[go: up one dir, main page]

JP2002213278A - Combustion controller for internal combustion engine - Google Patents

Combustion controller for internal combustion engine

Info

Publication number
JP2002213278A
JP2002213278A JP2001010668A JP2001010668A JP2002213278A JP 2002213278 A JP2002213278 A JP 2002213278A JP 2001010668 A JP2001010668 A JP 2001010668A JP 2001010668 A JP2001010668 A JP 2001010668A JP 2002213278 A JP2002213278 A JP 2002213278A
Authority
JP
Japan
Prior art keywords
air
combustion
fuel
fuel ratio
injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001010668A
Other languages
Japanese (ja)
Other versions
JP4032650B2 (en
Inventor
Yukihiro Yoshizawa
幸大 吉沢
Atsushi Terachi
淳 寺地
Akihiko Sumikata
章彦 角方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2001010668A priority Critical patent/JP4032650B2/en
Publication of JP2002213278A publication Critical patent/JP2002213278A/en
Application granted granted Critical
Publication of JP4032650B2 publication Critical patent/JP4032650B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/12Engines characterised by fuel-air mixture compression with compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3035Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3035Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode
    • F02D41/3041Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode with means for triggering compression ignition, e.g. spark plug
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance the ignition stability of self-igniting combustion of a compressive self-ignition type internal combustion engine without increasing the quantity of NOx discharged. SOLUTION: In a self-ignition combustion range, total injection period, number of injections, and the time to start injection are set according to engine load and engine speed which indicate ignitability. Multiple injections by which fuel is periodically injected twice or more during one cycle are carried out in accordance with the total injection period, number of injections and the time to start injection to create an air-fuel mixture with irregular variations in air-fuel ratio. The air-fuel mixture with the irregular variations in air-fuel ratio is easier to ignite than if a uniform air-fuel mixture is caused to self-ignite, because combustion is started from the rich portion of the mixture. Also, the air-fuel mixture can make smaller the quantity of NOx discharged than if it is stratified.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、内燃機関の燃焼制
御装置に関し、詳しくは、圧縮自己着火燃焼運転におけ
る混合気の形成技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a combustion control device for an internal combustion engine, and more particularly, to a technique for forming an air-fuel mixture in a compression self-ignition combustion operation.

【0002】[0002]

【従来の技術】従来から、圧縮自己着火燃焼を行わせる
機関が知られている。上記圧縮自己着火燃焼は、燃焼室
の多点で燃焼が同時に開始されるために、燃焼速度が速
く、通常の火花点火燃焼に比べて空燃比がリーンな状態
でも安定した燃焼を実現することができ、燃料消費率を
向上させることができると共に、リーン混合気を燃焼さ
せることで燃焼温度が低下し、排気ガス中のNOxを大
幅に低減することができ、燃料と空気を十分に予混合し
ておけば、空燃比がより均一になって更にNOxを低減
することができる。
2. Description of the Related Art Conventionally, an engine for performing compression self-ignition combustion has been known. In the above-mentioned compression self-ignition combustion, since combustion is started simultaneously at multiple points in the combustion chamber, the combustion speed is high, and stable combustion can be realized even in a state where the air-fuel ratio is lean as compared with normal spark ignition combustion. The fuel consumption rate can be improved, and the combustion temperature can be reduced by burning the lean air-fuel mixture, the NOx in the exhaust gas can be significantly reduced, and the fuel and air can be sufficiently premixed. If so, the air-fuel ratio becomes more uniform and NOx can be further reduced.

【0003】また、高回転・高負荷領域では通常の火花
点火燃焼を行わせ、低回転・低中負荷領域では火花点火
燃焼から圧縮自己着火燃焼に燃焼形態を切り替えること
よって、高回転・高負荷時に高出力を確保しつつ、低回
転・低中負荷時に燃料消費率の向上及びNOxの低減化
を図ることができる。2サイクル型の火花点火式内燃機
関では、部分負荷時における燃焼が不安定になることを
回避すると共に、HC(未燃炭化水素)排出量の低減を
図るために、燃焼室内における自己着火燃焼を積極的に
利用した技術が提案されている。
[0003] Further, in the high rotation speed and high load range, normal spark ignition combustion is performed, and in the low rotation speed and low middle load range, the combustion mode is switched from spark ignition combustion to compression self-ignition combustion, thereby achieving high rotation speed and high load. It is possible to improve the fuel consumption rate and reduce NOx at low rotation speed and low medium load while ensuring high output sometimes. In a two-cycle spark ignition type internal combustion engine, self-ignition combustion in a combustion chamber is performed in order to avoid unstable combustion at a partial load and to reduce HC (unburned hydrocarbon) emissions. Technologies that have been actively used have been proposed.

【0004】例えば、特開平7−071279号公報に
は、低負荷時に排気通路の一部を遮断することによって
シリンダ内の残留ガス濃度を高めることによって、圧縮
行程開始時のシリンダ内圧や温度を高め、自己着火の燃
焼時期を制御する技術が開示されている。
For example, Japanese Patent Application Laid-Open No. 7-07279 discloses that the pressure and temperature in the cylinder at the start of the compression stroke are increased by increasing the residual gas concentration in the cylinder by blocking a part of the exhaust passage at a low load. A technique for controlling the combustion timing of self-ignition has been disclosed.

【0005】[0005]

【発明が解決しようとする課題】ところで、ガソリンの
ような自己着火性の低い燃料を用いて圧縮自己着火燃焼
を行わせる場合、前記特開平7−071279号公報に
開示されるように、残留ガスの持つ熱エネルギーを有効
利用することが有効である。そこで、4サイクル機関で
圧縮自己着火燃焼を実現する方法として、特開平10−
266878号公報に開示されるように、排気行程から
吸気行程に移行する際に、排気バルブと吸気バルブが共
に閉となる密閉期間を設けることで残留ガスを積極的に
生じさせ、圧縮行程開始時のシリンダ内圧や温度を高め
る方法があった。
When compression self-ignition combustion is performed using a low self-ignition fuel such as gasoline, as disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 7-071279, residual gas is not used. It is effective to make effective use of the heat energy possessed. Therefore, as a method for realizing compression self-ignition combustion in a four-cycle engine, Japanese Patent Laid-Open No.
As disclosed in Japanese Patent No. 266878, at the time of transition from the exhaust stroke to the intake stroke, a closed period in which both the exhaust valve and the intake valve are closed is provided, so that residual gas is actively generated, and when the compression stroke is started. There was a method of increasing the cylinder internal pressure and temperature.

【0006】しかしながら、残留ガス量を増加させると
充填効率が低下するので、高負荷領域で圧縮自己着火燃
焼を行わせることができず、圧縮自己着火燃焼を行える
領域が低負荷側の狭い領域に限定され、燃費・エミッシ
ョンの改善効果が小さくなってしまうという問題があっ
た。また、特開平10−196424号公報には、予混
合された混合気を圧縮する際に、上死点付近で追加とな
る燃料(着火油)の噴射を行い、着火油の燃焼による温
度の上昇を利用して、予混合気を自己着火燃焼に至らし
める構成が開示されている。
However, when the residual gas amount is increased, the filling efficiency is reduced, so that the compression auto-ignition combustion cannot be performed in the high load region, and the compression auto-ignition combustion can be performed in a narrow region on the low load side. However, there is a problem that the effect of improving fuel efficiency and emission is reduced. Japanese Patent Application Laid-Open No. H10-196424 discloses that when a pre-mixed air-fuel mixture is compressed, additional fuel (ignition oil) is injected near top dead center to increase the temperature due to the combustion of the ignition oil. U.S. Pat. No. 6,064,056 discloses a configuration for causing a premixed gas to self-ignite combustion.

【0007】上記のように追加の噴射を行わせる構成の
場合、予混合気の空燃比がリーンとなった場合に着火性
が悪化し、係る着火性の悪化を回避するためには、着火
油の噴射量を増量する必要があり、着火油の燃焼によっ
てNOxが生成されてしまうという問題がある。従来、
火花点火燃焼において、局所的にリッチ混合気を生成す
る混合気の成層化を行い、着火性を改善する方法が考え
られているが、成層化を行った場合には、リッチな領域
からNOxが多量に生成され、エミッションが悪化する
という問題があった。
[0007] In the case of the configuration in which the additional injection is performed as described above, the ignitability deteriorates when the air-fuel ratio of the premixed air becomes lean. Therefore, there is a problem that NOx is generated by the combustion of the ignition oil. Conventionally,
In spark ignition combustion, a method of improving the ignitability by stratifying an air-fuel mixture that locally generates a rich air-fuel mixture has been considered. However, when stratification is performed, NOx is emitted from a rich region. There is a problem that a large amount is generated and emission is deteriorated.

【0008】また、混合気中に規則的に燃料部と空気部
を設けることで燃料の塊を無くし、エミッションを低減
する技術が、特開平10−252570号公報に開示さ
れているが、混合気の濃度分布が規則的であるため、同
じ濃度の混合気が一度に着火し、ノッキングを引き起こ
すという問題があった。本発明は上記問題点に鑑みなさ
れたものであり、圧縮自己着火式内燃機関において、N
Oxの排出量を増加させることなく、自己着火燃焼の着
火安定性を確保できるようにすることを目的とする。
Japanese Patent Application Laid-Open No. H10-252570 discloses a technique for eliminating fuel lumps by providing a fuel portion and an air portion regularly in an air-fuel mixture to reduce emissions. However, there is a problem that the air-fuel mixture of the same concentration ignites at once and causes knocking due to the regular distribution of concentration. SUMMARY OF THE INVENTION The present invention has been made in view of the above-described problems, and a compression self-ignition type internal combustion engine has an N
An object of the present invention is to ensure ignition stability of self-ignition combustion without increasing the amount of Ox emission.

【0009】更に、圧縮自己着火燃焼運転を行える運転
領域を拡大して、圧縮自己着火式内燃機関の燃費・排気
を改善することを目的とする。
It is another object of the present invention to expand the operating region in which the compression self-ignition combustion operation can be performed and to improve the fuel efficiency and exhaust of the compression self-ignition internal combustion engine.

【0010】[0010]

【課題を解決するための手段】そのため、請求項1記載
の発明では、圧縮自己着火燃焼運転時に、燃焼室内の混
合気に不規則な空燃比のばらつきを設ける構成とした。
係る構成によると、燃焼室内の混合気が、均一な空燃比
ではなく、かつ、成層化させた場合のようにリッチ領域
とリーン領域とに規則的に区分される構成でもなく、不
規則に空燃比がばらつくように混合気形成が行われ、形
成された混合気の中のリッチな部分から自己着火燃焼が
開始することになる。
Therefore, in the invention of claim 1, the air-fuel mixture in the combustion chamber has an irregular air-fuel ratio variation during the compression self-ignition combustion operation.
According to this configuration, the air-fuel mixture in the combustion chamber does not have a uniform air-fuel ratio and is not regularly divided into a rich region and a lean region as in the case of stratification. The mixture is formed so that the fuel ratio varies, and the self-ignition combustion starts from a rich portion in the formed mixture.

【0011】請求項2記載の発明では、圧縮自己着火燃
焼運転時に、主混合気場に対して付加的な温度上昇を与
えて圧縮自己着火燃焼に至らしめる構成とし、かつ、前
記主混合気場に不規則な空燃比のばらつきを設ける構成
とした。係る構成によると、主混合気場は、そのままで
は自己着火に至らず、付加的な温度上昇があって初めて
圧縮自己着火燃焼に至る混合気場であり、この主混合気
場に不規則な空燃比のばらつきが設けられ、付加的な温
度上昇が与えられたときに、リッチ部分から自己着火燃
焼が開始することになる。
According to the second aspect of the present invention, during the compression self-ignition combustion operation, an additional temperature rise is applied to the main air-fuel mixture field to cause compression self-ignition combustion, and the main air-fuel mixture combustion is performed. In this configuration, irregular air-fuel ratio variations are provided. According to this configuration, the main mixture field is a mixture field that does not lead to self-ignition as it is, but only reaches compression self-ignition combustion due to an additional temperature rise. When a fuel ratio variation is provided and an additional temperature rise is applied, self-ignition combustion will start from the rich portion.

【0012】請求項3記載の発明では、前記主混合気場
を形成する燃料噴射の後で、局所的なリッチ混合気場を
形成するための追加の燃料噴射を行い、前記局所的なリ
ッチ混合気場の火花点火燃焼又は圧縮自己着火燃焼によ
る温度上昇によって、前記主混合気場を圧縮自己着火燃
焼に至らしめる構成とした。係る構成によると、主混合
気場を形成した後の追加の燃料噴射により、局所的なリ
ッチ混合気場を形成する混合気の成層化を行い、前記リ
ッチ混合気を点火プラグによって火花点火燃焼させる
か、圧縮自己着火燃焼させることで、周囲の主混合気場
をそのリッチ部分から圧縮自己着火燃焼に至らしめる。
According to the third aspect of the present invention, after the fuel injection for forming the main mixture field, an additional fuel injection for forming a local rich mixture field is performed, and the local rich mixture is performed. The main mixture field is configured to be brought into compression self-ignition combustion by a temperature rise due to spark ignition combustion or compression self-ignition combustion of the air field. According to such a configuration, stratification of the air-fuel mixture forming a local rich air-fuel mixture field is performed by additional fuel injection after the formation of the main air-fuel mixture field, and the rich air-fuel mixture is spark-ignited and burned by a spark plug. Alternatively, by performing compression self-ignition combustion, the surrounding main air-fuel mixture field is converted from its rich portion to compression self-ignition combustion.

【0013】請求項4記載の発明では、機関の回転速度
が高いときほど、前記空燃比ばらつきを大きくする構成
とした。係る構成によると、空燃比ばらつきは一定では
なく、自己着火燃焼の着火性が悪化する高回転時ほど、
ばらつき(最大空燃比と最小空燃比との差)を大きくす
る。
[0013] The invention according to claim 4 is configured such that the higher the rotational speed of the engine, the larger the air-fuel ratio variation. According to such a configuration, the air-fuel ratio variation is not constant, and the higher the rotation speed at which the ignitability of self-ignition combustion deteriorates,
Increase the variation (difference between the maximum air-fuel ratio and the minimum air-fuel ratio).

【0014】請求項5記載の発明では、機関負荷が低負
荷になるほど、前記空燃比ばらつきを大きくする構成と
した。係る構成によると、空燃比ばらつきは一定ではな
く、自己着火燃焼の着火性が悪化する低負荷時ほど、ば
らつき(最大空燃比と最小空燃比との差)を大きくす
る。
According to the fifth aspect of the present invention, the air-fuel ratio variation increases as the engine load decreases. According to such a configuration, the air-fuel ratio variation is not constant, and the variation (difference between the maximum air-fuel ratio and the minimum air-fuel ratio) increases as the load decreases at which the ignitability of the self-ignition combustion deteriorates.

【0015】請求項6記載の発明では、機関の燃焼安定
度及びノッキング強度を検出し、機関の燃焼安定度及び
ノッキング強度がそれぞれ許容範囲内になるように、前
記空燃比ばらつきを制御する構成とした。係る構成によ
ると、機関の燃焼安定度(トルク変動)が許容範囲内
で、かつ、ノッキング強度が許容範囲内となるように、
空燃比のばらつきがフィードバック制御される。
According to the present invention, the combustion stability and knocking intensity of the engine are detected, and the air-fuel ratio variation is controlled so that the combustion stability and knocking intensity of the engine are respectively within allowable ranges. did. According to such a configuration, the combustion stability (torque fluctuation) of the engine is within an allowable range, and the knocking strength is within an allowable range.
The variation in the air-fuel ratio is feedback-controlled.

【0016】請求項7記載の発明では、前記不規則な空
燃比のばらつきを有する混合気を、1サイクル中に燃料
を2回以上に分けて周期的に噴射する多重噴射によって
形成する構成とした。係る構成によると、噴射すべき燃
料を1回に噴射するのではなく、2回以上に分けて周期
的に少しずつ噴射することで、不規則な空燃比のばらつ
きを発生させる。
According to a seventh aspect of the present invention, the air-fuel mixture having an irregular air-fuel ratio is formed by multiple injections in which fuel is divided into two or more times during one cycle and periodically injected. . According to such a configuration, the fuel to be injected is not injected at once, but is divided into two or more times and injected little by little periodically, thereby causing irregular air-fuel ratio variations.

【0017】請求項8記載の発明では、前記多重噴射の
噴射回数によって前記空燃比ばらつきを制御する構成と
した。係る構成によると、多重噴射の噴射回数が多くな
るほど、空燃比のばらつきが大きくなるので、運転条件
(回転,負荷,燃焼安定度,ノッキング強度)に応じて
噴射回数を変化させる。
According to the present invention, the air-fuel ratio variation is controlled by the number of injections of the multiple injection. According to such a configuration, the variation in the air-fuel ratio increases as the number of injections of the multiple injections increases, so that the number of injections is changed according to the operating conditions (rotation, load, combustion stability, knocking intensity).

【0018】請求項9記載の発明では、前記多重噴射を
行わせる期間によって前記空燃比ばらつきを制御する構
成とした。係る構成によると、多重噴射の1回目の噴射
から最終回の噴射までの期間が長くなるほど、空燃比の
ばらつきが大きくなるので、運転条件(回転,負荷,燃
焼安定度,ノッキング強度)に応じて噴射期間を変化さ
せる。
According to a ninth aspect of the present invention, the air-fuel ratio variation is controlled by a period during which the multiple injection is performed. According to such a configuration, as the period from the first injection to the final injection of the multiple injections becomes longer, the variation in the air-fuel ratio becomes larger, and therefore, depending on the operating conditions (rotation, load, combustion stability, knocking intensity). Change the injection period.

【0019】請求項10記載の発明では、前記多重噴射
の噴射時期によって前記空燃比ばらつきを制御する構成
とした。係る構成によると、多重噴射を行わせる時期を
遅角させるほど、空燃比のばらつきが大きくなるので、
運転条件(回転,負荷,燃焼安定度,ノッキング強度)
に応じて噴射時期(噴射開始時期)を変化させる。
According to the tenth aspect of the present invention, the air-fuel ratio variation is controlled by the injection timing of the multiple injection. According to such a configuration, as the timing of performing the multiple injections is retarded, the variation in the air-fuel ratio increases,
Operating conditions (rotation, load, combustion stability, knocking strength)
Injection timing (injection start timing) is changed according to.

【0020】[0020]

【発明の効果】請求項1記載の発明によると、不規則な
空燃比ばらつきを有する混合気のリッチな部分から自己
着火燃焼が開始するため、均一な空燃比の混合気が形成
される場合に比べて混合気の自己着火性が良くなり、ま
た、成層混合気を形成させる場合よりも空燃比ばらつき
は小さいので、リッチ部の燃焼で発生するNOx及びす
すが少なく、エミッションを悪化させることなく、圧縮
自己着火燃焼の安定性を改善することができるという効
果がある。
According to the first aspect of the present invention, since the self-ignition combustion starts from the rich portion of the air-fuel mixture having irregular air-fuel ratio variations, when the air-fuel mixture having a uniform air-fuel ratio is formed. In comparison, the self-ignitability of the air-fuel mixture is improved, and the air-fuel ratio variation is smaller than in the case of forming a stratified air-fuel mixture.Therefore, NOx and soot generated by combustion in the rich portion are small, and the emission is not deteriorated. There is an effect that the stability of compression self-ignition combustion can be improved.

【0021】請求項2,3記載の発明によると、圧縮自
己着火燃焼の時期を制御しつつ、エミッションの悪化が
なく、高い安定性の圧縮自己着火燃焼を行わせることが
できるという効果がある。請求項4,5記載の発明によ
ると、エミッションの悪化を抑制しつつ、負荷・回転の
変化に対して圧縮自己着火燃焼の安定性を維持すること
ができるという効果がある。
According to the second and third aspects of the present invention, it is possible to control the timing of the compression self-ignition combustion and to perform the highly stable compression self-ignition combustion without deterioration of the emission. According to the fourth and fifth aspects of the invention, there is an effect that the stability of the compression auto-ignition combustion can be maintained with respect to a change in load and rotation while suppressing deterioration of the emission.

【0022】請求項6記載の発明によると、運転条件の
変化や機関ばらつきがあっても、ノッキング強度及び燃
焼安定度を許容範囲内とした圧縮自己着火燃焼を行わせ
ることができるという効果がある。請求項7記載の発明
によると、1サイクル中に燃料を2回以上に分けて周期
的に噴射する多重噴射によって不規則な空燃比ばらつき
を設けるので、燃料噴射装置のハードウェア構成を変更
することなく、圧縮自己着火燃焼の安定性を改善するこ
とができるという効果がある。
According to the sixth aspect of the present invention, even if there is a change in the operating conditions or a variation in the engine, there is an effect that the compression self-ignition combustion can be performed with the knocking strength and the combustion stability within the allowable ranges. . According to the seventh aspect of the present invention, since irregular air-fuel ratio variations are provided by multiple injections in which fuel is divided into two or more times and injected periodically during one cycle, the hardware configuration of the fuel injection device is changed. In addition, there is an effect that the stability of compression self-ignition combustion can be improved.

【0023】請求項8〜10記載の発明によると、多重
噴射における噴射の回数、噴射期間、噴射時期を制御す
ることによって、所望の空燃比ばらつきを設けることが
でき、エミッションの悪化を抑制しつつ、運転条件の変
化に対して圧縮自己着火燃焼の安定性を維持することが
できるという効果がある。
According to the present invention, a desired air-fuel ratio variation can be provided by controlling the number of injections, the injection period, and the injection timing in the multiple injection, and the deterioration of the emission can be suppressed. In addition, there is an effect that the stability of the compression self-ignition combustion can be maintained with respect to a change in the operating condition.

【0024】[0024]

【発明の実施の形態】以下、本発明の実施の形態を説明
する。図1は、本発明に係る内燃機関の燃焼制御装置
を、ガソリン機関に適用した実施の形態の構成を示すシ
ステム構成図である。図1に示すガソリン機関1は、筒
内直接噴射式ガソリン機関であって、運転条件に応じて
圧縮自己着火燃焼と火花点火燃焼とが切り換えられる構
成である。
Embodiments of the present invention will be described below. FIG. 1 is a system configuration diagram showing a configuration of an embodiment in which a combustion control device for an internal combustion engine according to the present invention is applied to a gasoline engine. A gasoline engine 1 shown in FIG. 1 is a direct injection gasoline engine, and has a configuration in which compression self-ignition combustion and spark ignition combustion are switched according to operating conditions.

【0025】この機関1において、シリンダ2内に連通
する吸気ポート3には吸気バルブ4が介装され、同じく
シリンダ2内に連通する排気ポート5には排気バルブ6
が介装される。前記シリンダヘッド7はペントルーフ型
に形成され、前記吸気バルブ4及び排気バルブ6はV型
に配置され、このペントルーフ型のシリンダヘッド7の
略中央には、燃料噴射弁8及び点火プラグ9が配置され
る。
In the engine 1, an intake valve 4 is interposed in an intake port 3 communicating with the cylinder 2, and an exhaust valve 6 is arranged in an exhaust port 5 communicating with the cylinder 2.
Is interposed. The cylinder head 7 is formed in a pent roof type, the intake valve 4 and the exhaust valve 6 are arranged in a V shape, and a fuel injection valve 8 and a spark plug 9 are arranged in substantially the center of the pent roof type cylinder head 7. You.

【0026】前記燃料噴射弁8による噴射量・噴射時期
及び点火プラグ9による点火時期を制御するエンジンコ
ントロールユニット(以下、ECUという)20には、
クランク角センサ10からのクランク角センサ信号や、
図示省略したアクセル開度センサからのアクセル開度信
号などが入力される。前記ECU20は、圧縮自己着火
燃焼と火花点火燃焼とのいずれの燃焼方式で運転を行う
かを運転条件に応じて判定する燃焼パターン判定部2
1、火花点火燃焼時に前記燃料噴射弁8及び点火プラグ
9を制御する火花点火燃焼制御部22、圧縮自己着火燃
焼時に前記燃料噴射弁8を制御する自己着火燃焼制御部
23によって構成される。
An engine control unit (hereinafter referred to as ECU) 20 for controlling the injection amount and injection timing of the fuel injection valve 8 and the ignition timing of the ignition plug 9 includes:
A crank angle sensor signal from the crank angle sensor 10,
An accelerator opening signal from an accelerator opening sensor (not shown) is input. The ECU 20 determines which of the compression self-ignition combustion and the spark ignition combustion to operate in accordance with the operation conditions.
1. A spark ignition combustion control unit 22 for controlling the fuel injection valve 8 and the spark plug 9 during spark ignition combustion, and a self-ignition combustion control unit 23 for controlling the fuel injection valve 8 during compression self-ignition combustion.

【0027】前記燃焼パターン判定部21は、図2に示
すように、機関負荷Tと機関回転速度Nに基づいて燃焼
方式を判別する構成であり、低中負荷・低中回転領域を
圧縮自己着火燃焼領域として判定し、それ以外の高負荷
・高回転領域を火花点火燃焼領域と判定する。また、圧
縮自己着火燃焼時には、1サイクル中に燃料を2回以上
に分けて周期的に噴射する多重噴射を行わせることで、
燃焼室内の混合気に不規則な空燃比ばらつきを設ける構
成となっており、前記自己着火燃焼制御部23は、噴射
回数制御部24,噴射期間制御部25及び噴射時期制御
部26を介して、前記多重噴射における噴射回数,噴射
期間,噴射時期を制御する。
As shown in FIG. 2, the combustion pattern judging section 21 judges the combustion mode based on the engine load T and the engine speed N. It is determined as a combustion region, and the other high load / high rotation regions are determined as spark ignition combustion regions. In addition, during compression self-ignition combustion, by performing multiple injections in which fuel is divided into two or more times and injected periodically during one cycle,
The air-fuel mixture in the combustion chamber has an irregular air-fuel ratio variation. The self-ignition combustion control unit 23 controls the number of injections control unit 24, the injection period control unit 25, and the injection timing control unit 26, The number of injections, the injection period, and the injection timing in the multiple injection are controlled.

【0028】図3のフローチャートは、上記ハードウェ
ア構成を用いた燃料噴射制御の第1実施形態を示すもの
である。ステップS11では、機関回転速度N及び機関
負荷Tを検出する。尚、本実施の形態では、クランク角
センサ信号に基づいて機関回転速度Nが算出される一
方、機関負荷Tをアクセル開度で代表させるものとす
る。
FIG. 3 is a flowchart showing a first embodiment of the fuel injection control using the above hardware configuration. In step S11, the engine speed N and the engine load T are detected. In the present embodiment, the engine speed N is calculated based on the crank angle sensor signal, and the engine load T is represented by the accelerator opening.

【0029】ステップS12では、前記検出した機関回
転速度N及び機関負荷Tに基づいて、現在の運転条件が
圧縮自己着火燃焼領域であるか火花点火燃焼領域である
かを判別する(図2参照)。ステップS12で火花点火
燃焼領域であると判別されたときには、ステップS13
へ進み、要求される量の燃料を吸気行程中に1回の噴射
で供給して、予混合された均質混合気を形成し、次のス
テップS14では、前記均質混合気を点火プラグ9によ
る火花点火によって燃焼させる。
In step S12, it is determined based on the detected engine speed N and engine load T whether the current operating condition is in the compression self-ignition combustion region or the spark ignition combustion region (see FIG. 2). . If it is determined in step S12 that the current is in the spark ignition combustion range, step S13
To supply the required amount of fuel in one injection during the intake stroke to form a premixed homogeneous mixture, and in the next step S14, the homogeneous mixture is sparked by the spark plug 9 Burn by ignition.

【0030】尚、火花点火燃焼領域においても、燃料を
複数回に分けて噴射させても良いし、また、吸気行程中
に限らず、成層混合気を形成するため、圧縮行程中に噴
射しても良い。一方、ステップS12で圧縮自己着火燃
焼領域であると判別されると、ステップS15へ進み、
1サイクル中に燃料を2回以上に分けて周期的に噴射す
る多重噴射におけるトータル噴射期間を設定する。
In the spark ignition combustion region, fuel may be injected in a plurality of injections. In addition, the fuel is injected not only during the intake stroke but also during the compression stroke to form a stratified mixture. Is also good. On the other hand, if it is determined in step S12 that it is in the compression self-ignition combustion region, the process proceeds to step S15,
A total injection period is set for multiple injections in which fuel is divided into two or more times and injected periodically during one cycle.

【0031】前記多重噴射とは、図4に示すように、休
止期間を挟んで複数回の噴射を繰り返す噴射であり、前
記トータル噴射期間とは、1回目の噴射開始から最後の
噴射の終了までの期間である。尚、上記多重噴射におけ
る各噴射の噴射時間(噴射パルス幅)を、図4では均一
にしたが、それぞれに異なる噴射時間(噴射パルス幅)
で噴射させる構成としても良いし、休止期間をそれぞれ
に異ならせても良い。
As shown in FIG. 4, the multiple injection is an injection in which injection is repeated a plurality of times with a pause period therebetween. The total injection period is defined as a period from the start of the first injection to the end of the last injection. Period. Although the injection time (injection pulse width) of each injection in the multiple injection is made uniform in FIG. 4, the injection time (injection pulse width) differs for each injection.
And the rest periods may be different for each.

【0032】前記ステップS15では、図5に示すよう
に、予め機関回転速度N及び機関負荷Tに応じてトータ
ル噴射期間を記憶したマップから、そのときの機関回転
速度N及び機関負荷Tに対応するトータル噴射期間を検
索して求める。ここで、トータル噴射期間は、機関回転
速度Nが高いほど、機関負荷Tが小さいときほど、より
長く設定されるようになっており、図6に示すように、
トータル噴射期間が長くなるほど、多重噴射で形成され
る混合気の空燃比(当量比)ばらつき(最大空燃比と最
小空燃比との差)が大きくなる。
In step S15, as shown in FIG. 5, a map in which the total injection period is stored in advance according to the engine speed N and the engine load T corresponds to the engine speed N and the engine load T at that time. Search and find the total injection period. Here, the total injection period is set longer as the engine rotation speed N is higher and the engine load T is smaller, as shown in FIG.
As the total injection period becomes longer, the air-fuel ratio (equivalent ratio) variation (difference between the maximum air-fuel ratio and the minimum air-fuel ratio) of the air-fuel mixture formed by the multiple injections increases.

【0033】ステップS16では、前記多重噴射におい
て燃料を何回に分けて噴射するかを示す噴射回数を設定
する。上記噴射回数も、前記トータル噴射期間と同様
に、予め機関回転速度N及び機関負荷Tに応じて噴射回
数を記憶したマップ(図7参照)から、そのときの機関
回転速度N及び機関負荷Tに対応する噴射回数を検索し
て求めるようになっており、噴射回数は、機関回転速度
Nが高いほど、機関負荷Tが小さいときほど、より多く
設定されるようになっている。
In step S16, the number of injections indicating how many times the fuel is to be injected in the multiple injection is set. In the same manner as the total injection period, the number of injections is determined from the map (see FIG. 7) in which the number of injections is stored in advance according to the engine speed N and the engine load T, based on the engine speed N and the engine load T at that time. The corresponding number of injections is searched for and determined, and the number of injections is set higher as the engine speed N is higher and the engine load T is smaller.

【0034】前記噴射回数を多くすると、図8に示すよ
うに、多重噴射で形成される混合気の空燃比(当量比)
ばらつきが大きくなる。尚、第1実施形態では、多重噴
射の噴射時期(噴射開始時期)は、吸気行程中の所定時
期に固定されるものとする。ステップS17では、要求
噴射量(噴射時間)の噴射を、前記噴射回数に分けてト
ータル噴射期間で噴射させる多重噴射を、前記固定の噴
射時期(噴射開始時期)に開始させ、該噴射で形成され
る混合気を上死点付近で圧縮自己着火燃焼させる。
When the number of injections is increased, as shown in FIG. 8, the air-fuel ratio (equivalent ratio) of the mixture formed by multiple injections
Variation increases. In the first embodiment, the injection timing (injection start timing) of the multiple injection is fixed to a predetermined timing during the intake stroke. In step S17, multiple injections for injecting the required injection amount (injection time) in the total injection period by dividing the number of injections into the total number of injections are started at the fixed injection timing (injection start timing). The mixture is compressed and self-ignited near TDC.

【0035】前記多重噴射を行わせると、図9に示すよ
うに、燃焼室内の混合気に不規則な空燃比ばらつきが生
じ、この不規則な空燃比ばらつきが与えられた混合気の
うちのリッチ部分から圧縮自己着火燃焼が開始されるこ
とになる。圧縮自己着火燃焼させる場合には、図10に
示すように、空燃比をリーン化させると燃焼安定性が悪
化し、逆にリッチ化するとノッキング強度が増大し、燃
焼安定性を許容範囲内にできるリーン限界空燃比AFL
と、ノッキング強度を許容範囲内に抑制できるリッチ限
界空燃比AFRとの間の狭い範囲に空燃比を制御する必
要があり、特にリーン限界が狭いため圧縮自己着火燃焼
領域の低負荷化を進めることが困難である。
When the multiple injection is performed, as shown in FIG. 9, the air-fuel mixture in the combustion chamber has an irregular air-fuel ratio variation, and the air-fuel mixture having the irregular air-fuel ratio variation has a rich air-fuel ratio. Compression self-ignition combustion will be started from that portion. In the case of compression self-ignition combustion, as shown in FIG. 10, when the air-fuel ratio is made lean, the combustion stability is deteriorated, and when the air-fuel ratio is made rich, the knocking strength is increased, and the combustion stability can be made within an allowable range. Lean limit air-fuel ratio AFL
It is necessary to control the air-fuel ratio in a narrow range between the air-fuel ratio and the rich limit air-fuel ratio AFR that can suppress the knocking strength within an allowable range. Is difficult.

【0036】尚、図10では、ガスと燃料との割合を示
す指標として空燃比を用いたが、残留ガス或いは還流排
気ガスが含まれる場合についても同様の傾向を示し、こ
の場合、横軸は、新気と既燃ガスを合わせたトータルガ
ス量と燃料との割合となる。そこで、リーン化を進めつ
つ燃焼安定性を確保する方法として、燃焼室の一部にリ
ッチな混合気を形成する混合気の成層化が考えられる
が、リッチ混合気の燃焼によってNOx排出量が多くな
ってしまう。
In FIG. 10, the air-fuel ratio is used as an index indicating the ratio between gas and fuel. However, the same tendency is shown when residual gas or recirculated exhaust gas is contained. It is the ratio of the total gas amount, which is the sum of fresh air and burned gas, to the fuel. Therefore, as a method of securing combustion stability while promoting lean operation, stratification of an air-fuel mixture that forms a rich air-fuel mixture in a part of the combustion chamber can be considered. However, combustion of the rich air-fuel mixture causes a large NOx emission. turn into.

【0037】これに対し、上記のように多重噴射によっ
て不規則な空燃比のばらつきを生じさせる構成であれ
ば、NOx排出量の増大を抑制しつつ、空燃比のリーン
化を進めて、圧縮自己着火燃焼領域を低負荷側に拡大す
ることができる。前記多重噴射を行わせると、前述のよ
うに、燃焼室内の混合気に不規則な空燃比ばらつきが生
じるが(図9参照)、吸気行程で要求燃料量を1回で噴
射させる場合(本実施形態における火花点火燃焼時の場
合)には、図11に示すように、燃焼室内に略均一な空
燃比が形成され、また、圧縮行程で燃料を1回で噴射さ
せることで点火プラグ9近傍の局所領域にリッチ混合気
を形成させる混合気の成層化を行う場合には、図12に
示すように、燃焼室中心付近のリッチ混合気の周辺は、
局所領域からの拡散によって極めてリーンな混合気が形
成されることになる。
On the other hand, if the air-fuel ratio is irregularly varied by the multiple injections as described above, the air-fuel ratio is made leaner while suppressing an increase in the amount of NOx emission, and the compression self-fuel ratio is increased. The ignition combustion area can be expanded to the low load side. When the multiple injection is performed, as described above, an irregular air-fuel ratio variation occurs in the air-fuel mixture in the combustion chamber (see FIG. 9). However, when the required fuel amount is injected only once in the intake stroke (this embodiment). In the case of the spark ignition combustion in the embodiment, as shown in FIG. 11, a substantially uniform air-fuel ratio is formed in the combustion chamber, and the fuel is injected once in the compression stroke so that the vicinity of the ignition plug 9 is formed. In the case of performing stratification of the air-fuel mixture to form a rich air-fuel mixture in a local region, as shown in FIG.
An extremely lean mixture is formed by diffusion from the local area.

【0038】従って、吸気行程1回噴射(均質),多重
噴射,圧縮行程噴射(成層)それぞれで形成される混合
気における空燃比(当量比)の頻度分布は、図13に示
すようになり、多重噴射における空燃比(当量比)のば
らつきは、吸気行程1回噴射よりも大きく、圧縮行程噴
射よりも小さくなる。一方、空燃比(当量比)のばらつ
きが大きくなるほど、図14に示すように、リーン限界
空燃比AFL(平均空燃比のリーン限界)は燃焼安定性
が改善されることからよりリーン化するが、ばらつきが
ある限界を超えると、リッチ限界空燃比AFR(平均空
燃比のリッチ限界)はリーン化してしまう。
Therefore, the frequency distribution of the air-fuel ratio (equivalent ratio) in the air-fuel mixture formed by each of the intake stroke single injection (homogeneous), the multiple injection, and the compression stroke injection (stratified) is as shown in FIG. The variation of the air-fuel ratio (equivalent ratio) in the multiple injection is larger than in the single intake stroke injection and smaller than in the compression stroke injection. On the other hand, as the variation in the air-fuel ratio (equivalent ratio) increases, as shown in FIG. 14, the lean limit air-fuel ratio AFL (lean limit of the average air-fuel ratio) becomes leaner because the combustion stability is improved. If the variation exceeds a certain limit, the rich limit air-fuel ratio AFR (the rich limit of the average air-fuel ratio) becomes lean.

【0039】図15は、空燃比(当量比)のばらつきと
自己着火燃焼の成立範囲との相関を示すものであり、空
燃比のばらつきが大きくなると、自己着火燃焼の成立範
囲はより低負荷側に拡大するが、空燃比のばらつきがあ
まり大きくなると、リッチ限界が低負荷化するため、成
立範囲としては狭くなってしまう。ここで、リッチ限界
が急激に低負荷化する領域は、圧縮行程噴射により成層
化した場合の空燃比ばらつき領域であり、成層化させる
場合よりも小さい多重噴射による空燃比のばらつき領域
では、リッチ限界を低負荷化させることなく、自己着火
燃焼の成立範囲を低負荷側に拡大できる。
FIG. 15 shows the correlation between the variation in the air-fuel ratio (equivalent ratio) and the range in which the self-ignition combustion is established. As the variation in the air-fuel ratio increases, the range in which the self-ignition combustion is established becomes lower. However, if the variation in the air-fuel ratio becomes too large, the load limit of the rich limit is reduced, so that the range of the fuel cell becomes narrower. Here, the region where the rich limit sharply reduces the load is the air-fuel ratio variation region when stratification is performed by the compression stroke injection, and in the air-fuel ratio variation region due to multiple injections smaller than when stratification is performed, the rich limit is reduced. Without reducing the load on the vehicle, the range in which the self-ignition combustion is established can be expanded to the low load side.

【0040】また、図16は、空燃比(当量比)のばら
つきとHC・NOx排出量との相関を示すものであり、
空燃比ばらつきがあまり大きくなると、NOx排出量が
増加するが、NOx排出量が増加傾向を示す空燃比ばら
つき領域よりも小さい領域では、HC排出量・NOx排
出量は共に変化しない。上記の図15,16に示すよう
に、成層化すると圧縮自己着火燃焼の成立範囲を低負荷
化できるもののNOx排出量が増大する。
FIG. 16 shows the correlation between the variation of the air-fuel ratio (equivalent ratio) and the HC / NOx emission.
If the air-fuel ratio variation becomes too large, the NOx emission increases, but in a region smaller than the air-fuel ratio variation region in which the NOx emission tends to increase, both the HC emission and the NOx emission do not change. As shown in FIGS. 15 and 16, when stratification is achieved, the load in the range in which the compression self-ignition combustion is established can be reduced, but the NOx emission increases.

【0041】これに対し、不規則な空燃比ばらつきを設
定した場合には、NOx排出量を増大させることなく、
圧縮自己着火燃焼の成立範囲を低負荷化でき、本実施形
態では、多重噴射によって混合気に不規則な空燃比のば
らつきを設定して圧縮自己着火燃焼を行わせることで、
均質混合気による自己着火燃焼では成立範囲とならない
低負荷側を圧縮自己着火燃焼領域に含め、かつ、NOx
排出量の増大を回避できるようにしている。
On the other hand, when an irregular air-fuel ratio variation is set, without increasing the NOx emission amount,
The range in which the compression self-ignition combustion is established can be reduced, and in the present embodiment, the compression self-ignition combustion is performed by setting an irregular air-fuel ratio variation in the air-fuel mixture by multiple injections.
The low-load side, which does not fall within the range of self-ignition combustion with a homogeneous mixture, is included in the compression auto-ignition combustion region, and NOx
An increase in emissions can be avoided.

【0042】更に、上記の実施形態では、多重噴射によ
って混合気に与える空燃比のばらつきの大きさを、噴射
回数及びトータル噴射期間によって制御している。圧縮
自己着火燃焼における着火性は、機関回転速度が高いほ
ど、機関負荷が低いほど悪化する傾向を示す一方、空燃
比ばらつきが大きくなるほど、燃焼安定性が良くなる。
Further, in the above embodiment, the magnitude of the variation in the air-fuel ratio given to the air-fuel mixture by the multiple injection is controlled by the number of injections and the total injection period. The ignitability in the compression self-ignition combustion tends to deteriorate as the engine speed increases and the engine load decreases, while the combustion stability improves as the air-fuel ratio variation increases.

【0043】また、多重噴射における噴射回数が多いほ
ど、多重噴射におけるトータル噴射期間が長くなるほ
ど、空燃比ばらつきは大きくなる(図6,8参照)。そ
こで、本実施形態では、前述のように、機関回転速度が
高いほど、機関負荷が低いほど、噴射回数を多くし、ま
た、トータル噴射期間を長くするようにしてある。
Further, as the number of injections in the multiple injection increases, and as the total injection period in the multiple injection increases, the air-fuel ratio variation increases (see FIGS. 6 and 8). Therefore, in the present embodiment, as described above, the higher the engine speed and the lower the engine load, the greater the number of injections and the longer the total injection period.

【0044】尚、噴射回数とトータル噴射期間とのいず
れか一方を固定とし、他方を機関回転速度及び機関負荷
に応じて変化させる構成としても良い。ところで、上記
第1実施形態では、多重噴射の噴射開始時期を固定とし
て、噴射回数及びトータル噴射期間で空燃比ばらつきを
制御する構成としたが、多重噴射の噴射開始時期を制御
することで、空燃比ばらつきを制御する構成としても良
く、係る構成とした第2の実施形態を、図17のフロー
チャートに従って説明する。
Incidentally, one of the number of injections and the total injection period may be fixed, and the other may be changed according to the engine speed and the engine load. By the way, in the first embodiment, the injection start timing of the multiple injections is fixed, and the air-fuel ratio variation is controlled by the number of injections and the total injection period. A configuration for controlling the fuel ratio variation may be employed, and a second embodiment having such a configuration will be described with reference to the flowchart of FIG.

【0045】図17のフローチャートは、ステップS2
6における噴射回数の設定に続けて、ステップS27で
噴射時期(噴射開始時期)の設定を行い、ステップS2
8では、設定されたトータル噴射期間及び噴射回数の多
重噴射を、ステップS27で設定された開始時期におい
て開始させる。尚、上記に示した以外の各ステップは、
図3のフローチャートと同様な処理を行うので説明を省
略する。
The flow chart of FIG.
6, the injection timing (injection start timing) is set in step S27, and step S2 is performed.
In step 8, multiple injections of the set total injection period and injection number are started at the start timing set in step S27. Note that each step other than the above is performed
Since the same processing as in the flowchart of FIG. 3 is performed, the description is omitted.

【0046】前記ステップS27では、図18に示すよ
うに、機関回転速度が高いほど、機関負荷が低いほど、
多重噴射の噴射開始時期をより遅角させる設定を行う。
これは、機関回転速度が高いほど、また、機関負荷が低
いほど着火性が悪化する一方、図19に示すように、多
重噴射の噴射開始時期を遅角するほど空燃比(当量比)
のばらつきが大きくなって着火安定性が改善されるため
である。
In step S27, as shown in FIG. 18, the higher the engine speed and the lower the engine load,
A setting is made to further retard the injection start timing of the multiple injection.
This is because the higher the engine rotation speed and the lower the engine load, the worse the ignitability becomes. On the other hand, as shown in FIG. 19, the more the injection start timing of the multiple injection is retarded, the more the air-fuel ratio (equivalent ratio).
This is because the variation in 大 き く increases and the ignition stability is improved.

【0047】尚、噴射開始時期のみを変更して空燃比ば
らつきを制御する構成としても良いし、トータル噴射期
間と噴射回数とのいずれか一方と、噴射開始時期とを可
変に設定して空燃比ばらつきを制御する構成としても良
い。ところで、上記実施の形態では、多重噴射によって
形成した不規則な空燃比ばらつきを有する混合気をそれ
自身で圧縮自己着火燃焼させる構成としたが、それ自身
では自己着火に至らない不規則な空燃比ばらつきを有す
る混合気場(以下、主混合気場という)を多重噴射によ
って形成し、該主混合気場に付加的な温度上昇を与える
ことで、自己着火燃焼に至らしめる燃焼形態を実行する
第3の実施形態を以下に説明する。
The air-fuel ratio variation may be controlled by changing only the injection start timing, or the air-fuel ratio may be varied by setting one of the total injection period and the number of injections and the injection start timing variably. A configuration for controlling the variation may be adopted. By the way, in the above embodiment, the air-fuel mixture having the irregular air-fuel ratio variation formed by the multiple injection is configured to be compressed and self-ignited and burned by itself, but the irregular air-fuel ratio which does not lead to the self-ignition by itself is adopted. A mixed gas field having variation (hereinafter, referred to as a main gas mixture field) is formed by multiple injections, and an additional temperature rise is applied to the main gas mixture field to execute a combustion mode that leads to self-ignition combustion. The third embodiment will be described below.

【0048】図20は、第3の実施形態における噴射制
御を示すものであり、ステップS32で圧縮自己着火燃
焼領域であると判別されると、ステップS35〜37で
多重噴射におけるトータル噴射期間,噴射回数,噴射開
始時期を第2実施形態と同様に設定する。ステップS3
8では、図21に示すように、圧縮自己着火燃焼領域の
うちの高負荷・高回転側に設定される2段燃焼領域であ
るか、それ以外の1段燃焼領域であるかを判別する。
FIG. 20 shows the injection control in the third embodiment. If it is determined in step S32 that the engine is in the compression self-ignition combustion region, the total injection period and injection in the multiple injection are determined in steps S35 to S37. The number of times and the injection start timing are set as in the second embodiment. Step S3
At step 8, as shown in FIG. 21, it is determined whether or not the compression self-ignition combustion region is the two-stage combustion region set on the high load / high rotation side or the other one-stage combustion region.

【0049】前記1段燃焼領域とは、多重噴射によって
形成させた不規則な空燃比ばらつきを有する混合気をそ
れ自身で自己着火燃焼させる燃焼であり、前記2段燃焼
とは、1段燃焼時と同様に多重噴射で形成させた混合気
(主混合気場)を、多重噴射の後に追加噴射させた燃料
の燃焼による発熱で、自己着火燃焼に至らしめる燃焼形
態であり、主混合気場を自己着火燃焼に至らしめるトリ
ガーとなる燃焼と、その後の主混合気場の燃焼との2回
の燃焼が行われるので、ここでは2段燃焼と称するもの
とする(図22参照)。
The first-stage combustion region is a combustion in which the air-fuel mixture having an irregular air-fuel ratio variation formed by the multiple injections is self-ignited and burns by itself. In the same manner as described above, the mixture formed by the multiple injection (main mixture field) is a combustion mode in which heat is generated by the combustion of the fuel additionally injected after the multiple injection, thereby leading to self-ignition combustion. Since combustion is performed twice, that is, combustion that triggers self-ignition combustion and subsequent combustion in the main air-fuel mixture field, it is referred to as two-stage combustion (see FIG. 22).

【0050】ステップS38で1段噴射領域であると判
別されると、ステップS39へ進んで、圧縮上死点付近
で自己着火燃焼に至る量の燃料を、トータル噴射期間,
噴射回数及び噴射開始時期の設定に従った多重噴射で噴
射させる。一方、ステップS38で2段燃焼領域である
と判別されると、ステップS40へ進み、トータル噴射
期間,噴射回数及び噴射開始時期の設定に従って多重噴
射を行わせるが、ここでは、目標とする燃焼時期以前に
自己着火燃焼を開始しない燃料量を多重噴射で噴射さ
せ、トリガー燃焼時までに予混合される主混合気場を形
成させる。
If it is determined in step S38 that the fuel is in the first-stage injection region, the process proceeds to step S39, in which the amount of fuel that reaches autoignition combustion near the compression top dead center is reduced by the total injection period,
Injection is performed by multiple injections according to the setting of the number of injections and the injection start timing. On the other hand, if it is determined in step S38 that it is in the two-stage combustion region, the process proceeds to step S40, in which multiple injections are performed according to the settings of the total injection period, the number of injections, and the injection start timing. A fuel quantity that does not start self-ignition combustion before is injected in multiple injections to form a main mixed gas field that is premixed by the time of trigger combustion.

【0051】次のステップS41では、前記ステップS
40における多重噴射の後の上死点付近で追加の燃料噴
射を1回行わせ、これにより燃料噴射弁8直下の局所領
域にリッチ混合気を形成して混合気を成層化する(図2
3参照)。前記上死点付近において噴射される燃料は、
圧縮自己着火燃焼を開始するだけの最低限の量であり、
該上死点付近において噴射される燃料が圧縮自己着火燃
焼すると、該燃焼による発熱で主混合気場を圧縮自己着
火燃焼に至らしめる。
In the next step S41, the aforementioned step S41
An additional fuel injection is performed once near the top dead center after the multiple injections at 40, thereby forming a rich mixture in a local region immediately below the fuel injection valve 8 and stratifying the mixture (FIG. 2).
3). Fuel injected near the top dead center is:
It is the minimum amount to start compression self-ignition combustion,
When the fuel injected near the top dead center is compressed self-ignition combustion, the heat generated by the combustion causes the main mixture field to be compressed self-ignition combustion.

【0052】上記構成によると、2段燃焼を行わせる場
合においても、主混合気場が不規則な空燃比ばらつきを
有することで着火性が良いから、局所的なリッチ混合気
を形成するときの燃料量を少なくでき、リッチ混合気の
燃焼によるNOxの排出を抑制できる。更に、2段燃焼
を行わせる構成とすることで、筒内圧の上昇速度を抑制
してノッキングの発生を回避できるので、1段燃焼を行
わせる場合よりも高負荷側で圧縮自己着火燃焼を成立さ
せることができる。
According to the above configuration, even in the case of performing two-stage combustion, since the main air-fuel mixture field has an irregular air-fuel ratio variation and thus has good ignitability, the local air-fuel mixture has a high ignitability. The amount of fuel can be reduced, and the emission of NOx due to combustion of the rich mixture can be suppressed. Furthermore, by adopting a configuration in which two-stage combustion is performed, the rate of rise of the in-cylinder pressure can be suppressed to prevent occurrence of knocking, so that compression self-ignition combustion is achieved on a higher load side than in the case of performing one-stage combustion. Can be done.

【0053】尚、上記では、局所的なリッチ混合気を圧
縮自己着火燃焼させる構成としたが、点火プラグ9によ
る火花点火で局所的なリッチ混合気を燃焼させ、該燃焼
による発熱で、主混合気場を圧縮自己着火燃焼に至らし
める構成としても良い。ところで、上記各実施形態で
は、機関回転速度及び機関負荷から要求される空燃比ば
らつきを予めマップ化し、該マップに従って空燃比ばら
つきに相関するトータル噴射期間,噴射回数,噴射開始
時期をフィードホワード制御する構成としたが、ノッキ
ング強度及び燃焼安定度を検出し、これらが許容値にな
るように、空燃比ばらつき(トータル噴射期間,噴射回
数,噴射開始時期)をフィードバック制御する構成とし
ても良く、係る構成とした第4の実施形態を、図24の
フローチャートに従って説明する。
In the above description, the local rich air-fuel mixture is compressed and self-ignited. However, the local rich air-fuel mixture is burned by spark ignition by the spark plug 9, and the main mixture is generated by the heat generated by the combustion. It is good also as composition which brings an air field to compression self-ignition combustion. In the above embodiments, the air-fuel ratio variation required from the engine rotation speed and the engine load is mapped in advance, and the total injection period, the number of injections, and the injection start timing correlated with the air-fuel ratio variation are feedforward controlled according to the map. Although the knocking intensity and the combustion stability are detected, the air-fuel ratio variation (total injection period, number of injections, injection start timing) may be feedback-controlled so that these values become allowable values. The fourth embodiment will be described with reference to the flowchart of FIG.

【0054】圧縮自己着火燃焼領域において、機関回転
速度及び機関負荷からトータル噴射期間,噴射回数,噴
射開始時期を設定し、該設定に基づいて多重噴射を行わ
せ、不規則な空燃比ばらつきを有する混合気を形成させ
るのは(ステップS45〜ステップS48)、第2の実
施形態と同様である。ステップS49では、ノッキング
強度及び燃焼安定度を検出させる。
In the compression self-ignition combustion region, the total injection period, the number of injections, and the injection start timing are set based on the engine speed and the engine load, and multiple injections are performed based on the settings. The formation of the air-fuel mixture (steps S45 to S48) is the same as in the second embodiment. In step S49, knocking strength and combustion stability are detected.

【0055】前記ノッキング強度は、図1に示すよう
に、シリンダブロックに設けられるノックセンサ(振動
センサ)11からの検出信号に基づいて検出する。ま
た、燃焼安定度は、クランク角センサ10の検出信号に
基づき機関回転変動を求め、この回転変動から判別させ
るものとする。ステップS50では、前記検出されたノ
ッキング強度及び燃焼安定度が共に許容値内である状
態、共に許容値内でない状態、一方が許容値内で他方が
許容値内でない状態のいずれかを判別する。
As shown in FIG. 1, the knocking intensity is detected based on a detection signal from a knock sensor (vibration sensor) 11 provided in the cylinder block. In addition, the combustion stability is determined based on a detection signal of the crank angle sensor 10 to determine an engine rotation fluctuation, and is determined based on the rotation fluctuation. In step S50, it is determined whether the detected knocking intensity and the combustion stability are both within allowable values, both are not within allowable values, or one is within allowable values and the other is not within allowable values.

【0056】ノッキング強度及び燃焼安定度が共に許容
値内でない場合には、圧縮自己着火燃焼の成立範囲が存
在しない状態であり、このときには、圧縮自己着火燃焼
から火花点火燃焼に切り換えるようにする。また、ノッ
キング強度及び燃焼安定度が共に許容値内であるときに
は、ステップS51へ進み、多重噴射で形成させる混合
気の空燃比ばらつきを減少させることで、必要最小限の
ばらつきで圧縮自己着火燃焼を成立させるようにする。
If both the knocking strength and the combustion stability are not within the allowable values, there is no compression self-ignition combustion range. At this time, the mode is switched from compression self-ignition combustion to spark ignition combustion. When both the knocking intensity and the combustion stability are within the allowable values, the process proceeds to step S51, in which the air-fuel ratio variation of the air-fuel mixture formed by the multiple injection is reduced, so that the compression auto-ignition combustion is performed with a minimum required variation. Let it be established.

【0057】空燃比ばらつきの減少補正は、多重噴射の
噴射開始時期を進角補正して行わせる。但し、トータル
噴射期間の短縮補正或いは噴射回数の減少補正によっ
て、空燃比ばらつきを減少させる構成としても良いし、
噴射開始時期の進角補正,トータル噴射期間の短縮補
正,噴射回数の減少補正のうちの2つ以上を組み合わせ
る構成としても良い。
The correction for reducing the variation in the air-fuel ratio is performed by advancing the injection start timing of the multiple injection. However, the air-fuel ratio variation may be reduced by shortening the total injection period or reducing the number of injections,
A configuration may be used in which two or more of the advance correction of the injection start timing, the shortening correction of the total injection period, and the reduction correction of the number of injections are combined.

【0058】更に、一方が許容値内(OK)で他方が許
容値内でない(NG)状態であるときには、ステップS
52へ進み、ノッキング強度が許容値内(OK)である
か否かを判別する。そして、ノッキング強度が許容値内
でない(NG)状態であるとき、即ち、燃焼安定度が許
容値内(OK)であるが、ノッキング強度が許容値を超
えて大きいときには、ステップS51へ進み、多重噴射
で形成させる混合気の空燃比ばらつきを減少させる。
Further, if one of the states is within the allowable value (OK) and the other is not within the allowable value (NG), step S
Proceeding to 52, it is determined whether or not the knocking intensity is within an allowable value (OK). When the knocking intensity is not within the allowable value (NG), that is, when the combustion stability is within the allowable value (OK) but the knocking intensity is higher than the allowable value, the process proceeds to step S51, and the multiplexing is performed. The air-fuel ratio variation of the air-fuel mixture formed by the injection is reduced.

【0059】一方、ノッキング強度が許容値内(OK)
であるとき、即ち、燃焼安定度が許容値内でない(N
G)状態であるときには、ステップS53へ進み、多重
噴射で形成させる混合気の空燃比ばらつきを増大補正す
る。空燃比ばらつきの増大補正は、多重噴射の噴射開始
時期を遅角補正して行わせる。但し、トータル噴射期間
の増大補正或いは噴射回数の増大補正によって、空燃比
ばらつきを増大させる構成としても良いし、噴射開始時
期の増大補正,トータル噴射期間の増大補正,噴射回数
の増大補正のうちの2つ以上を組み合わせる構成として
も良い。
On the other hand, the knocking strength is within the allowable value (OK).
, That is, the combustion stability is not within the allowable value (N
If the state is G), the process proceeds to step S53, in which the air-fuel ratio variation of the air-fuel mixture formed by the multiple injection is increased and corrected. The correction for increasing the variation in the air-fuel ratio is performed by delaying the injection start timing of the multiple injection. However, the air-fuel ratio variation may be increased by increasing the total injection period or increasing the number of injections. Alternatively, the increase in the injection start timing, the increase in the total injection period, or the increase in the number of injections may be performed. It is good also as a structure which combines two or more.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施形態における内燃機関のシステム構成図。FIG. 1 is a system configuration diagram of an internal combustion engine according to an embodiment.

【図2】実施形態における自己着火燃焼領域と火花点火
燃焼領域とを示す図。
FIG. 2 is a diagram showing a self-ignition combustion region and a spark ignition combustion region in the embodiment.

【図3】第1の実施形態における燃料噴射制御を示すフ
ローチャート。
FIG. 3 is a flowchart illustrating fuel injection control according to the first embodiment.

【図4】多重噴射制御時の噴射信号のパターンを示す
図。
FIG. 4 is a view showing a pattern of an injection signal during multiple injection control.

【図5】多重噴射におけるトータル噴射期間と機関負荷
・回転との相関を示す線図。
FIG. 5 is a diagram showing a correlation between a total injection period and an engine load / rotation in multiple injection.

【図6】多重噴射におけるトータル噴射期間と空燃比ば
らつきとの相関を示す線図。
FIG. 6 is a diagram showing a correlation between a total injection period and air-fuel ratio variation in multiple injection.

【図7】多重噴射における噴射回数と機関負荷・回転と
の相関を示す線図。
FIG. 7 is a diagram showing a correlation between the number of injections and the engine load / rotation in multiple injections.

【図8】多重噴射における噴射回数と空燃比ばらつきと
の相関を示す線図。
FIG. 8 is a diagram showing a correlation between the number of injections and air-fuel ratio variation in multiple injections.

【図9】多重噴射で形成される混合気の空燃比ばらつき
を示す図。
FIG. 9 is a view showing an air-fuel ratio variation of an air-fuel mixture formed by multiple injections.

【図10】空燃比とノッキング強度・燃焼安定度・燃焼
時期との相関を示す線図。
FIG. 10 is a diagram showing a correlation between an air-fuel ratio and knocking strength, combustion stability, and combustion timing.

【図11】吸気行程1回噴射で形成される混合気の空燃
比ばらつきを示す図。
FIG. 11 is a diagram showing an air-fuel ratio variation of an air-fuel mixture formed by a single injection in an intake stroke.

【図12】圧縮行程噴射によって成層化した場合の空燃
比ばらつきを示す図。
FIG. 12 is a diagram showing a variation in air-fuel ratio when stratification is performed by compression stroke injection.

【図13】多重噴射・吸気行程1回噴射・圧縮行程噴射
でそれぞれ形成される混合気における空燃比の頻度分布
を示す線図。
FIG. 13 is a diagram showing a frequency distribution of the air-fuel ratio in the air-fuel mixture formed by the multiple injection, the intake stroke single injection, and the compression stroke injection.

【図14】空燃比とリッチ・リーン限界空燃比との相関
を示す線図。
FIG. 14 is a diagram showing a correlation between an air-fuel ratio and a rich / lean limit air-fuel ratio.

【図15】空燃比ばらつきと圧縮自己着火燃焼の成立範
囲との相関を示す線図。
FIG. 15 is a diagram showing a correlation between an air-fuel ratio variation and a range in which compressed self-ignition combustion is established.

【図16】空燃比ばらつきとNOx・HC排出量との相
関を示す線図。
FIG. 16 is a diagram showing a correlation between air-fuel ratio variation and NOx / HC emissions.

【図17】第2の実施形態における燃料噴射制御を示す
フローチャート。
FIG. 17 is a flowchart illustrating fuel injection control according to the second embodiment.

【図18】多重噴射における噴射開始時期と機関負荷・
回転との相関を示す線図。
FIG. 18 shows injection start timing and engine load in multiple injection.
FIG. 4 is a diagram showing a correlation with rotation.

【図19】多重噴射における噴射開始期間と空燃比ばら
つきとの相関を示す線図。
FIG. 19 is a diagram showing a correlation between an injection start period and air-fuel ratio variation in multiple injection.

【図20】第3の実施形態における燃料噴射制御を示す
フローチャート。
FIG. 20 is a flowchart illustrating fuel injection control according to a third embodiment.

【図21】第3の実施形態における火花点火燃焼領域及
び1段燃料領域と2段燃焼領域とからなる圧縮自己着火
燃焼領域を示す線図。
FIG. 21 is a diagram showing a spark ignition combustion region and a compression self-ignition combustion region including a first-stage fuel region and a second-stage combustion region in the third embodiment.

【図22】第3の実施形態における2段燃焼時の筒内圧
力の変化を示す線図。
FIG. 22 is a diagram showing a change in in-cylinder pressure during two-stage combustion in the third embodiment.

【図23】2段燃焼領域で形成される混合気の空燃比ば
らつきを示す図。
FIG. 23 is a view showing an air-fuel ratio variation of an air-fuel mixture formed in a two-stage combustion region.

【図24】第4の実施形態における燃料噴射制御を示す
フローチャート。
FIG. 24 is a flowchart illustrating fuel injection control according to a fourth embodiment.

【符号の説明】[Explanation of symbols]

1…内燃機関 2…シリンダ 3…吸気ポート 4…吸気バルブ 5…排気ポート 6…排気バルブ 7…シリンダヘッド 8…燃料噴射弁 9…点火プラグ 10…クランク角センサ 11…ノックセンサ 20…エンジンコントロールユニット(ECU) 21…燃焼パターン判定部 22…火花点火燃焼制御部 23…自己着火燃焼制御部 24…噴射回数制御部 25…噴射期間制御部 26…噴射時期制御部 DESCRIPTION OF SYMBOLS 1 ... Internal combustion engine 2 ... Cylinder 3 ... Intake port 4 ... Intake valve 5 ... Exhaust port 6 ... Exhaust valve 7 ... Cylinder head 8 ... Fuel injection valve 9 ... Spark plug 10 ... Crank angle sensor 11 ... Knock sensor 20 ... Engine control unit (ECU) 21: combustion pattern determination unit 22: spark ignition combustion control unit 23: self-ignition combustion control unit 24: injection number control unit 25: injection period control unit 26: injection timing control unit

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F02D 41/40 F02D 41/40 F 45/00 312 45/00 312N 312J 345 345B 368 368B F02P 17/12 F02P 17/00 R (72)発明者 角方 章彦 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 Fターム(参考) 3G019 AA01 AB02 AB03 AC03 GA01 GA05 GA09 GA14 3G084 AA00 BA09 BA11 BA13 BA15 BA16 CA03 CA09 DA10 DA38 EA07 EB09 EC01 EC03 FA10 FA18 FA25 FA33 FA38 3G301 HA01 HA04 JA22 JA25 KA06 KA08 KA23 MA01 MA11 MA18 MA26 MA27 NC04 NE23 PA11Z PA17Z PC08Z PE01Z PE03Z──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) F02D 41/40 F02D 41/40 F 45/00 312 45/00 312N 312J 345 345B 368 368B F02P 17/12 F02P 17/00 R (72) Inventor Akihiko Tsunokata 2 Takaracho, Kanagawa-ku, Yokohama-shi, Kanagawa Prefecture F-term in Nissan Motor Co., Ltd. (reference) 3G019 AA01 AB02 AB03 AC03 GA01 GA05 GA09 GA14 3G084 AA00 BA09 BA11 BA13 BA15 BA16 CA03 CA09 DA10 DA38 EA07 EB09 EC01 EC03 FA10 FA18 FA25 FA33 FA38 3G301 HA01 HA04 JA22 JA25 KA06 KA08 KA23 MA01 MA11 MA18 MA26 MA27 NC04 NE23 PA11Z PA17Z PC08Z PE01Z PE03Z

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】圧縮自己着火燃焼運転を行う内燃機関の燃
焼制御装置であって、 圧縮自己着火燃焼運転時に、燃焼室内の混合気に不規則
な空燃比のばらつきを設けることを特徴とする内燃機関
の燃焼制御装置。
1. A combustion control device for an internal combustion engine that performs a compression self-ignition combustion operation, wherein an irregular air-fuel ratio variation is provided in an air-fuel mixture in a combustion chamber during the compression self-ignition combustion operation. Engine combustion control device.
【請求項2】圧縮自己着火燃焼運転を行う内燃機関の燃
焼制御装置であって、 圧縮自己着火燃焼運転時に、主混合気場に対して付加的
な温度上昇を与えて圧縮自己着火燃焼に至らしめる構成
とし、かつ、前記主混合気場に不規則な空燃比のばらつ
きを設けることを特徴とする内燃機関の燃焼制御装置。
2. A combustion control device for an internal combustion engine that performs a compression self-ignition combustion operation, wherein during a compression self-ignition combustion operation, an additional temperature rise is applied to a main air-fuel mixture field to reach a compression self-ignition combustion. A combustion control apparatus for an internal combustion engine, wherein the main mixture field has irregular air-fuel ratio variations.
【請求項3】筒内に燃料を直接噴射する燃料噴射弁を備
えてなり、前記主混合気場を形成する燃料噴射の後で、
局所的なリッチ混合気場を形成するための追加の燃料噴
射を行い、前記局所的なリッチ混合気場の火花点火燃焼
又は圧縮自己着火燃焼による温度上昇によって、前記主
混合気場を圧縮自己着火燃焼に至らしめることを特徴と
する請求項2記載の内燃機関の燃焼制御装置。
3. A fuel injection valve for directly injecting fuel into a cylinder, wherein after the fuel injection forming the main mixture field,
Additional fuel injection is performed to form a local rich mixture field, and the main mixture field is compressed and self-ignited by a temperature increase due to spark ignition combustion or compression self-ignition combustion of the local rich mixture field. 3. The combustion control device for an internal combustion engine according to claim 2, wherein the combustion is performed.
【請求項4】機関の回転速度が高いときほど、前記空燃
比ばらつきを大きくすることを特徴とする請求項1〜3
のいずれか1つに記載の内燃機関の燃焼制御装置。
4. The air-fuel ratio variation increases as the rotational speed of the engine increases.
The combustion control device for an internal combustion engine according to any one of the above.
【請求項5】機関負荷が低負荷になるほど、前記空燃比
ばらつきを大きくすることを特徴とする請求項1〜4の
いずれか1つに記載の内燃機関の燃焼制御装置。
5. The combustion control device for an internal combustion engine according to claim 1, wherein the air-fuel ratio variation increases as the engine load decreases.
【請求項6】機関の燃焼安定度及びノッキング強度を検
出し、機関の燃焼安定度及びノッキング強度がそれぞれ
許容範囲内になるように、前記空燃比ばらつきを制御す
ることを特徴とする請求項1〜3のいずれか1つに記載
の内燃機関の燃焼制御装置。
6. The engine according to claim 1, wherein the combustion stability and the knocking intensity of the engine are detected, and the air-fuel ratio variation is controlled so that the combustion stability and the knocking intensity of the engine fall within allowable ranges, respectively. The combustion control device for an internal combustion engine according to any one of claims 1 to 3.
【請求項7】筒内に燃料を直接噴射する燃料噴射弁を備
えてなり、前記不規則な空燃比のばらつきを有する混合
気を、1サイクル中に燃料を2回以上に分けて周期的に
噴射する多重噴射によって形成することを特徴とする請
求項1〜6のいずれか1つに記載の内燃機関の燃焼制御
装置。
7. A fuel injection valve for directly injecting fuel into a cylinder, wherein the fuel-air mixture having the irregular air-fuel ratio variation is periodically divided into two or more times in one cycle by dividing the fuel. 7. The combustion control device for an internal combustion engine according to claim 1, wherein the combustion control device is formed by multiple injections.
【請求項8】前記多重噴射の噴射回数によって前記空燃
比ばらつきを制御することを特徴とする請求項7記載の
内燃機関の燃焼制御装置。
8. A combustion control apparatus for an internal combustion engine according to claim 7, wherein said air-fuel ratio variation is controlled by the number of injections of said multiple injections.
【請求項9】前記多重噴射を行わせる期間によって前記
空燃比ばらつきを制御することを特徴とする請求項7又
は8記載の内燃機関の燃焼制御装置。
9. The combustion control device for an internal combustion engine according to claim 7, wherein the air-fuel ratio variation is controlled by a period during which the multiple injection is performed.
【請求項10】前記多重噴射の噴射時期によって前記空
燃比ばらつきを制御することを特徴とする請求項7〜9
のいずれか1つに記載の内燃機関の燃焼制御装置。
10. The air-fuel ratio variation is controlled by the injection timing of the multiple injection.
The combustion control device for an internal combustion engine according to any one of the above.
JP2001010668A 2001-01-18 2001-01-18 Combustion control device for internal combustion engine Expired - Fee Related JP4032650B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001010668A JP4032650B2 (en) 2001-01-18 2001-01-18 Combustion control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001010668A JP4032650B2 (en) 2001-01-18 2001-01-18 Combustion control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2002213278A true JP2002213278A (en) 2002-07-31
JP4032650B2 JP4032650B2 (en) 2008-01-16

Family

ID=18877941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001010668A Expired - Fee Related JP4032650B2 (en) 2001-01-18 2001-01-18 Combustion control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4032650B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004044430A (en) * 2002-07-10 2004-02-12 Toyota Motor Corp Internal combustion engine for compression-ignition of air-fuel mixture and method of controlling internal combustion engine
JP2007177755A (en) * 2005-12-28 2007-07-12 Honda Motor Co Ltd Self-igniting engine
JP2008196387A (en) * 2007-02-13 2008-08-28 Toyota Motor Corp In-cylinder injection internal combustion engine control device
JP2008291792A (en) * 2007-05-25 2008-12-04 Toyota Motor Corp Fuel injection control device
JP2012072728A (en) * 2010-09-29 2012-04-12 Mazda Motor Corp Combustion control device of gasoline engine
JP2012211543A (en) * 2011-03-31 2012-11-01 Mazda Motor Corp Spark-ignited gasoline engine
JP2013096234A (en) * 2011-10-28 2013-05-20 Suzuki Motor Corp Internal combustion engine
CN109424459A (en) * 2017-08-25 2019-03-05 马自达汽车株式会社 The control device of engine
CN109424460A (en) * 2017-08-25 2019-03-05 马自达汽车株式会社 The control device of compression ignition formula engine
JP2019039358A (en) * 2017-08-25 2019-03-14 マツダ株式会社 Control device for engine
JP2019039360A (en) * 2017-08-25 2019-03-14 マツダ株式会社 Control device for engine
EP3770409A1 (en) * 2019-07-24 2021-01-27 Mazda Motor Corporation Fuel injection control device, and method of controlling injection of fuel
EP3770410A1 (en) * 2019-07-24 2021-01-27 Mazda Motor Corporation Fuel injection control device, and method of controlling injection of fuel
EP3770412A1 (en) * 2019-07-24 2021-01-27 Mazda Motor Corporation Fuel injection control device, and method of controlling injecton of fuel
EP3770411A1 (en) * 2019-07-24 2021-01-27 Mazda Motor Corporation Fuel injection control device, and method of controlling injection of fuel

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004044430A (en) * 2002-07-10 2004-02-12 Toyota Motor Corp Internal combustion engine for compression-ignition of air-fuel mixture and method of controlling internal combustion engine
JP2007177755A (en) * 2005-12-28 2007-07-12 Honda Motor Co Ltd Self-igniting engine
JP2008196387A (en) * 2007-02-13 2008-08-28 Toyota Motor Corp In-cylinder injection internal combustion engine control device
JP2008291792A (en) * 2007-05-25 2008-12-04 Toyota Motor Corp Fuel injection control device
JP2012072728A (en) * 2010-09-29 2012-04-12 Mazda Motor Corp Combustion control device of gasoline engine
JP2012211543A (en) * 2011-03-31 2012-11-01 Mazda Motor Corp Spark-ignited gasoline engine
JP2013096234A (en) * 2011-10-28 2013-05-20 Suzuki Motor Corp Internal combustion engine
CN109424460A (en) * 2017-08-25 2019-03-05 马自达汽车株式会社 The control device of compression ignition formula engine
CN109424459A (en) * 2017-08-25 2019-03-05 马自达汽车株式会社 The control device of engine
JP2019039358A (en) * 2017-08-25 2019-03-14 マツダ株式会社 Control device for engine
JP2019039360A (en) * 2017-08-25 2019-03-14 マツダ株式会社 Control device for engine
US10711708B2 (en) 2017-08-25 2020-07-14 Mazda Motor Corporation Control device for engine
CN109424460B (en) * 2017-08-25 2021-10-12 马自达汽车株式会社 Control device for compression ignition engine
EP3770409A1 (en) * 2019-07-24 2021-01-27 Mazda Motor Corporation Fuel injection control device, and method of controlling injection of fuel
EP3770410A1 (en) * 2019-07-24 2021-01-27 Mazda Motor Corporation Fuel injection control device, and method of controlling injection of fuel
EP3770412A1 (en) * 2019-07-24 2021-01-27 Mazda Motor Corporation Fuel injection control device, and method of controlling injecton of fuel
EP3770411A1 (en) * 2019-07-24 2021-01-27 Mazda Motor Corporation Fuel injection control device, and method of controlling injection of fuel

Also Published As

Publication number Publication date
JP4032650B2 (en) 2008-01-16

Similar Documents

Publication Publication Date Title
JP3975702B2 (en) Control device for self-igniting engine
US7367313B2 (en) Speed transient control methods for direct-injection engines with controlled auto-ignition combustion
JP2002004913A (en) Compression self-ignition internal combustion engine
US6725825B1 (en) Method and system for controlling combustion mode in an internal combustion engine
US8082093B2 (en) Fuel injection control apparatus and fuel injection control method of internal combustion engine
JP6376289B2 (en) Internal combustion engine control device and internal combustion engine control method
JP2004239208A (en) Engine combustion control device
US20090164101A1 (en) Fuel pressure controlling device of engine
JP4032650B2 (en) Combustion control device for internal combustion engine
US7181902B2 (en) Coordinated engine control for lean NOx trap regeneration
KR101509955B1 (en) Method and apparatus for controlling combustion of engine having mixed combustion mode
JP3945174B2 (en) Combustion control device for internal combustion engine
JPH10238374A (en) Premixture ignition internal combustion engine and ignition timing control method
EP1164276B1 (en) Internal combustion engine with external assist for stable auto-ignition
KR101491335B1 (en) Method and apparatus for controlling combustion of engine having mixed combustion mode
JP2003049650A (en) Compressed self-ignition internal combustion engine
JP3873560B2 (en) Combustion control device for internal combustion engine
JP4432667B2 (en) In-cylinder direct injection internal combustion engine
JP2002174135A (en) Compression self-ignition type internal combustion engine
JP2007064187A (en) Knock suppression device for internal combustion engine
WO2017022088A1 (en) Fuel injection control method and fuel injection control device
JP3978965B2 (en) Combustion control device for internal combustion engine
JP2004011584A (en) Fuel injection control device
US11773802B2 (en) Internal combustion engine
JP3677947B2 (en) Fuel injection control device for internal combustion engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071015

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees