WO2017081972A1 - Copper alloy material - Google Patents
Copper alloy material Download PDFInfo
- Publication number
- WO2017081972A1 WO2017081972A1 PCT/JP2016/080125 JP2016080125W WO2017081972A1 WO 2017081972 A1 WO2017081972 A1 WO 2017081972A1 JP 2016080125 W JP2016080125 W JP 2016080125W WO 2017081972 A1 WO2017081972 A1 WO 2017081972A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mass
- less
- copper alloy
- crystal grain
- grain size
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22C—FOUNDRY MOULDING
- B22C9/00—Moulds or cores; Moulding processes
- B22C9/06—Permanent moulds for shaped castings
- B22C9/061—Materials which make up the mould
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
- C22C9/01—Alloys based on copper with aluminium as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/08—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
Definitions
- the present invention relates to a copper alloy material suitable for a member used in a high temperature environment such as a casting member or a welding member such as a contact tip.
- Cu—Cr—Zr-based alloys such as C18150 have excellent heat resistance and electrical conductivity. Therefore, as shown in Patent Documents 1 and 2, a casting mold material or welding that is used at a high temperature is used. It is used as a material for construction materials.
- Such a Cu—Cr—Zr alloy is usually obtained by subjecting a Cu—Cr—Zr alloy ingot to plastic working, for example, a holding temperature of 950 to 1050 ° C. and a holding time of 0.5 to 1.5 hours.
- a solution treatment and an aging treatment with a holding temperature of 400 to 500 ° C. and a holding time of 2 to 4 hours, for example, are performed, and finally, a manufacturing process is performed to finish a predetermined shape by machining.
- Strength and electrical conductivity are improved by solid solution of Cr and Zr in the matrix of Cu by solution treatment and fine dispersion of Cr and Zr precipitates by aging treatment.
- Japanese Laid-Open Patent Publication No. 62-097748 (A) Japanese Patent Laid-Open No. 05-339688 (A)
- the above-mentioned Cu—Cr—Zr alloy has excellent heat resistance, but when exposed to a use environment having a peak temperature of 500 ° C. or higher, reprecipitation of precipitates begins, and accordingly As a result, the strength and electrical conductivity are lowered, and coarsening of crystal grains may occur. When the coarsening of crystal grains occurs, the propagation speed of cracks may increase and the product life may be shortened. Further, there is a problem that mechanical properties such as strength and elongation are remarkably deteriorated due to the occurrence of coarsening of crystal grains locally.
- the present invention has been made in view of the circumstances described above, and is a copper alloy material that has stable characteristics and excellent service life even when used in a high temperature environment of 500 ° C. or higher.
- the purpose is to provide.
- the copper alloy material of one embodiment of the present invention (hereinafter referred to as “the copper alloy material of the present invention”) has Cr of 0.3 mass% or more and less than 0.5 mass%, and Zr of 0. 0.01 mass% or more and 0.15 mass% or less, and the balance is composed of Cu and inevitable impurities, the average crystal grain size is in the range of 0.1 mm to 2.0 mm, and the crystal grain size The standard deviation is 0.6 or less.
- Cr is 0.3 mass% or more and less than 0.5 mass%
- Zr is 0.01 mass% or more and 0.15 mass% or less
- the balance is composed of Cu and inevitable impurities. Therefore, strength (hardness) and electrical conductivity can be improved by depositing fine precipitates by aging treatment.
- the Cr content is relatively low as 0.3 mass% or more and less than 0.5 mass%, there is little Cr crystallized matter, and local strain is accumulated due to this Cr crystallized product, It can suppress that the size of a recrystallized grain becomes non-uniform
- the average crystal grain diameter is made into the range of 0.1 mm or more and 2.0 mm or less, accumulation
- the standard deviation of the crystal grain size is 0.6 or less, the crystal grain size is uniform, there is little accumulation of local strain, and even when used in a high temperature environment, Can prevent coarsening of crystal grains.
- the area ratio of Cr crystallized material in cross-sectional observation is 0.5% or less.
- the area ratio of the Cr crystallized material in the cross-sectional observation is limited to 0.5% or less, there is little accumulation of local strain, and even when used in a high temperature environment, local crystal grains Can be reliably suppressed.
- the average crystal grain size after the heat treatment held at 1000 ° C. for 1 hour is within the range of 0.1 mm to 3.0 mm, and the standard of crystal grain size The deviation is preferably 1.5 or less.
- the crystal grains are not coarsened and the crystal grain size is relatively uniform, so it is used in a high temperature environment of 500 ° C. or higher. Even in such a case, the mechanical properties and conductivity are stable.
- the copper alloy material of the present invention may further contain Al in the range of 0.1 mass% to 2.0 mass%.
- Al is further included in the range of 0.1 mass% to 2.0 mass%, so that the conductivity can be adjusted to about 30 to 60% IACS.
- a copper alloy material having such a conductivity is particularly suitable as a molding material for casting for use in electromagnetic stirring.
- one or more elements selected from Fe, Co, Sn, Zn, P, Si, Mg are further added in a total amount of 0.005 mass% to 0.1 mass%.
- the following may be included.
- elements such as Fe, Co, Sn, Zn, P, Si, and Mg are contained within the above range. Due to the stopping effect, the coarsening of crystal grains can be more reliably suppressed.
- the present invention it is possible to provide a copper alloy material having stable characteristics and excellent service life even when used in a high temperature environment of 500 ° C. or higher.
- the copper alloy raw material which is one Embodiment of this invention is demonstrated.
- the copper alloy material according to the present embodiment is used for a member used in a high temperature environment such as a casting mold or a welding member.
- the copper alloy material according to the present embodiment has a composition including Cr of 0.3 mass% to less than 0.5 mass%, Zr of 0.01 mass% to 0.15 mass%, and the balance of Cu and inevitable impurities.
- Al may be further included in the range of 0.1 mass% or more and 2.0 mass% or less as needed.
- one or more elements selected from Fe, Co, Sn, Zn, P, Si, and Mg may be included within a total range of 0.005 mass% to 0.1 mass%. .
- the standard deviation of crystal grain diameter shall be 0.6 or less.
- the area ratio of the Cr crystallized substance in cross-sectional observation is 0.5% or less.
- the area ratio of the Cr crystallized material is determined by observing the structure of an arbitrary cross-section (for example, a cross-section parallel to the rolling direction) of the copper alloy material with a SEM after micro-etching, and further observing the cross-section to be observed with EPMA or the like. Obtained by analysis.
- the average crystal grain size after the heat treatment held at 1000 ° C. for 1 hour is within the range of 0.1 mm to 3.0 mm, and the crystal grain size Standard deviation of 1.5 or less.
- Cr 0.3 mass% or more and less than 0.5 mass%
- Cr is an element having an effect of improving strength (hardness) and conductivity by finely depositing Cr-based precipitates in the crystal grains of the parent phase by aging treatment.
- the Cr content is less than 0.3 mass%, the amount of precipitation becomes insufficient in the aging treatment, and the effect of improving the strength (hardness) may not be sufficiently obtained.
- the Cr content is 0.5 mass% or more, a relatively large amount of Cr crystallized material exists even after the solution treatment, and local strain is accumulated due to the Cr crystallized material. The size of the recrystallized grains becomes non-uniform, and the crystal grains may become coarse when used in a high temperature environment.
- the Cr content is set within a range of 0.3 mass% or more and less than 0.5 mass%.
- the lower limit of the Cr content is preferably 0.35 mass% or more
- the upper limit of the Cr content is preferably 0.45 mass% or less.
- Zr 0.01 mass% or more and 0.15 mass% or less
- Zr is an element having an effect of improving strength (hardness) and electrical conductivity by finely depositing a Zr-based precipitate at a crystal grain boundary of the parent phase by aging treatment.
- the content of Zr is less than 0.01 mass%, the precipitation amount becomes insufficient in the aging treatment, and there is a possibility that the effect of improving the strength (hardness) cannot be obtained sufficiently.
- content of Zr exceeds 0.15 mass%, there exists a possibility that electrical conductivity and thermal conductivity may fall.
- even if it contains Zr exceeding 0.15 mass% there exists a possibility that the effect of the further intensity
- the content of Zr is set within a range of 0.01 mass% or more and 0.15 mass% or less.
- the lower limit of the Zr content is preferably 0.05 mass% or more
- the upper limit of the Zr content is preferably 0.13 mass% or less.
- Al 0.1 mass% or more and less than 2.0 mass%
- Al is an element having an effect of lowering the conductivity by dissolving in a copper alloy. Therefore, the electrical conductivity of the copper alloy material can be adjusted to about 30 to 60% IACS by controlling the amount of Al added as necessary.
- the Al content is less than 0.1 mass%, it is difficult to keep the conductivity low. Further, when the Al content is 2.0 mass% or more, the electrical conductivity is greatly reduced, and the thermal conductivity may be insufficient. From the above, in the present embodiment, when Al is added, the Al content is set within a range of 0.1 mass% or more and less than 2.0 mass%.
- the lower limit of the Al content is preferably set to 0.3 mass% or more, and the upper limit of the Al content is preferably set to 1.5 mass% or less. Moreover, when not intentionally adding Al, less than 0.1 mass% Al may be contained as an impurity.
- Elements such as Fe, Co, Sn, Zn, P, Si, and Mg are elements that form a fine compound and exhibit a pinning effect that suppresses crystal growth.
- the total content of one or more elements selected from Fe, Co, Sn, Zn, P, Si, and Mg is less than 0.005 mass%, the above-described pinning effect is obtained. There is a risk that it will not be successful enough.
- the conductivity and thermal conductivity are May decrease.
- the total content of one or more elements selected from Fe, Co, Sn, Zn, P, Si, and Mg is set. It is set within the range of 0.005 mass% or more and 0.1 mass% or less.
- the lower limit of the total content of one or more elements selected from Fe, Co, Sn, Zn, P, Si, and Mg is set to 0.02 mass.
- the upper limit of the total content of one or more elements selected from Fe, Co, Sn, Zn, P, Si, Mg is 0.07 mass% or less.
- elements such as Fe, Co, Sn, Zn, P, Si, and Mg are not intentionally added, these elements may be contained as impurities in a total amount of less than 0.005 mass%.
- the average crystal grain size is defined within the range of 0.1 mm to 2.0 mm, and the standard deviation of the crystal grain size is defined as 0.6 or less.
- the lower limit of the average crystal grain size is preferably 0.15 mm or more, and the upper limit of the average crystal grain size is preferably 1.0 mm or less.
- the upper limit of the standard deviation of the crystal grain size is 0.5 or less.
- the area ratio of the Cr crystallized product in the cross-sectional observation is regulated to 0.5% or less.
- the upper limit of the area ratio of Cr crystallized substance shall be 0.3% or less.
- the average crystal grain size after heat treatment held at 1000 ° C. for 1 hour is in the range of 0.1 mm to 3.0 mm, and the standard deviation of the crystal grain size is 1.5.
- the lower limit of the average crystal grain size is preferably 0.2 mm or more, and the upper limit of the average crystal grain size is preferably 0.5 mm or less. Moreover, it is preferable that the upper limit of the standard deviation of the crystal grain size is 1.3 or less.
- a copper raw material made of oxygen-free copper having a copper purity of 99.99 mass% or more is charged into a carbon crucible and melted using a vacuum melting furnace to obtain a molten copper.
- the aforementioned additive elements are added to the obtained molten metal so as to have a predetermined concentration, and the components are prepared to obtain a molten copper alloy.
- the raw material for the additive elements Cr and Zr a material having a high purity is used.
- a Cr material having a purity of 99.99 mass% or more is used, and a Zr material is having a purity of 99.95 mass% or more. Use one.
- a mother alloy with Cu may be used as a raw material for Cr, Zr, Al, Fe, Co, Sn, Zn, P, Si, and Mg. And the ingot is obtained by pouring the prepared copper alloy melt into the mold.
- Hot processing step S03 hot rolling with a processing rate of 50% to 99% is performed on the ingot in a temperature range of 900 ° C. to 1000 ° C. to obtain a rolled material.
- the hot working method may be hot forging. Immediately after this hot working, it is cooled by water cooling.
- a first temporary effect treatment is performed, and precipitates such as a Cr-based precipitate and a Zr-based precipitate are finely precipitated to obtain a first temporary effect treatment material.
- the aging treatment is performed under conditions of, for example, 400 ° C. or more and 530 ° C. or less and 0.5 hour or more and 5 hours or less.
- the heat treatment method during the aging treatment is not particularly limited, but it is preferably performed in an inert gas atmosphere.
- the cooling method after the heat treatment is not particularly limited, but it is preferably performed by water cooling.
- the copper alloy material which is this embodiment is manufactured by such a process.
- Cr includes 0.3 mass% or more and less than 0.5 mass%
- Zr includes 0.01 mass% or more and 0.15 mass% or less
- the balance is Since it is set as the composition which consists of Cu and an unavoidable impurity, by performing a solution treatment and an aging treatment, a fine precipitate can be deposited and an intensity
- the Cr content is relatively low at 0.3 mass% or more and less than 0.5 mass%, there is almost no Cr crystallized product after solution treatment. Specifically, the area ratio of Cr crystallized material in cross-sectional observation is 0.5% or less. Therefore, it is possible to prevent local strain from being accumulated due to the Cr crystallized product and to make the recrystallized grains non-uniform in size. Even when used in a high temperature environment, the local crystal grains are coarse. Can be reliably suppressed.
- the average crystal grain size is in the range of 0.1 mm to 2.0 mm, and the standard deviation of the crystal grain size is 0.6 or less. Even when used in a high temperature environment, local grain coarsening can be suppressed. Furthermore, the average crystal grain size after carrying out the heat treatment held at 1000 ° C. for 1 hour is in the range of 0.1 mm to 3.0 mm, and the standard deviation of the crystal grain size is 1.5 or less. Even after the heat treatment held at 1000 ° C. for 1 hour, even if the crystal grains are not locally coarsened and used in a high temperature environment of 500 ° C. or higher, the mechanical properties and conductivity The rate is stable.
- the conductivity when Al is further included in the range of 0.1 mass% to 2.0 mass%, the conductivity can be adjusted to about 30 to 60% IACS. Thereby, it is possible to obtain a copper alloy material particularly suitable as a molding material for casting for use in electromagnetic stirring.
- one or more elements selected from Fe, Co, Sn, Zn, P, Si, and Mg are further included in a total of 0.005 mass% to 0.1 mass%. The coarsening of the crystal grains can be further reliably suppressed by the pinning effect by the compound containing these elements.
- a copper raw material made of oxygen-free copper having a purity of 99.99 mass% or more was prepared, charged into a carbon crucible, and melted in a vacuum melting furnace (vacuum degree 10 ⁇ 2 Pa or less) to obtain a molten copper.
- Various additive elements were added to the obtained molten copper to prepare the component compositions shown in Table 1, and after maintaining for 5 minutes, the molten copper alloy was poured into a cast iron mold to obtain an ingot.
- the size of the ingot was about 80 mm in width, about 50 mm in thickness, and about 130 mm in length.
- the raw material of Cr which is an additive element, was used with a purity of 99.99 mass% or more, and the raw material of Zr was a purity of 99.95 mass% or more.
- hot rolling was performed.
- the rolling reduction during hot rolling was 80%, and a hot rolled material having a width of about 100 mm, a thickness of about 10 mm, and a length of about 520 mm was obtained.
- solution treatment was performed at 1000 ° C. for 1.5 hours, followed by cooling at a cooling rate shown in Table 2.
- an aging treatment was performed at 500 ( ⁇ 15) ° C. for 3 hours. Thereby, a copper alloy material was obtained.
- tissue observation of the copper alloy raw material after an aging treatment was performed, and the standard deviation of the average crystal grain diameter and crystal grain diameter was measured.
- the average crystal grain size and the standard deviation of the crystal grain size after the heat treatment of holding the copper alloy material at 1000 ° C. for 1 hour were measured.
- the cross-sectional observation was performed about the material after solution treatment, and the area ratio of Cr crystallization thing was measured.
- Structure observation photographs of the copper alloy materials of Invention Example 1 and Comparative Example 4 before the heat treatment after holding at 1000 ° C. for 1 hour after the aging treatment are shown in FIGS. 2A and 2B, respectively.
- the structure observation photographs of the copper alloy materials of Invention Example 1 and Comparative Example 4 after heat treatment after holding at 1000 ° C. for 1 hour after the aging treatment are shown in FIGS. 3A and 3B, respectively.
- composition analysis The component composition of the obtained copper alloy material was measured by ICP-MS analysis. The measurement results are shown in Table 1.
- Example 1-6 of the present invention the tensile strength after the aging heat treatment was high, and the tensile strength was not significantly reduced after the heat treatment at 1000 ° C. for 1 hour. From the above, according to the present invention example, it is possible to provide a copper alloy material having stable characteristics and excellent service life even when used in a high temperature environment of 500 ° C. or higher. Was confirmed.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Conductive Materials (AREA)
Abstract
This copper alloy material comprises a composition including greater than or equal to 0.3 mass% to less than 0.5 mass% Cr, from 0.01 mass% to 0.15 mass% inclusive Zr, and Cu and inevitable impurities as the remainder, wherein: the average crystal grain size is within a range from 0.1 mm to 2.0 mm inclusive; and the standard deviation of the crystal grain size is 0.6 or less.
Description
本願発明は、例えば鋳造用モールド材やコンタクトチップ等の溶接用部材等の高温環境下で使用される部材に適した銅合金素材に関するものである。
本願は、2015年11月9日に、日本に出願された特願2015-219852号に基づき優先権を主張し、その内容をここに援用する。 The present invention relates to a copper alloy material suitable for a member used in a high temperature environment such as a casting member or a welding member such as a contact tip.
This application claims priority based on Japanese Patent Application No. 2015-219852 filed in Japan on November 9, 2015, the contents of which are incorporated herein by reference.
本願は、2015年11月9日に、日本に出願された特願2015-219852号に基づき優先権を主張し、その内容をここに援用する。 The present invention relates to a copper alloy material suitable for a member used in a high temperature environment such as a casting member or a welding member such as a contact tip.
This application claims priority based on Japanese Patent Application No. 2015-219852 filed in Japan on November 9, 2015, the contents of which are incorporated herein by reference.
従来、C18150等のCu-Cr-Zr系合金は、優れた耐熱性及び導電性を備えていることから、特許文献1,2に示すように、使用環境が高温となる鋳造用モールド材や溶接用部材の素材として利用されている。
このようなCu-Cr-Zr系合金は、通常、Cu-Cr-Zr系合金鋳塊に塑性加工を施し、例えば保持温度が950~1050℃、保持時間が0.5~1.5時間の溶体化処理と、例えば保持温度が400~500℃、保持時間が2~4時間の時効処理と、を行い、最後に機械加工により所定の形状に仕上げる製造工程によって製造される。
溶体化処理でCr及びZrをCuの母相中に固溶し、時効処理によってCrやZrの析出物を微細分散させることで、強度及び導電率の向上を図っている。 Conventionally, Cu—Cr—Zr-based alloys such as C18150 have excellent heat resistance and electrical conductivity. Therefore, as shown inPatent Documents 1 and 2, a casting mold material or welding that is used at a high temperature is used. It is used as a material for construction materials.
Such a Cu—Cr—Zr alloy is usually obtained by subjecting a Cu—Cr—Zr alloy ingot to plastic working, for example, a holding temperature of 950 to 1050 ° C. and a holding time of 0.5 to 1.5 hours. A solution treatment and an aging treatment with a holding temperature of 400 to 500 ° C. and a holding time of 2 to 4 hours, for example, are performed, and finally, a manufacturing process is performed to finish a predetermined shape by machining.
Strength and electrical conductivity are improved by solid solution of Cr and Zr in the matrix of Cu by solution treatment and fine dispersion of Cr and Zr precipitates by aging treatment.
このようなCu-Cr-Zr系合金は、通常、Cu-Cr-Zr系合金鋳塊に塑性加工を施し、例えば保持温度が950~1050℃、保持時間が0.5~1.5時間の溶体化処理と、例えば保持温度が400~500℃、保持時間が2~4時間の時効処理と、を行い、最後に機械加工により所定の形状に仕上げる製造工程によって製造される。
溶体化処理でCr及びZrをCuの母相中に固溶し、時効処理によってCrやZrの析出物を微細分散させることで、強度及び導電率の向上を図っている。 Conventionally, Cu—Cr—Zr-based alloys such as C18150 have excellent heat resistance and electrical conductivity. Therefore, as shown in
Such a Cu—Cr—Zr alloy is usually obtained by subjecting a Cu—Cr—Zr alloy ingot to plastic working, for example, a holding temperature of 950 to 1050 ° C. and a holding time of 0.5 to 1.5 hours. A solution treatment and an aging treatment with a holding temperature of 400 to 500 ° C. and a holding time of 2 to 4 hours, for example, are performed, and finally, a manufacturing process is performed to finish a predetermined shape by machining.
Strength and electrical conductivity are improved by solid solution of Cr and Zr in the matrix of Cu by solution treatment and fine dispersion of Cr and Zr precipitates by aging treatment.
ところで、上述のCu-Cr-Zr系合金においては、優れた耐熱性を有しているが、ピーク温度が500℃以上の使用環境にさらされると、析出物の再固溶が始まり、それにともなって強度及び導電率が低下するとともに結晶粒の粗大化が発生することがある。
結晶粒の粗大化が起きた場合には、亀裂の伝播速度が増大し、製品寿命が短くなるおそれがあった。また、結晶粒の粗大化が局所的に発生することで、強度及び伸び等の機械的特性が著しく低下するといった問題があった。 By the way, the above-mentioned Cu—Cr—Zr alloy has excellent heat resistance, but when exposed to a use environment having a peak temperature of 500 ° C. or higher, reprecipitation of precipitates begins, and accordingly As a result, the strength and electrical conductivity are lowered, and coarsening of crystal grains may occur.
When the coarsening of crystal grains occurs, the propagation speed of cracks may increase and the product life may be shortened. Further, there is a problem that mechanical properties such as strength and elongation are remarkably deteriorated due to the occurrence of coarsening of crystal grains locally.
結晶粒の粗大化が起きた場合には、亀裂の伝播速度が増大し、製品寿命が短くなるおそれがあった。また、結晶粒の粗大化が局所的に発生することで、強度及び伸び等の機械的特性が著しく低下するといった問題があった。 By the way, the above-mentioned Cu—Cr—Zr alloy has excellent heat resistance, but when exposed to a use environment having a peak temperature of 500 ° C. or higher, reprecipitation of precipitates begins, and accordingly As a result, the strength and electrical conductivity are lowered, and coarsening of crystal grains may occur.
When the coarsening of crystal grains occurs, the propagation speed of cracks may increase and the product life may be shortened. Further, there is a problem that mechanical properties such as strength and elongation are remarkably deteriorated due to the occurrence of coarsening of crystal grains locally.
本願発明は、前述した事情に鑑みてなされたものであって、500℃以上の高温環境下で使用された場合であっても、特性が安定しており、使用寿命に優れた銅合金素材を提供することを目的とする。
The present invention has been made in view of the circumstances described above, and is a copper alloy material that has stable characteristics and excellent service life even when used in a high temperature environment of 500 ° C. or higher. The purpose is to provide.
上記の課題を解決するために、本願発明の一態様の銅合金素材(以下、「本願発明の銅合金素材」と称する)は、Crを0.3mass%以上0.5mass%未満、Zrを0.01mass%以上0.15mass%以下、含み、残部がCu及び不可避不純物からなる組成を有し、平均結晶粒径が0.1mm以上2.0mm以下の範囲内とされるとともに、結晶粒径の標準偏差が0.6以下であることを特徴としている。
In order to solve the above problems, the copper alloy material of one embodiment of the present invention (hereinafter referred to as “the copper alloy material of the present invention”) has Cr of 0.3 mass% or more and less than 0.5 mass%, and Zr of 0. 0.01 mass% or more and 0.15 mass% or less, and the balance is composed of Cu and inevitable impurities, the average crystal grain size is in the range of 0.1 mm to 2.0 mm, and the crystal grain size The standard deviation is 0.6 or less.
この構成の銅合金素材においては、Crを0.3mass%以上0.5mass%未満、Zrを0.01mass%以上0.15mass%以下、含み、残部がCu及び不可避不純物からなる組成とされているので、時効処理によって微細な析出物を析出させることにより、強度(硬さ)及び導電率を向上させることができる。また、Crの含有量が0.3mass%以上0.5mass%未満と比較的少なくされているので、Cr晶出物が少なく、このCr晶出物に起因して局所的なひずみが蓄積され、再結晶粒のサイズが不均一となることを抑制できる。よって、高温環境下で使用された場合でも、局所的な結晶粒の粗大化を抑制できる。
そして、本願発明の銅合金素材においては、平均結晶粒径が0.1mm以上2.0mm以下の範囲内とされているので、ひずみの蓄積が比較的少なく、再結晶しにくい。また、結晶粒径の標準偏差が0.6以下とされているので、結晶粒径が均一となっており、局所的なひずみの蓄積が少なく、高温環境下で使用された場合でも、局所的な結晶粒の粗大化を抑制できる。 In the copper alloy material of this structure, Cr is 0.3 mass% or more and less than 0.5 mass%, Zr is 0.01 mass% or more and 0.15 mass% or less, and the balance is composed of Cu and inevitable impurities. Therefore, strength (hardness) and electrical conductivity can be improved by depositing fine precipitates by aging treatment. In addition, since the Cr content is relatively low as 0.3 mass% or more and less than 0.5 mass%, there is little Cr crystallized matter, and local strain is accumulated due to this Cr crystallized product, It can suppress that the size of a recrystallized grain becomes non-uniform | heterogenous. Therefore, even when used in a high-temperature environment, local crystal grain coarsening can be suppressed.
And in the copper alloy raw material of this invention, since the average crystal grain diameter is made into the range of 0.1 mm or more and 2.0 mm or less, accumulation | storage of distortion is comparatively small and it is hard to recrystallize. In addition, since the standard deviation of the crystal grain size is 0.6 or less, the crystal grain size is uniform, there is little accumulation of local strain, and even when used in a high temperature environment, Can prevent coarsening of crystal grains.
そして、本願発明の銅合金素材においては、平均結晶粒径が0.1mm以上2.0mm以下の範囲内とされているので、ひずみの蓄積が比較的少なく、再結晶しにくい。また、結晶粒径の標準偏差が0.6以下とされているので、結晶粒径が均一となっており、局所的なひずみの蓄積が少なく、高温環境下で使用された場合でも、局所的な結晶粒の粗大化を抑制できる。 In the copper alloy material of this structure, Cr is 0.3 mass% or more and less than 0.5 mass%, Zr is 0.01 mass% or more and 0.15 mass% or less, and the balance is composed of Cu and inevitable impurities. Therefore, strength (hardness) and electrical conductivity can be improved by depositing fine precipitates by aging treatment. In addition, since the Cr content is relatively low as 0.3 mass% or more and less than 0.5 mass%, there is little Cr crystallized matter, and local strain is accumulated due to this Cr crystallized product, It can suppress that the size of a recrystallized grain becomes non-uniform | heterogenous. Therefore, even when used in a high-temperature environment, local crystal grain coarsening can be suppressed.
And in the copper alloy raw material of this invention, since the average crystal grain diameter is made into the range of 0.1 mm or more and 2.0 mm or less, accumulation | storage of distortion is comparatively small and it is hard to recrystallize. In addition, since the standard deviation of the crystal grain size is 0.6 or less, the crystal grain size is uniform, there is little accumulation of local strain, and even when used in a high temperature environment, Can prevent coarsening of crystal grains.
ここで、本願発明の銅合金素材においては、断面観察におけるCr晶出物の面積率が0.5%以下であることが好ましい。
この場合、断面観察におけるCr晶出物の面積率が0.5%以下に制限されているので、局所的なひずみの蓄積が少なく、高温環境下で使用された場合でも、局所的な結晶粒の粗大化を確実に抑制できる。 Here, in the copper alloy material of the present invention, it is preferable that the area ratio of Cr crystallized material in cross-sectional observation is 0.5% or less.
In this case, since the area ratio of the Cr crystallized material in the cross-sectional observation is limited to 0.5% or less, there is little accumulation of local strain, and even when used in a high temperature environment, local crystal grains Can be reliably suppressed.
この場合、断面観察におけるCr晶出物の面積率が0.5%以下に制限されているので、局所的なひずみの蓄積が少なく、高温環境下で使用された場合でも、局所的な結晶粒の粗大化を確実に抑制できる。 Here, in the copper alloy material of the present invention, it is preferable that the area ratio of Cr crystallized material in cross-sectional observation is 0.5% or less.
In this case, since the area ratio of the Cr crystallized material in the cross-sectional observation is limited to 0.5% or less, there is little accumulation of local strain, and even when used in a high temperature environment, local crystal grains Can be reliably suppressed.
また、本願発明の銅合金素材においては、1000℃で1時間保持の熱処理を実施した後の平均結晶粒径が0.1mm以上3.0mm以下の範囲内とされるとともに、結晶粒径の標準偏差が1.5以下であることが好ましい。
この場合、1000℃で1時間保持の熱処理を実施した後でも、結晶粒が粗大化しておらず、かつ、結晶粒径が比較的均一とされているので、500℃以上の高温環境下で使用された場合であっても、機械的特性や導電率が安定している。 In addition, in the copper alloy material of the present invention, the average crystal grain size after the heat treatment held at 1000 ° C. for 1 hour is within the range of 0.1 mm to 3.0 mm, and the standard of crystal grain size The deviation is preferably 1.5 or less.
In this case, even after a heat treatment held at 1000 ° C. for 1 hour, the crystal grains are not coarsened and the crystal grain size is relatively uniform, so it is used in a high temperature environment of 500 ° C. or higher. Even in such a case, the mechanical properties and conductivity are stable.
この場合、1000℃で1時間保持の熱処理を実施した後でも、結晶粒が粗大化しておらず、かつ、結晶粒径が比較的均一とされているので、500℃以上の高温環境下で使用された場合であっても、機械的特性や導電率が安定している。 In addition, in the copper alloy material of the present invention, the average crystal grain size after the heat treatment held at 1000 ° C. for 1 hour is within the range of 0.1 mm to 3.0 mm, and the standard of crystal grain size The deviation is preferably 1.5 or less.
In this case, even after a heat treatment held at 1000 ° C. for 1 hour, the crystal grains are not coarsened and the crystal grain size is relatively uniform, so it is used in a high temperature environment of 500 ° C. or higher. Even in such a case, the mechanical properties and conductivity are stable.
また、本願発明の銅合金素材においては、さらに、Alを0.1mass%以上2.0mass%以下の範囲内で含んでいてもよい。
この場合、Cr及びZrに加えてさらにAlを0.1mass%以上2.0mass%以下の範囲内で含んでいるので、導電率を30~60%IACS程度に調整することができる。このような導電率の銅合金素材は、電磁撹拌用途の鋳造用モールド材として特に適している。 The copper alloy material of the present invention may further contain Al in the range of 0.1 mass% to 2.0 mass%.
In this case, in addition to Cr and Zr, Al is further included in the range of 0.1 mass% to 2.0 mass%, so that the conductivity can be adjusted to about 30 to 60% IACS. A copper alloy material having such a conductivity is particularly suitable as a molding material for casting for use in electromagnetic stirring.
この場合、Cr及びZrに加えてさらにAlを0.1mass%以上2.0mass%以下の範囲内で含んでいるので、導電率を30~60%IACS程度に調整することができる。このような導電率の銅合金素材は、電磁撹拌用途の鋳造用モールド材として特に適している。 The copper alloy material of the present invention may further contain Al in the range of 0.1 mass% to 2.0 mass%.
In this case, in addition to Cr and Zr, Al is further included in the range of 0.1 mass% to 2.0 mass%, so that the conductivity can be adjusted to about 30 to 60% IACS. A copper alloy material having such a conductivity is particularly suitable as a molding material for casting for use in electromagnetic stirring.
また、本願発明の銅合金素材においては、さらに、Fe,Co,Sn,Zn,P,Si,Mgから選択される1種又は2種以上の元素を合計で0.005mass%以上0.1mass%以下含んでいてもよい。
この場合、Cr及びZrに加えてさらにFe,Co,Sn,Zn,P,Si,Mgといった元素を上述の範囲内で含有していることから、これらの元素を含む化合物による結晶粒界のピン止め効果によって、結晶粒の粗大化をさらに確実に抑制することができる。 In the copper alloy material of the present invention, one or more elements selected from Fe, Co, Sn, Zn, P, Si, Mg are further added in a total amount of 0.005 mass% to 0.1 mass%. The following may be included.
In this case, in addition to Cr and Zr, elements such as Fe, Co, Sn, Zn, P, Si, and Mg are contained within the above range. Due to the stopping effect, the coarsening of crystal grains can be more reliably suppressed.
この場合、Cr及びZrに加えてさらにFe,Co,Sn,Zn,P,Si,Mgといった元素を上述の範囲内で含有していることから、これらの元素を含む化合物による結晶粒界のピン止め効果によって、結晶粒の粗大化をさらに確実に抑制することができる。 In the copper alloy material of the present invention, one or more elements selected from Fe, Co, Sn, Zn, P, Si, Mg are further added in a total amount of 0.005 mass% to 0.1 mass%. The following may be included.
In this case, in addition to Cr and Zr, elements such as Fe, Co, Sn, Zn, P, Si, and Mg are contained within the above range. Due to the stopping effect, the coarsening of crystal grains can be more reliably suppressed.
本願発明によれば、500℃以上の高温環境下で使用された場合であっても、特性が安定しており、使用寿命に優れた銅合金素材を提供することができる。
According to the present invention, it is possible to provide a copper alloy material having stable characteristics and excellent service life even when used in a high temperature environment of 500 ° C. or higher.
以下に、本願発明の一実施形態である銅合金素材について説明する。
本実施形態である銅合金素材は、例えば鋳造用モールドや溶接用部材等の高温環境下で使用される部材に用いられるものである。 Below, the copper alloy raw material which is one Embodiment of this invention is demonstrated.
The copper alloy material according to the present embodiment is used for a member used in a high temperature environment such as a casting mold or a welding member.
本実施形態である銅合金素材は、例えば鋳造用モールドや溶接用部材等の高温環境下で使用される部材に用いられるものである。 Below, the copper alloy raw material which is one Embodiment of this invention is demonstrated.
The copper alloy material according to the present embodiment is used for a member used in a high temperature environment such as a casting mold or a welding member.
本実施形態である銅合金素材は、Crを0.3mass%以上0.5mass%未満、Zrを0.01mass%以上0.15mass%以下、含み、残部がCu及び不可避不純物からなる組成を有する。なお、本実施形態である銅合金素材においては、必要に応じて、さらにAlを0.1mass%以上2.0mass%以下の範囲内で含んでいてもよい。また、さらにFe,Co,Sn,Zn,P,Si,Mgから選択される1種又は2種以上の元素を合計で0.005mass%以上0.1mass%以下の範囲内で含んでいてもよい。
The copper alloy material according to the present embodiment has a composition including Cr of 0.3 mass% to less than 0.5 mass%, Zr of 0.01 mass% to 0.15 mass%, and the balance of Cu and inevitable impurities. In addition, in the copper alloy raw material which is this embodiment, Al may be further included in the range of 0.1 mass% or more and 2.0 mass% or less as needed. Further, one or more elements selected from Fe, Co, Sn, Zn, P, Si, and Mg may be included within a total range of 0.005 mass% to 0.1 mass%. .
そして、本実施形態である銅合金素材においては、平均結晶粒径が0.1mm以上2.0mm以下の範囲内とされるとともに、結晶粒径の標準偏差が0.6以下とされている。
また、本実施形態である銅合金素材においては、断面観察におけるCr晶出物の面積率が0.5%以下とされている。
Cr晶出物の面積率は、銅合金素材の任意の断面(例えば、圧延方向と平行な断面)をミクロエッチング後にSEM等で組織観察し、さらにその観察対象とされた断面をEPMA等で元素分析することにより得られる。
さらに、本実施形態である銅合金素材においては、1000℃で1時間保持の熱処理を実施した後の平均結晶粒径が0.1mm以上3.0mm以下の範囲内とされるとともに、結晶粒径の標準偏差が1.5以下とされている。 And in the copper alloy raw material which is this embodiment, while an average crystal grain diameter shall be in the range of 0.1 mm or more and 2.0 mm or less, the standard deviation of crystal grain diameter shall be 0.6 or less.
Moreover, in the copper alloy raw material which is this embodiment, the area ratio of the Cr crystallized substance in cross-sectional observation is 0.5% or less.
The area ratio of the Cr crystallized material is determined by observing the structure of an arbitrary cross-section (for example, a cross-section parallel to the rolling direction) of the copper alloy material with a SEM after micro-etching, and further observing the cross-section to be observed with EPMA or the like. Obtained by analysis.
Further, in the copper alloy material according to the present embodiment, the average crystal grain size after the heat treatment held at 1000 ° C. for 1 hour is within the range of 0.1 mm to 3.0 mm, and the crystal grain size Standard deviation of 1.5 or less.
また、本実施形態である銅合金素材においては、断面観察におけるCr晶出物の面積率が0.5%以下とされている。
Cr晶出物の面積率は、銅合金素材の任意の断面(例えば、圧延方向と平行な断面)をミクロエッチング後にSEM等で組織観察し、さらにその観察対象とされた断面をEPMA等で元素分析することにより得られる。
さらに、本実施形態である銅合金素材においては、1000℃で1時間保持の熱処理を実施した後の平均結晶粒径が0.1mm以上3.0mm以下の範囲内とされるとともに、結晶粒径の標準偏差が1.5以下とされている。 And in the copper alloy raw material which is this embodiment, while an average crystal grain diameter shall be in the range of 0.1 mm or more and 2.0 mm or less, the standard deviation of crystal grain diameter shall be 0.6 or less.
Moreover, in the copper alloy raw material which is this embodiment, the area ratio of the Cr crystallized substance in cross-sectional observation is 0.5% or less.
The area ratio of the Cr crystallized material is determined by observing the structure of an arbitrary cross-section (for example, a cross-section parallel to the rolling direction) of the copper alloy material with a SEM after micro-etching, and further observing the cross-section to be observed with EPMA or the like. Obtained by analysis.
Further, in the copper alloy material according to the present embodiment, the average crystal grain size after the heat treatment held at 1000 ° C. for 1 hour is within the range of 0.1 mm to 3.0 mm, and the crystal grain size Standard deviation of 1.5 or less.
以下に、本実施形態である銅合金素材において、成分組成、結晶組織等を上述のように規定した理由について説明する。
Hereinafter, the reason why the component composition, the crystal structure and the like of the copper alloy material according to the present embodiment are defined as described above will be described.
(Cr:0.3mass%以上0.5mass%未満)
Crは、時効処理によって母相の結晶粒内にCr系の析出物を微細に析出させることにより、強度(硬さ)及び導電率を向上させる作用効果を有する元素である。
ここで、Crの含有量が0.3mass%未満の場合には、時効処理において析出量が不十分となり、強度(硬さ)向上の効果を十分に得られないおそれがある。また、Crの含有量が0.5mass%以上の場合には、溶体化処理後においてもCr晶出物が比較的多く存在し、このCr晶出物に起因して局所的なひずみが蓄積され、再結晶粒のサイズが不均一となって、高温環境下で使用した際に、結晶粒が粗大化するおそれがある。
以上のことから、本実施形態では、Crの含有量を0.3mass%以上0.5mass%未満の範囲内に設定している。なお、上述の作用効果を確実に奏功せしめるためには、Crの含有量の下限を0.35mass%以上とすることが好ましく、Crの含有量の上限を0.45mass%以下とすることが好ましい。 (Cr: 0.3 mass% or more and less than 0.5 mass%)
Cr is an element having an effect of improving strength (hardness) and conductivity by finely depositing Cr-based precipitates in the crystal grains of the parent phase by aging treatment.
Here, when the Cr content is less than 0.3 mass%, the amount of precipitation becomes insufficient in the aging treatment, and the effect of improving the strength (hardness) may not be sufficiently obtained. In addition, when the Cr content is 0.5 mass% or more, a relatively large amount of Cr crystallized material exists even after the solution treatment, and local strain is accumulated due to the Cr crystallized material. The size of the recrystallized grains becomes non-uniform, and the crystal grains may become coarse when used in a high temperature environment.
From the above, in this embodiment, the Cr content is set within a range of 0.3 mass% or more and less than 0.5 mass%. In order to ensure that the above-described effects are achieved, the lower limit of the Cr content is preferably 0.35 mass% or more, and the upper limit of the Cr content is preferably 0.45 mass% or less. .
Crは、時効処理によって母相の結晶粒内にCr系の析出物を微細に析出させることにより、強度(硬さ)及び導電率を向上させる作用効果を有する元素である。
ここで、Crの含有量が0.3mass%未満の場合には、時効処理において析出量が不十分となり、強度(硬さ)向上の効果を十分に得られないおそれがある。また、Crの含有量が0.5mass%以上の場合には、溶体化処理後においてもCr晶出物が比較的多く存在し、このCr晶出物に起因して局所的なひずみが蓄積され、再結晶粒のサイズが不均一となって、高温環境下で使用した際に、結晶粒が粗大化するおそれがある。
以上のことから、本実施形態では、Crの含有量を0.3mass%以上0.5mass%未満の範囲内に設定している。なお、上述の作用効果を確実に奏功せしめるためには、Crの含有量の下限を0.35mass%以上とすることが好ましく、Crの含有量の上限を0.45mass%以下とすることが好ましい。 (Cr: 0.3 mass% or more and less than 0.5 mass%)
Cr is an element having an effect of improving strength (hardness) and conductivity by finely depositing Cr-based precipitates in the crystal grains of the parent phase by aging treatment.
Here, when the Cr content is less than 0.3 mass%, the amount of precipitation becomes insufficient in the aging treatment, and the effect of improving the strength (hardness) may not be sufficiently obtained. In addition, when the Cr content is 0.5 mass% or more, a relatively large amount of Cr crystallized material exists even after the solution treatment, and local strain is accumulated due to the Cr crystallized material. The size of the recrystallized grains becomes non-uniform, and the crystal grains may become coarse when used in a high temperature environment.
From the above, in this embodiment, the Cr content is set within a range of 0.3 mass% or more and less than 0.5 mass%. In order to ensure that the above-described effects are achieved, the lower limit of the Cr content is preferably 0.35 mass% or more, and the upper limit of the Cr content is preferably 0.45 mass% or less. .
(Zr:0.01mass%以上0.15mass%以下)
Zrは、時効処理によって母相の結晶粒界にZr系の析出物を微細に析出することにより、強度(硬さ)及び導電率を向上させる作用効果を有する元素である。
ここで、Zrの含有量が0.01mass%未満の場合には、時効処理において析出量が不十分となり、強度(硬さ)向上の効果を十分に得られないおそれがある。また、Zrの含有量が0.15mass%を超える場合には、導電率及び熱伝導率が低下してしまうおそれがある。また、Zrを0.15mass%を超えて含有しても、さらなる強度向上の効果が得られないおそれがある。
以上のことから、本実施形態では、Zrの含有量を0.01mass%以上0.15mass%以下の範囲内に設定している。なお、上述の作用効果を確実に奏功せしめるためには、Zrの含有量の下限を0.05mass%以上とすることが好ましく、Zrの含有量の上限を0.13mass%以下とすることが好ましい。 (Zr: 0.01 mass% or more and 0.15 mass% or less)
Zr is an element having an effect of improving strength (hardness) and electrical conductivity by finely depositing a Zr-based precipitate at a crystal grain boundary of the parent phase by aging treatment.
Here, when the content of Zr is less than 0.01 mass%, the precipitation amount becomes insufficient in the aging treatment, and there is a possibility that the effect of improving the strength (hardness) cannot be obtained sufficiently. Moreover, when content of Zr exceeds 0.15 mass%, there exists a possibility that electrical conductivity and thermal conductivity may fall. Moreover, even if it contains Zr exceeding 0.15 mass%, there exists a possibility that the effect of the further intensity | strength improvement may not be acquired.
From the above, in this embodiment, the content of Zr is set within a range of 0.01 mass% or more and 0.15 mass% or less. In order to ensure that the above-described effects are achieved, the lower limit of the Zr content is preferably 0.05 mass% or more, and the upper limit of the Zr content is preferably 0.13 mass% or less. .
Zrは、時効処理によって母相の結晶粒界にZr系の析出物を微細に析出することにより、強度(硬さ)及び導電率を向上させる作用効果を有する元素である。
ここで、Zrの含有量が0.01mass%未満の場合には、時効処理において析出量が不十分となり、強度(硬さ)向上の効果を十分に得られないおそれがある。また、Zrの含有量が0.15mass%を超える場合には、導電率及び熱伝導率が低下してしまうおそれがある。また、Zrを0.15mass%を超えて含有しても、さらなる強度向上の効果が得られないおそれがある。
以上のことから、本実施形態では、Zrの含有量を0.01mass%以上0.15mass%以下の範囲内に設定している。なお、上述の作用効果を確実に奏功せしめるためには、Zrの含有量の下限を0.05mass%以上とすることが好ましく、Zrの含有量の上限を0.13mass%以下とすることが好ましい。 (Zr: 0.01 mass% or more and 0.15 mass% or less)
Zr is an element having an effect of improving strength (hardness) and electrical conductivity by finely depositing a Zr-based precipitate at a crystal grain boundary of the parent phase by aging treatment.
Here, when the content of Zr is less than 0.01 mass%, the precipitation amount becomes insufficient in the aging treatment, and there is a possibility that the effect of improving the strength (hardness) cannot be obtained sufficiently. Moreover, when content of Zr exceeds 0.15 mass%, there exists a possibility that electrical conductivity and thermal conductivity may fall. Moreover, even if it contains Zr exceeding 0.15 mass%, there exists a possibility that the effect of the further intensity | strength improvement may not be acquired.
From the above, in this embodiment, the content of Zr is set within a range of 0.01 mass% or more and 0.15 mass% or less. In order to ensure that the above-described effects are achieved, the lower limit of the Zr content is preferably 0.05 mass% or more, and the upper limit of the Zr content is preferably 0.13 mass% or less. .
(Al:0.1mass%以上2.0mass%未満)
Alは、銅合金に固溶することによって導電率を低下させる作用効果を有する元素である。よって、必要に応じて、Alの添加量を制御することにより、銅合金素材の導電率を30~60%IACS程度に調整することができる。
ここで、Alの含有量が0.1mass%未満の場合には、導電率を低く抑えることが困難となる。また、Alの含有量が2.0mass%以上の場合には、導電率が大きく低下し、熱伝導率が不十分となるおそれがある。
以上のことから、本実施形態では、Alを添加する場合には、Alの含有量を0.1mass%以上2.0mass%未満の範囲内に設定している。なお、上述の作用効果を確実に奏功せしめるためには、Alの含有量の下限を0.3mass%以上とすることが好ましく、Alの含有量の上限を1.5mass%以下とすることが好ましい。また、Alを意図的に添加しない場合には、0.1mass%未満のAlを不純物として含有していてもよい。 (Al: 0.1 mass% or more and less than 2.0 mass%)
Al is an element having an effect of lowering the conductivity by dissolving in a copper alloy. Therefore, the electrical conductivity of the copper alloy material can be adjusted to about 30 to 60% IACS by controlling the amount of Al added as necessary.
Here, when the Al content is less than 0.1 mass%, it is difficult to keep the conductivity low. Further, when the Al content is 2.0 mass% or more, the electrical conductivity is greatly reduced, and the thermal conductivity may be insufficient.
From the above, in the present embodiment, when Al is added, the Al content is set within a range of 0.1 mass% or more and less than 2.0 mass%. In order to achieve the above-described effects, the lower limit of the Al content is preferably set to 0.3 mass% or more, and the upper limit of the Al content is preferably set to 1.5 mass% or less. . Moreover, when not intentionally adding Al, less than 0.1 mass% Al may be contained as an impurity.
Alは、銅合金に固溶することによって導電率を低下させる作用効果を有する元素である。よって、必要に応じて、Alの添加量を制御することにより、銅合金素材の導電率を30~60%IACS程度に調整することができる。
ここで、Alの含有量が0.1mass%未満の場合には、導電率を低く抑えることが困難となる。また、Alの含有量が2.0mass%以上の場合には、導電率が大きく低下し、熱伝導率が不十分となるおそれがある。
以上のことから、本実施形態では、Alを添加する場合には、Alの含有量を0.1mass%以上2.0mass%未満の範囲内に設定している。なお、上述の作用効果を確実に奏功せしめるためには、Alの含有量の下限を0.3mass%以上とすることが好ましく、Alの含有量の上限を1.5mass%以下とすることが好ましい。また、Alを意図的に添加しない場合には、0.1mass%未満のAlを不純物として含有していてもよい。 (Al: 0.1 mass% or more and less than 2.0 mass%)
Al is an element having an effect of lowering the conductivity by dissolving in a copper alloy. Therefore, the electrical conductivity of the copper alloy material can be adjusted to about 30 to 60% IACS by controlling the amount of Al added as necessary.
Here, when the Al content is less than 0.1 mass%, it is difficult to keep the conductivity low. Further, when the Al content is 2.0 mass% or more, the electrical conductivity is greatly reduced, and the thermal conductivity may be insufficient.
From the above, in the present embodiment, when Al is added, the Al content is set within a range of 0.1 mass% or more and less than 2.0 mass%. In order to achieve the above-described effects, the lower limit of the Al content is preferably set to 0.3 mass% or more, and the upper limit of the Al content is preferably set to 1.5 mass% or less. . Moreover, when not intentionally adding Al, less than 0.1 mass% Al may be contained as an impurity.
(Fe,Co,Sn,Zn,P,Si,Mgから選択される1種又は2種以上の元素:合計で0.005mass%以上0.1mass%以下)
Fe,Co,Sn,Zn,P,Si,Mgといった元素は、微細な化合物を形成し、結晶成長を抑制するピン止め効果を発現する元素である。
ここで、Fe,Co,Sn,Zn,P,Si,Mgから選択される1種又は2種以上の元素の合計の含有量が0.005mass%未満の場合には、上述のピン止め効果を十分に奏功せしめることができないおそれがある。一方、Fe,Co,Sn,Zn,P,Si,Mgから選択される1種又は2種以上の元素の合計の含有量が0.1mass%を超える場合には、導電率及び熱伝導率が低下してしまうおそれがある。
以上のことから、本実施形態では、これらの元素を添加する場合には、Fe,Co,Sn,Zn,P,Si,Mgから選択される1種又は2種以上の元素の合計含有量を0.005mass%以上0.1mass%以下の範囲内に設定している。なお、上述の作用効果を確実に奏功せしめるためには、Fe,Co,Sn,Zn,P,Si,Mgから選択される1種又は2種以上の元素の合計含有量の下限を0.02mass%以上とすることが好ましく、Fe,Co,Sn,Zn,P,Si,Mgから選択される1種又は2種以上の元素の合計含有量の上限を0.07mass%以下とすることが好ましい。また、Fe,Co,Sn,Zn,P,Si,Mgといった元素を意図的に添加しない場合には、これらの元素を不純物として総量で0.005mass%未満含有していてもよい。 (One or more elements selected from Fe, Co, Sn, Zn, P, Si, and Mg: 0.005 mass% or more and 0.1 mass% or less in total)
Elements such as Fe, Co, Sn, Zn, P, Si, and Mg are elements that form a fine compound and exhibit a pinning effect that suppresses crystal growth.
Here, when the total content of one or more elements selected from Fe, Co, Sn, Zn, P, Si, and Mg is less than 0.005 mass%, the above-described pinning effect is obtained. There is a risk that it will not be successful enough. On the other hand, when the total content of one or more elements selected from Fe, Co, Sn, Zn, P, Si, and Mg exceeds 0.1 mass%, the conductivity and thermal conductivity are May decrease.
From the above, in this embodiment, when these elements are added, the total content of one or more elements selected from Fe, Co, Sn, Zn, P, Si, and Mg is set. It is set within the range of 0.005 mass% or more and 0.1 mass% or less. In order to ensure that the above-described effects are achieved, the lower limit of the total content of one or more elements selected from Fe, Co, Sn, Zn, P, Si, and Mg is set to 0.02 mass. Preferably, the upper limit of the total content of one or more elements selected from Fe, Co, Sn, Zn, P, Si, Mg is 0.07 mass% or less. . Further, when elements such as Fe, Co, Sn, Zn, P, Si, and Mg are not intentionally added, these elements may be contained as impurities in a total amount of less than 0.005 mass%.
Fe,Co,Sn,Zn,P,Si,Mgといった元素は、微細な化合物を形成し、結晶成長を抑制するピン止め効果を発現する元素である。
ここで、Fe,Co,Sn,Zn,P,Si,Mgから選択される1種又は2種以上の元素の合計の含有量が0.005mass%未満の場合には、上述のピン止め効果を十分に奏功せしめることができないおそれがある。一方、Fe,Co,Sn,Zn,P,Si,Mgから選択される1種又は2種以上の元素の合計の含有量が0.1mass%を超える場合には、導電率及び熱伝導率が低下してしまうおそれがある。
以上のことから、本実施形態では、これらの元素を添加する場合には、Fe,Co,Sn,Zn,P,Si,Mgから選択される1種又は2種以上の元素の合計含有量を0.005mass%以上0.1mass%以下の範囲内に設定している。なお、上述の作用効果を確実に奏功せしめるためには、Fe,Co,Sn,Zn,P,Si,Mgから選択される1種又は2種以上の元素の合計含有量の下限を0.02mass%以上とすることが好ましく、Fe,Co,Sn,Zn,P,Si,Mgから選択される1種又は2種以上の元素の合計含有量の上限を0.07mass%以下とすることが好ましい。また、Fe,Co,Sn,Zn,P,Si,Mgといった元素を意図的に添加しない場合には、これらの元素を不純物として総量で0.005mass%未満含有していてもよい。 (One or more elements selected from Fe, Co, Sn, Zn, P, Si, and Mg: 0.005 mass% or more and 0.1 mass% or less in total)
Elements such as Fe, Co, Sn, Zn, P, Si, and Mg are elements that form a fine compound and exhibit a pinning effect that suppresses crystal growth.
Here, when the total content of one or more elements selected from Fe, Co, Sn, Zn, P, Si, and Mg is less than 0.005 mass%, the above-described pinning effect is obtained. There is a risk that it will not be successful enough. On the other hand, when the total content of one or more elements selected from Fe, Co, Sn, Zn, P, Si, and Mg exceeds 0.1 mass%, the conductivity and thermal conductivity are May decrease.
From the above, in this embodiment, when these elements are added, the total content of one or more elements selected from Fe, Co, Sn, Zn, P, Si, and Mg is set. It is set within the range of 0.005 mass% or more and 0.1 mass% or less. In order to ensure that the above-described effects are achieved, the lower limit of the total content of one or more elements selected from Fe, Co, Sn, Zn, P, Si, and Mg is set to 0.02 mass. Preferably, the upper limit of the total content of one or more elements selected from Fe, Co, Sn, Zn, P, Si, Mg is 0.07 mass% or less. . Further, when elements such as Fe, Co, Sn, Zn, P, Si, and Mg are not intentionally added, these elements may be contained as impurities in a total amount of less than 0.005 mass%.
(その他の不可避不純物:0.05mass%以下)
なお、上述したCr,Zr,Al,Fe,Co,Sn,Zn,P,Si,Mg以外のその他の不可避的不純物としては、B、Ag,Ca,Te,Mn,Ni,Sr,Ba,Sc,Y,Ti,Hf,V,Nb,Ta,Mo,W,Re,Ru,Os,Se,Rh,Ir,Pd,Pt,Au,Cd,Ga,In,Li,Ge,As,Sb,Tl,Pb,Be,N,H,Hg,Tc,Na,K,Rb,Cs,Po,Bi,ランタノイド、O,S,C等が挙げられる。これらの不可避不純物は、導電率及び熱伝導率を低下させるおそれがあるため、総量で0.05mass%以下とすることが好ましい。 (Other inevitable impurities: 0.05 mass% or less)
In addition to the above-mentioned Cr, Zr, Al, Fe, Co, Sn, Zn, P, Si, Mg, other inevitable impurities include B, Ag, Ca, Te, Mn, Ni, Sr, Ba, Sc. , Y, Ti, Hf, V, Nb, Ta, Mo, W, Re, Ru, Os, Se, Rh, Ir, Pd, Pt, Au, Cd, Ga, In, Li, Ge, As, Sb, Tl , Pb, Be, N, H, Hg, Tc, Na, K, Rb, Cs, Po, Bi, lanthanoid, O, S, C and the like. Since these inevitable impurities may reduce the electrical conductivity and thermal conductivity, the total amount is preferably 0.05 mass% or less.
なお、上述したCr,Zr,Al,Fe,Co,Sn,Zn,P,Si,Mg以外のその他の不可避的不純物としては、B、Ag,Ca,Te,Mn,Ni,Sr,Ba,Sc,Y,Ti,Hf,V,Nb,Ta,Mo,W,Re,Ru,Os,Se,Rh,Ir,Pd,Pt,Au,Cd,Ga,In,Li,Ge,As,Sb,Tl,Pb,Be,N,H,Hg,Tc,Na,K,Rb,Cs,Po,Bi,ランタノイド、O,S,C等が挙げられる。これらの不可避不純物は、導電率及び熱伝導率を低下させるおそれがあるため、総量で0.05mass%以下とすることが好ましい。 (Other inevitable impurities: 0.05 mass% or less)
In addition to the above-mentioned Cr, Zr, Al, Fe, Co, Sn, Zn, P, Si, Mg, other inevitable impurities include B, Ag, Ca, Te, Mn, Ni, Sr, Ba, Sc. , Y, Ti, Hf, V, Nb, Ta, Mo, W, Re, Ru, Os, Se, Rh, Ir, Pd, Pt, Au, Cd, Ga, In, Li, Ge, As, Sb, Tl , Pb, Be, N, H, Hg, Tc, Na, K, Rb, Cs, Po, Bi, lanthanoid, O, S, C and the like. Since these inevitable impurities may reduce the electrical conductivity and thermal conductivity, the total amount is preferably 0.05 mass% or less.
(平均結晶粒径:0.1mm以上2.0mm以下/結晶粒径の標準偏差:0.6以下)
平均結晶粒径が0.1mm未満の微細な結晶組織を有する場合には、再結晶時の駆動力が大きくなるとともに、局所的に高い歪みが導入されている可能性がある。このため、高温環境下で使用した際に、結晶粒が粗大化するおそれがある。一方、平均結晶粒径が2.0mmを超える場合には、加工性が不十分となり、工業的に使用し難い。具体的には、粒界強度が低下することにより、引張強度や伸びが低下し、また亀裂伝播速度も上昇するため、工業的に使用し難い。
また、結晶粒径の標準偏差が0.6を超える場合には、結晶粒径のばらつきが大きく、局所的にひずみが蓄積されており、高温環境下で使用した際に、結晶粒が粗大化するおそれがある。また、機械的特性が低下するおそれがある。
以上のことから、本実施形態では、平均結晶粒径を0.1mm以上2.0mm以下の範囲内、結晶粒径の標準偏差を0.6以下に規定している。なお、平均結晶粒径の下限を0.15mm以上とすることが好ましく、平均結晶粒径の上限を1.0mm以下とすることが好ましい。また、結晶粒径の標準偏差の上限を0.5以下とすることが好ましい。 (Average crystal grain size: 0.1 mm to 2.0 mm / standard deviation of crystal grain size: 0.6 or less)
When the crystal grain has a fine crystal structure with an average crystal grain size of less than 0.1 mm, the driving force at the time of recrystallization increases, and high strain may be introduced locally. For this reason, when used in a high temperature environment, the crystal grains may be coarsened. On the other hand, if the average crystal grain size exceeds 2.0 mm, the processability becomes insufficient and it is difficult to use industrially. Specifically, when the grain boundary strength is lowered, the tensile strength and elongation are lowered, and the crack propagation speed is also raised, so that it is difficult to use industrially.
In addition, when the standard deviation of the crystal grain size exceeds 0.6, the crystal grain size varies widely and the strain is accumulated locally. When used in a high temperature environment, the crystal grain becomes coarse. There is a risk. Moreover, there exists a possibility that a mechanical characteristic may fall.
From the above, in this embodiment, the average crystal grain size is defined within the range of 0.1 mm to 2.0 mm, and the standard deviation of the crystal grain size is defined as 0.6 or less. The lower limit of the average crystal grain size is preferably 0.15 mm or more, and the upper limit of the average crystal grain size is preferably 1.0 mm or less. Moreover, it is preferable that the upper limit of the standard deviation of the crystal grain size is 0.5 or less.
平均結晶粒径が0.1mm未満の微細な結晶組織を有する場合には、再結晶時の駆動力が大きくなるとともに、局所的に高い歪みが導入されている可能性がある。このため、高温環境下で使用した際に、結晶粒が粗大化するおそれがある。一方、平均結晶粒径が2.0mmを超える場合には、加工性が不十分となり、工業的に使用し難い。具体的には、粒界強度が低下することにより、引張強度や伸びが低下し、また亀裂伝播速度も上昇するため、工業的に使用し難い。
また、結晶粒径の標準偏差が0.6を超える場合には、結晶粒径のばらつきが大きく、局所的にひずみが蓄積されており、高温環境下で使用した際に、結晶粒が粗大化するおそれがある。また、機械的特性が低下するおそれがある。
以上のことから、本実施形態では、平均結晶粒径を0.1mm以上2.0mm以下の範囲内、結晶粒径の標準偏差を0.6以下に規定している。なお、平均結晶粒径の下限を0.15mm以上とすることが好ましく、平均結晶粒径の上限を1.0mm以下とすることが好ましい。また、結晶粒径の標準偏差の上限を0.5以下とすることが好ましい。 (Average crystal grain size: 0.1 mm to 2.0 mm / standard deviation of crystal grain size: 0.6 or less)
When the crystal grain has a fine crystal structure with an average crystal grain size of less than 0.1 mm, the driving force at the time of recrystallization increases, and high strain may be introduced locally. For this reason, when used in a high temperature environment, the crystal grains may be coarsened. On the other hand, if the average crystal grain size exceeds 2.0 mm, the processability becomes insufficient and it is difficult to use industrially. Specifically, when the grain boundary strength is lowered, the tensile strength and elongation are lowered, and the crack propagation speed is also raised, so that it is difficult to use industrially.
In addition, when the standard deviation of the crystal grain size exceeds 0.6, the crystal grain size varies widely and the strain is accumulated locally. When used in a high temperature environment, the crystal grain becomes coarse. There is a risk. Moreover, there exists a possibility that a mechanical characteristic may fall.
From the above, in this embodiment, the average crystal grain size is defined within the range of 0.1 mm to 2.0 mm, and the standard deviation of the crystal grain size is defined as 0.6 or less. The lower limit of the average crystal grain size is preferably 0.15 mm or more, and the upper limit of the average crystal grain size is preferably 1.0 mm or less. Moreover, it is preferable that the upper limit of the standard deviation of the crystal grain size is 0.5 or less.
(断面観察におけるCr晶出物の面積率:0.5%以下)
Cr晶出物の面積率が0.5%を超える場合には、ひずみが局所的に蓄積されるため、再結晶粒のサイズが均一になり難く、高温環境下で使用した際に、結晶粒が粗大化するおそれがある。
以上のことから、本実施形態では、断面観察におけるCr晶出物の面積率を0.5%以下に規定している。なお、Cr晶出物の面積率の上限は0.3%以下とすることが好ましい。 (Area ratio of Cr crystallized material in cross-sectional observation: 0.5% or less)
When the area ratio of the Cr crystallized product exceeds 0.5%, strain is accumulated locally, so the size of the recrystallized grains is difficult to be uniform, and when used in a high temperature environment, the crystal grains May become coarse.
From the above, in this embodiment, the area ratio of the Cr crystallized product in the cross-sectional observation is regulated to 0.5% or less. In addition, it is preferable that the upper limit of the area ratio of Cr crystallized substance shall be 0.3% or less.
Cr晶出物の面積率が0.5%を超える場合には、ひずみが局所的に蓄積されるため、再結晶粒のサイズが均一になり難く、高温環境下で使用した際に、結晶粒が粗大化するおそれがある。
以上のことから、本実施形態では、断面観察におけるCr晶出物の面積率を0.5%以下に規定している。なお、Cr晶出物の面積率の上限は0.3%以下とすることが好ましい。 (Area ratio of Cr crystallized material in cross-sectional observation: 0.5% or less)
When the area ratio of the Cr crystallized product exceeds 0.5%, strain is accumulated locally, so the size of the recrystallized grains is difficult to be uniform, and when used in a high temperature environment, the crystal grains May become coarse.
From the above, in this embodiment, the area ratio of the Cr crystallized product in the cross-sectional observation is regulated to 0.5% or less. In addition, it is preferable that the upper limit of the area ratio of Cr crystallized substance shall be 0.3% or less.
(1000℃で1時間保持の熱処理を実施した後の平均結晶粒径:0.1mm以上3.0mm以下/結晶粒径の標準偏差:1.5以下)
1000℃で1時間保持の熱処理後の平均結晶粒径が上述の範囲内とされることにより、高温環境下で使用した際の結晶粒の粗大化が確実に抑制されることになる。また、1000℃で1時間保持の熱処理後の標準偏差が1.5以下とされることにより、高温環境下で使用した際の結晶粒径のばらつきの発生が確実に抑制されることになる。
以上のことから、本実施形態では、1000℃で1時間保持の熱処理を実施した後の平均結晶粒径を0.1mm以上3.0mm以下の範囲内、結晶粒径の標準偏差を1.5以下としている。なお、平均結晶粒径の下限を0.2mm以上とすることが好ましく、平均結晶粒径の上限を0.5mm以下とすることが好ましい。また、結晶粒径の標準偏差の上限を1.3以下とすることが好ましい。 (Average grain size after heat treatment held at 1000 ° C. for 1 hour: 0.1 mm to 3.0 mm / standard deviation of crystal grain size: 1.5 or less)
By setting the average crystal grain size after heat treatment held at 1000 ° C. for 1 hour within the above range, coarsening of crystal grains when used in a high temperature environment is surely suppressed. In addition, when the standard deviation after heat treatment held at 1000 ° C. for 1 hour is 1.5 or less, the occurrence of variations in crystal grain size when used in a high temperature environment is surely suppressed.
From the above, in this embodiment, the average crystal grain size after the heat treatment held at 1000 ° C. for 1 hour is in the range of 0.1 mm to 3.0 mm, and the standard deviation of the crystal grain size is 1.5. It is as follows. The lower limit of the average crystal grain size is preferably 0.2 mm or more, and the upper limit of the average crystal grain size is preferably 0.5 mm or less. Moreover, it is preferable that the upper limit of the standard deviation of the crystal grain size is 1.3 or less.
1000℃で1時間保持の熱処理後の平均結晶粒径が上述の範囲内とされることにより、高温環境下で使用した際の結晶粒の粗大化が確実に抑制されることになる。また、1000℃で1時間保持の熱処理後の標準偏差が1.5以下とされることにより、高温環境下で使用した際の結晶粒径のばらつきの発生が確実に抑制されることになる。
以上のことから、本実施形態では、1000℃で1時間保持の熱処理を実施した後の平均結晶粒径を0.1mm以上3.0mm以下の範囲内、結晶粒径の標準偏差を1.5以下としている。なお、平均結晶粒径の下限を0.2mm以上とすることが好ましく、平均結晶粒径の上限を0.5mm以下とすることが好ましい。また、結晶粒径の標準偏差の上限を1.3以下とすることが好ましい。 (Average grain size after heat treatment held at 1000 ° C. for 1 hour: 0.1 mm to 3.0 mm / standard deviation of crystal grain size: 1.5 or less)
By setting the average crystal grain size after heat treatment held at 1000 ° C. for 1 hour within the above range, coarsening of crystal grains when used in a high temperature environment is surely suppressed. In addition, when the standard deviation after heat treatment held at 1000 ° C. for 1 hour is 1.5 or less, the occurrence of variations in crystal grain size when used in a high temperature environment is surely suppressed.
From the above, in this embodiment, the average crystal grain size after the heat treatment held at 1000 ° C. for 1 hour is in the range of 0.1 mm to 3.0 mm, and the standard deviation of the crystal grain size is 1.5. It is as follows. The lower limit of the average crystal grain size is preferably 0.2 mm or more, and the upper limit of the average crystal grain size is preferably 0.5 mm or less. Moreover, it is preferable that the upper limit of the standard deviation of the crystal grain size is 1.3 or less.
次に、本願発明の一実施形態に係る銅合金素材の製造方法を、図1のフロー図を参照して説明する。
Next, a method for producing a copper alloy material according to an embodiment of the present invention will be described with reference to the flowchart of FIG.
(溶解・鋳造工程S01)
まず、銅の純度が99.99mass%以上の無酸素銅からなる銅原料を、カーボンるつぼに装入し、真空溶解炉を用いて溶解し、銅溶湯を得る。次いで、得られた溶湯に、所定の濃度となるように前述の添加元素を添加して、成分調製を行い、銅合金溶湯を得る。
ここで、添加元素であるCr、Zrの原料としては、純度の高いものを使用し、例えばCrの原料は純度99.99mass%以上のものを使用し、Zrの原料は純度99.95mass%以上のものを使用する。また、Al,Fe,Co,Sn,Zn,P,Si,Mgを必要に応じて添加する。なお、Cr、Zr、Al,Fe,Co,Sn,Zn,P,Si,Mgの原料として、Cuとの母合金を用いてもよい。
そして、成分調製された銅合金溶湯を鋳型に注湯して鋳塊を得る。 (Melting / Casting Process S01)
First, a copper raw material made of oxygen-free copper having a copper purity of 99.99 mass% or more is charged into a carbon crucible and melted using a vacuum melting furnace to obtain a molten copper. Next, the aforementioned additive elements are added to the obtained molten metal so as to have a predetermined concentration, and the components are prepared to obtain a molten copper alloy.
Here, as the raw material for the additive elements Cr and Zr, a material having a high purity is used. For example, a Cr material having a purity of 99.99 mass% or more is used, and a Zr material is having a purity of 99.95 mass% or more. Use one. Al, Fe, Co, Sn, Zn, P, Si, and Mg are added as necessary. A mother alloy with Cu may be used as a raw material for Cr, Zr, Al, Fe, Co, Sn, Zn, P, Si, and Mg.
And the ingot is obtained by pouring the prepared copper alloy melt into the mold.
まず、銅の純度が99.99mass%以上の無酸素銅からなる銅原料を、カーボンるつぼに装入し、真空溶解炉を用いて溶解し、銅溶湯を得る。次いで、得られた溶湯に、所定の濃度となるように前述の添加元素を添加して、成分調製を行い、銅合金溶湯を得る。
ここで、添加元素であるCr、Zrの原料としては、純度の高いものを使用し、例えばCrの原料は純度99.99mass%以上のものを使用し、Zrの原料は純度99.95mass%以上のものを使用する。また、Al,Fe,Co,Sn,Zn,P,Si,Mgを必要に応じて添加する。なお、Cr、Zr、Al,Fe,Co,Sn,Zn,P,Si,Mgの原料として、Cuとの母合金を用いてもよい。
そして、成分調製された銅合金溶湯を鋳型に注湯して鋳塊を得る。 (Melting / Casting Process S01)
First, a copper raw material made of oxygen-free copper having a copper purity of 99.99 mass% or more is charged into a carbon crucible and melted using a vacuum melting furnace to obtain a molten copper. Next, the aforementioned additive elements are added to the obtained molten metal so as to have a predetermined concentration, and the components are prepared to obtain a molten copper alloy.
Here, as the raw material for the additive elements Cr and Zr, a material having a high purity is used. For example, a Cr material having a purity of 99.99 mass% or more is used, and a Zr material is having a purity of 99.95 mass% or more. Use one. Al, Fe, Co, Sn, Zn, P, Si, and Mg are added as necessary. A mother alloy with Cu may be used as a raw material for Cr, Zr, Al, Fe, Co, Sn, Zn, P, Si, and Mg.
And the ingot is obtained by pouring the prepared copper alloy melt into the mold.
(均質化処理工程S02)
次に、得られた鋳塊の均質化のために熱処理を行う。
具体的には、鋳塊を大気雰囲気にて、950℃以上1050℃以下、1時間以上の条件で均質化処理を行う。 (Homogenization step S02)
Next, heat treatment is performed to homogenize the obtained ingot.
Specifically, the ingot is homogenized in an air atmosphere at 950 ° C. or higher and 1050 ° C. or lower for 1 hour or longer.
次に、得られた鋳塊の均質化のために熱処理を行う。
具体的には、鋳塊を大気雰囲気にて、950℃以上1050℃以下、1時間以上の条件で均質化処理を行う。 (Homogenization step S02)
Next, heat treatment is performed to homogenize the obtained ingot.
Specifically, the ingot is homogenized in an air atmosphere at 950 ° C. or higher and 1050 ° C. or lower for 1 hour or longer.
(熱間加工工程S03)
次いで、鋳塊に対して900℃以上1000℃以下の温度範囲で、加工率50%以上99%以下の熱間圧延を行い、圧延材を得る。なお、熱間加工の方法は、熱間鍛造であっても良い。この熱間加工後、直ちに水冷によって冷却する。 (Hot processing step S03)
Next, hot rolling with a processing rate of 50% to 99% is performed on the ingot in a temperature range of 900 ° C. to 1000 ° C. to obtain a rolled material. The hot working method may be hot forging. Immediately after this hot working, it is cooled by water cooling.
次いで、鋳塊に対して900℃以上1000℃以下の温度範囲で、加工率50%以上99%以下の熱間圧延を行い、圧延材を得る。なお、熱間加工の方法は、熱間鍛造であっても良い。この熱間加工後、直ちに水冷によって冷却する。 (Hot processing step S03)
Next, hot rolling with a processing rate of 50% to 99% is performed on the ingot in a temperature range of 900 ° C. to 1000 ° C. to obtain a rolled material. The hot working method may be hot forging. Immediately after this hot working, it is cooled by water cooling.
(溶体化処理工程S04)
次いで、熱間加工工程S03で得られた圧延材を、920℃以上1050℃以下、0.5時間以上5時間以下の条件で加熱処理を施し、溶体化処理を行う。加熱処理は、例えば大気または不活性ガス雰囲気で行い、加熱後の冷却は、水冷によって行う。 (Solution treatment step S04)
Next, the rolled material obtained in the hot working step S03 is subjected to a heat treatment under conditions of 920 ° C. or higher and 1050 ° C. or lower and 0.5 hours or longer and 5 hours or shorter. The heat treatment is performed in, for example, air or an inert gas atmosphere, and cooling after heating is performed by water cooling.
次いで、熱間加工工程S03で得られた圧延材を、920℃以上1050℃以下、0.5時間以上5時間以下の条件で加熱処理を施し、溶体化処理を行う。加熱処理は、例えば大気または不活性ガス雰囲気で行い、加熱後の冷却は、水冷によって行う。 (Solution treatment step S04)
Next, the rolled material obtained in the hot working step S03 is subjected to a heat treatment under conditions of 920 ° C. or higher and 1050 ° C. or lower and 0.5 hours or longer and 5 hours or shorter. The heat treatment is performed in, for example, air or an inert gas atmosphere, and cooling after heating is performed by water cooling.
(時効処理工程S05)
次に、溶体化処理工程S04の後に、第一時効処理を実施し、Cr系析出物及びZr系析出物などの析出物を微細に析出させ、第一時効処理材を得る。
ここで、時効処理は、例えば400℃以上530℃以下、0.5時間以上5時間以下の条件で行う。
なお、時効処理時の熱処理方法は、特に限定しないが、不活性ガス雰囲気で行うことが好ましい。また、加熱処理後の冷却方法は、特に限定しないが、水冷で行うことが好ましい。
このような工程により、本実施形態である銅合金素材が製造される。 (Aging treatment step S05)
Next, after the solution treatment step S04, a first temporary effect treatment is performed, and precipitates such as a Cr-based precipitate and a Zr-based precipitate are finely precipitated to obtain a first temporary effect treatment material.
Here, the aging treatment is performed under conditions of, for example, 400 ° C. or more and 530 ° C. or less and 0.5 hour or more and 5 hours or less.
The heat treatment method during the aging treatment is not particularly limited, but it is preferably performed in an inert gas atmosphere. Further, the cooling method after the heat treatment is not particularly limited, but it is preferably performed by water cooling.
The copper alloy material which is this embodiment is manufactured by such a process.
次に、溶体化処理工程S04の後に、第一時効処理を実施し、Cr系析出物及びZr系析出物などの析出物を微細に析出させ、第一時効処理材を得る。
ここで、時効処理は、例えば400℃以上530℃以下、0.5時間以上5時間以下の条件で行う。
なお、時効処理時の熱処理方法は、特に限定しないが、不活性ガス雰囲気で行うことが好ましい。また、加熱処理後の冷却方法は、特に限定しないが、水冷で行うことが好ましい。
このような工程により、本実施形態である銅合金素材が製造される。 (Aging treatment step S05)
Next, after the solution treatment step S04, a first temporary effect treatment is performed, and precipitates such as a Cr-based precipitate and a Zr-based precipitate are finely precipitated to obtain a first temporary effect treatment material.
Here, the aging treatment is performed under conditions of, for example, 400 ° C. or more and 530 ° C. or less and 0.5 hour or more and 5 hours or less.
The heat treatment method during the aging treatment is not particularly limited, but it is preferably performed in an inert gas atmosphere. Further, the cooling method after the heat treatment is not particularly limited, but it is preferably performed by water cooling.
The copper alloy material which is this embodiment is manufactured by such a process.
以上のような構成とされた本実施形態に係る銅合金素材によれば、Crを0.3mass%以上0.5mass%未満、Zrを0.01mass%以上0.15mass%以下、含み、残部がCu及び不可避不純物からなる組成とされているので、溶体化処理及び時効処理を行うことで、微細な析出物を析出させることができ、強度及び導電率を向上させることができる。
According to the copper alloy material according to the present embodiment configured as described above, Cr includes 0.3 mass% or more and less than 0.5 mass%, Zr includes 0.01 mass% or more and 0.15 mass% or less, and the balance is Since it is set as the composition which consists of Cu and an unavoidable impurity, by performing a solution treatment and an aging treatment, a fine precipitate can be deposited and an intensity | strength and electrical conductivity can be improved.
また、Crの含有量が0.3mass%以上0.5mass%未満と比較的少なくされているので、溶体化処理後においてCr晶出物がほとんど存在しない。具体的には、断面観察におけるCr晶出物の面積率が0.5%以下となる。よって、Cr晶出物に起因して局所的なひずみが蓄積され、再結晶粒のサイズが不均一となることを抑制でき、高温環境下で使用された場合でも、局所的な結晶粒の粗大化を確実に抑制できる。
In addition, since the Cr content is relatively low at 0.3 mass% or more and less than 0.5 mass%, there is almost no Cr crystallized product after solution treatment. Specifically, the area ratio of Cr crystallized material in cross-sectional observation is 0.5% or less. Therefore, it is possible to prevent local strain from being accumulated due to the Cr crystallized product and to make the recrystallized grains non-uniform in size. Even when used in a high temperature environment, the local crystal grains are coarse. Can be reliably suppressed.
そして、本実施形態においては、平均結晶粒径が0.1mm以上2.0mm以下の範囲内とされるとともに、結晶粒径の標準偏差が0.6以下とされているので、局所的なひずみの蓄積が少なく、高温環境下で使用された場合でも、局所的な結晶粒の粗大化を抑制できる。
さらに、1000℃で1時間保持の熱処理を実施した後の平均結晶粒径が0.1mm以上3.0mm以下の範囲内とされるとともに、結晶粒径の標準偏差が1.5以下とされており、1000℃で1時間保持の熱処理を実施した後でも、局所的に結晶粒が粗大化しておらず、500℃以上の高温環境下で使用された場合であっても、機械的特性や導電率が安定している。 In this embodiment, the average crystal grain size is in the range of 0.1 mm to 2.0 mm, and the standard deviation of the crystal grain size is 0.6 or less. Even when used in a high temperature environment, local grain coarsening can be suppressed.
Furthermore, the average crystal grain size after carrying out the heat treatment held at 1000 ° C. for 1 hour is in the range of 0.1 mm to 3.0 mm, and the standard deviation of the crystal grain size is 1.5 or less. Even after the heat treatment held at 1000 ° C. for 1 hour, even if the crystal grains are not locally coarsened and used in a high temperature environment of 500 ° C. or higher, the mechanical properties and conductivity The rate is stable.
さらに、1000℃で1時間保持の熱処理を実施した後の平均結晶粒径が0.1mm以上3.0mm以下の範囲内とされるとともに、結晶粒径の標準偏差が1.5以下とされており、1000℃で1時間保持の熱処理を実施した後でも、局所的に結晶粒が粗大化しておらず、500℃以上の高温環境下で使用された場合であっても、機械的特性や導電率が安定している。 In this embodiment, the average crystal grain size is in the range of 0.1 mm to 2.0 mm, and the standard deviation of the crystal grain size is 0.6 or less. Even when used in a high temperature environment, local grain coarsening can be suppressed.
Furthermore, the average crystal grain size after carrying out the heat treatment held at 1000 ° C. for 1 hour is in the range of 0.1 mm to 3.0 mm, and the standard deviation of the crystal grain size is 1.5 or less. Even after the heat treatment held at 1000 ° C. for 1 hour, even if the crystal grains are not locally coarsened and used in a high temperature environment of 500 ° C. or higher, the mechanical properties and conductivity The rate is stable.
また、本実施形態において、さらにAlを0.1mass%以上2.0mass%以下の範囲内で含む場合には、導電率を30~60%IACS程度に調整することができる。
これにより、電磁撹拌用途の鋳造用モールド材として特に適した銅合金素材を得ることができる。
また、本実施形態において、さらにFe,Co,Sn,Zn,P,Si,Mgから選択される1種又は2種以上の元素を合計で0.005mass%以上0.1mass%以下含む場合には、これらの元素を含む化合物によるピン止め効果によって結晶粒の粗大化をさらに確実に抑制することができる。 In the present embodiment, when Al is further included in the range of 0.1 mass% to 2.0 mass%, the conductivity can be adjusted to about 30 to 60% IACS.
Thereby, it is possible to obtain a copper alloy material particularly suitable as a molding material for casting for use in electromagnetic stirring.
In the present embodiment, when one or more elements selected from Fe, Co, Sn, Zn, P, Si, and Mg are further included in a total of 0.005 mass% to 0.1 mass%. The coarsening of the crystal grains can be further reliably suppressed by the pinning effect by the compound containing these elements.
これにより、電磁撹拌用途の鋳造用モールド材として特に適した銅合金素材を得ることができる。
また、本実施形態において、さらにFe,Co,Sn,Zn,P,Si,Mgから選択される1種又は2種以上の元素を合計で0.005mass%以上0.1mass%以下含む場合には、これらの元素を含む化合物によるピン止め効果によって結晶粒の粗大化をさらに確実に抑制することができる。 In the present embodiment, when Al is further included in the range of 0.1 mass% to 2.0 mass%, the conductivity can be adjusted to about 30 to 60% IACS.
Thereby, it is possible to obtain a copper alloy material particularly suitable as a molding material for casting for use in electromagnetic stirring.
In the present embodiment, when one or more elements selected from Fe, Co, Sn, Zn, P, Si, and Mg are further included in a total of 0.005 mass% to 0.1 mass%. The coarsening of the crystal grains can be further reliably suppressed by the pinning effect by the compound containing these elements.
以上、本願発明の実施形態について説明したが、本願発明はこれに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
As mentioned above, although embodiment of this invention was described, this invention is not limited to this, It can change suitably in the range which does not deviate from the technical idea of the invention.
以下に、本願発明の効果を確認すべく行った確認実験の結果について説明する。
純度99.99mass%以上の無酸素銅からなる銅原料を準備し、これをカーボンるつぼに装入し、真空溶解炉(真空度10-2Pa以下)で溶解し、銅溶湯を得た。得られた銅溶湯内に、各種添加元素を添加して表1に示す成分組成に調製し、5分間保持した後、銅合金溶湯を鋳鉄製の鋳型に注湯して鋳塊を得た。鋳塊の大きさは、幅約80mm、厚さ約50mm、長さ約130mmとした。
なお、添加元素であるCrの原料は純度99.99mass%以上、Zrの原料は純度99.95mass%以上のものを使用した。 Below, the result of the confirmation experiment performed in order to confirm the effect of this invention is demonstrated.
A copper raw material made of oxygen-free copper having a purity of 99.99 mass% or more was prepared, charged into a carbon crucible, and melted in a vacuum melting furnace (vacuum degree 10 −2 Pa or less) to obtain a molten copper. Various additive elements were added to the obtained molten copper to prepare the component compositions shown in Table 1, and after maintaining for 5 minutes, the molten copper alloy was poured into a cast iron mold to obtain an ingot. The size of the ingot was about 80 mm in width, about 50 mm in thickness, and about 130 mm in length.
In addition, the raw material of Cr, which is an additive element, was used with a purity of 99.99 mass% or more, and the raw material of Zr was a purity of 99.95 mass% or more.
純度99.99mass%以上の無酸素銅からなる銅原料を準備し、これをカーボンるつぼに装入し、真空溶解炉(真空度10-2Pa以下)で溶解し、銅溶湯を得た。得られた銅溶湯内に、各種添加元素を添加して表1に示す成分組成に調製し、5分間保持した後、銅合金溶湯を鋳鉄製の鋳型に注湯して鋳塊を得た。鋳塊の大きさは、幅約80mm、厚さ約50mm、長さ約130mmとした。
なお、添加元素であるCrの原料は純度99.99mass%以上、Zrの原料は純度99.95mass%以上のものを使用した。 Below, the result of the confirmation experiment performed in order to confirm the effect of this invention is demonstrated.
A copper raw material made of oxygen-free copper having a purity of 99.99 mass% or more was prepared, charged into a carbon crucible, and melted in a vacuum melting furnace (
In addition, the raw material of Cr, which is an additive element, was used with a purity of 99.99 mass% or more, and the raw material of Zr was a purity of 99.95 mass% or more.
次に、大気雰囲気において1000℃で1時間の条件で均質化処理を行った後、熱間圧延を実施した。熱間圧延時の圧下率を80%とし、幅約100mm×厚さ約10mm×長さ約520mmの熱間圧延材を得た。
この熱間圧延材を用いて、1000℃で1.5時間の条件で溶体化処理を行い、その後、表2に示す冷却速度で冷却した。
次に、500(±15)℃で3時間の条件で時効処理を実施した。これにより、銅合金素材を得た。 Next, after performing a homogenization process at 1000 ° C. for 1 hour in an air atmosphere, hot rolling was performed. The rolling reduction during hot rolling was 80%, and a hot rolled material having a width of about 100 mm, a thickness of about 10 mm, and a length of about 520 mm was obtained.
Using this hot-rolled material, solution treatment was performed at 1000 ° C. for 1.5 hours, followed by cooling at a cooling rate shown in Table 2.
Next, an aging treatment was performed at 500 (± 15) ° C. for 3 hours. Thereby, a copper alloy material was obtained.
この熱間圧延材を用いて、1000℃で1.5時間の条件で溶体化処理を行い、その後、表2に示す冷却速度で冷却した。
次に、500(±15)℃で3時間の条件で時効処理を実施した。これにより、銅合金素材を得た。 Next, after performing a homogenization process at 1000 ° C. for 1 hour in an air atmosphere, hot rolling was performed. The rolling reduction during hot rolling was 80%, and a hot rolled material having a width of about 100 mm, a thickness of about 10 mm, and a length of about 520 mm was obtained.
Using this hot-rolled material, solution treatment was performed at 1000 ° C. for 1.5 hours, followed by cooling at a cooling rate shown in Table 2.
Next, an aging treatment was performed at 500 (± 15) ° C. for 3 hours. Thereby, a copper alloy material was obtained.
得られた銅合金素材について、時効処理後の銅合金素材の組織観察を行い、平均結晶粒径及び結晶粒径の標準偏差を測定した。
また、この銅合金素材に対して、1000℃で1時間保持の熱処理を実施した後の平均結晶粒径及び結晶粒径の標準偏差を測定した。
さらに、溶体化処理後の材料について、断面観察を行い、Cr晶出物の面積率を測定した。
上記時効処理後の1000℃で1時間保持後の熱処理前における、本発明例1及び比較例4の銅合金素材の組織観察写真を、図2A及び図2Bにそれぞれ示す。
同様に、上記時効処理後の1000℃で1時間保持後の熱処理後における、本発明例1及び比較例4の銅合金素材の組織観察写真を、図3A及び図3Bにそれぞれ示す。 About the obtained copper alloy raw material, the structure | tissue observation of the copper alloy raw material after an aging treatment was performed, and the standard deviation of the average crystal grain diameter and crystal grain diameter was measured.
In addition, the average crystal grain size and the standard deviation of the crystal grain size after the heat treatment of holding the copper alloy material at 1000 ° C. for 1 hour were measured.
Furthermore, the cross-sectional observation was performed about the material after solution treatment, and the area ratio of Cr crystallization thing was measured.
Structure observation photographs of the copper alloy materials of Invention Example 1 and Comparative Example 4 before the heat treatment after holding at 1000 ° C. for 1 hour after the aging treatment are shown in FIGS. 2A and 2B, respectively.
Similarly, the structure observation photographs of the copper alloy materials of Invention Example 1 and Comparative Example 4 after heat treatment after holding at 1000 ° C. for 1 hour after the aging treatment are shown in FIGS. 3A and 3B, respectively.
また、この銅合金素材に対して、1000℃で1時間保持の熱処理を実施した後の平均結晶粒径及び結晶粒径の標準偏差を測定した。
さらに、溶体化処理後の材料について、断面観察を行い、Cr晶出物の面積率を測定した。
上記時効処理後の1000℃で1時間保持後の熱処理前における、本発明例1及び比較例4の銅合金素材の組織観察写真を、図2A及び図2Bにそれぞれ示す。
同様に、上記時効処理後の1000℃で1時間保持後の熱処理後における、本発明例1及び比較例4の銅合金素材の組織観察写真を、図3A及び図3Bにそれぞれ示す。 About the obtained copper alloy raw material, the structure | tissue observation of the copper alloy raw material after an aging treatment was performed, and the standard deviation of the average crystal grain diameter and crystal grain diameter was measured.
In addition, the average crystal grain size and the standard deviation of the crystal grain size after the heat treatment of holding the copper alloy material at 1000 ° C. for 1 hour were measured.
Furthermore, the cross-sectional observation was performed about the material after solution treatment, and the area ratio of Cr crystallization thing was measured.
Structure observation photographs of the copper alloy materials of Invention Example 1 and Comparative Example 4 before the heat treatment after holding at 1000 ° C. for 1 hour after the aging treatment are shown in FIGS. 2A and 2B, respectively.
Similarly, the structure observation photographs of the copper alloy materials of Invention Example 1 and Comparative Example 4 after heat treatment after holding at 1000 ° C. for 1 hour after the aging treatment are shown in FIGS. 3A and 3B, respectively.
(組成分析)
得られた銅合金素材の成分組成は、ICP-MS分析によって測定した。測定結果を表1に示す。 (Composition analysis)
The component composition of the obtained copper alloy material was measured by ICP-MS analysis. The measurement results are shown in Table 1.
得られた銅合金素材の成分組成は、ICP-MS分析によって測定した。測定結果を表1に示す。 (Composition analysis)
The component composition of the obtained copper alloy material was measured by ICP-MS analysis. The measurement results are shown in Table 1.
(平均結晶粒径及び結晶粒径の標準偏差)
得られた銅合金素材の板厚で板幅中心部から10mm×15mmの試料を切り出し、圧延方向(RD方向)の面を研磨後、ミクロエッチングを行った。
この試料を観察し、JIS H 0501に規定された切断法により、平均結晶粒径を測定した。 (Average crystal grain size and standard deviation of crystal grain size)
A sample of 10 mm × 15 mm was cut out from the center of the plate width with the plate thickness of the obtained copper alloy material, and the surface in the rolling direction (RD direction) was polished and then microetched.
This sample was observed, and the average crystal grain size was measured by a cutting method defined in JIS H 0501.
得られた銅合金素材の板厚で板幅中心部から10mm×15mmの試料を切り出し、圧延方向(RD方向)の面を研磨後、ミクロエッチングを行った。
この試料を観察し、JIS H 0501に規定された切断法により、平均結晶粒径を測定した。 (Average crystal grain size and standard deviation of crystal grain size)
A sample of 10 mm × 15 mm was cut out from the center of the plate width with the plate thickness of the obtained copper alloy material, and the surface in the rolling direction (RD direction) was polished and then microetched.
This sample was observed, and the average crystal grain size was measured by a cutting method defined in JIS H 0501.
(Cr晶出物の面積率)
銅合金素材の板厚で板幅中心部から10mm×15mmの試料を切り出し、圧延方向(RD方向)の面を研磨後、ミクロエッチングを行った。
この試料をSEM観察し、1500倍のSEM-EPMA画像(およそ70μm×70μmの視野)において、母相よりもCr濃度が高い領域を「Cr晶出物」であると判断し、Cr晶出物の面積率を以下の式で求めた。
面積率=(Cr晶出物が占める面積)/(70μm×70μm)
図4A~図4Dに本発明例1及び比較例4のSEM-EPMA画像を示す。 (Area ratio of Cr crystallized product)
A sample of 10 mm × 15 mm was cut out from the center of the plate width with the thickness of the copper alloy material, and the surface in the rolling direction (RD direction) was polished and then microetched.
This sample was observed by SEM, and in the SEM-EPMA image of 1500 times (field of view of about 70 μm × 70 μm), it was determined that the region having a higher Cr concentration than the parent phase was “Cr crystallized product”. The area ratio was determined by the following formula.
Area ratio = (area occupied by Cr crystallized product) / (70 μm × 70 μm)
4A to 4D show SEM-EPMA images of Example 1 of the present invention and Comparative Example 4. FIG.
銅合金素材の板厚で板幅中心部から10mm×15mmの試料を切り出し、圧延方向(RD方向)の面を研磨後、ミクロエッチングを行った。
この試料をSEM観察し、1500倍のSEM-EPMA画像(およそ70μm×70μmの視野)において、母相よりもCr濃度が高い領域を「Cr晶出物」であると判断し、Cr晶出物の面積率を以下の式で求めた。
面積率=(Cr晶出物が占める面積)/(70μm×70μm)
図4A~図4Dに本発明例1及び比較例4のSEM-EPMA画像を示す。 (Area ratio of Cr crystallized product)
A sample of 10 mm × 15 mm was cut out from the center of the plate width with the thickness of the copper alloy material, and the surface in the rolling direction (RD direction) was polished and then microetched.
This sample was observed by SEM, and in the SEM-EPMA image of 1500 times (field of view of about 70 μm × 70 μm), it was determined that the region having a higher Cr concentration than the parent phase was “Cr crystallized product”. The area ratio was determined by the following formula.
Area ratio = (area occupied by Cr crystallized product) / (70 μm × 70 μm)
4A to 4D show SEM-EPMA images of Example 1 of the present invention and Comparative Example 4. FIG.
(引張強度)
圧延方向を引張方向としてJIS Z 2241 2号試験片を採取し、100kN引張試験機を用いて試験に供した。 (Tensile strength)
A JIS Z 2241 No. 2 test piece was taken with the rolling direction as the tensile direction, and was subjected to the test using a 100 kN tensile tester.
圧延方向を引張方向としてJIS Z 2241 2号試験片を採取し、100kN引張試験機を用いて試験に供した。 (Tensile strength)
A JIS Z 2241 No. 2 test piece was taken with the rolling direction as the tensile direction, and was subjected to the test using a 100 kN tensile tester.
図2A及び図3Aに代表されるように、本発明例1~6では、高温環境下に置かれた後でも、局所的な結晶粒の粗大化が抑制された。
一方、図2B及び図3Bに代表されるように、比較例1~4では、高温環境下に置かれた後では、局所的に結晶粒が粗大化した。
Crの含有量が本願発明の範囲より少なく、結晶粒径の標準偏差が本願発明の範囲より大きい比較例1においては、時効熱処理後及び1000℃で1時間の熱処理後の引張強度が不十分であった。
Crの含有量が本願発明の範囲より多く、平均結晶粒径が本願発明より小さく、結晶粒径の標準偏差が本願発明の範囲より大きい比較例2-4においては、1000℃で1時間の熱処理後に引張強度が大きく低下した。 As represented by FIG. 2A and FIG. 3A, in Examples 1 to 6 of the present invention, local coarsening of crystal grains was suppressed even after being placed in a high temperature environment.
On the other hand, as represented by FIG. 2B and FIG. 3B, in Comparative Examples 1 to 4, the crystal grains were locally coarsened after being placed in a high temperature environment.
In Comparative Example 1 in which the Cr content is less than the range of the present invention and the standard deviation of the crystal grain size is larger than the range of the present invention, the tensile strength after the aging heat treatment and after the heat treatment at 1000 ° C. for 1 hour is insufficient. there were.
In Comparative Example 2-4 in which the Cr content is larger than the range of the present invention, the average crystal grain size is smaller than that of the present invention, and the standard deviation of the crystal grain size is larger than the range of the present invention, heat treatment at 1000 ° C. for 1 hour Later, the tensile strength was greatly reduced.
一方、図2B及び図3Bに代表されるように、比較例1~4では、高温環境下に置かれた後では、局所的に結晶粒が粗大化した。
Crの含有量が本願発明の範囲より少なく、結晶粒径の標準偏差が本願発明の範囲より大きい比較例1においては、時効熱処理後及び1000℃で1時間の熱処理後の引張強度が不十分であった。
Crの含有量が本願発明の範囲より多く、平均結晶粒径が本願発明より小さく、結晶粒径の標準偏差が本願発明の範囲より大きい比較例2-4においては、1000℃で1時間の熱処理後に引張強度が大きく低下した。 As represented by FIG. 2A and FIG. 3A, in Examples 1 to 6 of the present invention, local coarsening of crystal grains was suppressed even after being placed in a high temperature environment.
On the other hand, as represented by FIG. 2B and FIG. 3B, in Comparative Examples 1 to 4, the crystal grains were locally coarsened after being placed in a high temperature environment.
In Comparative Example 1 in which the Cr content is less than the range of the present invention and the standard deviation of the crystal grain size is larger than the range of the present invention, the tensile strength after the aging heat treatment and after the heat treatment at 1000 ° C. for 1 hour is insufficient. there were.
In Comparative Example 2-4 in which the Cr content is larger than the range of the present invention, the average crystal grain size is smaller than that of the present invention, and the standard deviation of the crystal grain size is larger than the range of the present invention, heat treatment at 1000 ° C. for 1 hour Later, the tensile strength was greatly reduced.
これに対して、本発明例1-6においては、時効熱処理後の引張強度が高く、かつ、1000℃で1時間の熱処理後に引張強度が大きく低下しなかった。
以上のことから、本発明例によれば、500℃以上の高温環境下で使用された場合であっても、特性が安定しており、使用寿命に優れた銅合金素材を提供可能であることが確認された。 On the other hand, in Example 1-6 of the present invention, the tensile strength after the aging heat treatment was high, and the tensile strength was not significantly reduced after the heat treatment at 1000 ° C. for 1 hour.
From the above, according to the present invention example, it is possible to provide a copper alloy material having stable characteristics and excellent service life even when used in a high temperature environment of 500 ° C. or higher. Was confirmed.
以上のことから、本発明例によれば、500℃以上の高温環境下で使用された場合であっても、特性が安定しており、使用寿命に優れた銅合金素材を提供可能であることが確認された。 On the other hand, in Example 1-6 of the present invention, the tensile strength after the aging heat treatment was high, and the tensile strength was not significantly reduced after the heat treatment at 1000 ° C. for 1 hour.
From the above, according to the present invention example, it is possible to provide a copper alloy material having stable characteristics and excellent service life even when used in a high temperature environment of 500 ° C. or higher. Was confirmed.
Cu-Cr-Zr系合金からなる部材の、高温環境下での性質劣化を抑制することができ、鋳造用モールド材や溶接用部材等の製品寿命を延ばすことができる。
It is possible to suppress deterioration of properties of a member made of a Cu—Cr—Zr alloy in a high-temperature environment, and to extend the product life of a casting mold material, a welding member, and the like.
Claims (5)
- Crを0.3mass%以上0.5mass%未満、Zrを0.01mass%以上0.15mass%以下、含み、残部がCu及び不可避不純物からなる組成を有し、
平均結晶粒径が0.1mm以上2.0mm以下の範囲内とされるとともに、結晶粒径の標準偏差が0.6以下であることを特徴とする銅合金素材。 Cr has a composition composed of 0.3 mass% or more and less than 0.5 mass%, Zr 0.01 mass% or more and 0.15 mass% or less, and the balance consisting of Cu and inevitable impurities,
A copper alloy material having an average crystal grain size in a range of 0.1 mm to 2.0 mm and a standard deviation of crystal grain size of 0.6 or less. - 断面観察におけるCr晶出物の面積率が0.5%以下であることを特徴とする請求項1に記載の銅合金素材。 The copper alloy material according to claim 1, wherein the area ratio of the Cr crystallized material in cross-sectional observation is 0.5% or less.
- 1000℃で1時間保持の熱処理を実施した後の平均結晶粒径が0.1mm以上3.0mm以下の範囲内とされるとともに、結晶粒径の標準偏差が1.5以下であることを特徴とする請求項1又は請求項2に記載に記載の銅合金素材。 The average crystal grain size after carrying out the heat treatment held at 1000 ° C. for 1 hour is in the range of 0.1 mm to 3.0 mm, and the standard deviation of the crystal grain size is 1.5 or less The copper alloy material according to claim 1 or claim 2.
- さらに、Alを0.1mass%以上2.0mass%以下の範囲内で含むことを特徴とする請求項1から請求項3のいずれか一項に記載の銅合金素材。 The copper alloy material according to any one of claims 1 to 3, further comprising Al in a range of 0.1 mass% to 2.0 mass%.
- さらに、Fe,Co,Sn,Zn,P,Si,Mgから選択される1種又は2種以上の元素を合計で0.005mass%以上0.1mass%以下の範囲内で含むことを特徴とする請求項1から請求項4のいずれか一項に記載の銅合金素材。 Furthermore, it contains one or more elements selected from Fe, Co, Sn, Zn, P, Si, and Mg within a total range of 0.005 mass% to 0.1 mass%. The copper alloy material according to any one of claims 1 to 4.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP16863936.7A EP3375898B1 (en) | 2015-11-09 | 2016-10-11 | Copper alloy material |
KR1020187012111A KR20180078245A (en) | 2015-11-09 | 2016-10-11 | Copper alloy material |
CN201680065499.1A CN108350530A (en) | 2015-11-09 | 2016-10-11 | Cu alloy material |
US15/771,847 US20190062874A1 (en) | 2015-11-09 | 2016-10-11 | Copper alloy material |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015219852A JP6693092B2 (en) | 2015-11-09 | 2015-11-09 | Copper alloy material |
JP2015-219852 | 2015-11-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017081972A1 true WO2017081972A1 (en) | 2017-05-18 |
Family
ID=58695049
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/080125 WO2017081972A1 (en) | 2015-11-09 | 2016-10-11 | Copper alloy material |
Country Status (6)
Country | Link |
---|---|
US (1) | US20190062874A1 (en) |
EP (1) | EP3375898B1 (en) |
JP (1) | JP6693092B2 (en) |
KR (1) | KR20180078245A (en) |
CN (1) | CN108350530A (en) |
WO (1) | WO2017081972A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3715488A4 (en) * | 2017-11-21 | 2021-03-31 | Mitsubishi Materials Corporation | MOLDED MATERIAL FOR CAST AND COPPER ALLOY MATERIAL |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106350698B (en) * | 2016-09-09 | 2018-03-27 | 宁波博威合金板带有限公司 | Anti-softening copper alloy, preparation method and applications |
WO2019239655A1 (en) | 2018-06-14 | 2019-12-19 | 古河電気工業株式会社 | Copper alloy powder, layered/molded product, method for producing layered/molded product, and metal parts |
US20220119919A1 (en) * | 2019-02-20 | 2022-04-21 | Mitsubishi Materials Corporation | Copper alloy material, commutator segment, and electrode material |
CN112981170B (en) * | 2021-02-05 | 2022-04-12 | 宁波金田铜业(集团)股份有限公司 | Chromium-zirconium-copper alloy for cold heading and preparation method thereof |
CN114318049A (en) * | 2021-12-16 | 2022-04-12 | 镇江市镇特合金材料有限公司 | Long-life copper alloy for welding head box body and preparation method thereof |
CN115896535B (en) * | 2022-11-26 | 2023-12-12 | 广州番禺职业技术学院 | Copper incense burner material and preparation method thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58107462A (en) * | 1981-12-21 | 1983-06-27 | Chuetsu Gokin Chuko Kk | Mold material for precipitation hardening type continuous casting |
JPS58212839A (en) * | 1982-06-03 | 1983-12-10 | Mitsubishi Metal Corp | Cu alloy for continuous casting molds |
JPH0987815A (en) * | 1995-09-22 | 1997-03-31 | Mitsubishi Materials Corp | Production of copper alloy mold stock for continuous casting for steelmaking, and mold produced by using the same |
CN102534291A (en) * | 2010-12-09 | 2012-07-04 | 北京有色金属研究总院 | CuCrZr alloy with high strength and high conductivity, and preparation and processing method thereof |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5946699B2 (en) * | 1979-03-27 | 1984-11-14 | 日立造船株式会社 | Mold material for continuous casting equipment |
JPS58107459A (en) * | 1981-12-21 | 1983-06-27 | Chuetsu Gokin Chuko Kk | Mold material for precipitation hardening type continuous casting |
JPS59193233A (en) * | 1983-04-15 | 1984-11-01 | Toshiba Corp | Copper alloy |
JPS6297748A (en) * | 1985-03-25 | 1987-05-07 | Fujikura Ltd | Cast wheel and its production |
JPH05339688A (en) * | 1992-06-05 | 1993-12-21 | Furukawa Electric Co Ltd:The | Production of molding material for casting metal |
CN102165080B (en) * | 2009-01-09 | 2013-08-21 | 三菱伸铜株式会社 | High-strength high-conductivity copper alloy rolled sheet and method for producing same |
EP2610359A4 (en) * | 2010-08-27 | 2017-08-02 | Furukawa Electric Co., Ltd. | Copper alloy sheet and method for producing same |
KR101364542B1 (en) * | 2011-08-11 | 2014-02-18 | 주식회사 풍산 | Copper alloy material for continuous casting mold and process of production same |
-
2015
- 2015-11-09 JP JP2015219852A patent/JP6693092B2/en active Active
-
2016
- 2016-10-11 CN CN201680065499.1A patent/CN108350530A/en active Pending
- 2016-10-11 US US15/771,847 patent/US20190062874A1/en not_active Abandoned
- 2016-10-11 EP EP16863936.7A patent/EP3375898B1/en active Active
- 2016-10-11 KR KR1020187012111A patent/KR20180078245A/en not_active Ceased
- 2016-10-11 WO PCT/JP2016/080125 patent/WO2017081972A1/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58107462A (en) * | 1981-12-21 | 1983-06-27 | Chuetsu Gokin Chuko Kk | Mold material for precipitation hardening type continuous casting |
JPS58212839A (en) * | 1982-06-03 | 1983-12-10 | Mitsubishi Metal Corp | Cu alloy for continuous casting molds |
JPH0987815A (en) * | 1995-09-22 | 1997-03-31 | Mitsubishi Materials Corp | Production of copper alloy mold stock for continuous casting for steelmaking, and mold produced by using the same |
CN102534291A (en) * | 2010-12-09 | 2012-07-04 | 北京有色金属研究总院 | CuCrZr alloy with high strength and high conductivity, and preparation and processing method thereof |
Non-Patent Citations (2)
Title |
---|
KENZO YAMAMOTO ET AL.: "High strength copper mold materials for electro-magnetic stirring and electro-magnetic brake in the mold", CURRENT ADVANCES IN MATERIALS AND PROCESSES, vol. 16, no. 1, 1 March 2003 (2003-03-01), pages 222, XP 009511107 * |
ZHI, XIAOHUI ET AL.: "Effect of zirconium and heat treatment on the microstructure and properties of cast chromium bronze for conductive parts", INTERNATIONAL JOURNAL OF MATERIALS RESEARCH, vol. 106, no. 2, February 2015 (2015-02-01), pages 192 - 194, XP009510788, ISSN: 0044-3093, DOI: 10.3139/146.111164 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3715488A4 (en) * | 2017-11-21 | 2021-03-31 | Mitsubishi Materials Corporation | MOLDED MATERIAL FOR CAST AND COPPER ALLOY MATERIAL |
Also Published As
Publication number | Publication date |
---|---|
EP3375898A1 (en) | 2018-09-19 |
JP2017088949A (en) | 2017-05-25 |
EP3375898A4 (en) | 2019-04-03 |
US20190062874A1 (en) | 2019-02-28 |
JP6693092B2 (en) | 2020-05-13 |
EP3375898B1 (en) | 2022-05-11 |
CN108350530A (en) | 2018-07-31 |
KR20180078245A (en) | 2018-07-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017081972A1 (en) | Copper alloy material | |
WO2020122112A1 (en) | Pure copper plate | |
JP5712585B2 (en) | Copper alloy for electronic equipment, method for producing copper alloy for electronic equipment, and rolled copper alloy material for electronic equipment | |
WO2011142428A1 (en) | Copper alloy for electronic device, method for producing copper alloy for electronic device, and copper alloy rolled material for electronic device | |
JP5668814B1 (en) | Copper alloy for electronic and electrical equipment, copper alloy sheet for electronic and electrical equipment, parts for electronic and electrical equipment, terminals and bus bars | |
WO2021177469A1 (en) | Pure copper plate | |
JP6488951B2 (en) | Mold material for casting and Cu-Cr-Zr alloy material | |
JP4834781B1 (en) | Cu-Co-Si alloy for electronic materials | |
WO2017081969A1 (en) | Copper alloy material | |
CN111212923B (en) | Casting die material and copper alloy material | |
KR102500630B1 (en) | Mold materials for casting and Cu-Cr-Zr-Al alloy materials | |
JP6821290B2 (en) | Cu-Ni-Co-Si alloy for electronic components | |
WO2016047484A1 (en) | CASTING MOLD MATERIAL AND Cu-Cr-Zr ALLOY MATERIAL | |
CN106995890A (en) | Electronic component-use Cu Co Ni Si alloys | |
JP2013117060A (en) | Cu-Co-Si-BASED ALLOY FOR ELECTRONIC MATERIAL | |
JP6830135B2 (en) | Cu-Ni-Co-Si alloy for electronic components | |
JP2016216794A (en) | Copper alloy sheet and manufacturing method of copper alloy sheet | |
JP2019173093A (en) | Copper alloy for electronic and electric device, copper alloy thin sheet for electronic and electric device, conductive component and terminal for electronic and electric device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16863936 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20187012111 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |