[go: up one dir, main page]

JP2002284857A - Epoxy resin molding material and semiconductor device - Google Patents

Epoxy resin molding material and semiconductor device

Info

Publication number
JP2002284857A
JP2002284857A JP2001089076A JP2001089076A JP2002284857A JP 2002284857 A JP2002284857 A JP 2002284857A JP 2001089076 A JP2001089076 A JP 2001089076A JP 2001089076 A JP2001089076 A JP 2001089076A JP 2002284857 A JP2002284857 A JP 2002284857A
Authority
JP
Japan
Prior art keywords
epoxy resin
molding material
resin molding
resistance
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001089076A
Other languages
Japanese (ja)
Inventor
Koji Mori
恒治 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2001089076A priority Critical patent/JP2002284857A/en
Publication of JP2002284857A publication Critical patent/JP2002284857A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an epoxy resin molding material for sealing a semiconductor which has more excellent soldering crack resistance and temperature cycle resistance in their compatibility. SOLUTION: The epoxy resin molding material for sealing a semiconductor comprises an epoxy resin, a phenol resin, an inorganic filler and a curing accelerator, wherein the epoxy resin molding material provides a cured product which has a Charpy impact strength at -65 deg.C (a) and a Charpy impact strength at 260 deg.C (b) to meet an (a)+(b) sum of 5×10<3> N.m/m or more.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体封止用エポ
キシ樹脂成形材料、及びこれを用いた半導体装置に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an epoxy resin molding material for semiconductor encapsulation and a semiconductor device using the same.

【0002】[0002]

【従来の技術】近年、IC、LSI等の半導体素子を、
主にエポキシ樹脂成形材料を用いて封止した半導体装置
は、QFPやTSOP等の表面実装型が主流となってい
る。又、この半導体装置の大型化、チップの大型化、フ
ァインピッチ化が進み、耐半田クラック性に対する要求
も厳しくなってきている。従来のエポキシ樹脂成形材料
は、無機充填材の高充填化による高強度化と低吸水率化
によって耐半田クラック性を改良してきたが、大型の半
導体装置ではパッド下の剥離によるクラックが起こり易
く、又、耐温度サイクル性の低下の問題もある。このよ
うに、従来のエポキシ樹脂成形材料では、特に大型の半
導体装置に対しては、耐半田クラック性と耐温度サイク
ル性の両立が難しかった。
2. Description of the Related Art In recent years, semiconductor devices such as ICs and LSIs have been
Semiconductor devices sealed using an epoxy resin molding material are mainly surface-mounted types such as QFP and TSOP. In addition, as the size of the semiconductor device, the size of the chip, and the pitch become finer, the requirements for solder crack resistance are becoming more stringent. Conventional epoxy resin molding materials have improved solder cracking resistance by increasing the strength and lowering water absorption by increasing the amount of inorganic filler, but cracks tend to occur in large semiconductor devices due to peeling under pads. Also, there is a problem that the temperature cycle resistance is reduced. As described above, with the conventional epoxy resin molding material, it has been difficult to achieve both solder crack resistance and temperature cycle resistance particularly for a large semiconductor device.

【0003】耐半田クラック性を改良するためには、前
述した高強度化と低吸水率化の手法の他に、半導体装置
に用いる各種部材、特にリードフレームに対する密着性
の改良も重要である。リードフレームに対する密着性を
向上するために、リードフレームにディンプルを付けた
り、スリットを入れる方法が提案され、実用化されてい
る。又、シランカップリング剤を使用したり、離型剤で
あるワックスを調整することにより、ある程度は密着性
を向上できる。しかし、耐半田クラック性が剥離の有無
によって評価されるようになってきたため、密着性につ
いて更に厳しい要求が出されるようになり、又、鉛フリ
ー化に伴うリフロー温度の上昇による発生応力の増大に
より、従来からの手法だけでは不十分になってきてい
る。又、耐温度サイクル性を向上するためには、従来か
らシリコーンオイル等を添加したり、シリコーンオイル
とエポキシ樹脂、フェノール樹脂等との反応物を添加し
て低弾性率化を計ってきたが、シリコーンオイルを用い
ると、強度の低下と共に、各種部材との密着性が低下す
るという不具合が発生する。このように耐半田クラック
性と耐温度サイクル性が両立されていないという問題が
ある。
In order to improve the solder crack resistance, it is important to improve the adhesion to various members used in a semiconductor device, especially to a lead frame, in addition to the above-described techniques for increasing the strength and reducing the water absorption. In order to improve the adhesion to the lead frame, a method of dimpleting or slitting the lead frame has been proposed and put to practical use. Further, by using a silane coupling agent or adjusting a wax as a release agent, the adhesion can be improved to some extent. However, since solder cracking resistance has been evaluated based on the presence or absence of peeling, stricter requirements for adhesion have been issued, and the stress generated due to the increase in reflow temperature accompanying lead-free has increased. However, conventional techniques alone are becoming insufficient. In addition, in order to improve the temperature cycle resistance, conventionally, silicone oil or the like has been added, or a reaction product of the silicone oil and an epoxy resin, a phenol resin or the like has been added to reduce the elastic modulus. When a silicone oil is used, there occurs a problem that the strength and the adhesion to various members are reduced. Thus, there is a problem that solder crack resistance and temperature cycle resistance are not compatible.

【0004】[0004]

【発明が解決しようとする課題】本発明は、従来より優
れた耐半田クラック性と、耐温度サイクル性とを両立で
きる半導体封止用エポキシ樹脂成形材料、及びこれを用
いた半導体装置を提供するものである。
SUMMARY OF THE INVENTION The present invention provides an epoxy resin molding compound for semiconductor encapsulation, which can achieve both excellent solder crack resistance and temperature cycle resistance, and a semiconductor device using the same. Things.

【0005】[0005]

【課題を解決するための手段】本発明は、[1](A)
エポキシ樹脂、(B)フェノール樹脂、(C)無機充填
材、及び(D)硬化促進剤を含有してなるエポキシ樹脂
成形材料において、該エポキシ樹脂成形材料の硬化物の
−65℃でのシャルピー衝撃強度(a)と260℃での
シャルピー衝撃強度(b)の和(a)+(b)が5×1
3N・m/m2以上であることを特徴とする半導体封止
用エポキシ樹脂成形材料、[2] 第[1]項記載の半
導体封止用エポキシ樹脂成形材料を用いて半導体素子を
封止してなることを特徴とする半導体装置、である。
Means for Solving the Problems The present invention provides [1] (A)
In an epoxy resin molding material containing an epoxy resin, (B) a phenol resin, (C) an inorganic filler, and (D) a curing accelerator, a Charpy impact of the cured product of the epoxy resin molding material at -65 ° C. The sum (a) + (b) of the strength (a) and the Charpy impact strength at 260 ° C. (b) is 5 × 1
[3] An epoxy resin molding material for semiconductor encapsulation characterized by being at least 0 3 N · m / m 2 , [2] a semiconductor element is encapsulated using the epoxy resin molding material for semiconductor encapsulation according to item [1]. A semiconductor device which is stopped.

【0006】[0006]

【発明の実施の形態】半田処理時、及び温度サイクル時
のクラックの発生を防止する方法としては、エポキシ樹
脂成形材料の硬化物自体に、処理時に発生する応力に耐
えられるような材料強度をもたせる方法と、半導体装置
内部に発生する応力を低減させる方法が考えられる。本
発明者は、特に半田処理時には水蒸気爆発による衝撃的
な応力が発生することから、この材料強度としてシャル
ピー衝撃強度に着目し、耐半田クラック性と耐温度サイ
クル性との相関を評価したところ、該エポキシ樹脂成形
材料の硬化物の−65℃でのシャルピー衝撃強度(a)
と260℃でのシャルピー衝撃強度(b)の和(a)+
(b)が5×103N・m/m2以上になるように調整す
ると、半導体装置の半田処理時に発生するクラック、及
び温度サイクル時に発生するクラックが激減することを
見いだし、本発明をなすに至った。
DESCRIPTION OF THE PREFERRED EMBODIMENTS As a method for preventing the occurrence of cracks during soldering and during temperature cycling, a cured product of an epoxy resin molding material itself has a material strength that can withstand the stress generated during processing. A method and a method of reducing the stress generated inside the semiconductor device can be considered. The present inventor particularly focused on the Charpy impact strength as this material strength because impact stress due to steam explosion is generated particularly during soldering, and evaluated the correlation between solder crack resistance and temperature cycle resistance. Charpy impact strength at -65 ° C of the cured product of the epoxy resin molding material (a)
(A) + of the Charpy impact strength (b) at 260 ° C. and
When (b) is adjusted to be 5 × 10 3 N · m / m 2 or more, it is found that cracks generated during the soldering process of the semiconductor device and cracks generated during the temperature cycle are drastically reduced, and the present invention is achieved. Reached.

【0007】本発明に用いるエポキシ樹脂としては、1
分子中に2個以上のエポキシ基を有するモノマー、オリ
ゴマー、ポリマー全般を言い、特に限定されるものでは
ない。例えば、オルソクレゾールノボラック型エポキシ
樹脂、フェノールノボラック型エポキシ樹脂、ジシクロ
ペンタジエン変性フェノール型エポキシ樹脂、ビスフェ
ノール型エポキシ樹脂、ビフェニル型エポキシ樹脂、ス
チルベン型エポキシ樹脂、ナフトール型エポキシ樹脂、
トリフェノールメタン型エポキシ樹脂、トリアジン核含
有エポキシ樹脂、テルペン変性フェノール型エポキシ樹
脂、フェノールアラルキル型エポキシ樹脂、及びこれら
の変性樹脂等が挙げられ、これらは単独でも2種類以上
併用して用いてもよい。エポキシ樹脂成形材料の耐湿性
向上のためには、塩素イオン、ナトリウムイオン等の不
純物イオンが極力少ないことが望ましい。又、硬化性の
ためには、エポキシ当量150〜300程度が好まし
い。
The epoxy resin used in the present invention includes 1
It refers to all monomers, oligomers and polymers having two or more epoxy groups in the molecule, and is not particularly limited. For example, ortho-cresol novolak epoxy resin, phenol novolak epoxy resin, dicyclopentadiene-modified phenol epoxy resin, bisphenol epoxy resin, biphenyl epoxy resin, stilbene epoxy resin, naphthol epoxy resin,
Triphenolmethane-type epoxy resins, triazine nucleus-containing epoxy resins, terpene-modified phenol-type epoxy resins, phenol-aralkyl-type epoxy resins, and modified resins thereof, and the like, may be used alone or in combination of two or more. . In order to improve the moisture resistance of the epoxy resin molding material, it is desirable that impurity ions such as chlorine ions and sodium ions be as small as possible. For curability, an epoxy equivalent of about 150 to 300 is preferable.

【0008】本発明に用いるフェノール樹脂としては、
1分子中に2個以上のフェノール性水酸基を有するモノ
マー、オリゴマー、ポリマー全般を言い、特に限定され
るものではない。例えば、フェノールノボラック樹脂、
クレゾールノボラック樹脂、ジシクロペンタジエン変性
フェノール樹脂、テルペン変性フェノール樹脂、フェノ
ールアラルキル樹脂、ナフトールアラルキル樹脂、トリ
フェノールメタン樹脂、及びこれらの変性樹脂等が挙げ
られ、これらは単独でも2種類以上併用して用いてもよ
い。エポキシ樹脂成形材料の耐湿性向上のためには、塩
素イオン、ナトリウムイオン等の不純物イオンが極力少
ないことが望ましい。又、硬化性のためには、水酸基当
量80〜250程度が好ましい。
The phenolic resin used in the present invention includes:
It refers to all monomers, oligomers and polymers having two or more phenolic hydroxyl groups in one molecule, and is not particularly limited. For example, phenol novolak resin,
Cresol novolak resin, dicyclopentadiene-modified phenol resin, terpene-modified phenol resin, phenol aralkyl resin, naphthol aralkyl resin, triphenol methane resin, and modified resins thereof, and the like, and these may be used alone or in combination of two or more. You may. In order to improve the moisture resistance of the epoxy resin molding material, it is desirable that impurity ions such as chlorine ions and sodium ions be as small as possible. For curability, the hydroxyl equivalent is preferably about 80 to 250.

【0009】上記エポキシ樹脂とフェノール樹脂との配
合割合は、エポキシ樹脂中のエポキシ基1当量に対して
フェノール樹脂中の水酸基が0.8〜1.2当量となる
ようにすることが好ましい。
It is preferable that the mixing ratio of the epoxy resin and the phenol resin is such that the hydroxyl group in the phenol resin is 0.8 to 1.2 equivalent per 1 equivalent of the epoxy group in the epoxy resin.

【0010】本発明に用いる無機充填材としては、例え
ば、溶融シリカ、球状シリカ、結晶シリカ、2次凝集シ
リカ、多孔質シリカ、2次凝集シリカ又は多孔質シリカ
を粉砕したシリカ、アルミナ等が挙げられ、これらは単
独でも2種類以上併用して用いてもよい。又、粒子の形
状としては、破砕状でも球状でも特に問題ないが、流動
特性、機械強度、及び熱的特性のバランスのとれた球状
の溶融シリカが好適に用いられる。無機充填材の含有量
としては、全エポキシ樹脂成形材料中に75重量%以上
が好ましい。特に好適なのは83重量%以上である。7
5重量%未満だと、諸特性向上の効果が大幅に低下する
傾向が見られる。更に、これらの無機充填材は、カップ
リング剤等で表面処理されていてもよい。
Examples of the inorganic filler used in the present invention include fused silica, spherical silica, crystalline silica, secondary aggregated silica, porous silica, silica obtained by pulverizing secondary aggregated silica or porous silica, and alumina. These may be used alone or in combination of two or more. The shape of the particles may be either crushed or spherical without any particular problem, but spherical fused silica having a good balance of flow characteristics, mechanical strength and thermal characteristics is preferably used. The content of the inorganic filler is preferably 75% by weight or more in all the epoxy resin molding materials. Particularly preferred is 83% by weight or more. 7
If it is less than 5% by weight, the effect of improving various properties tends to be significantly reduced. Further, these inorganic fillers may be surface-treated with a coupling agent or the like.

【0011】本発明に用いる硬化促進剤としては、一般
に封止材料に用いられているものを広く使用できる。代
表的なものとしては、例えば、1,8−ジアザビシクロ
(5,4,0)ウンデセン−7、トリフェニルホスフィ
ン、テトラフェニルホスホニウム・テトラフェニルボレ
ート、テトラフェニルホスホニウム・テトラナフトイッ
クアシッドボレート、ベンジルジメチルアミン、2−メ
チルイミダゾール等が挙げられ、これらは単独でも2種
類以上併用して用いてもよい。これらの硬化促進剤は、
エポキシ樹脂成形材料中にドライブレンドされても、溶
融ブレンドされても、又は両者の併用でも構わない。
As the curing accelerator used in the present invention, those generally used for a sealing material can be widely used. Representative examples include, for example, 1,8-diazabicyclo (5,4,0) undecene-7, triphenylphosphine, tetraphenylphosphonium tetraphenylborate, tetraphenylphosphonium tetranaphthoic acid borate, benzyldimethylamine , 2-methylimidazole and the like, and these may be used alone or in combination of two or more. These curing accelerators are
It may be dry-blended, melt-blended, or a combination of both in the epoxy resin molding material.

【0012】本発明のエポキシ樹脂成形材料は、(A)
〜(D)成分を必須成分とするが、必要に応じてシラン
カップリング剤等のカップリング剤、臭素化エポキシ樹
脂、酸化アンチモン等の難燃剤、カーボンブラック等の
着色剤、天然ワックス、合成ワックス等の離型剤等の種
々の添加剤を適宜配合しても差し支えない。本発明のエ
ポキシ樹脂成形材料は、(A)〜(D)成分、及びその
他の添加剤をミキサー等の混合機を用いて十分に均一に
常温混合した後、更に熱ロール、又はニーダー等で溶融
混練して、冷却後粉砕して得られる。本発明のエポキシ
樹脂成形材料を用いて、半導体素子等の電子部品を封止
し、半導体装置を製造するには、トランスファーモール
ド、コンプレッションモールド、インジェクションモー
ルド等の従来からの成形方法で硬化成形すればよい。特
に、本発明のエポキシ樹脂成形材料は、大型の半導体装
置の封止用に適しており、半導体装置のサイズとして
は、例えば、20mm×20mm以上のもの、更には2
4mm×24mm以上のQFP等に適している。
The epoxy resin molding material of the present invention comprises (A)
To (D) as an essential component, but if necessary, a coupling agent such as a silane coupling agent, a brominated epoxy resin, a flame retardant such as antimony oxide, a coloring agent such as carbon black, a natural wax, and a synthetic wax. Various additives such as a release agent may be appropriately compounded. The epoxy resin molding material of the present invention is prepared by sufficiently mixing the components (A) to (D) and other additives at room temperature with a mixer such as a mixer, and then melting the mixture with a hot roll or a kneader. It is obtained by kneading, cooling and pulverizing. Using the epoxy resin molding material of the present invention to encapsulate electronic components such as semiconductor elements and manufacture semiconductor devices, transfer molding, compression molding, injection molding, and other conventional molding methods can be used to cure and mold. Good. In particular, the epoxy resin molding material of the present invention is suitable for encapsulating large semiconductor devices, and the size of the semiconductor device is, for example, 20 mm × 20 mm or more,
It is suitable for QFP of 4 mm × 24 mm or more.

【0013】本発明のエポキシ樹脂成形材料は、該エポ
キシ樹脂成形材料の硬化物の−65℃でのシャルピー衝
撃強度(a)と260℃でのシャルピー衝撃強度(b)
の和(a)+(b)が5×103N・m/m2以上になる
ように調整する必要がある。その手法としては、特に限
定しないが、例えば、(A)〜(D)の各成分として耐
衝撃強度向上に効果のある特定のタイプのものを使用す
る、又は特定の耐衝撃強度向上に効果のある添加剤等を
使用する、あるいは特定の製造方法で対応する、等が挙
げられる。即ちいずれの手法を用いても、結果的に該エ
ポキシ樹脂成形材料の硬化物の−65℃でのシャルピー
衝撃強度(a)と260℃でのシャルピー衝撃強度
(b)の和(a)+(b)が5×103N・m/m2以上
になるように調整することにより、従来より優れた耐半
田クラック性と耐温度サイクル性とを両立できるエポキ
シ樹脂成形材料及び半導体装置が得られる。−65℃で
のシャルピー衝撃強度(a)と260℃でのシャルピー
衝撃強度(b)の和(a)+(b)が5×103N・m
/m2未満であると、耐半田クラック性あるいは耐温度
サイクル性が低下し、両立しないので好ましくない。本
発明に用いる耐衝撃強度向上に効果のある添加剤として
は、特に限定しないが、例えば、低温での耐温度サイク
ル性の向上のためにはアクリロニトリル−ブタジエン系
共重合体、水添アクリロニトリル−ブタジエン系共重合
体、アクリルゴム、イソプレンゴム、スチレンブタジエ
ンゴム、ブタジエンゴム、シリコーンゴム、フッ素ゴ
ム、スチレンブタジエンブロック共重合体、スチレンイ
ソプレンブロック共重合体等が挙げられ、又、高温での
耐半田クラック性の向上のためにはポリエーテルイミ
ド、ポリエーテルスルホン、ポリフェニレンエーテル、
ポリアリレート等が挙げられる。又、反応性の官能基、
エポキシ樹脂やフェノール樹脂への相溶性を高めるよう
な官能基、側鎖等を有していても構わない。これらは単
独でも2種類以上併用して用いてもよいが、耐温度サイ
クル性と耐半田クラック性の両立のためには、耐温度サ
イクル性向上のための添加剤と、耐半田クラック性向上
のための添加剤とを併用することがより好ましい。含有
量は特に限定しない。又、無機充填材の高充填化は非常
に有効であるが、流動性低下や粘度上昇を伴うため、無
機充填材の粒度分布や樹脂成分の粘度等の調整と共に、
無機充填材と樹脂成分との濡れ性を向上するような製造
方法の工夫が必要である。
The epoxy resin molding material of the present invention has a Charpy impact strength at -65 ° C. (a) and a Charpy impact strength at 260 ° C. (b) of a cured product of the epoxy resin molding material.
It is necessary to make adjustment so that the sum (a) + (b) is 5 × 10 3 N · m / m 2 or more. The method is not particularly limited. For example, a specific type effective for improving the impact resistance is used as each of the components (A) to (D), or a method effective for improving the specific impact resistance is used. The use of a certain additive or the like, or the use of a specific manufacturing method, and the like. That is, whichever method is used, as a result, the sum of the Charpy impact strength (a) at -65 ° C. and the Charpy impact strength (b) at 260 ° C. of the cured product of the epoxy resin molding material (a) + ( By adjusting b) to be 5 × 10 3 N · m / m 2 or more, it is possible to obtain an epoxy resin molding material and a semiconductor device which can achieve both excellent solder crack resistance and temperature cycle resistance, compared to the conventional art. . The sum (a) + (b) of the Charpy impact strength at −65 ° C. (a) and the Charpy impact strength at 260 ° C. (b) is 5 × 10 3 N · m.
If it is less than / m 2 , the resistance to solder cracking or the resistance to temperature cycling will be reduced, and it will not be compatible. The additive effective for improving the impact strength used in the present invention is not particularly limited, but for example, an acrylonitrile-butadiene-based copolymer, hydrogenated acrylonitrile-butadiene for improving the temperature cycle resistance at low temperatures. System copolymer, acrylic rubber, isoprene rubber, styrene butadiene rubber, butadiene rubber, silicone rubber, fluoro rubber, styrene butadiene block copolymer, styrene isoprene block copolymer, etc. Polyetherimide, polyether sulfone, polyphenylene ether,
And polyarylate. Also, reactive functional groups,
It may have a functional group, side chain, or the like that enhances compatibility with an epoxy resin or a phenol resin. These may be used alone or in combination of two or more. However, in order to achieve both temperature cycling resistance and solder cracking resistance, an additive for improving temperature cycling resistance and an additive for improving solder cracking resistance are used. It is more preferable to use together with an additive. The content is not particularly limited. In addition, the high filling of the inorganic filler is very effective, but with a decrease in fluidity and an increase in viscosity, together with the adjustment of the particle size distribution of the inorganic filler and the viscosity of the resin component,
It is necessary to devise a manufacturing method that improves the wettability between the inorganic filler and the resin component.

【0014】[0014]

【実施例】以下、本発明を実施例で具体的に説明する。
配合割合は重量部とする。 実施例1 ビフェニル型エポキシ樹脂(融点105℃、エポキシ当量195) 5.8重量部 フェノールアラルキル樹脂(軟化点80℃、水酸基当量174) 5.2重量部 球状溶融シリカ 83.0重量部 トリフェニルホスフィン 0.2重量部 水添アクリロニトリル−ブタジエン系共重合体 1.5重量部 ポリエーテルイミド 1.5重量部 エポキシシランカップリング剤 0.5重量部 臭素化フェノールノボラック型エポキシ樹脂 1.0重量部 三酸化アンチモン 0.5重量部 カーボンブラック 0.3重量部 カルナバワックス 0.5重量部 をミキサーを用いて常温で混合し、90〜130℃で二
軸ロールを用いて混練して、冷却後粉砕し、エポキシ樹
脂成形材料を得た。得られたエポキシ樹脂成形材料を以
下の方法で評価した。結果を表1に示す。
The present invention will be specifically described below with reference to examples.
The mixing ratio is by weight. Example 1 Biphenyl type epoxy resin (melting point 105 ° C, epoxy equivalent 195) 5.8 parts by weight Phenol aralkyl resin (softening point 80 ° C, hydroxyl equivalent 174) 5.2 parts by weight Spherical fused silica 83.0 parts by weight triphenylphosphine 0.2 parts by weight Hydrogenated acrylonitrile-butadiene copolymer 1.5 parts by weight Polyetherimide 1.5 parts by weight Epoxysilane coupling agent 0.5 parts by weight Brominated phenol novolak type epoxy resin 1.0 parts by weight 0.5 parts by weight of antimony oxide, 0.3 parts by weight of carbon black, 0.5 parts by weight of carnauba wax are mixed at room temperature using a mixer, kneaded at 90 to 130 ° C. using a biaxial roll, cooled and ground. Thus, an epoxy resin molding material was obtained. The obtained epoxy resin molding material was evaluated by the following method. Table 1 shows the results.

【0015】評価方法 シャルピー衝撃強度:JIS K 6911に準拠し、
低圧トランスファー成形機を用いて、成形温度175
℃、圧力7N/mm2、硬化時間120秒でシャルピー
衝撃試験片を成形し、更にポストモールドキュアとし
て、175℃で8時間の処理を行った。得られた試験片
を用いて測定温度−65℃と260℃のシャルピー衝撃
強度をそれぞれ測定し、(a)+(b)を求めた。単位
はN・m/m 2。 耐半田クラック性:低圧トランスファー成形機を用い
て、成形温度175℃、圧力7N/mm2、硬化時間1
20秒で208pQFP(ダミーチップのサイズ9mm
×9mm×厚み350μm、パッケージサイズ28mm
×28mm×厚み3.2mm)を成形し、更にポストモ
ールドキュアとして、175℃で8時間の処理を行った
(サンプル数は12個)。得られたパッケージを85
℃、相対湿度60%の雰囲気中で168時間吸湿後、2
60℃のIRリフロー処理を行った。超音波探傷機を用
いて処理後のパッケージ内部を観察し、チップ表面、又
はパッド裏面の剥離又はクラックがある不良パッケージ
の個数で耐半田クラック性(及び密着性)を判定した。 耐温度サイクル性:低圧トランスファー成形機を用い
て、成形温度175℃、圧力7N/mm2、硬化時間1
20秒で208pQFP(ダミーチップのサイズ9mm
×9mm×厚み350μm、パッケージサイズ28mm
×28mm×厚み3.2mm)を成形し、更にポストモ
ールドキュアとして、175℃で8時間の処理を行った
(サンプル数は12個)。得られたパッケージを30
℃、相対湿度60%の雰囲気中で192時間吸湿後、耐
温度サイクル性試験を−65℃〜150℃で200サイ
クル、500サイクル、1000サイクル行い、サイク
ル毎に剥離又はクラックが発生したパッケージの個数で
耐温度サイクル性を判定した。
Evaluation method Charpy impact strength: based on JIS K 6911,
Using a low pressure transfer molding machine, molding temperature 175
° C, pressure 7N / mmTwoCharpy with a curing time of 120 seconds
The impact test specimen is molded and post-mold cured.
At 175 ° C. for 8 hours. The obtained test piece
Charpy impact at measurement temperature of -65 ° C and 260 ° C using
The strength was measured, and (a) + (b) was determined. unit
Is Nm / m Two. Solder crack resistance: using low-pressure transfer molding machine
Molding temperature 175 ° C, pressure 7N / mmTwo, Curing time 1
208pQFP in 20 seconds (dummy chip size 9mm
× 9mm × thickness 350μm, package size 28mm
× 28mm × 3.2mm thick) and further
8 hours treatment at 175 ° C.
(The number of samples is 12). 85 obtained packages
After absorbing moisture for 168 hours in an atmosphere at 60 ° C. and a relative humidity of 60%, 2
An IR reflow treatment at 60 ° C. was performed. Use ultrasonic flaw detector
And observe the inside of the package after processing.
Is a defective package with peeling or cracks on the back of the pad
The solder crack resistance (and adhesion) was determined by the number of samples. Temperature cycle resistance: Using low pressure transfer molding machine
Molding temperature 175 ° C, pressure 7N / mmTwo, Curing time 1
208pQFP in 20 seconds (dummy chip size 9mm
× 9mm × thickness 350μm, package size 28mm
× 28mm × 3.2mm thick) and further
8 hours treatment at 175 ° C.
(The number of samples is 12). 30 packages obtained
After absorbing moisture for 192 hours in an atmosphere at 60 ° C and a relative humidity of 60%,
Temperature cycle test was performed at -65 ° C to 150 ° C for 200 cycles.
Cycle, 500 cycles, 1000 cycles
The number of packages that have peeled or cracked
The temperature cycle resistance was determined.

【0016】実施例2〜6、比較例1〜4 表1、表2の配合に従い、実施例1と同様にしてエポキ
シ樹脂成形材料を得、実施例1と同様にして評価した。
結果を表1、表2に示す。なお実施例3、実施例4で
は、エポキシ変性シリコーンゴム、及びポリエーテルサ
ルフォンを使用した。又、実施例6では、二軸混練機を
用い120〜130℃で混練した。
Examples 2 to 6, Comparative Examples 1 to 4 Epoxy resin molding materials were obtained in the same manner as in Example 1 according to the formulations in Tables 1 and 2, and evaluated in the same manner as in Example 1.
The results are shown in Tables 1 and 2. In Examples 3 and 4, an epoxy-modified silicone rubber and polyether sulfone were used. In Example 6, kneading was performed at 120 to 130 ° C. using a biaxial kneader.

【表1】 [Table 1]

【0017】[0017]

【表2】 [Table 2]

【0018】[0018]

【発明の効果】本発明に従うと、従来より優れた耐半田
クラック性と、耐温度サイクル性とを両立する、とりわ
け大型の半導体装置に適した半導体封止用エポキシ樹脂
成形材料、及び半導体装置を得ることができる。
According to the present invention, there is provided an epoxy resin molding material for semiconductor encapsulation and a semiconductor device which are both excellent in solder crack resistance and temperature cycling resistance, and which are particularly suitable for large semiconductor devices. Obtainable.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4J002 CC04X CC05X CC07X CD04W CD05W CD06W CD07W CD13W CD20W CE00X DE146 DJ016 EU117 EU137 EW017 EW177 FD016 FD157 GQ05 4J036 AA01 DA02 FA01 FA02 FA05 FB06 FB07 JA07 4M109 AA01 CA21 CA22 EA03 EB03 EB04 EB06 EB08 EB09 EB13 EC03 EC05 EC20  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4J002 CC04X CC05X CC07X CD04W CD05W CD06W CD07W CD13W CD20W CE00X DE146 DJ016 EU117 EU137 EW017 EW177 FD016 FD157 GQ05 4J036 AA01 DA02 FA01 FA02 FA05 FB06 FB07 JA03 4M109 EB07 EB09 EB13 EC03 EC05 EC20

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 (A)エポキシ樹脂、(B)フェノール
樹脂、(C)無機充填材、及び(D)硬化促進剤を含有
してなるエポキシ樹脂成形材料において、該エポキシ樹
脂成形材料の硬化物の−65℃でのシャルピー衝撃強度
(a)と260℃でのシャルピー衝撃強度(b)の和
(a)+(b)が5×103N・m/m2以上であること
を特徴とする半導体封止用エポキシ樹脂成形材料。
1. An epoxy resin molding material comprising (A) an epoxy resin, (B) a phenolic resin, (C) an inorganic filler, and (D) a curing accelerator, wherein the cured product of the epoxy resin molding material is The sum (a) + (b) of the Charpy impact strength at -65 ° C. (a) and the Charpy impact strength at 260 ° C. (b) is 5 × 10 3 N · m / m 2 or more. Epoxy resin molding compound for semiconductor encapsulation.
【請求項2】 請求項1記載の半導体封止用エポキシ樹
脂成形材料を用いて半導体素子を封止してなることを特
徴とする半導体装置。
2. A semiconductor device, wherein a semiconductor element is sealed using the epoxy resin molding material for semiconductor sealing according to claim 1.
JP2001089076A 2001-03-27 2001-03-27 Epoxy resin molding material and semiconductor device Pending JP2002284857A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001089076A JP2002284857A (en) 2001-03-27 2001-03-27 Epoxy resin molding material and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001089076A JP2002284857A (en) 2001-03-27 2001-03-27 Epoxy resin molding material and semiconductor device

Publications (1)

Publication Number Publication Date
JP2002284857A true JP2002284857A (en) 2002-10-03

Family

ID=18944064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001089076A Pending JP2002284857A (en) 2001-03-27 2001-03-27 Epoxy resin molding material and semiconductor device

Country Status (1)

Country Link
JP (1) JP2002284857A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002363258A (en) * 2001-06-04 2002-12-18 Sumitomo Bakelite Co Ltd Epoxy resin molding material and semiconductor device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000230032A (en) * 1998-12-08 2000-08-22 Nitto Denko Corp Thermosetting resin composition and semiconductor device prepared by using same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000230032A (en) * 1998-12-08 2000-08-22 Nitto Denko Corp Thermosetting resin composition and semiconductor device prepared by using same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002363258A (en) * 2001-06-04 2002-12-18 Sumitomo Bakelite Co Ltd Epoxy resin molding material and semiconductor device

Similar Documents

Publication Publication Date Title
JP4692885B2 (en) Epoxy resin composition and semiconductor device
JP2007217469A (en) Sealing epoxy resin composition and semiconductor device sealed therewith
JPH10173103A (en) Epoxy resin compsn. for sealing semiconductor
JP2000169671A (en) Epoxy resin composition and semiconductor device
JP2003105059A (en) Epoxy resin composition and semiconductor device
JPH11140274A (en) Epoxy resin composition and semiconductor device
JP2002284857A (en) Epoxy resin molding material and semiconductor device
JP2001253999A (en) Epoxy resin molding material and semiconductor device
JP4734804B2 (en) Epoxy resin molding material and semiconductor device
JP2000186183A (en) Epoxy resin composition for sealing and semiconductor device
JP3013511B2 (en) Epoxy resin composition for semiconductor encapsulation
JP2003064157A (en) Epoxy resin composition and semiconductor device
JP2002105290A (en) Epoxy resin composition and semiconductor device
JP2000281748A (en) Epoxy resin composition and semiconductor device
JP2004018798A (en) Epoxy resin composition and semiconductor device
JP4687195B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP2003040981A (en) Epoxy resin composition and semiconductor device
JP2006257309A (en) Epoxy resin composition for sealing semiconductor and semiconductor device
JP2002151631A (en) Epoxy resin molding material and semiconductor device
JP2005139260A (en) Epoxy resin composition and semiconductor device
JP2002317102A (en) Epoxy resin composition and semiconductor device
JPH093168A (en) Epoxy resin composition and its production
JP2000226497A (en) Epoxy resin composition and semiconductor device
JP2002128991A (en) Epoxy resin composition and semiconductor device
JP4686935B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080104

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100907