となった。ま
た、No.26は、Zn量が少なすぎたために、はんだ
付けした場合に剥離が生じる結果となった。また、N
o.27では、Zn量が多すぎたことから、却ってはん
だ付け不良を示す結果となった。No. In No. 24, since the amount of P was too small, a sufficient amount of crystals and precipitates were not generated, and the desired strength could not be stably obtained. No. No. 25 resulted in inferior heat resistance and conductivity due to too much P content. In addition, No. In No. 26, since the Zn content was too small, peeling occurred when soldering was performed. Also, N
o. In the case of No. 27, since the Zn content was too large, the result was rather indicative of a poor soldering.
【0057】No.28〜34では、Sn、Al、C
r、Ti、Mg、Mn或いはCaの添加量が多すぎたこ
とから、導電性が劣化する結果となった。No. In 28-34, Sn, Al, C
Since the added amount of r, Ti, Mg, Mn or Ca was too large, the conductivity was deteriorated.
【0058】尚、歪み取り焼鈍を行った後の硬さのばら
つきは、焼鈍前の硬さのばらつきが小さければ、歪み取
り焼鈍を行った後の硬さについてもばらつきが小さいこ
とが分かる。It should be noted that the variation in the hardness after the strain relief annealing is small if the variation in the hardness before the annealing is small.
【0059】[0059]
【発明の効果】本発明は、以上の様に構成されており、
銅合金中に晶出・析出する晶・析出物のサイズおよび密
度を本発明の如く制御することによって、安定した強度
を確保することができ、かつ歪み取り焼鈍等の熱処理を
行った場合にも、硬さの低下が生じにくい優れた耐熱性
を発揮する銅合金を得ることができた。そして、この様
な銅合金の実現によって、より軽量で品質に優れたリー
ドフレーム等の電子部品を供給できることとなったので
ある。The present invention is configured as described above,
By controlling the size and density of the crystals and precipitates to be crystallized and precipitated in the copper alloy as in the present invention, stable strength can be ensured, and even when heat treatment such as strain relief annealing is performed. Thus, it was possible to obtain a copper alloy exhibiting excellent heat resistance that hardly causes a decrease in hardness. With the realization of such a copper alloy, it has become possible to supply electronic components such as lead frames and the like which are lighter and have higher quality.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22F 1/00 661 C22F 1/00 661A 683 683 691 691B 692 692A (72)発明者 杉崎 康昭 神戸市西区高塚台1丁目5番5号 株式会 社神戸製鋼所神戸総合技術研究所内 (72)発明者 逸見 義男 神戸市西区高塚台1丁目5番5号 株式会 社神戸製鋼所神戸総合技術研究所内 (72)発明者 大迫 淳一 山口県下関市長府港町14番1号 株式会社 神戸製鋼所長府製造所内──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C22F 1/00 661 C22F 1/00 661A 683 683 691 691B 692 692A (72) Inventor Yasuaki Sugizaki Takatsuka, Nishi-ku, Kobe-shi Kobe Steel Research Institute Kobe Research Institute, Kobe Steel, Ltd. Kobe Research Institute, Ltd. (72) Inventor Yoshio Hemi 1-5-5, Takatsukadai, Nishi-ku, Kobe, Japan Inventor Junichi Osako 14-1, Nagafuminatocho, Shimonoseki City, Yamaguchi Prefecture Kobe Steel, Ltd.
Claims (5)
合は質量%を意味する。以下同じ)を満たすと共に、平
均粒径が0.05μm以上で10μm以下の晶・析出物
が体積分率で0.5%以上、10%以下であることを特
徴とする強度安定性および耐熱性に優れた銅合金。1. A crystal / precipitate satisfying Fe: 1.0 to 3.0% (mean% by mass in the case of a chemical component; the same applies hereinafter) and having an average particle size of 0.05 μm or more and 10 μm or less A copper alloy excellent in strength stability and heat resistance, characterized by having a volume fraction of 0.5% or more and 10% or less.
μm以下の晶・析出物の個数が1000個/mm2以上
である請求項1に記載の銅合金。2. The method according to claim 1, wherein said average particle size is not less than 0.05 μm.
2. The copper alloy according to claim 1, wherein the number of crystals / precipitates having a size of not more than μm is not less than 1000 / mm 2 .
0.01〜1.0%を満たす請求項1または2に記載の
銅合金。3. P: 0.01 to 0.1%, Zn:
The copper alloy according to claim 1 or 2, which satisfies 0.01 to 1.0%.
nおよびCaよりなる群から選択される少なくとも1種
の元素を各々0.01%以上で且ついずれも0.5%以
下の範囲内で含有する請求項1〜3のいずれかに記載の
銅合金。4. Further, Sn, Al, Cr, Ti, Mg, M
The copper alloy according to any one of claims 1 to 3, wherein the copper alloy contains at least one element selected from the group consisting of n and Ca in an amount of 0.01% or more and 0.5% or less. .
を製造する方法であって、熱間圧延工程における入り側
の温度を900〜1000℃とし、最終パス出側温度を
600〜850℃とし、入り側から最終パス出側までの
平均降温速度を0.1〜5℃/秒とすることを特徴とす
る強度安定性および耐熱性に優れた銅合金の製造方法。5. The method for producing a copper alloy according to claim 1, wherein the temperature on the inlet side in the hot rolling step is 900 to 1000 ° C., and the temperature on the final pass outlet side is 600 to 1000 ° C. A method for producing a copper alloy having excellent strength stability and heat resistance, wherein the temperature is 850 ° C. and the average cooling rate from the entrance side to the exit side of the final pass is 0.1 to 5 ° C./sec.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001090921A JP4159757B2 (en) | 2001-03-27 | 2001-03-27 | Copper alloy with excellent strength stability and heat resistance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001090921A JP4159757B2 (en) | 2001-03-27 | 2001-03-27 | Copper alloy with excellent strength stability and heat resistance |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002285261A true JP2002285261A (en) | 2002-10-03 |
JP4159757B2 JP4159757B2 (en) | 2008-10-01 |
Family
ID=18945635
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001090921A Expired - Fee Related JP4159757B2 (en) | 2001-03-27 | 2001-03-27 | Copper alloy with excellent strength stability and heat resistance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4159757B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005028689A1 (en) | 2003-09-19 | 2005-03-31 | Sumitomo Metal Industries, Ltd. | Copper alloy and method for production thereof |
WO2005087957A1 (en) * | 2004-03-12 | 2005-09-22 | Sumitomo Metal Industries, Ltd. | Copper alloy and method for production thereof |
JP2007169765A (en) * | 2005-12-26 | 2007-07-05 | Furukawa Electric Co Ltd:The | Copper alloy and its production method |
US7293443B2 (en) | 2004-01-16 | 2007-11-13 | Sumitomo Metal Industries, Ltd. | Method for manufacturing seamless pipes or tubes |
CN100392505C (en) * | 2004-11-02 | 2008-06-04 | 株式会社神户制钢所 | Copper alloy film, copper alloy sputtering target and flat panel display |
JP2015175056A (en) * | 2014-03-18 | 2015-10-05 | 株式会社神戸製鋼所 | Fe-P-BASED COPPER ALLOY SHEET EXCELLENT IN STRENGTH, HEAT RESISTANCE AND BENDABILITY |
CN116590555A (en) * | 2023-05-22 | 2023-08-15 | 重庆大学 | A kind of C19400 copper alloy strip for semi-etching and its preparation method |
-
2001
- 2001-03-27 JP JP2001090921A patent/JP4159757B2/en not_active Expired - Fee Related
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005028689A1 (en) | 2003-09-19 | 2005-03-31 | Sumitomo Metal Industries, Ltd. | Copper alloy and method for production thereof |
EP1681360A4 (en) * | 2003-09-19 | 2007-06-13 | Sumitomo Metal Ind | COPPER ALLOY AND PROCESS FOR PRODUCING THE SAME |
US10023940B2 (en) | 2003-09-19 | 2018-07-17 | Nippon Steel & Sumitomo Metal Corporation | Copper alloy and process for producing the same |
US10106870B2 (en) | 2003-09-19 | 2018-10-23 | Nippon Steel & Sumitomo Metal Corporation | Copper alloy and process for producing the same |
US7293443B2 (en) | 2004-01-16 | 2007-11-13 | Sumitomo Metal Industries, Ltd. | Method for manufacturing seamless pipes or tubes |
USRE44308E1 (en) | 2004-01-16 | 2013-06-25 | Nippon Steel & Sumitomo Metal Corporation | Method for manufacturing seamless pipes or tubes |
WO2005087957A1 (en) * | 2004-03-12 | 2005-09-22 | Sumitomo Metal Industries, Ltd. | Copper alloy and method for production thereof |
EP1731624A4 (en) * | 2004-03-12 | 2007-06-13 | Sumitomo Metal Ind | COPPER ALLOY AND MANUFACTURING METHOD THEREFOR |
CN100392505C (en) * | 2004-11-02 | 2008-06-04 | 株式会社神户制钢所 | Copper alloy film, copper alloy sputtering target and flat panel display |
JP2007169765A (en) * | 2005-12-26 | 2007-07-05 | Furukawa Electric Co Ltd:The | Copper alloy and its production method |
JP2015175056A (en) * | 2014-03-18 | 2015-10-05 | 株式会社神戸製鋼所 | Fe-P-BASED COPPER ALLOY SHEET EXCELLENT IN STRENGTH, HEAT RESISTANCE AND BENDABILITY |
CN116590555A (en) * | 2023-05-22 | 2023-08-15 | 重庆大学 | A kind of C19400 copper alloy strip for semi-etching and its preparation method |
Also Published As
Publication number | Publication date |
---|---|
JP4159757B2 (en) | 2008-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102812138B (en) | Cu-ni-si-co-based copper alloy for electronic material and its manufacturing method | |
JP5441876B2 (en) | Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same | |
JP4837697B2 (en) | Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same | |
TWI381397B (en) | Cu-Ni-Si-Co based copper alloy for electronic materials and its manufacturing method | |
JP4708485B2 (en) | Cu-Co-Si based copper alloy for electronic materials and method for producing the same | |
JP5506806B2 (en) | Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same | |
JP2008248333A (en) | Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same | |
WO2012043170A1 (en) | Cu-Co-Si-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL AND METHOD FOR PRODUCING SAME | |
WO2017081972A1 (en) | Copper alloy material | |
KR20130109209A (en) | Cu-si-co-base copper alloy for electronic materials and method for producing same | |
JP5570109B2 (en) | Copper alloy and lead frame material for electronic equipment | |
WO2012026488A1 (en) | Copper-cobalt-silicon alloy for electrode material | |
JP4275697B2 (en) | Copper alloy and lead frame material for electronic equipment | |
JP2005139501A (en) | Copper alloy having excellent heat resistance, and its production method | |
JP2002285261A (en) | Copper alloy having excellent strength stability and heat resistance | |
WO2017081969A1 (en) | Copper alloy material | |
JP5610789B2 (en) | Copper alloy sheet and method for producing copper alloy sheet | |
JP5291494B2 (en) | High strength high heat resistance copper alloy sheet | |
JPH1180862A (en) | Copper-iron alloy material for lead frame, excellent in heat resistance | |
JP5988794B2 (en) | Copper alloy sheet and manufacturing method thereof | |
JPH0978168A (en) | Aluminum alloy sheet | |
JP4147088B2 (en) | Copper alloy having excellent strength stability and method for producing the same | |
US10358697B2 (en) | Cu—Co—Ni—Si alloy for electronic components | |
JP3766051B2 (en) | Copper alloy having excellent heat resistance and method for producing the same | |
JP3306585B2 (en) | Cu alloy rolled sheet with fine crystals and precipitates and low distribution ratio |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040401 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040806 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050530 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050705 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070522 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070713 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080715 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080716 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4159757 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110725 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110725 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120725 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130725 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |