JP2002276442A - Combustion control device for internal combustion engine - Google Patents
Combustion control device for internal combustion engineInfo
- Publication number
- JP2002276442A JP2002276442A JP2001073138A JP2001073138A JP2002276442A JP 2002276442 A JP2002276442 A JP 2002276442A JP 2001073138 A JP2001073138 A JP 2001073138A JP 2001073138 A JP2001073138 A JP 2001073138A JP 2002276442 A JP2002276442 A JP 2002276442A
- Authority
- JP
- Japan
- Prior art keywords
- combustion
- fuel injection
- fuel
- injection
- ignition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000002485 combustion reaction Methods 0.000 title claims abstract description 221
- 239000000446 fuel Substances 0.000 claims abstract description 187
- 238000002347 injection Methods 0.000 claims abstract description 168
- 239000007924 injection Substances 0.000 claims abstract description 168
- 239000000203 mixture Substances 0.000 claims abstract description 24
- 230000000630 rising effect Effects 0.000 claims description 11
- 230000007423 decrease Effects 0.000 claims description 8
- 238000007906 compression Methods 0.000 abstract description 39
- 230000006835 compression Effects 0.000 abstract description 39
- 230000001603 reducing effect Effects 0.000 abstract description 2
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 abstract 3
- 239000010763 heavy fuel oil Substances 0.000 abstract 1
- 239000000243 solution Substances 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 15
- 238000000034 method Methods 0.000 description 14
- 230000008569 process Effects 0.000 description 8
- 230000008859 change Effects 0.000 description 7
- 239000007921 spray Substances 0.000 description 7
- 230000003247 decreasing effect Effects 0.000 description 5
- 230000006866 deterioration Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 3
- 230000020169 heat generation Effects 0.000 description 2
- 238000002407 reforming Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 125000002485 formyl group Chemical class [H]C(*)=O 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 230000036632 reaction speed Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/30—Controlling fuel injection
- F02D41/38—Controlling fuel injection of the high pressure type
- F02D41/40—Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
- F02D41/402—Multiple injections
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D35/00—Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
- F02D35/02—Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
- F02D35/023—Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining the cylinder pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/30—Controlling fuel injection
- F02D41/3011—Controlling fuel injection according to or using specific or several modes of combustion
- F02D41/3017—Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
- F02D41/3035—Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode
- F02D41/3041—Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode with means for triggering compression ignition, e.g. spark plug
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/30—Controlling fuel injection
- F02D41/38—Controlling fuel injection of the high pressure type
- F02D41/40—Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
- F02D41/401—Controlling injection timing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Ignition Installations For Internal Combustion Engines (AREA)
- Electrical Control Of Ignition Timing (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、例えば自動車用ガ
ソリン機関のような4サイクル型の直噴火花点火圧縮自
己着火式内燃機関において、圧縮自己着火燃焼のため
に、複数の燃料噴射と、点火とにより、所望の燃焼時期
を得る内燃機関の燃焼制御装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a four-cycle type direct injection spark ignition compression self-ignition internal combustion engine such as a gasoline engine for automobiles, for example, a plurality of fuel injections and ignition for compression self-ignition combustion. Accordingly, the present invention relates to a combustion control device for an internal combustion engine that obtains a desired combustion timing.
【0002】[0002]
【従来の技術】圧縮自己着火燃焼は、燃焼室の多点で燃
焼が開始されるため、通常の火花点火燃焼(火花によっ
て生起した火炎を燃焼室全体に伝播させる燃焼)に比べ
て、よりリーンな空燃比でも安定燃焼が得られるため、
燃費を向上させることが可能である。また、非常にリー
ンな空燃比の混合気を燃焼させるために燃焼温度が低下
し、NOxの発生量を大幅に低減できるメリットもあ
る。2. Description of the Related Art Compression self-ignition combustion starts at a plurality of points in a combustion chamber, and is therefore leaner than normal spark ignition combustion (combustion in which a flame generated by a spark propagates throughout the combustion chamber). Because stable combustion can be obtained even at a low air-fuel ratio,
It is possible to improve fuel efficiency. In addition, there is also an advantage that the combustion temperature is lowered because the air-fuel mixture having a very lean air-fuel ratio is burned, and the generation amount of NOx can be greatly reduced.
【0003】しかしながら、従来の圧縮自己着火燃焼で
は、ピストンの圧縮による温度と圧力の変化に応じて進
行する燃料の予反応速度に燃焼開始時期(自己着火時
期)が支配されていたため、外部環境状態(吸入する空
気の温度や圧力)の変化やシリンダ壁温、EGR量等の
変化によって圧縮行程中の温度・圧力履歴が変化する
と、過早着火による急激な筒内圧力上昇や着火時期の遅
れによる不安定燃焼が発生するという問題があった。However, in the conventional compression self-ignition combustion, the combustion start timing (self-ignition timing) is dominated by the pre-reaction speed of the fuel which progresses according to the change in temperature and pressure due to the compression of the piston. If the temperature / pressure history during the compression stroke changes due to a change in (temperature or pressure of the intake air), a change in the cylinder wall temperature, an EGR amount, or the like, a sudden increase in in-cylinder pressure due to premature ignition or a delay in ignition timing There is a problem that unstable combustion occurs.
【0004】このような問題を解決する技術としては、
特開平10−196424号公報に開示されたものがあ
る。この技術では、ピストンの圧縮作用だけでは圧縮上
死点までの間に自己着火が発生しないようにしておき、
圧縮上死点付近で付加的な温度上昇を与えて自己着火を
発生させるようにしている。この従来技術によれば、圧
縮行程中の温度・圧力履歴が多少変化しても、任意の時
期に自己着火を発生させることが可能となる。[0004] Techniques for solving such problems include:
There is one disclosed in JP-A-10-196424. In this technology, it is ensured that self-ignition does not occur until the top dead center of compression only by the compression action of the piston,
An additional temperature rise is applied near the compression top dead center to generate auto-ignition. According to this conventional technique, even if the temperature / pressure history during the compression stroke slightly changes, self-ignition can be generated at any time.
【0005】上記の技術を具体的に実施可能とする方法
としては、特開平11−210539号公報に開示され
たものがあり、既存の点火プラグを用いて付加的な温度
上昇を与えるようにしている。すなわち、この技術で
は、EGR量、吸気弁の開弁時期、圧縮比、過給圧、排
気弁の開弁時期のいずれかを調整して、圧縮行程末期に
おける筒内温度を目標温度範囲内に制御し、筒内温度が
目標温度範囲内となったときに火花点火を実行して筒内
温度を付加的に上昇させ、これにより残りの燃料を自己
着火させるようにしている。[0005] As a method for making the above technique concretely practicable, there is a method disclosed in Japanese Patent Application Laid-Open No. H11-210539, in which an existing spark plug is used to provide an additional temperature rise. I have. That is, according to this technique, one of the EGR amount, the opening timing of the intake valve, the compression ratio, the supercharging pressure, and the opening timing of the exhaust valve is adjusted so that the in-cylinder temperature at the end of the compression stroke falls within the target temperature range. Under the control, when the in-cylinder temperature falls within the target temperature range, spark ignition is executed to additionally increase the in-cylinder temperature, whereby the remaining fuel is self-ignited.
【0006】[0006]
【発明が解決しようとする課題】しかしながら、筒内の
空燃比を大幅にリーン化した場合、火花点火で生じた火
炎が伝播する範囲は非常に狭くなり、付加的に与えるこ
とができる温度上昇幅が小さくなる。この場合、圧縮行
程中の温度・圧力履歴の変化に対する許容幅が小さくな
り、着火時期の制御が難しくなる。一方、リーンの度合
いを小さくした場合、火炎伝播燃焼の範囲を拡大するこ
とは可能となるが、NOx低減効果は減少することとな
る。However, if the air-fuel ratio in the cylinder is made significantly lean, the range in which the flame generated by spark ignition propagates becomes very narrow, and the temperature rise that can be additionally provided is increased. Becomes smaller. In this case, the allowable range for the change in the temperature / pressure history during the compression stroke becomes small, and it becomes difficult to control the ignition timing. On the other hand, when the degree of lean is reduced, the range of flame propagation combustion can be expanded, but the NOx reduction effect decreases.
【0007】尚、前記特開平11−210539号公報
には筒内の混合気を成層化することも記載されており、
筒内全体の空燃比を大幅にリーン化しつつ点火プラグ近
傍に比較的リッチな混合気層を形成することができれ
ば、火花点火による付加的な温度上昇幅の確保とNOx
低減効果の確保とを両立させることが可能であると考え
られる。[0007] Japanese Patent Application Laid-Open No. H11-210539 also describes that a mixture in a cylinder is stratified.
If a relatively rich air-fuel mixture layer can be formed near the spark plug while greatly reducing the air-fuel ratio in the entire cylinder, it is possible to secure an additional temperature rise width by spark ignition and to increase NOx.
It is considered that it is possible to achieve both the reduction effect and the reduction effect.
【0008】しかしながら、このような成層状態を実現
するには複雑な燃焼室形状が必要となり、通常の火花点
火燃焼を行う高負荷運転時の出力性能を悪化させる要因
となる。本発明は、かかる課題に鑑みたもので、複雑な
燃焼室形状を採用することなしに、自己着火燃焼による
NOx低減効果を確保しつつ、自己着火時期の制御を確
実に行うことができるようにすることを目的とする。However, in order to realize such a stratified state, a complicated combustion chamber shape is required, which becomes a factor of deteriorating the output performance at the time of high load operation in which ordinary spark ignition combustion is performed. The present invention has been made in view of such a problem, and it is possible to reliably control the self-ignition timing while securing a NOx reduction effect by self-ignition combustion without adopting a complicated combustion chamber shape. The purpose is to do.
【0009】[0009]
【課題を解決するための手段】請求項1の発明では、前
記課題を解決するために、燃焼室内に直接燃料を噴射す
る燃料噴射装置と、点火プラグとを備え、燃焼室内に形
成した混合気を自己着火により燃焼させる内燃機関の燃
焼制御装置において、圧縮行程前半までの期間に第1の
燃料噴射を行い、この燃料噴射で形成した混合気に対し
火花点火を行い、その後に第2の燃料噴射を行ってこの
噴射燃料を燃焼させ、この燃焼による燃焼室内の温度圧
力上昇により残りの燃料を自己着火させることを特徴と
する。According to a first aspect of the present invention, there is provided an air-fuel mixture comprising a fuel injection device for directly injecting fuel into a combustion chamber, and a spark plug. In a combustion control device for an internal combustion engine that burns by self-ignition, a first fuel injection is performed during a period up to the first half of a compression stroke, and a fuel-air mixture formed by the fuel injection is spark-ignited. Injection is performed to burn the injected fuel, and the remaining fuel is self-ignited by a rise in temperature and pressure in the combustion chamber due to the combustion.
【0010】請求項2の発明では、前記火花点火によっ
て生じる燃焼における燃焼圧力の立ち上がり速度を検出
する手段と、前記燃焼圧力の立ち上がり速度に応じて、
前記第2の燃料噴射の噴射時期を制御する手段と、を備
えることを特徴とする。請求項3の発明では、特に請求
項2の発明において、前記第2の燃料噴射の噴射時期を
制御する手段は、前記燃焼圧力の立ち上がり速度が設定
値より速い場合に、前記第2の燃料噴射の噴射時期を遅
角し、前記燃焼圧力の立ち上がり速度が設定値より遅い
場合に、前記第2の燃料噴射の噴射時期を進角すること
を特徴とする。According to the invention of claim 2, means for detecting a rising speed of a combustion pressure in the combustion caused by the spark ignition, and
Means for controlling the injection timing of the second fuel injection. According to a third aspect of the present invention, in particular, in the second aspect of the present invention, the means for controlling the injection timing of the second fuel injection is provided when the rising speed of the combustion pressure is faster than a set value. The injection timing of the second fuel injection is advanced when the rising speed of the combustion pressure is slower than a set value.
【0011】請求項4の発明では、ノッキングの有無を
判定する手段と、ノッキングの有無に応じ、少なくとも
ノッキング有りと判定した場合に遅角するよう、前記第
2の燃料噴射の噴射時期を制御する手段と、を備えるこ
とを特徴とする。請求項5の発明では、燃焼安定性を判
定する手段と、燃焼安定性に応じ、少なくとも燃焼不安
定と判定した場合に進角するよう、前記第2の燃料噴射
の噴射時期を制御する手段と、を備えることを特徴とす
る。According to a fourth aspect of the present invention, means for determining the presence or absence of knocking and controlling the injection timing of the second fuel injection according to the presence or absence of knocking so as to delay at least when it is determined that knocking is present. Means. In the invention of claim 5, means for determining combustion stability, and means for controlling the injection timing of the second fuel injection so as to advance according to the combustion stability at least when it is determined that combustion is unstable. , Is provided.
【0012】請求項6の発明では、前記第2の燃料噴射
の噴射量は、高回転、高負荷になるにつれて増量するこ
とを特徴とする。請求項7の発明では、前記第1の燃料
噴射の噴射時期は、低負荷、高回転になるにつれて遅角
することを特徴とする。請求項8の発明では、前記火花
点火の点火時期は、高回転、高負荷になるにつれて遅角
することを特徴とする。According to a sixth aspect of the present invention, the injection amount of the second fuel injection increases as the rotation speed and the load increase. The invention of claim 7 is characterized in that the injection timing of the first fuel injection is retarded as the load decreases and the rotation speed increases. The invention of claim 8 is characterized in that the ignition timing of the spark ignition is retarded as the rotation speed and the load increase.
【0013】請求項9の発明では、前記第2の燃料噴射
の噴射時期は、高回転、高負荷になるにつれて遅角する
よう予め設定されていることを特徴とする。According to a ninth aspect of the present invention, the injection timing of the second fuel injection is set in advance so as to be retarded as the rotation speed and the load become higher.
【0014】[0014]
【発明の効果】請求項1の発明によれば、次のようなプ
ロセスで燃焼が行われる。 (1)第1の燃料噴射で形成した混合気に対し火花点火
を行うと、点火プラグ近傍の燃料は点火のエネルギーに
よって部分酸化され、アルデヒド等の活性種に改質され
る。点火のエネルギーが大きい場合は部分酸化反応を経
て燃焼にまで至り、点火プラグ近傍の領域のガス温度が
高温となる。According to the first aspect of the present invention, combustion is performed in the following process. (1) When spark-ignition is performed on the air-fuel mixture formed by the first fuel injection, the fuel near the spark plug is partially oxidized by the energy of the ignition and reformed into active species such as aldehyde. When the energy of ignition is large, combustion proceeds through a partial oxidation reaction, and the gas temperature in the region near the ignition plug becomes high.
【0015】(2)このようなときに第2の燃料噴射を
行うと、この噴射燃料が周囲の混合気より先に燃焼を開
始する。これは、火花点火によって生じた活性種や火花
点火後の燃焼によって生じた高温のガスが着火源となっ
て噴射燃料の一部が着火し、燃料密度が高い噴霧領域全
体にこの火炎が伝播するためと考えられる。 (3)この燃焼によって燃焼室内の温度と圧力が上昇
し、残りの燃料が自己着火燃焼する。(2) At this time, when the second fuel injection is performed, the injected fuel starts burning before the surrounding air-fuel mixture. This is because the active species generated by spark ignition and the high-temperature gas generated by combustion after spark ignition become the ignition source, igniting part of the injected fuel, and this flame propagates throughout the spray area where the fuel density is high. It is thought to be. (3) The temperature and pressure in the combustion chamber increase due to this combustion, and the remaining fuel self-ignites and burns.
【0016】以上のような燃焼プロセスによれば、自己
着火燃焼を制御するのに必要十分な量の燃料(第2の燃
料噴射による燃料)を確実に燃焼させることができる。
しかも、第2の燃料噴射による燃料を点火プラグ近傍に
集中させなくてもこの噴射燃料は確実に燃焼するので、
複雑な燃焼室形状を採用する必要がない。尚、本明細書
では、第1の燃料噴射で形成した混合気が火花点火によ
って燃焼(部分酸化反応を含む)する燃焼を1段目の燃
焼と呼び、その後に発生する燃焼(第2の燃料噴射によ
る噴射燃料の燃焼と残りの燃料の自己着火燃焼)を2段
目の燃焼と呼ぶ。According to the above-described combustion process, a sufficient amount of fuel (fuel by the second fuel injection) necessary for controlling self-ignition combustion can be reliably burned.
Moreover, since the fuel injected by the second fuel injection surely burns without being concentrated near the spark plug,
There is no need to employ a complicated combustion chamber shape. In the present specification, combustion in which the air-fuel mixture formed by the first fuel injection burns (including a partial oxidation reaction) by spark ignition is referred to as first-stage combustion, and combustion (second fuel) generated thereafter is performed. The combustion of the injected fuel by injection and the self-ignition combustion of the remaining fuel) are referred to as second stage combustion.
【0017】請求項2の発明によれば、火花点火によっ
て混合気の一部を積極的に燃焼させる場合に、この燃焼
における燃焼圧力の立ち上がり速度を検出し、これに応
じて、第2の燃料噴射の噴射時期を制御することで、熱
発生率を好適に制御可能となる。特に請求項3の発明の
ように、前記燃焼圧力の立ち上がり速度が設定値より速
い場合に、第2の燃料噴射の噴射時期を遅らせること
で、その後の自己着火燃焼を遅らせ、ノッキングを防ぐ
ことができ、逆に、前記燃焼圧力の立ち上がり速度が設
定値より遅い場合に、第2の燃料噴射の噴射時期を進め
ることで、その後の自己着火燃焼を早め、失火及び燃焼
不安定を防ぐことができる。According to the second aspect of the present invention, when a part of the air-fuel mixture is actively burned by spark ignition, the rising speed of the combustion pressure in this combustion is detected, and the second fuel By controlling the injection timing of the injection, the heat generation rate can be suitably controlled. In particular, when the rising speed of the combustion pressure is higher than a set value as in the invention of claim 3, by delaying the injection timing of the second fuel injection, it is possible to delay the subsequent self-ignition combustion and prevent knocking. Conversely, when the rising speed of the combustion pressure is lower than the set value, by advancing the injection timing of the second fuel injection, the subsequent self-ignition combustion can be accelerated, and misfire and combustion instability can be prevented. .
【0018】請求項4の発明によれば、ノッキングを検
出した場合に、第2の燃料噴射の噴射時期を遅角するよ
う制御することで、ノッキングを確実に防止することが
できる。請求項5の発明によれば、燃焼不安定を検出し
た場合に、第2の燃料噴射の噴射時期を進角するよう制
御することで、燃焼安定性の悪化を確実に防止すること
ができる。According to the fourth aspect of the present invention, when knocking is detected, knocking can be reliably prevented by controlling the injection timing of the second fuel injection to be retarded. According to the fifth aspect of the invention, when the combustion instability is detected, the injection timing of the second fuel injection is controlled to be advanced, so that the deterioration of the combustion stability can be reliably prevented.
【0019】請求項6の発明によれば、高回転、高負荷
時に、ノッキングを防ぐために点火時期を遅らせても、
第2の燃料噴射の噴射量を増加させることで、その後の
自己着火を起こすことができる。これにより、圧縮自己
着火燃焼運転領域を高回転、高負荷域まで広げることが
できる。請求項7の発明によれば、低負荷、高回転にな
るにつれて、第1の燃料噴射の噴射時期を遅角させ、点
火プラグ廻りに燃料を集中させることで、低負荷時に混
合気濃度が低くなりすぎ、点火不能になることを防止で
きる。According to the sixth aspect of the present invention, even when the ignition timing is delayed to prevent knocking during high rotation and high load,
By increasing the injection amount of the second fuel injection, subsequent self-ignition can be caused. As a result, the compression self-ignition combustion operation region can be extended to a high rotation and high load region. According to the invention of claim 7, as the load becomes lower and the engine speed becomes higher, the injection timing of the first fuel injection is retarded, and the fuel is concentrated around the ignition plug, so that the mixture concentration becomes lower at the time of a lower load. It becomes possible to prevent the ignition from becoming excessive and becoming impossible.
【0020】請求項8の発明によれば、点火時期を、高
回転、高負荷になるにつれて遅角することで、火花点火
による燃焼が急激になるのを防止し、ノッキングの発生
を防止できる。請求項9の発明によれば、第2の燃料噴
射の噴射時期を、高回転、高負荷になるにつれて遅角す
るよう予め設定することで、その後の自己着火が急激な
燃焼になって、ノッキングが発生するのを防止できる。According to the eighth aspect of the invention, the ignition timing is retarded as the rotation speed and the load become higher, so that the combustion due to the spark ignition can be prevented from sharpening and the occurrence of knocking can be prevented. According to the ninth aspect of the invention, the injection timing of the second fuel injection is preset so as to be retarded as the rotation speed and the load become higher, so that the subsequent self-ignition becomes rapid combustion and knocking occurs. Can be prevented from occurring.
【0021】[0021]
【発明の実施の形態】以下に本発明を直噴火花点火圧縮
自己着火式内燃機関である4サイクル型の自動車用ガソ
リン機関に適用した実施形態を図面に基づいて説明す
る。図1は本発明に係る直噴火花点火圧縮自己着火式内
燃機関の実施形態を示すシステム図である。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which the present invention is applied to a four-cycle automobile gasoline engine which is a direct injection spark ignition compression self-ignition internal combustion engine will be described below with reference to the drawings. FIG. 1 is a system diagram showing an embodiment of a direct injection spark ignition compression self-ignition internal combustion engine according to the present invention.
【0022】シリンダ1、シリンダヘッド2及びピスト
ン3により画成される燃焼室4には、図示しないスロッ
トル弁の制御を受けた空気が、吸気通路を構成する吸気
マニフォルド5及び吸気ポート6より、吸気弁7の開時
に吸入される。シリンダヘッド2には、燃焼室4の吸気
側に位置させて、燃焼室4内に直接燃料を噴射するよう
に燃料噴射装置(燃料噴射弁)8が取付けられると共
に、燃焼室4の中心部に位置させて、火花点火用の点火
プラグ9が取付けられている。In a combustion chamber 4 defined by the cylinder 1, the cylinder head 2 and the piston 3, air controlled by a throttle valve (not shown) is supplied from an intake manifold 5 and an intake port 6 constituting an intake passage. It is sucked when the valve 7 is opened. A fuel injection device (fuel injection valve) 8 is attached to the cylinder head 2 so as to be positioned on the intake side of the combustion chamber 4 and injects fuel directly into the combustion chamber 4. A spark plug 9 for spark ignition is mounted in a position.
【0023】燃焼後の排気は、排気弁10の開時に、排
気通路を構成する排気ポート11及び排気マニフォルド
12より排出される。また、排気マニフォルド12より
排気の一部を吸気マニフォルド5に還流するEGR通路
13が設けられ、このEGR通路13にはEGR量(E
GR率)を調整可能なEGR制御弁14が介装されてい
る。The exhaust gas after combustion is exhausted from an exhaust port 11 and an exhaust manifold 12 constituting an exhaust passage when the exhaust valve 10 is opened. An EGR passage 13 is provided for returning a part of the exhaust gas from the exhaust manifold 12 to the intake manifold 5, and the EGR passage 13 has an EGR amount (E
An EGR control valve 14 capable of adjusting the GR rate is interposed.
【0024】機関制御用の電子制御装置(エンジンコン
トロールユニット;以下ECUという)20は、マイク
ロコンピュータを内蔵しており、これには、クランク角
センサ31からのクランク角信号(これにより機関回転
速度Nを検出可能)、アクセル開度センサ32からのア
クセル開度信号(これにより機関負荷Tを検出可能)が
入力され、また必要により、エアフローメータ(図示せ
ず)からの吸入空気量信号、吸気温度センサ(図示せ
ず)からの吸気温度信号、排気温度センサ(図示せず)
からの排気温度信号等も入力されている。An electronic control unit (engine control unit; hereinafter referred to as an ECU) 20 for controlling the engine has a microcomputer built therein, which includes a crank angle signal from a crank angle sensor 31 (the engine rotation speed N). Is detected), an accelerator opening signal from the accelerator opening sensor 32 (the engine load T can be detected thereby) is input, and if necessary, an intake air amount signal from an air flow meter (not shown), an intake air temperature Intake temperature signal from sensor (not shown), exhaust temperature sensor (not shown)
An exhaust temperature signal from the controller is also input.
【0025】更には、筒内圧力(燃焼圧力)又はノッキ
ングの検出のため、例えば点火プラグ9に対し座金状に
取付けられる圧電式の筒内圧センサ33が設けられ、そ
の信号もECU20に入力されている。ECU20は、
これらの入力信号に基づいて、燃料噴射装置8、点火プ
ラグ9、EGR制御弁14の作動を制御する。Further, for detecting the in-cylinder pressure (combustion pressure) or knocking, for example, a piezoelectric in-cylinder pressure sensor 33 attached in a washer shape to the spark plug 9 is provided, and its signal is also input to the ECU 20. I have. The ECU 20
The operation of the fuel injection device 8, the spark plug 9, and the operation of the EGR control valve 14 are controlled based on these input signals.
【0026】特に、この内燃機関では、運転条件に応じ
た燃焼制御を行うため、ECU20は、運転条件に応じ
て火花点火燃焼と圧縮自己着火燃焼(火花点火圧縮自己
着火燃焼)とのいずれの燃焼形態で運転を行うかを判断
する燃焼形態判断部21を備えると共に、その判定結果
に従って燃焼パラメータを各燃焼形態にて最適となるよ
うに制御する燃料噴射量制御部22、燃料噴射時期制御
部23、点火時期制御部24、筒内温度制御のためのE
GR率制御部25を備えている。但し、これらはマイク
ロコンピュータのプログラムとして実現される。In particular, in this internal combustion engine, in order to perform combustion control according to the operating conditions, the ECU 20 determines which of the combustion of the spark ignition combustion and the compression self-ignition combustion (spark ignition compression self-ignition combustion) according to the operating conditions. And a fuel injection amount control unit 22 and a fuel injection timing control unit 23 that control a combustion parameter to be optimal for each combustion mode according to the determination result. , Ignition timing control unit 24, E for controlling in-cylinder temperature
A GR rate control unit 25 is provided. However, these are realized as microcomputer programs.
【0027】次に、本実施形態での燃焼制御について説
明する。前記構成のもと、本実施形態では、機関回転速
度、負荷の運転条件に応じて、火花点火燃焼と圧縮自己
着火燃焼とを切換可能となっており、図2に示すよう
に、機関回転速度Nと負荷Tとによる特定の運転領域
(低中回転・低中負荷領域)において圧縮自己着火燃焼
を行い、それ以外の運転領域においては火花点火燃焼を
行う。Next, the combustion control in this embodiment will be described. Under the above configuration, in the present embodiment, it is possible to switch between spark ignition combustion and compression self-ignition combustion in accordance with the engine speed and the operating conditions of the load. As shown in FIG. Compression self-ignition combustion is performed in a specific operation region (low-medium rotation / low-medium load region) based on N and load T, and spark ignition combustion is performed in other operation regions.
【0028】圧縮自己着火燃焼においては、圧縮行程前
半までの期間に第1の燃料噴射を行い、この燃料噴射で
形成した混合気に対し火花点火することで1段目の燃焼
を行い、その後に第2の燃料噴射を行ってこの噴射燃料
を燃焼(2段目の燃焼)させ、この燃焼による燃焼室内
の温度圧力上昇により残りの燃料を自己着火燃焼(2段
目の燃焼)させる。In the compression self-ignition combustion, the first fuel injection is performed in a period up to the first half of the compression stroke, and the first-stage combustion is performed by spark-igniting the air-fuel mixture formed by the fuel injection. The second fuel injection is performed to burn the injected fuel (second stage combustion), and the remaining fuel is caused to self-ignite combustion (second stage combustion) by the rise in temperature and pressure in the combustion chamber due to this combustion.
【0029】図3には圧縮自己着火燃焼時のクランク角
度に対する筒内圧力の変化の例を示している。図中の1
回目の筒内圧ピークが1段目の燃焼に対応し、2回目の
筒内圧ピークが2段目の燃焼に対応する。圧縮自己着火
燃焼においては、図4に示すように、圧力上昇率とノッ
キング強度とには相関があり、圧力上昇率が大きくなる
とノッキング強度が強くなることが明らかとなってい
る。尚、図中の圧力上昇率dP/dtmax は1サイクル
中の最大圧力上昇率である。FIG. 3 shows an example of the change of the in-cylinder pressure with respect to the crank angle at the time of the compression self-ignition combustion. 1 in the figure
The second cylinder pressure peak corresponds to the first stage combustion, and the second cylinder pressure peak corresponds to the second stage combustion. In compression self-ignition combustion, as shown in FIG. 4, there is a correlation between the pressure rise rate and the knocking strength, and it is clear that the knocking strength increases as the pressure rise rate increases. The pressure rise rate dP / dtmax in the figure is the maximum pressure rise rate in one cycle.
【0030】また、図5に示すように、燃焼期間の増大
に伴い、燃焼期間中にピストンが下降することにより燃
焼が不完全となり、燃焼効率(投入した燃料の発熱量に
対する、実際に燃焼した燃料の発熱量の比)が低下する
ことが明らかとなっている。尚、図中の燃焼期間θ10−
90は、燃焼室内に噴射された燃料の10%が燃焼したク
ランク角度から同燃料の90%が燃焼したクランク角度
までの期間であり、燃焼期間を表す1パラメータであ
る。Further, as shown in FIG. 5, with the increase in the combustion period, the piston is lowered during the combustion period, so that the combustion becomes incomplete and the combustion efficiency (the actual combustion with respect to the calorific value of the injected fuel). It is clear that the ratio of the calorific value of the fuel decreases. The combustion period θ10−
90 is a period from the crank angle at which 10% of the fuel injected into the combustion chamber is burned to the crank angle at which 90% of the fuel is burned, and is one parameter representing the combustion period.
【0031】従って、燃焼効率を低下させないために一
定クランク角以内で燃焼を完了させる場合に、燃焼が行
われる実時間が減少し単位時間当たりの圧力上昇率が増
加する高回転時、及び総発熱量が増加し単位時間当たり
の圧力上昇率が増加する高負荷時ほど、ノッキングが起
こり易く、圧縮自己着火運転領域の拡大を困難としてい
る。Therefore, when the combustion is completed within a certain crank angle so as not to lower the combustion efficiency, the real time during which the combustion is performed is reduced and the rate of pressure rise per unit time is increased. As the load increases and the rate of pressure rise per unit time increases, the higher the load, the more likely knocking occurs, making it difficult to expand the compression self-ignition operation region.
【0032】図6には機関回転速度N及び負荷Tと燃焼
時期θ50とに対する圧力上昇率dP/dtmax の関係を
示している。θ50は燃焼室内に噴射された燃料の50%
が燃焼したクランク角度であり、燃焼時期を表す1パラ
メータである。この図からわかるように、同じ回転速度
あるいは同じ負荷であれば、燃焼時期を上死点から遅角
するほど、圧力上昇率は低下する。これはピストンが下
降する時に燃焼が行われるため、ピストン下降による圧
力の低下によって燃焼時の圧力上昇率が抑えられるから
である。FIG. 6 shows the relationship between the pressure increase rate dP / dtmax with respect to the engine speed N, the load T, and the combustion timing θ50. θ50 is 50% of the fuel injected into the combustion chamber
Is the crank angle at which combustion has taken place, and is one parameter representing the combustion timing. As can be seen from this figure, with the same rotational speed or the same load, the more the combustion timing is retarded from the top dead center, the lower the pressure rise rate. This is because the combustion is performed when the piston descends, and the pressure rise rate during combustion is suppressed by the decrease in pressure due to the piston descending.
【0033】従って、燃焼室内に噴射された燃料の50
%が燃焼したクランク角度で表す燃焼時期θ50を上死点
後とし、図7に示すように、機関回転速度Nの上昇ある
いは負荷Tの上昇に伴い、更に遅らせるよう制御するこ
とで、ノッキングを防止でき、その結果、圧縮自己着火
燃焼運転領域の拡大が可能となる。そのため、機関の運
転条件に応じて、適切な燃焼時期(2段目の燃焼の開始
時期)が得られるように、第1の燃料噴射時期、第2の
燃料噴射時期、1段目の燃焼を開始する点火時期、第1
の燃料噴射と第2の燃料噴射との噴射量割合(全噴射量
に対する第2の噴射量割合)、EGR率などを制御する
が、特に本発明では、次のような燃焼プロセスで燃焼を
行わせる。Therefore, 50 of the fuel injected into the combustion chamber
The combustion timing θ50 represented by the crank angle at which% is burned is assumed to be after the top dead center, and as shown in FIG. 7, knocking is prevented by controlling so as to further delay the engine speed N or the load T as the engine speed N increases. As a result, the compression auto-ignition combustion operation range can be expanded. Therefore, the first fuel injection timing, the second fuel injection timing, and the first-stage combustion are set so that an appropriate combustion timing (start timing of the second-stage combustion) is obtained according to the operating conditions of the engine. Ignition timing to start, first
Control of the injection amount ratio of the second fuel injection to the second fuel injection (the second injection amount ratio with respect to the total injection amount), the EGR rate, and the like. In particular, in the present invention, combustion is performed in the following combustion process. Let
【0034】図8に本発明での燃焼プロセスを示す。本
発明では、第1の燃料噴射により形成された混合気に対
して火花点火を行うことで1段目の燃焼を行い、その
後、第2の燃料噴射を行うことで、2段目の燃焼を制御
する。図中aの時点で、燃料噴射装置8により第1の燃
料噴射を行う。これにより、燃料と空気とを十分に混合
させ、筒内全域にほぼ均質な混合気を形成する。FIG. 8 shows a combustion process according to the present invention. In the present invention, the first-stage combustion is performed by performing spark ignition on the air-fuel mixture formed by the first fuel injection, and then the second-stage combustion is performed by performing the second fuel injection. Control. At the time point a in the figure, the first fuel injection is performed by the fuel injection device 8. As a result, the fuel and the air are sufficiently mixed, and a substantially homogeneous air-fuel mixture is formed in the entire region in the cylinder.
【0035】図中bの時点で、この混合気に対して、点
火プラグ9により火花点火を行う。これにより、点火プ
ラグ9近傍の燃料が燃焼する(1段目の燃焼)。火炎が
伝播した領域は高温となり、かつ、周囲の温度、圧力も
上昇する。図中cの時点で、燃料噴射装置8により第2
の燃料噴射を行う。これにより、噴霧領域内の燃料が燃
焼する。この燃焼が生じるのは、噴霧領域内は燃料密度
が高くなっているため、この噴霧領域が火花点火によっ
て形成された高温領域に達すると部分的に着火し、この
火炎が噴霧領域全体に伝播するためであると考えられ
る。この場合、噴霧が点火プラグ9の近傍を通過するよ
うになっているだけで十分であり、点火プラグ9の近傍
に燃料を集中させる必要はない。この燃焼によって周囲
の温度、圧力がさらに上昇し、残りの燃料が自己着火し
て、燃焼する(2段目の燃焼)。At the time point b in the figure, spark ignition is performed on the air-fuel mixture by the spark plug 9. Thereby, the fuel near the ignition plug 9 burns (first stage combustion). The area where the flame has propagated becomes hot, and the surrounding temperature and pressure also increase. At the time point c in the figure, the fuel injection device 8
Fuel injection. Thereby, the fuel in the spray region burns. This combustion occurs because the fuel density is high in the spray area, so that when the spray area reaches the high temperature area formed by spark ignition, it partially ignites, and this flame propagates throughout the spray area. It is thought that it is. In this case, it is sufficient that the spray passes near the spark plug 9, and it is not necessary to concentrate the fuel near the spark plug 9. This combustion further increases the surrounding temperature and pressure, and the remaining fuel self-ignites and burns (second stage combustion).
【0036】このように、2段目の燃焼は、第2の燃料
噴射による燃料噴霧の火炎伝播燃焼と、第1の燃料噴射
により形成された混合気中の残りの燃料の自己着火燃焼
と、によりなされる。以上に基づいて行われる本発明で
の燃焼制御の流れをフローチャートにより説明する。As described above, the second-stage combustion includes the flame-propagation combustion of the fuel spray by the second fuel injection and the self-ignition combustion of the remaining fuel in the air-fuel mixture formed by the first fuel injection. Made by The flow of combustion control according to the present invention performed based on the above will be described with reference to a flowchart.
【0037】先ず、本発明の第1実施形態の燃焼制御に
ついて、図9のフローチャートにより説明する。S1で
は、機関回転速度N、負荷Tを検出する。S2では、図
2のマップに基づき、機関回転速度Nと負荷Tとから、
火花点火燃焼運転領域であるか、圧縮自己着火燃焼運転
領域であるか、燃焼形態を判断する。火花点火燃焼を行
うと判断された場合は、S3に進み、通常の火花点火燃
焼の制御を行う。First, the combustion control according to the first embodiment of the present invention will be described with reference to the flowchart of FIG. In S1, the engine speed N and the load T are detected. In S2, based on the engine speed N and the load T, based on the map of FIG.
The combustion mode is determined to be in the spark ignition combustion operation region or the compression self-ignition combustion operation region. If it is determined that spark ignition combustion is to be performed, the process proceeds to S3, and normal spark ignition combustion control is performed.
【0038】一方、圧縮自己着火燃焼を行うと判断され
た場合は、S4〜S16に示す圧縮自己着火燃焼の制御
を行う。以下、この圧縮自己着火燃焼の制御について説
明する。S4では、図11のマップに基づき、機関回転
速度Nと負荷Tとから、EGRガスにより筒内温度を適
度に昇温させるためのEGR率を算出する。ここで、E
GR率は、高回転、低負荷になるにつれて大きく設定さ
れる。すなわち、回転速度の上昇に伴いEGR率を増加
し、燃焼時期遅角時の圧縮自己着火燃焼の安定度低下を
防止する。また、低負荷ほどEGR率を増加することで
圧縮自己着火燃焼の安定度低下を防止すると共に、負荷
の上昇に伴いEGR率を減少することでノッキングを防
止する。On the other hand, when it is determined that the compression self-ignition combustion is to be performed, the control of the compression self-ignition combustion shown in S4 to S16 is performed. Hereinafter, control of the compression self-ignition combustion will be described. In S4, based on the map of FIG. 11, an EGR rate for appropriately raising the cylinder temperature with the EGR gas is calculated from the engine speed N and the load T. Where E
The GR rate is set to be larger as the rotation becomes higher and the load becomes lower. That is, the EGR rate is increased with an increase in the rotation speed, thereby preventing a decrease in the stability of the compression self-ignition combustion when the combustion timing is retarded. Also, the stability of compression self-ignition combustion is prevented from lowering by increasing the EGR rate at a lower load, and knocking is prevented by decreasing the EGR rate with an increase in the load.
【0039】S5では、図12のマップに基づき、EG
R率と、実際に検出した排気温度とから、EGR制御弁
開度を算出し、制御する。ここで、EGR制御弁開度
は、EGR率の増大に伴って大きく、また排気温度の低
下に伴って大きく設定される。目標とするEGR率が大
きくなるほど、EGR制御弁開度を大きくすることは当
然であるが、排気温度により筒内温度を間接的に検出
し、排気温度が低くなるに従って、筒内温度上昇のため
EGR制御弁開度を大側に補正し、逆に排気温度が高く
なるに従って、EGR制御弁開度を小側に補正するので
ある。従って、排気温度に代えて、吸気温度を用いるよ
うにしてもよい。但し、EGR率による燃焼時期制御を
行わない場合はこれらS4、S5は省略される。In S5, EG is determined based on the map shown in FIG.
The EGR control valve opening is calculated and controlled from the R rate and the actually detected exhaust gas temperature. Here, the opening degree of the EGR control valve is set to be larger as the EGR rate increases and to be set larger as the exhaust gas temperature decreases. As the target EGR rate increases, it is natural that the EGR control valve opening is increased. However, the in-cylinder temperature is indirectly detected based on the exhaust gas temperature. The opening of the EGR control valve is corrected to a large side, and conversely, as the exhaust gas temperature increases, the opening of the EGR control valve is corrected to a small side. Therefore, the intake air temperature may be used instead of the exhaust gas temperature. However, when the combustion timing control based on the EGR rate is not performed, S4 and S5 are omitted.
【0040】S6では、第1の燃料噴射量q1及び第2
の燃料噴射量q2を算出する。詳しくは、先ず、図13
のマップに基づき、機関回転速度Nと負荷Tとから、全
噴射量qに対する第2の噴射量割合Mを算出する。ここ
で、第2の噴射量割合Mは、高回転、高負荷になるにつ
れて大きく設定される。そして、第1の燃料噴射量q1
=全噴射量q×(1−M)、第2の燃料噴射量q2=全
噴射量q×Mとして、算出する。尚、全噴射量qは吸入
空気量、機関回転速度、目標空燃比等から周知の方法で
算出される。At S6, the first fuel injection amount q1 and the second
Is calculated. For details, first, FIG.
The second injection amount ratio M to the total injection amount q is calculated from the engine rotation speed N and the load T based on the map shown in FIG. Here, the second injection amount ratio M is set to increase as the rotation speed and the load increase. Then, the first fuel injection amount q1
= Total injection amount q x (1-M), second fuel injection amount q2 = total injection amount q x M. The total injection amount q is calculated from the intake air amount, the engine speed, the target air-fuel ratio, and the like by a known method.
【0041】第2の燃料噴射量q2を高回転、高負荷に
なるにつれて増量するのは、点火時期IGTが高回転、
高負荷になるにつれて遅角するよう制御されるので、そ
の場合に、全噴射量に対する第2の噴射量割合を増加す
ることで発熱量を増加し、引き続く圧縮自己着火燃焼を
確実に行わせるためである。S7では、第1の燃料噴射
時期IT1及び第2の燃料噴射時期TT2を算出する。The reason why the second fuel injection amount q2 is increased as the rotation speed and the load become higher is that the ignition timing IGT becomes higher and the rotation speed becomes higher.
In order to increase the heat generation by increasing the ratio of the second injection amount to the total injection amount in order to ensure that the subsequent compression self-ignition combustion is performed. It is. In S7, a first fuel injection timing IT1 and a second fuel injection timing TT2 are calculated.
【0042】第1の燃料噴射時期IT1は、図14のマ
ップに基づき、機関回転速度Nと負荷Tとから、算出す
る。ここで、第1の燃料噴射時期IT1は、高回転、低
負荷になるにつれて遅角側に設定される。すなわち、第
1の燃料噴射時期IT1を回転速度の上昇に伴い遅らせ
ることで、混合気の分散によるリーン化を抑制し、燃焼
安定性の低下を防止する。また、第1の燃料噴射時期I
T1を負荷の上昇に伴い進ませることで、燃料を燃焼室
内に分散させ、燃料噴射量の増加による混合気のリッチ
化を抑制し、急激な圧力上昇の発生を防止する一方、低
負荷ほど遅らせ、点火プラグ廻りに燃料を集中させるこ
とで、低負荷時に混合気濃度が低くなりすぎ、点火不能
になることを防止する。The first fuel injection timing IT1 is calculated from the engine speed N and the load T based on the map shown in FIG. Here, the first fuel injection timing IT1 is set to the retard side as the engine speed increases and the load decreases. That is, by delaying the first fuel injection timing IT1 with an increase in the rotation speed, the leaning due to the dispersion of the air-fuel mixture is suppressed, and the deterioration of the combustion stability is prevented. Also, the first fuel injection timing I
By advancing T1 with an increase in load, fuel is dispersed in the combustion chamber, enrichment of the air-fuel mixture due to an increase in fuel injection amount is suppressed, and a sudden increase in pressure is prevented. By concentrating the fuel around the spark plug, it is possible to prevent the concentration of the air-fuel mixture from becoming too low at a low load, thereby preventing ignition from becoming impossible.
【0043】第2の燃料噴射時期IT2は、図15のマ
ップに基づき、機関回転速度Nと負荷Tとから、算出す
る。ここで、第2の燃料噴射時期IT2は、高回転、高
負荷になるにつれて遅角側に設定される。すなわち、第
2の燃料噴射時期IT2を、回転速度及び負荷の上昇に
よる点火時期IGTの遅角に伴って遅らせることで、そ
の後の自己着火が急激な燃焼になり、ノッキングが発生
するのを防止する。但し、ここで設定される第2の燃料
噴射時期IT2は基本設定値であり、後に補正される。The second fuel injection timing IT2 is calculated from the engine speed N and the load T based on the map shown in FIG. Here, the second fuel injection timing IT2 is set to the retard side as the rotation speed and the load become higher. That is, by delaying the second fuel injection timing IT2 in accordance with the retardation of the ignition timing IGT due to the increase in the rotation speed and the load, the subsequent self-ignition becomes a rapid combustion and the occurrence of knocking is prevented. . However, the second fuel injection timing IT2 set here is a basic set value and will be corrected later.
【0044】S8では、図16のマップに基づき、機関
回転速度Nと負荷Tとから、点火時期IGTを算出す
る。ここで、点火時期IGTは、高回転、高負荷になる
につれて遅角側に設定される。すなわち、点火時期IG
Tを回転速度及び負荷の上昇に伴い遅らせることで、火
花点火燃焼に引き続く燃焼が急激な燃焼になるのを防止
する。In S8, an ignition timing IGT is calculated from the engine speed N and the load T based on the map shown in FIG. Here, the ignition timing IGT is set to the retard side as the rotation speed and the load become higher. That is, the ignition timing IG
By delaying T with an increase in the rotation speed and the load, the combustion subsequent to the spark ignition combustion is prevented from becoming abrupt combustion.
【0045】S9では、第1の燃料噴射を実行する。す
なわち、S7で設定された第1の燃料噴射時期IT1に
おいて、S6で設定された第1の燃料噴射量q1の燃料
噴射を行う。S10では、点火を実行する。すなわち、
S8で設定された点火時期IGTにおいて、点火を行
う。At S9, the first fuel injection is executed. That is, at the first fuel injection timing IT1 set in S7, the fuel injection of the first fuel injection amount q1 set in S6 is performed. In S10, ignition is performed. That is,
At the ignition timing IGT set in S8, ignition is performed.
【0046】S11では、筒内圧センサにより点火後の
筒内圧力(燃焼圧力)Pの変化を検出し、これに基づい
て、燃焼圧力Pの立ち上がり速度のパラメータとして、
圧力上昇率dP/dtを算出する。S12では、検出さ
れた圧力上昇率dP/dtを設定値と比較する。比較の
結果、圧力上昇率dP/dtが設定値より小さい場合
は、S13へ進み、燃焼安定性の悪化を防止するため、
第2の噴射時期IT2(ここでは所定クランク角位置か
らの進角値とする)を進角補正すべく、噴射時期補正量
ΔIT2を増大させる(ΔIT2=IT2+C;Cは所
定の増分)。In step S11, a change in the in-cylinder pressure (combustion pressure) P after ignition is detected by the in-cylinder pressure sensor.
The pressure rise rate dP / dt is calculated. In S12, the detected pressure increase rate dP / dt is compared with a set value. As a result of the comparison, when the pressure rise rate dP / dt is smaller than the set value, the process proceeds to S13, in order to prevent the deterioration of combustion stability,
In order to advance the second injection timing IT2 (here, an advance value from a predetermined crank angle position), the injection timing correction amount ΔIT2 is increased (ΔIT2 = IT2 + C; C is a predetermined increment).
【0047】逆に、圧力上昇率dP/dtが設定値より
大きい場合は、S14へ進み、ノッキングを防止するた
め、第2の噴射時期IT2を遅角補正すべく、噴射時期
補正量ΔIT2を減少させる(ΔIT2=IT2−
C)。S15では、S13又はS14にて増減された噴
射時期補正量ΔIT2に基づいて、第2の燃料噴射時期
IT2を補正する(IT2=IT2+ΔIT2)。On the other hand, if the pressure increase rate dP / dt is larger than the set value, the process proceeds to S14, in which the injection timing correction amount ΔIT2 is decreased to retard the second injection timing IT2 in order to prevent knocking. (ΔIT2 = IT2-
C). In S15, the second fuel injection timing IT2 is corrected based on the injection timing correction amount ΔIT2 increased or decreased in S13 or S14 (IT2 = IT2 + ΔIT2).
【0048】S16では、第2の燃料噴射を実行する。
すなわち、S7にて設定され、S15にて補正された第
2の燃料噴射時期IT2において、S6で設定された第
2の燃料噴射量q2の燃料噴射を行う。このように制御
することで、機関回転速度及び負荷に応じた最適な時期
に燃焼を行うことができ、また、火花点火による1段目
の燃焼における燃焼圧力の立ち上がり速度(dP/d
t)を設定値近傍にフィードバック制御して、燃焼安定
性の悪化やノッキングの発生を防止できる。ここで、特
にS11の部分が火花点火による1段目の燃焼における
燃焼圧力の立ち上がり速度を検出する手段に相当し、S
12〜S15の部分が前記燃焼圧力の立ち上がり速度に
応じて第2の燃料噴射の噴射時期を制御する手段に相当
する。At S16, the second fuel injection is executed.
That is, at the second fuel injection timing IT2 set in S7 and corrected in S15, the fuel injection of the second fuel injection amount q2 set in S6 is performed. By controlling in this manner, combustion can be performed at an optimal time according to the engine speed and the load, and the combustion pressure rise rate (dP / d) in the first-stage combustion by spark ignition
t) is feedback-controlled near the set value, so that deterioration of combustion stability and occurrence of knocking can be prevented. Here, in particular, the portion of S11 corresponds to a means for detecting the rising speed of the combustion pressure in the first stage combustion by spark ignition.
Steps S12 to S15 correspond to means for controlling the injection timing of the second fuel injection according to the rising speed of the combustion pressure.
【0049】次に、本発明の第2実施形態の燃焼制御に
ついて、図10のフローチャートにより説明する。第2
の燃料噴射時期IT2の補正に関する部分以外は、第1
実施形態(図9)と同じであり、図9のS11〜S15
に代えて、S20、S21〜24が設けられており、異
なる部分のみを説明する。Next, the combustion control according to the second embodiment of the present invention will be described with reference to the flowchart of FIG. Second
Except for the part related to the correction of the fuel injection timing IT2,
This is the same as the embodiment (FIG. 9), and S11 to S15 in FIG.
, S20 and S21 to S24 are provided, and only different portions will be described.
【0050】S7にて第1及び第2の燃料噴射時期IT
1,IT2を設定した後に、S20で、第2の燃料噴射
時期IT2を補正する。すなわち、前回のサイクルにお
いて後述するS21〜S24にて増減設定された噴射時
期補正量ΔIT2に基づいて、第2の燃料噴射時期IT
2を補正する(IT2=IT2+ΔIT2)。S9にて
第1の燃料噴射、S10にて点火、S16にて第2の燃
料噴射を行った後、S21へ進む。At S7, the first and second fuel injection timings IT
After setting 1, IT2, the second fuel injection timing IT2 is corrected in S20. That is, based on the injection timing correction amount ΔIT2 increased or decreased in S21 to S24 described later in the previous cycle, the second fuel injection timing IT
2 (IT2 = IT2 + ΔIT2). After performing the first fuel injection in S9, the ignition in S10, and the second fuel injection in S16, the process proceeds to S21.
【0051】S21では、筒内圧センサをノッキングセ
ンサとして用い、その信号より、ノッキングの有無を判
定する。ノッキングを検出した場合は、S22へ進み、
第2の燃料噴射時期IT2を遅角補正すべく、噴射時期
補正量ΔIT2を減少させる(ΔIT2=IT2−
C)。これにより、次のサイクルで第2の燃料噴射時期
IT2を遅角側に補正することができ、ノッキングを防
止できる。In step S21, the presence or absence of knocking is determined based on the signal from the in-cylinder pressure sensor used as a knocking sensor. When knocking is detected, the process proceeds to S22,
In order to retard the second fuel injection timing IT2, the injection timing correction amount ΔIT2 is decreased (ΔIT2 = IT2-
C). Thus, in the next cycle, the second fuel injection timing IT2 can be corrected to the retard side, and knocking can be prevented.
【0052】ノッキング無しの場合は、S23へ進む。
S23では、クランク角センサの信号より回転変動を検
出し、これに基づいて燃焼安定性を判定する。燃焼不安
定を検出した場合は、S24へ進み、第2の燃料噴射時
期IT2を進角補正すべく、噴射時期補正量ΔIT2を
増大させる(ΔIT2=IT2+C)。これにより、次
のサイクルで第2の燃料噴射時期IT2を進角側に補正
することができ、燃焼不安定を防止できる。If there is no knocking, the process proceeds to S23.
In S23, the rotation fluctuation is detected from the signal of the crank angle sensor, and the combustion stability is determined based on the detected rotation fluctuation. When the combustion instability is detected, the process proceeds to S24, and the injection timing correction amount ΔIT2 is increased to advance the second fuel injection timing IT2 (ΔIT2 = IT2 + C). This makes it possible to correct the second fuel injection timing IT2 to the advanced side in the next cycle, thereby preventing combustion instability.
【0053】このように制御することで、機関回転速度
及び負荷に応じた最適な時期に燃焼を行うことができ、
また、ノッキングの発生や燃焼安定性の悪化を防止でき
る。ここで、特にS21の部分がノッキングの判定手段
に相当し、S22の部分がノッキング有りの場合の第2
の燃料噴射時期の制御手段に相当する。また、S23の
部分が燃焼安定性の判定手段に相当し、S24の部分が
燃焼不安定の場合の第2の燃料噴射時期の制御手段に相
当する。By performing such control, combustion can be performed at an optimum time according to the engine speed and load.
Further, occurrence of knocking and deterioration of combustion stability can be prevented. Here, in particular, the portion of S21 corresponds to knocking determination means, and the second portion of the case where knocking is present in the portion of S22.
Of the fuel injection timing. The step S23 corresponds to a means for determining combustion stability, and the step S24 corresponds to a means for controlling the second fuel injection timing when combustion is unstable.
【0054】以上説明した2つの実施形態は、火花点火
によって混合気の一部を完全に燃焼させ、この燃焼によ
って第2の燃料噴射の燃料を燃焼させているが、火花点
火による1段目の燃焼は燃料を活性種に改質するだけの
部分酸化反応であっても良い。また、燃焼室内に直接燃
料を噴射することができればどのような燃料噴射弁を使
用しても良いが、高圧の空気と燃料との混合気を噴射す
る高圧エアアシスト噴射弁の使用が特に有効である。す
なわち、火花点火を実行する時点において第1の燃料噴
射の燃料は空気と十分に混合されているのが望ましい
(混合が不十分で局所的な空燃比むらのある混合気に対
し火花点火を実行すると、1段目の燃焼による発熱量が
不安定になったり、燃料改質のためだけに行った火花点
火で燃料が燃焼してしまったりする)ので、通常の燃料
噴射弁を使用する場合は第1の燃料噴射時期をあまり遅
角設定することができない。これに対し、予め空気と混
合した燃料を噴射する高圧エアアシスト噴射弁であれば
噴射直後に火花点火を実行しても所望の1段目の燃焼を
得ることができ、例えば第1の燃料噴射時期を圧縮行程
に設定することも可能となる。In the two embodiments described above, a part of the air-fuel mixture is completely burned by spark ignition, and the fuel of the second fuel injection is burned by this combustion. Combustion may be a partial oxidation reaction only for reforming the fuel into active species. Any type of fuel injection valve may be used as long as it can inject fuel directly into the combustion chamber, but the use of a high-pressure air-assisted injection valve that injects a mixture of high-pressure air and fuel is particularly effective. is there. That is, it is desirable that the fuel of the first fuel injection be sufficiently mixed with the air at the time of performing the spark ignition (the spark ignition is performed on an air-fuel mixture that is insufficiently mixed and has a local air-fuel ratio unevenness). Then, the amount of heat generated by the first-stage combustion becomes unstable, or the fuel is burned by spark ignition performed only for fuel reforming.) When using a normal fuel injection valve, The first fuel injection timing cannot be set too late. In contrast, a high-pressure air-assisted injection valve that injects fuel mixed with air in advance can achieve desired first-stage combustion even if spark ignition is performed immediately after injection. It is also possible to set the timing to the compression stroke.
【図1】 本発明の実施形態を示す内燃機関のシステム
図FIG. 1 is a system diagram of an internal combustion engine showing an embodiment of the present invention.
【図2】 圧縮自己着火燃焼を行う運転領域を示す図FIG. 2 is a diagram showing an operation region in which compression self-ignition combustion is performed.
【図3】 圧縮自己着火燃焼時の筒内圧力の変化を示す
図FIG. 3 is a diagram showing a change in in-cylinder pressure during compression self-ignition combustion.
【図4】 圧力上昇率とノッキング強度との関係を示す
図FIG. 4 is a diagram showing a relationship between a pressure rise rate and knocking strength.
【図5】 燃焼期間と燃焼効率との関係を示す図FIG. 5 is a diagram showing a relationship between a combustion period and combustion efficiency.
【図6】 回転速度、負荷、燃焼時期と圧力上昇率との
関係を示す図FIG. 6 is a diagram showing a relationship between a rotational speed, a load, a combustion timing, and a pressure rise rate.
【図7】 回転速度及び負荷に対する好ましい燃焼時期
を示す図FIG. 7 is a diagram showing a preferable combustion timing with respect to a rotation speed and a load.
【図8】 本発明での燃焼プロセスを示す図FIG. 8 is a diagram showing a combustion process in the present invention.
【図9】 第1実施形態の燃焼制御のフローチャートFIG. 9 is a flowchart of combustion control according to the first embodiment.
【図10】 第2実施形態の燃焼制御のフローチャートFIG. 10 is a flowchart of combustion control according to a second embodiment.
【図11】 回転速度及び負荷に対するEGR率の特性
図FIG. 11 is a characteristic diagram of an EGR rate with respect to a rotation speed and a load.
【図12】 EGR率及び排気温度に対するEGR制御
弁開度の特性図FIG. 12 is a characteristic diagram of an EGR control valve opening degree with respect to an EGR rate and an exhaust gas temperature.
【図13】 回転速度及び負荷に対する第2の噴射量割
合の特性図FIG. 13 is a characteristic diagram of a second injection amount ratio with respect to a rotation speed and a load.
【図14】 回転速度及び負荷に対する第1の燃料噴射
時期の特性図FIG. 14 is a characteristic diagram of a first fuel injection timing with respect to a rotation speed and a load.
【図15】 回転速度及び負荷に対する第2の燃料噴射
時期の特性図FIG. 15 is a characteristic diagram of a second fuel injection timing with respect to a rotation speed and a load.
【図16】 回転速度及び負荷に対する点火時期の特性
図FIG. 16 is a characteristic diagram of ignition timing with respect to rotation speed and load.
1 シリンダ 2 シリンダヘッド 3 ピストン 4 燃焼室 5 吸気マニフォルド 6 吸気ポート 7 吸気弁 8 燃料噴射装置 9 点火プラグ 10 排気弁 11 排気ポート 12 排気マニフォルド 13 EGR通路 14 EGR制御弁 20 ECU 21 燃焼形態判断部 22 燃料噴射量制御部 23 燃料噴射時期制御部 24 点火時期制御部 25 EGR率制御部 31 クランク角センサ 32 アクセル開度センサ 33 筒内圧センサ DESCRIPTION OF SYMBOLS 1 Cylinder 2 Cylinder head 3 Piston 4 Combustion chamber 5 Intake manifold 6 Intake port 7 Intake valve 8 Fuel injection device 9 Spark plug 10 Exhaust valve 11 Exhaust port 12 Exhaust manifold 13 EGR passage 14 EGR control valve 20 ECU 21 Combustion type determination unit 22 Fuel injection amount control unit 23 Fuel injection timing control unit 24 Ignition timing control unit 25 EGR rate control unit 31 Crank angle sensor 32 Accelerator opening sensor 33 In-cylinder pressure sensor
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F02D 43/00 301 F02D 43/00 301B 301J 45/00 368 45/00 368S 368B F02P 5/152 F02P 5/15 D 5/153 17/00 R 17/12 (72)発明者 今津 昌嗣 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 (72)発明者 飯山 明裕 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 Fターム(参考) 3G019 AA07 AB01 AB03 AC07 AC08 GA14 KA28 LA01 3G022 AA06 CA08 CA09 DA02 FA06 GA01 GA06 GA08 GA10 GA11 GA13 GA15 3G084 AA01 AA04 BA13 BA15 BA17 BA20 CA03 CA04 CA09 DA04 EB09 FA02 FA07 FA10 FA19 FA21 FA25 FA27 FA38 3G301 HA02 HA04 HA13 HA15 HA18 JA00 KA06 KA23 LA00 MA11 MA18 MA23 MA27 NC04 NE01 NE06 NE11 NE12 NE13 NE15 PA01Z PA10Z PA11Z PC01Z PC08Z PD11Z PE03Z ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) F02D 43/00 301 F02D 43/00 301B 301J 45/00 368 45/00 368S 368B F02P 5/152 F02P 5 / 15D 5/153 17/00 R 17/12 (72) Inventor Masatsugu Imazu 2 Takara-cho, Kanagawa-ku, Yokohama, Kanagawa Prefecture Inside Nissan Motor Co., Ltd. (72) Inventor Akihiro Iiyama 2 Takara-cho, Kanagawa-ku, Yokohama, Kanagawa Nissan F-term (reference) within Automobile Co., Ltd. FA38 3G301 HA02 HA04 HA13 HA15 HA18 JA00 KA06 KA23 LA00 MA11 MA18 MA23 MA27 NC04 NE01 NE06 NE11 NE12 NE13 NE15 PA01Z PA10Z PA11Z PC01Z PC08Z PD11Z PE03Z
Claims (9)
置と、点火プラグとを備え、燃焼室内に形成した混合気
を自己着火により燃焼させる内燃機関の燃焼制御装置に
おいて、 圧縮行程前半までの期間に第1の燃料噴射を行い、この
燃料噴射で形成した混合気に対し火花点火を行い、その
後に第2の燃料噴射を行ってこの噴射燃料を燃焼させ、
この燃焼による燃焼室内の温度圧力上昇により残りの燃
料を自己着火させることを特徴とする内燃機関の燃焼制
御装置。1. A combustion control device for an internal combustion engine, comprising: a fuel injection device for directly injecting fuel into a combustion chamber; and a spark plug, wherein an air-fuel mixture formed in the combustion chamber is combusted by self-ignition. Performing a first fuel injection during the period, performing spark ignition on the air-fuel mixture formed by the fuel injection, and then performing a second fuel injection to burn the injected fuel;
A combustion control device for an internal combustion engine, wherein the remaining fuel is self-ignited by a rise in temperature and pressure in a combustion chamber due to the combustion.
燃焼圧力の立ち上がり速度を検出する手段と、前記燃焼
圧力の立ち上がり速度に応じて、前記第2の燃料噴射の
噴射時期を制御する手段と、を備えることを特徴とする
請求項1記載の内燃機関の燃焼制御装置。2. A fuel cell system comprising: means for detecting a rising speed of a combustion pressure in combustion caused by the spark ignition; and means for controlling an injection timing of the second fuel injection in accordance with the rising speed of the combustion pressure. The combustion control device for an internal combustion engine according to claim 1, wherein:
手段は、前記燃焼圧力の立ち上がり速度が設定値より速
い場合に、前記第2の燃料噴射の噴射時期を遅角し、前
記燃焼圧力の立ち上がり速度が設定値より遅い場合に、
前記第2の燃料噴射の噴射時期を進角することを特徴と
する請求項2記載の内燃機関の燃焼制御装置。3. The means for controlling the injection timing of the second fuel injection, wherein when the rising speed of the combustion pressure is faster than a set value, the injection timing of the second fuel injection is retarded. If the pressure rise speed is slower than the set value,
3. The combustion control device for an internal combustion engine according to claim 2, wherein the injection timing of the second fuel injection is advanced.
キングの有無に応じ、少なくともノッキング有りと判定
した場合に遅角するよう、前記第2の燃料噴射の噴射時
期を制御する手段と、を備えることを特徴とする請求項
1記載の内燃機関の燃焼制御装置。4. A means for judging the presence or absence of knocking, and means for controlling the injection timing of the second fuel injection so as to delay at least when it is judged that knocking is present, in accordance with the presence or absence of knocking. The combustion control device for an internal combustion engine according to claim 1, wherein:
に応じ、少なくとも燃焼不安定と判定した場合に進角す
るよう、前記第2の燃料噴射の噴射時期を制御する手段
と、を備えることを特徴とする請求項1又は請求項4記
載の内燃機関の燃焼制御装置。5. A means for judging combustion stability, and means for controlling the injection timing of the second fuel injection so as to advance at least when it is judged that combustion is unstable in accordance with the combustion stability. The combustion control device for an internal combustion engine according to claim 1, wherein the combustion control device is provided.
高負荷になるにつれて増量することを特徴とする請求項
1〜請求項5のいずれか1つに記載の内燃機関の燃焼制
御装置。6. The injection amount of the second fuel injection is high rotation,
The combustion control device for an internal combustion engine according to any one of claims 1 to 5, wherein the amount increases as the load increases.
荷、高回転になるにつれて遅角することを特徴とする請
求項1〜請求項6のいずれか1つに記載の内燃機関の燃
焼制御装置。7. The internal combustion engine according to claim 1, wherein the injection timing of the first fuel injection is retarded as the load decreases and the engine speed increases. Combustion control device.
荷になるにつれて遅角することを特徴とする請求項1〜
請求項7のいずれか1つに記載の内燃機関の燃焼制御装
置。8. The spark timing of the spark ignition is retarded as the rotation speed and the load become higher.
A combustion control device for an internal combustion engine according to claim 7.
転、高負荷になるにつれて遅角するよう予め設定されて
いることを特徴とする請求項1〜請求項8のいずれか1
つに記載の内燃機関の燃焼制御装置。9. The fuel injection system according to claim 1, wherein the injection timing of the second fuel injection is set in advance so as to be retarded as the rotation speed and the load increase.
A combustion control device for an internal combustion engine according to any one of the first to third aspects.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001073138A JP3945174B2 (en) | 2001-03-14 | 2001-03-14 | Combustion control device for internal combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001073138A JP3945174B2 (en) | 2001-03-14 | 2001-03-14 | Combustion control device for internal combustion engine |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002276442A true JP2002276442A (en) | 2002-09-25 |
JP3945174B2 JP3945174B2 (en) | 2007-07-18 |
Family
ID=18930609
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001073138A Expired - Fee Related JP3945174B2 (en) | 2001-03-14 | 2001-03-14 | Combustion control device for internal combustion engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3945174B2 (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009115025A (en) * | 2007-11-08 | 2009-05-28 | Hitachi Ltd | Control device and control method for compression self-ignition internal combustion engine |
EP2239447A1 (en) | 2009-03-31 | 2010-10-13 | Mazda Motor Corporation | Internal combustion engine, method for auto-ignition operation and computer readable storage device |
JP2010236477A (en) * | 2009-03-31 | 2010-10-21 | Mazda Motor Corp | Control method for direct-injection engine and direct-injection engine |
JP2010281300A (en) * | 2009-06-08 | 2010-12-16 | Denso Corp | Control device of internal combustion engine |
JP2014047629A (en) * | 2012-08-29 | 2014-03-17 | Mazda Motor Corp | Spark ignition type direct-injection engine |
WO2015111393A1 (en) | 2014-01-22 | 2015-07-30 | Toyota Jidosha Kabushiki Kaisha | Control apparatus for internal combustion engine |
WO2015111392A1 (en) | 2014-01-22 | 2015-07-30 | Toyota Jidosha Kabushiki Kaisha | Control apparatus for internal combustion engine |
WO2015190084A1 (en) | 2014-06-11 | 2015-12-17 | Toyota Jidosha Kabushiki Kaisha | Control apparatus for internal combustion engine |
EP3015694A1 (en) | 2014-10-27 | 2016-05-04 | Toyota Jidosha Kabushiki Kaisha | Control apparatus for internal combustion engine |
EP3093471A1 (en) | 2015-04-03 | 2016-11-16 | Toyota Jidosha Kabushiki Kaisha | Control apparatus and control method for an internal combustion engine |
US10358971B2 (en) | 2014-09-18 | 2019-07-23 | Toyota Jidosha Kabushiki Kaisha | Control apparatus for internal combustion engine |
US10364771B2 (en) | 2016-04-11 | 2019-07-30 | Toyota Jidosha Kabushiki Kaisha | Control system of internal combustion engine |
-
2001
- 2001-03-14 JP JP2001073138A patent/JP3945174B2/en not_active Expired - Fee Related
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009115025A (en) * | 2007-11-08 | 2009-05-28 | Hitachi Ltd | Control device and control method for compression self-ignition internal combustion engine |
US8544444B2 (en) | 2009-03-31 | 2013-10-01 | Mazda Motor Corporation | Control of direct fuel injection engine |
JP2010236477A (en) * | 2009-03-31 | 2010-10-21 | Mazda Motor Corp | Control method for direct-injection engine and direct-injection engine |
EP2239447A1 (en) | 2009-03-31 | 2010-10-13 | Mazda Motor Corporation | Internal combustion engine, method for auto-ignition operation and computer readable storage device |
US9328688B2 (en) | 2009-03-31 | 2016-05-03 | Mazda Motor Corporation | Supercharged direct fuel injection engine |
JP2010281300A (en) * | 2009-06-08 | 2010-12-16 | Denso Corp | Control device of internal combustion engine |
JP2014047629A (en) * | 2012-08-29 | 2014-03-17 | Mazda Motor Corp | Spark ignition type direct-injection engine |
WO2015111393A1 (en) | 2014-01-22 | 2015-07-30 | Toyota Jidosha Kabushiki Kaisha | Control apparatus for internal combustion engine |
JP2015137586A (en) * | 2014-01-22 | 2015-07-30 | トヨタ自動車株式会社 | Control device for internal combustion engine |
WO2015111392A1 (en) | 2014-01-22 | 2015-07-30 | Toyota Jidosha Kabushiki Kaisha | Control apparatus for internal combustion engine |
JP2015137585A (en) * | 2014-01-22 | 2015-07-30 | トヨタ自動車株式会社 | Control device of internal combustion engine |
DE112015000452B4 (en) * | 2014-01-22 | 2021-06-10 | Toyota Jidosha Kabushiki Kaisha | Control device for an internal combustion engine |
US9784207B2 (en) | 2014-01-22 | 2017-10-10 | Toyota Jidosha Kabushiki Kaisha | Control apparatus for internal combustion engine |
US10066574B2 (en) | 2014-01-22 | 2018-09-04 | Toyota Jidosha Kabushiki Kaisha | Control apparatus for internal combustion engine |
DE112015000460B4 (en) * | 2014-01-22 | 2021-02-11 | Toyota Jidosha Kabushiki Kaisha | Control device for an internal combustion engine |
WO2015190084A1 (en) | 2014-06-11 | 2015-12-17 | Toyota Jidosha Kabushiki Kaisha | Control apparatus for internal combustion engine |
US10385798B2 (en) | 2014-06-11 | 2019-08-20 | Toyota Jidosha Kabushiki Kaisha | Control apparatus for internal combustion engine |
DE112015002732B4 (en) * | 2014-06-11 | 2021-04-01 | Toyota Jidosha Kabushiki Kaisha | Control device for internal combustion engine |
US10358971B2 (en) | 2014-09-18 | 2019-07-23 | Toyota Jidosha Kabushiki Kaisha | Control apparatus for internal combustion engine |
EP3015694A1 (en) | 2014-10-27 | 2016-05-04 | Toyota Jidosha Kabushiki Kaisha | Control apparatus for internal combustion engine |
US9745914B2 (en) | 2014-10-27 | 2017-08-29 | Toyota Jidosha Kabushiki Kaisha | Control apparatus for internal combustion engine |
US10400706B2 (en) | 2015-04-03 | 2019-09-03 | Toyota Jidosha Kabushiki Kaisha | Control apparatus for internal combustion engine |
EP3093471A1 (en) | 2015-04-03 | 2016-11-16 | Toyota Jidosha Kabushiki Kaisha | Control apparatus and control method for an internal combustion engine |
US10364771B2 (en) | 2016-04-11 | 2019-07-30 | Toyota Jidosha Kabushiki Kaisha | Control system of internal combustion engine |
Also Published As
Publication number | Publication date |
---|---|
JP3945174B2 (en) | 2007-07-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3975702B2 (en) | Control device for self-igniting engine | |
JP3945152B2 (en) | Combustion control device for internal combustion engine | |
JP4023115B2 (en) | Control device for direct-injection spark ignition engine | |
US10400706B2 (en) | Control apparatus for internal combustion engine | |
EP1445461B1 (en) | Combustion control device and method for engine | |
JP3325230B2 (en) | Method and apparatus for warming up a catalyst in a direct injection engine | |
CN101405497B (en) | Fuel injection control apparatus and fuel injection control method of internal combustion engine | |
JP2002004913A (en) | Compression self-ignition internal combustion engine | |
WO2016194184A1 (en) | Control device for internal combustion engine and control method for internal combustion engine | |
CN105247204B (en) | The control system of internal combustion engine | |
JP2006002637A (en) | Control device for compression self-ignition type internal combustion engine | |
JP5239565B2 (en) | Combustion control device for premixed compression ignition engine | |
JP3975695B2 (en) | Self-igniting engine | |
JP3945174B2 (en) | Combustion control device for internal combustion engine | |
JP2003090239A (en) | Internal combustion engine of cylinder direct injection type | |
JP2007016685A (en) | Internal combustion engine control device | |
JP2002213278A (en) | Combustion controller for internal combustion engine | |
JP3952710B2 (en) | Compression self-ignition internal combustion engine | |
JP3257430B2 (en) | Exhaust heating device | |
JPH1182030A (en) | Fuel injection control device for cylinder direct injection type spark ignition engine | |
JP3965905B2 (en) | Compression self-ignition internal combustion engine | |
JP3835130B2 (en) | Compression self-ignition internal combustion engine | |
JP2008196318A (en) | Fuel injection control device of cylinder direct-injection internal combustion engine | |
JP2001207890A (en) | Combustion control device of internal combustion engine | |
JP2007132286A (en) | Control unit for direct injection gasoline engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20051021 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060919 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061113 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070320 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070402 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110420 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120420 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130420 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |